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Abstract—This paper introduces a new model to identify
group of trajectory outliers from a large trajectory data base
and proposes several algorithms. These can be split into three
categories. 1) Algorithms based on data mining and knowledge
discovery, which study the different correlation among the
trajectory data and identify the group of abnormal trajectories
from the knowledge extracted. 2) Algorithms based on machine
learning and computational intelligence methods, which use
the ensemble learning and metaheuristics to find the group of
trajectory outliers. 3) An algorithm exploring convolution deep
neural network that learns the different features of historical data
to determine the group of trajectory outliers. Experiments on
different trajectory databases have been carried out to investigate
the proposed algorithms. The results show that the deep learning
solution outperforms the data mining, the machine learning, and
computational intelligence solutions, as well as the state-of-the-art
solutions in terms of runtime and accuracy performance.

Index Terms—Deep Learning, Machine Learning, Computa-
tional Intelligence, Data Mining. Trajectory Data.

I. INTRODUCTION

The problem of outlier detection involves detecting and, when
appropriate, removing anomalous observations from data. This
problem emerges in numerous applications [1]–[3]. A general
form of this problem is group outlier (or anomaly) detection
in which the aim is to identify sets of anomalous observations
rather than only individual ones [4], [5]. Sample applications
include locating unusual clusters of celestial objects from
image processing [5], astronomical data [6], machine monitor-
ing [7], article and website management [8]. In this paper we
consider trajectory outlier detection—a variant of the outlier
detection problem for spatial data that involves trajectories.
This includes, for instance, vehicle positioning data, hurricane
tracking data, and animal movement data. The aim is to
identify trajectories that deviate from regular paterns. [9]. This
domain has been boosted by the proliferation of GPS-enabled
devices that produce countless trajectories. The identification
of outliers in such data is important to optimize routes in the
short term, e.g. in car navigation systems, or to make longer-
term decisions, such as improving the organization of an urban
area [10].

Unlike the general outlier detection problem, prior works
on the trajectory outlier detection problem consider solely
individual outliers (see the next section for an overview).
However, in real-world scenarios, trajectory outliers can ap-
pear in groups, e.g., a group of vehicles that deviates from
an usual trajectory due to the maintenance of streets in the
context of intelligent transportation, or a group of hurricane
trajectories that deviates from the normal hurricane ones in
the context of climate change [11]. We introduce and analyse
in this paper the Group Trajectory Outlier detection (GTO)
problem and explore different solutions based on clustering,
neighborhood computation, feature selection, and ensemble
learning. High performance computing (HPC) is explored and
a GPU-based solution is proposed to deal with big trajectory
databases in a fast way. The main contributions in this paper
can be summarized as follows:
• The group trajectory outlier detection problem is formally

defined by considering the individual trajectory outliers
as trajectory candidates and introducing a new concept
of the density of a group of trajectory outliers. A group
of trajectory outliers is thus defined as a set of individual
trajectory outliers that are highly correlated, i.e., with a
high number of shared locations.

• The DBSCAN algorithm [12] and kNN [13] are revisited
and adapted for the group trajectory outlier (GTO). This
results in DBSCAN-GTO, and kNN-GTO, respectively.
DBSCAN-GTO starts by applying the DBSCAN method
to derive the micro clusters. These micro clusters are then
considered as potential candidates for which we propose
a pruning strategy based on density computation mea-
sure. The pruning produces groups of trajectory outliers.
kNN-GTO starts by recursively deriving the trajectory
candidates from the individual trajectory outliers and
then prunes these candidates using the proposed density
computation measure.

• Three more advanced algorithms are developed. The FS-
GTO algorithm is first proposed, which models the group
trajectory outlier detection problem as feature selection
problem. In particular, the set of individual trajectory
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outliers are considered as the set of all features, and
the feature selection process is adopted to identify the
group of trajectory outliers. A computational intelligence
model is then proposed by considering swarm intelligence
behaviors in exploring the solution space of group of tra-
jectory outliers. A deep learning model is finally proposed
by considering the GTO problem as an object detection
problem. The image trajectories database is first collected,
then the convolution neural network is applied to detect
and identify the group of trajectory outliers.

• The performance of the proposed algorithms is evaluated
using different real trajectory databases. Since, to the
best of our knowledge, this is the first work that ex-
plores group trajectory outlier detection, we compare the
proposed solutions with general group outlier detection
solutions (see Section II for an overview). The results
demonstrate that the proposed algorithms outperform the
baseline algorithms for group detection. Furthermore, the
experiments show the scalability of the three approaches
and the ability of HPC approach to efficiently deal with
large trajectory databases.

The remainder of the paper is organized as follows. Section II
reviews the main existing trajectory and group outlier detection
algorithms. We formally define the problem in Section III.
Section IV presents the proposed algorithms for tackling the
GTO problem, namely, DBSCAN-GTOD, kNN-GTOD and
FS-GTOD. Section VIII presents the performance evaluation
of our proposed algorithms. Discussion of the the learned
lessons, conclusions, and directions for future work are given
in Section IX.

II. RELATED WORK

Solutions for trajectory outlier detection are distance-based
fall into three main categories, 1) distance-based [14]–[19],
2) density-based [20]–[26], and 3) pattern mining based [27]–
[32]. There are a few further works that are based on machine
learning [33]–[37].

The first category is based on neighborhood computation,
while the density-based approaches aim to compute the density
of each trajectories and consider trajectories with low density
values as outliers. Pattern mining-based approaches explore
the different correlations among trajectories to find the outliers.
Approaches based on machine learning learn the outlier detec-
tion process from the training trajectories to identify anomalies
in the new inserted trajectories. All the existing solutions
focus on discovering individual outliers, whereases trajectory
outliers appear in groups in real life scenarios. Group outlier
detection (in its general context) have been largely studied in
the last decade, and the solutions proposed the literature may
be classified into three main categories:

1) Statistical models: Chalapathy et al. [5] consider the
use of a deep generative model and test it on various
image applications. The outlierness for each group in
the input data is estimated by group reference function
using a standard back-propogation algorithm. Liang et al.
[6] use a topic modeling-based approach to find group
outliers. The inference is performed by gibbs sampling,

and the learning is done by monte carlo algorithm. Das
et al. [38] considers the different correlation between the
data outliers to detect pattern anomalous by investigating
bayesian network anomaly detection, and conditional
anomaly detection. Thus, the correlation score between
the individual outliers is determined by the probability of
possible values of these outliers in the training data.

2) Contextual models: Tang et al. [39] defines contextual
outlier detection as small group of points that share
similarity, on some attributes, with a significantly larger
reference group of data, but deviates dramatically on
some other attributes. In order to avoid enumerating
all contextual outliers, they only maintain the closure
context outliers. In addition, only contextual outliers with
a statistical significance test greater than a given threshold
are retrieved. Li et al. [40] assigns feature weights on
each group outlier, and compute chain rule entropy to
determine correlation between different feature groups.
Zhao et al. [41] design a parallel computing solution to
deal with contextual outlier detection in high and sparse
dimensional space. Xiong et al. [42] studied detecting two
kinds of group anomalies: a group of individual anoma-
lous points, and a set of normal points the distribution
of whom as a group is abnormal. The authors define
a mixture of gaussian mixture model by adopting the
likelihood of each group, the marginal likelihood of each
observation within a group, and the maximum likelihood
estimation to learn the hyperparameters of the mixture
model. An application of this algorithm in social media
analysis is investigated in [43] by taking into account the
dynamic properties of the social media data.

3) Clustering models: These approaches use clustering
strategies on the individual of outliers to group these
outliers into similar clusters [38], [39], [44]. Each cluster
is then considered as a group of outliers. Soleimani
et al. [44] proposed supervised learning approach that
groups anomalous patterns when memberships are previ-
ously unknown. The salient features are extracted from
an appropriate training set with discrete data inputs. It
implements a nonparametric bootstrap sampling proce-
dure to evaluate the statistical significance of a detected
anomalous behavior for a single object as well as a
cluster of objects. The approach is applied on topic
documents modeling and it is able to discover irregular
topic mixtures from a collection of documents. Sun et
al. [45] proposed abnormal group-based joint medical
fraud approach. The abnormal group problem is converted
to the maximal clique enumeration problem [46] by
considering the set of patients as the set of vertices,
and each edge indicates that the two connected patients
are similar. Note that, the similarity between patients is
determined by computing their identical joint behaviors.
Maximal clique enumeration is NP-hard problem, to do
such task efficiently different partition strategies [47]
are investigated to reduce the graph size. As a result,
each maximal clique is considered as abnormal group of
patients.



3

These algorithms they are not dedicated to trajectory data.
They focus on finding a group outliers from the set of
candidate groups, and not from the individual outliers. We
propose herein the first algorithms that detects group trajectory
outliers from individual trajectory outliers.

III. DEFINITIONS AND PROBLEM STATEMENT

A few preliminary definitions are needed before introducing
the group trajectory outlier problem. A trajectory is a sequence
of location points in space. We will denote by pt a single
spatial location point, where each pt is a tuple of two values—
the latitude and the longitude of this location.

Definition 3.1 (Trajectory Database): We define a trajectory
database T = {T1, T2...Tm}, where each raw trajectory Ti is a
sequence of spatial location points (pi1, pi2...pin), obtained by
localization techniques such as GPS. Each point is represented
by the latitude, and the longitude values, respectively.
As common in the literature [48], the location points which
are similar enough are aggregated into regions. Let us denote
by R a location region in space.

Definition 3.2 (Mapped Trajectory Database): We define a
mapped trajectory database Λ = {Λ1,Λ2...Λm}, where each
mapped trajectory Λi is a sequence of spatial location regions
(Ri1, Ri2...Rin), obtained by mapping each point in Ti to the
closest region Ri. We note R = {R1, R2...R|R|}, by the set
of all regions.
We define the dissimilarity between any two trajectories as the
distance between them.

Definition 3.3 (Trajectory Dissimilarity): We define the
distance between two trajectories d(Λi,Λj) by the number of
all regions minus the number of shared regions between the
two trajectories Λi, and Λj , as

d(Λi,Λj) = maxij − interij (1)

where,

interij = |{(Ril, Rjl)|Ril = Rjl,∀l ∈ [1..n]}| (2)

and,
maxij = max(|Λi|, |Λj |) (3)

and,
|Λi|, |Λi| are the number of regions of trajectories Λi, Λj ,
respectively.
We define the groups of trajectory candidates, i.e., the set of
potential trajectories belong to the groups of trajectory outliers.
These trajectory candidates are retrieved from the individual
trajectory outliers.

Definition 3.4 (Group Trajectory Candidate): We define
a group of trajectory candidate G by the set of individual
trajectory outliers retrieved from the set of individual trajectory
outliers ITO, i.e.,

G = {Λi|Λi ∈ ITO} (4)

Note that ITO could be retrieved using one of the well known
trajectory outlier detection algorithms such as the local outlier
factor, and the k nearest neighbors.
The density of a group is an important concept in our analysis.
Intuitively, it is defined as the ratio between the number of

trajectories of the group and the number of shared regions
among the trajectories of such group.

Definition 3.5 (Density Group): We define the density of the
candidate group trajectory outliers G as

Density(G) =
|G|

|{Rj |Λi ∈ G, Rj ∈ Λi}|
(5)

To normalize the density function, we divide the result by
the density of the group having maximum density value, this
ensures to obtain values ranged from 0 to 1. We call this
function NormalizedDensity.

Furthermore, we formally define the concept of a group of
trajectory outliers.

Definition 3.6 (Group Trajectory Outlier): A set of trajec-
tories G is called a Group Trajectory Outlier if and only if,{

G ⊆ ITO
NormalizedDensity(G) ≥ γ (6)

Note that γ is the density threshold varied from [0 . . . 1].
Group trajectory outliers may be redundant, we define the non-
redundant group trajectory outliers, as follows,

Definition 3.7 (Non-Redundant Group Trajectory Outlier):
A group of trajectory outliers G is called a Non-Redundant
Group Trajectory Outlier if it has no superset of G, that is a
group of trajectory outlier.
Now, we are ready to formally define the group trajectory
outlier problem.

Definition 3.8 (Group Trajectory Outlier Problem): Group
Trajectory Outlier Problem aims to discover from the set of
all mapped trajectories, the set of all non-redundant groups of
trajectory outliers, denoted by G∗.
Trivial approach for solving the group of trajectory outlier
detection consider all possible combinations between the
mapped trajectories, and evaluates each subset separately using
Def. 3.5. The closed group of trajectory outliers are then
derived. This method requires high computational and memory
resources, to evaluate the candidate sets and save the potential
groups of trajectory outliers. The theoretical complexity of this
approach is O(2|Λ|). To address these issues, we propose in
the next section alternative framework to improve the group
trajectory outlier detection process.

IV. GENERAL GTO FRAMEWORK

As shown in Fig. 1, the proposed framework includes:
1. Mapping (Pre-processing): Typically, trajectories in

most applications consist of noisy GPS data points where
errors can exceed several meters. This can negatively
influence the final output of many algorithms. Hence, a
map-matching step should first be used to project GPS
data points of each trajectory onto a road network. Several
approaches have been developed to achieve this [49]–
[51]. Since in this work we are interested in sparse
trajectory databases, we use the probabilistic model based
on a Hidden Markov Model [50], [52]. In this model, each
road segment is represented as hidden state in the Markov
chain— with an emission probability representing the
likelihood of observing the GPS point conditional on
the candidate road segment being the true match. A
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higher probability to a road segment is assigned if the
observed trajectory points are close to it. The maximum
likelihood path over the Markov chain that has the highest
probability is then determined, and the corresponding
road segment is associated to the observed trajectory
point. This way, the mapped trajectory database is created
and every observed trajectory is assigned to the associated
road segment.

2. Processing: After constructing the mapped trajectory
database, a processing step is performed to find out the
group of trajectory outliers. In this context, two methods
for finding group of trajectory outliers are proposed.
A few approaches are investigated including clustering,
neighborhood computation, and feature selection. The
first method is to start by determining the individual
trajectory outliers and then find out the group of trajectory
outliers. The second method is to derive directly the
group of trajectory outliers from the mapped trajectory
database. Furthermore, we present various approaches
for improving the performance of our techniques by
incorporating ensemble learning and HPC.

V. DATA MINING-BASED SOLUTIONS

This approach builds upon data mining techniques including
clustering, feature selection, neighborhood computation to
develop the dedicated algorithms. In the remainder of this
section, we describe the details of the proposed algorithms
(Sections V-A, V-B, and V-C).

A. The DBSCAN-GTO Algorithm

To present the adaptation of the DBSCAN algorithm [12], we
need the following three definitions:

Definition 5.1 (Trajectory Neighborhoods): We define the
neighborhoods of a trajectory Λi, NΛi

, for a given threshold
ε by

NΛi
= {Λj |d(ΛiΛj) ≤ ε ∨ j 6= i}. (7)

Definition 5.2 (Core Trajectory): A trajectory Λi is defined
as a core trajectory if there is at least a minimum number of
trajectories MinPts such that |NΛi

| ≥ MinPts.
Definition 5.3 (Micro Cluster): A cluster of trajectories Ci

is defined as a micro cluster if and only if 0 < |Ci| ≤ µ,
where µ is a user threshold.

Algorithm 1 DBSCAN-GTO Algorithm
1: Input: Λ = {Λ1,Λ2...Λn}: The set of all trajectories.
ε, MinPts: DBSCAN parameters.
µ: User threshold for micro clusters.
γ: density threshold.

2: Output: G∗: sets of all group trajectory outliers.
3: C ← DBSCAN(Λ, ε, MinPts)
4: G∗ ← ∅
5: for each Ci ∈ C do
6: if |Ci| ≤ µ ∨ Density(Ci) ≥ γ then
7: G∗ ← G∗ ∪ Ci

8: end if
9: end for

10: return G∗

In general, solutions to trajectory clustering [53], [54] are
able to derive clusters with different densities. However, these
algorithms do not explore the micro clusters property for
anomaly detection. This section presents our approach for
identifying group of trajectory outliers, DBSCAN-GTO, that
uses the DBSCAN algorithm to search for clusters by checking
the ε-neighborhood of each trajectory (See Definition 5.1).
The core trajectories are determined using Definition 5.2.
DBSCAN-GTO then iteratively collects density-reachable tra-
jectories from these core trajectories directly, which may
involve merging a few density-reachable clusters. The process
terminates when no new trajectories can be added to any
cluster. Initially, the set of trajectories are grouped (as in
DBSCAN). This generates several clusters with different sizes.
Each micro cluster (See Definition 5.3) is considered as group
candidates. For each group, the density of each group is
determined using Definition 3.5, if the density exceeds γ
threshold, then the group is selected as outlier. Algorithm 1
presents the pseudo-code of DBSCAN-GTO.

B. The kNN-GTO Algorithm

Let us begin the presentation of our adaptation of the kNN
algorithm [13], with the following definition:

Definition 5.4 (kNN): We define kNN of a trajectory Λi,
denoted by kNN(Λi), as

kNN(Λi) = {Λj ∈ Λ \ {Λi}|d(Λi,Λj) ≤ kdist(Λi)}, (8)

where kdist(Λi) = d(Λi,Λl) is the k-distance trajectory
defined by the set of k trajectories Λ′ ∈ Λ, such that
d(Λi,Λl) ≥ d(Λi,Λ

′).
The following proposition holds:
Proposition 5.1: Let us consider two trajectories Λ′ and Λ′′.

Let G∗(t) be a group of trajectory outliers at the iteration t
such that:

Λ′ ∈
⋃

Λ∗i∈G∗(t)

kNN(Λ∗i ) ∨ Λ′′ 6∈
⋃

Λ∗i∈G∗(t)

kNN(Λ∗i ).

Then, the following holds:

Λ′ 6∈ G∗(t+ 1)⇒ Λ′′ 6∈ G∗(t+ 1).

Proof 5.1: We have that:

Λ′ ∈
⋃

Λ∗i ∈G
∗(t)

kNN(Λ∗i ) ∨ Λ′′ 6∈
⋃

Λ∗i ∈G
∗(t)

kNN(Λ∗i )

⇒ Density(G∗(t) ∪ {λ′′}) ≤ Density(G∗(t) ∪ {λ′}) . . . (9)
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Algorithm 2 kNN-GTO Algorithm
1: Input: Λ = {Λ1,Λ2...Λn}: The set of all trajectories.
A: trajectory outlier detection algorithm.
γ: density threshold.

2: Output: G∗: sets of all group trajectory outliers.
3: G+

A ← A(Λ)

4: for each trajectory Λ+
i ∈ G

+
A do

5: node ← Λ+
i

6: for each trajectory t ∈ (kNN(node) ∩ G+
A) do

7: if Density(G∗i ∪ {t}) ≥ γ then
8: G∗i ← G

∗
i ∪ {t}

9: G+
A ← G

+
A \ {t}

10: {repeat lines from 5 to 8 for a trajectory t}
11: end if
12: end for
13: if |G∗i | = 1 then
14: G∗ ← G∗ \ {G∗i }
15: end if
16: end for
17: return G∗

Λ′ 6∈ G∗(t+ 1)⇒ Density(G∗(t) ∪ {λ′}) ≤ γ . . . (10)

From (9) and (10) we have: Density(G∗(t) ∪ {λ′′}) ≤ γ ⇒
Λ′′ 6∈ G∗(t+ 1)

It follows from the above proposition that if a trajectory Λi
belongs to the k nearest neighbors of at least one trajectory
in the current group of trajectory outliers, and Λi is not in
the group of trajectory outliers of the next iteration, then,
any trajectory that belongs to the k nearest neighbors of Λi
could not be in the group of trajectory outliers of the next
iteration. Consequently, it is judicious to prune the search into
k nearest neighbors of the individual trajectory outliers. In
particular, it considers as input the set of the first p individual
trajectory outliers G+ = {Λ+

1 ,Λ
+
2 ...Λ

+
p }, ranked according

to the kNN value, i,e, ∀i ≥ j, kNN(Λ+
i ) ≥ kNN(Λ+

j ).
The process aims to enumerate the sets of group trajectory
outliers, G∗, by exploring a search tree of G+. It starts by
adding the individual trajectory outlier ranked first, Λ+

1 , to
the group trajectory outliers, denoted by G∗1 . It then generates
all potential candidates from Λ+

1 . A trajectory t is a potential
candidate from Λ+

1 , if and only if, t ∈ G+∨t ∈ kNN(Λ+
1 ). The

density of G∗1 is updated by adding the potential candidates
to G∗1 , one by one. Only the potential candidates respecting
the density threshold are saved, and the remaining ones are
removed. Once the potential candidate is added to G∗1 , it is
removed from G+. If G∗1 contains less than two elements, it is
removed from G∗. The same process is recursively applied to
all potential candidates added to G∗1 , and the overall process is
repeated for all trajectory outliers in G+. Algorithm 2 presents
the pseudo-code of our kNN-GTO algorithm.

C. FS-GTO

The following defins the transformation from the GTO prob-
lem to the feature selection problem.

Definition 5.5 (Transformation to FS Problem): Consider
GTO problem

〈
G+
A,G∗

〉
. It is transformed into the feature

selection problem, represented by the set of all features F
and the subset of selected features F ∗, as follows: F = G+

A ,
and F ∗=G∗. We evaluate F ∗ as follows:

Eval(F ∗) = Quality(F ∗)− |F
∗|
|F |

, (11)

Algorithm 3 FS-GTO Algorithm
1: Input: Λ = {Λ1,Λ2...Λn}: The set of all trajectories.
A: trajectory outlier detection algorithm.
γ: density threshold.

2: Output: G∗: sets of all group trajectory outliers.
3: G+

A ← A(Λ)

4: Ranking ← SPEC(G+
A)

5: for true do
6: G∗ ← BFS(G+

A, γ, Ranking)
7: end for
8: return G∗

where Quality(F ∗) is computed as per Definition 3.5.
We consider each individual trajectory outlier as one feature,

and our aim is to select the most relevant features from the set
of all features. This set then becomes the group of trajectory
outliers (see Definition 5.5). The evaluation of the selected set
of features (trajectories) is computed using the group density
measure, see eq. (11). The process starts by applying the
feature selection algorithm on the set of individual trajectory
outliers, The output of this step is a ranking of individual
outliers in the descending order in terms of score feature
relevance. A ranking vector is created, and a search enumer-
ation tree is generated through a breadth-first-search (BFS).
If the quality of the current group candidate does not reach
the criteria from Definition 3.5, a backtracking procedure is
launched by taking the next trajectory in the ranking vector.
While exploring the enumeration tree of individual outliers,
the aim is to maximize the function reported in eq. (11).
Algorithm 3 presents the pseudo-code of our proposed FS-
GTO algorithm.

VI. COMPUTATIONAL INTELLIGENCE-BASED SOLUTION

Evolutionary computing and swarm intelligence draw ideas
from natural evolution such as survival of the fittest, natural
selection, reproduction, mutation, competition and symbiosis.
The aim of the computational intelligence methods, such as
genetic algorithms, genetic programming, mimetic algorithms,
immune and swarm intelligence algorithms, is to make an
accurate solution for the given optimization problems. In this
work, the genetic algorithm and the particle swarm optimiza-
tion are used to improve the quality of the returned group of
trajectory outliers. The main components of the computational
intelligence based solutions are:

1) Solution Space:This is all the possible combination of
group trajectory outliers, i.e., the solution space size of
m trajectories is 2|m|.

2) Population Initialization: The initial population is first
generated by randomly selecting the group of trajectory
outliers from the set of the mapped trajectories Λ. Each
solution in the initial population will be one potential
group of trajectory outliers.

3) Fitness Computing: The fitness of the solution, S, is
computed by the density value of its group. The aim is
to maximize this function. That is:

Fitnessmax(S) = Density(S) (12)

We present in the following two algorithms. The first one
is based on genetic algorithm (GA), and the second is based
on particle swarm optimization (PSO).
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1) GA: After generating the initial population, two operators
are used to refine the solutions: i) The first one is
crossover. It takes two chromosomes from the population
and generates two new chromosomes by making intersec-
tion operator between the groups selected. ii) The second
is mutation. It takes two generated chromosomes on the
crossover step and generates two more chromosomes by
making the union operator between the groups selected.
All generated chromosomes are evaluated by the fitness
function using Eq. 12. The best chromosomes are selected
for the next iteration. This process is repeated until a
maximum number of iterations are reached.

2) PSO: After generating the initial population, two oper-
ators are used to update the positions of the particles.
Consider a position vector Xt

i = (xi1xi2xi3 . . . xin)T and
a velocity vector V ti = (vi1vi2vi3 . . . vin)T at iteration t
for every particle i that composes it. The particles update
their positions in the solutions using the velocity formula
as follows:

V t+1
i = w × V t

i + c1× (pt −Xt
i ) + c2× (p∗ −Xt

i ) (13)

and
Xt+1

i = Xt
i + V t+1

i , (14)

where i = 1, 2, . . . , P .
From Eq. 13, it shows that two factors c1, and c2
contribute to the movement of a particle in an iteration.
pt is the position of the best particle at iteration t, and
p∗ is the position of the best particle of all iterations.
Furthermore, Eq. 14 is used to update the position of a
particle. The parameter w is a positive constant value.
This parameter is important for balancing the global
search (also known as exploration when higher values are
set), and local search (known as exploitation when lower
values are set). The new positions of the particles are
evaluated by the fitness function using Eq. 12. The best
positions are selected for the next iteration. This process
is repeated until a maximum number of iterations are
reached.

Moreover, we proposed the CI-GTO algorithm that uses both
GA and PSO in exploring the solutions space. The best final
results in GA and PSO are considered as the best returned
solutions of CI-GTO.

VII. DEEP LEARNING-BASED SOLUTION

This section presents the proposed CNN-GTO framework,
which uses a convolutional neural network (CNN) for identi-
fying group of trajectory outliers. CNN-GTO consists of two
stages:

1) Data Collection: The aim of this step is to collect the
trajectory data and build the images database. A visual
strategy is used, in which each image contains a set of
human behavior trajectories. The process starts by record-
ing video frames from cameras. The frames are then
transformed to images, and different distortion techniques
such as mapping, resizing, are used to correct the images.
The whole trajectory images are stored into the database
for training.

2) Training: The CNN is applied to design a training model
which is considered as a powerful vision machine to learn
from the different features of the image trajectory data.
The group of trajectory outlier detection is transformed
to the object detection problem by setting the input
of the object detection model to the trajectories image
database, and the output of the object detection model
to the group of trajectory outliers in each image. The
regional convolution neural network of [55], [56] is used.
For every image in the input, regions of interests are
determined and passed to the hidden layer where the
Relu activation function is performed. A similar process
to the convolution neural network is followed. In fast
RCNN, the model performs better and quicker as the
regions of interest are found using a selective search
method, and all the regions of interests of an image are
found at once. This is different from CNN that finds
ROI (regions of interest) and applies Relu on each ROI
separately, which is slower. The process is repeated for
a given number of epochs, or until the training stop
providing improvement for a given number of iterations.
The weight initialization is done using the pretrained
ImageNet model1. The trained model is stored on the
central workstation.

3) Inference: The aim is to derive the group of trajectory
outliers of the input image using the trained model of
the previous step. Thus, a propagation of the different
weights of the trained model is performed to detect the
objects of the image. The detected objects are considered
as the group of trajectory outliers. In this step, different
kinds of inference are generated. We send the trained
model to the computers and infer the model for each
new trajectories image data. We can also use smartphones
which support Andorid, and GPU computing to infer the
group of trajectory outliers in real time processing. In this
context, several technologies could be integrated such as
TensorflowLite 2.

In practice, the training images have a high resolution,
from 5.000 pixels to 100.000 pixels. Consequently, millions to
billions of region proposals have been generated. This makes
the whole system very hungry in time-processing and memory.
In some cases, the system will be bluntly blocked after several
days and weeks of processing. To deal with this problem, we
propose a strategy to prune and filter the number of bounding
boxes. Two groups of trajectory outliers in the same frame
should not be close to each other, and thus two bounding
boxes in the same image should not be close to each other.
The similarity degree is then computed between each new
generated bounding box and the bounding boxes that have
already been generated. The similarity between two bounding
boxes is determined by the number of pixels that separate
theme. Only the bounding boxes that gives high diversity of
the image are kept. That is, the minimal set of bounding boxes
that covers the maximum number of pixels in the image.

1http://www.image-net.org/
2https://www.tensorflow.org/lite



7

VIII. EXPERIMENTAL EVALUATION

In this section, we evaluate experimentally the GTO frame-
work and its different components. In particular, the serial
implementations of the different GTO solutions are compared
with the state-of-the art group outlier detection algorithms
using standard trajectory databases. In addition, the scalability
performance of the deep learning implementation is carried
out on big trajectory databases.

Experimental Setup: The different components of the GTO
framework have been implemented on Python. The exper-
imental evaluation of the serial implementations has been
performed on a computer with 64bit core i7 processor running
Windows 10 and 16GB of RAM. The evaluation of the deep
learning implementation has been carried out on a CPU host.
In general, a common problem of outlier detection techniques
is the evaluation procedure. This is particularly the case
for new applications such as the GTO problem, where a
ground truth is typically unknown. To facilitate a quantitative
evaluation, for group trajectory outlier detection techniques,
we adapt the process of Zhang et al. [57] to inject synthetic
group trajectory outliers. In particular:
• Injecting individual trajectory outliers: Individual tra-

jectory outliers are generated by adding noise several
times with a certain probability p ∼ U(0.0, 1.0) and a
given threshold µ.

• Injecting group trajectory outliers: Group of trajectory
outliers are generated by adding noise to the set of
individual trajectory outliers, but now only a few times
with a certain probability p ∼ U(0.0, 1.0) and a given µ.

Note that U(0.0, 1.0) is the continuous uniform distribution
with lower and upper bounds set to 0, and 1, respectively. For
both injections, each point pil in the trajectory Λi is changed
related to the number of regions n as follows:

pil =

{
pil + n ∼ N (0, 1) if p ≥ µ
pil otherwise. (15)

The evaluation is performed using Fmeasure, and ROCAUC,
which are common measures for the evaluation of outlier
detection methods, which are given by,

Fmeasure =
2×Recall × Precision
Recall + Precision

. (16)

Recall =
|OA

⋂
O|

|O|
. (17)

Precision =
|OA

⋂
O|

|OA|
. (18)

AUC = mean(o,i)

 1 if score(o) > score(i),
0.5 if score(o) = score(i),
0 if score(o) < score(i),

(19)

where
O: The set of all outliers in the dataset.
OA: The set of outliers returned by the algorithm.
IA: The set of inliers returned by the algorithm.
o: Group of trajectory outliers in OA.

TABLE I
PARAMETER SETTING OF CI-GTO

Population Maximum Number Intelligent Climate Environment
Size Iterations Transportation Change

20 0.75 0.72 0.71
20 50 0.76 0.73 0.71

100 0.77 0.74 0.72

20 0.76 0.72 0.72
50 50 0.77 0.73 0.72

100 0.78 0.75 0.73

20 0.77 0.73 0.72
100 50 0.78 0.74 0.73

100 0.78 0.75 0.73

i: Subset of trajectory inliers in IA.
Data Description: In our experimental evaluation, we used

well-known trajectory databases from different domains, i.e.:
1) Intelligent Transportation: We used a database from the

ECML PKDD 2015 databases competition3. The database
contains real trajectories retrieved from 01/07/2013 to
30/06/2014 of 442 taxis in the city of Porto, in Portugal.
This allows to recuperate more than 3 GB of data stored
in one single CSV file. Each row contains information re-
lated to one trip including: TripID, CallType and TaxiID.
The last component of the row contains a list of GPS
coordinates. This list contains one pair of coordinates for
each 15 seconds of trip. The last list item corresponds
to the trip’s destination while the first one represents its
start.

2) Climate Change: We used the hurricane track data set
which contains latitude, longitude, maximum sustained
surface wind, and minimum sea-level pressure of hurri-
cane trajectories in USA at 6 hourly intervals. We use the
Atlantic hurricanes [11] retrieved from the years 1851 to
2018. This data contains 52775 hurricane trajectories.

3) Environment: We use a database of the Starkey Project4.
We consider the animal movement data illustrated by the
radio-telemetry locations of elk, deer, and cattle retrieved
from 1989 to 1999. The locations are recorded at 30
minute intervals. This data is considered sparse one with
100 trajectories, and more than 40,000 different points.

In addition, we used two additional big databases in our
experiments: i) taxi 13-1 containing 1.89 million trajectories,
and ii) taxi 13-2 containing 3.69 million trajectories [9]. In
the remainder of this section, we present the results of the
experiments.

A. Parameters Settings of GTO Framework

The first part of this experiment focuses on tuning the param-
eters of different proposed GTO solutions. As shown in Fig.
2, Tab. I, and Tab. II, several tests have been performed by
varying the user threshold (from 1 to 10) for DBSCAN-GTO,
the number of neighborhood (from 1 to 10) for kNN-GTO, and
the tree depth (from 1 to 10) for FS-GTO, population size, and
maximum number of iterations (from 20 to 100) for CI-GTO,
different CNN architectures (AlexNet, VGG16, and VGG19),

3http://www.geolink.pt/ecmlpkdd2015-challenge/dataset.html
4https://www.fs.fed.us/pnw/starkey/introduction.shtml
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Fig. 2. The parameter setting of the data mining-based solutions.

TABLE II
PARAMETER SETTING OF CNN-GTO

CNN Architecture Number of Intelligent Climate Environment
Epochs Transportation Change

100 0.81 0.82 0.80
AlexNet 1000 0.85 0.82 0.81

10000 0.87 0.84 0.83

100 0.82 0.84 0.82
VGG16 1000 0.88 0.85 0.83

10000 0.89 0.86 0.85

100 0.85 0.87 0.85
VGG19 1000 0.90 0.88 0.86

10000 0.92 0.88 0.87

and number of epochs (from 100 to 10000) for CNN-GTO.
Regardless of the trajectory database used as input (Intelligent
Transportation, Climate Change or Environment), the accuracy
of DBSCAN-GTO and kNN-GTO is increased with increasing
the parameter values, until a specified optimal point, and
then starts decreasing. Regarding FS-GTO, and CI-GTO, the
accuracy increased with increasing the parameters values, until
stabilization at a specified optimal point. In case of CNN-
GTO, the accuracy increased by increasing with the number of
epochs, and the complexity of the CNN architecture. Thus, for
low number of epochs, and simple architectures like AlexNet,
the accuracy do not exceed 0.82 for all cases, however for large

number of epochs and complex architectures like VGG19, the
accuracy reach 0.92. The best parameter values obtained in
this step are used in the remaining of the experiments. The
best values of the proposed solutions for different trajectory
databases are:

1) Intelligent Transportation, user threshold is set to 4 for
DBSCAN-GTO, k is set to 6 for kNN-GTO, tree depth
is set to 6 for FS-GTO.

2) Climate Change, user threshold is set to 6 for DBSCAN-
GTO, k is set to 5 for kNN-GTO, tree depth is set to 6
for FS-GTO.

3) Intelligent Transportation, user threshold is set to 6 for
DBSCAN-GTO, k is set to 5 for kNN-GTO, tree depth
is set to 7 for FS-GTO.

For all trajectory databases (Intelligent Transportation, Cli-
mate Change, and Environment), the population size is set
to 50, and the maximum number of iterations is set to 100
for CI-GTO, CNN architecture is set to VGG19, and number
of epochs is set to 10000 for CNN-GTO. Moreover, several
experiments have been carried out to tune the parameters
MinPts, and ε for DBSCAN-GTO, and the distance measures
for kNN-GTO. The results reveal that these parameters are not
critical for the group outlier detection performance. Moreover,
the density threshold has been varied from 0.1 to 1.0 for all
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TABLE III
DENSITY THRESHOLD SETTING

Data Algorithms Density Threshold
DBSCAN-GTO 0.50

kNN-GTO 0.40
Intelligent Transportation FS-GTO 0.45

CI-GTO 0.64
CNN-GTO 0.62

DBSCAN-GTO 0.47
kNN-GTO 0.42

Climate Change FS-GTO 0.43
CI-GTO 0.54

CNN-GTO 0.69

DBSCAN-GTO 0.72
kNN-GTO 0.76

Environment FS-GTO 0.84
CI-GTO 0.91

CNN-GTO 0.51
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Fig. 3. Accuracy: The Proposed Solutions Vs. State-of-the art Traditional
Group Detection.

algorithms. The best results are given in Table III.

B. Proposed Solutions Vs State-of-the-art Traditional Group
Detection Solutions

The aim of this experiment is to compare the proposed solu-
tions with the state-of-the art algorithms in terms of accuracy
and processing time. To the best of our knowledge, this is
the first work that explores group trajectory outlier detection.
We therefore compare the proposed solutions with general
group outlier detection solutions (see Section II). We adapted
four well-known algorithms to trajectory data, i.e., DGM [5],
WATCH [40], ATD [44], and AGJFD [45]. Fig. 3 and Fig.
4 present both accuracy and runtime of the proposed solu-
tions (DBSCAN, kNN, Feature Selection, Ensemble Learning,
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Fig. 4. Runtime: The Proposed Solutions Vs. State-of-the art Traditional
Group Detection.

TABLE IV

Data Algorithms CPU Fmeasure ROCAUC
DBSCAN-GTO 324 0.75 0.72

kNN-GTO 337 0.76 0.71
FS-GTO 345 0.78 0.74

Taxi 13-1 CI-GTO 371 0.83 0.79
CNN-GTO 329 0.89 0.88
GM-VSAE 331 0.84 0.81

IRL-AD 313 0.82 0.82
OCC 325 0.83 0.83

DBSCAN-GTO 401 0.76 0.72
kNN-GTO 429 0.77 0.72
FS-GTO 475 0.80 0.77

Taxi 13-2 CI-GTO 483 0.86 0.81
CNN-GTO 409 0.92 0.90
GM-VSAE 395 0.85 0.82

IRL-AD 415 0.84 0.83
OCC 423 0.85 0.84

and Computational Intelligence), and the baseline algorithms
(DGM, WATCH, ATD, and AGJFD). Note that the ensemble
learning strategy merge the results of three data mining based
algorithms. For each group of trajectory outliers, the number
of the occurrences of the three algorithms (DBSCAN, kNN,
and Feature Selection) is determined, while considering the
groups that are highly frequent. For any gamma threshold from
1 to 1000, the solutions based on feature selection, ensemble
learning, and computational intelligence methods outperform
the baseline algorithms in terms of accuracy. However, solu-
tions based on neighborhood computation and DBSCAN are
less competitive. This comes from the fact that the former
solutions use more advanced and recent strategies, while the
latter solutions use less advanced concepts. Regarding the time
processing, the advanced solutions require more time than the
less advanced ones, but they are still competitive in this respect
to the baseline algorithms.

C. Proposed Solutions vs. State-of-the-art Advanced Group
Detection Solutions

In this experiment, the proposed solutions are compared with
more advanced outlier detection algorithms on big trajectory
databases. Three deep learning models for anomaly detection
are chosen: Gaussian Mixture Variational Sequence AutoEn-
coder (GM-VSAE) [58], inverse reinforcement learning for
Anomaly Detection (IRL-AD) [59], and One-class classifica-
tion (OCC) [60]. The results are reported in Tab. IV, which
reveal that CNN-GTO is very competitive compared to the
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advanced outlier detection algorithms. It outperforms them
terms of accuracy (both Fmeasure and ROCAUC values).
However, it requires more computational time to deal with
both trajectory databases. This result confirms the usefulness
of deep learning to find the group of trajectory outliers.
Nevertheless, the computational time should be investigated
for reducing the number of bounding boxes.

D. Statistical Analysis and Discussions
The results obtained in the previous section are analyzed in
the following through a Z-test statistical test . This includes
twelve group trajectory outlier detection algorithms that have
been used in this study; DBSCAN-GTO, kNN-GTO, FS-GTO,
CI-GTO, and CNN-GTO, DGM, WATCH, ATD, AGJFD, GM-
VSAE, IRL-AD, and OCC, along with the trajectory databases
used in the experiments. The model is defined as follows: 1)
Each algorithm is viewed as a normal variable. 2) Trajectory
databases are divided into 100 partitions, and every partition
contains 10% of the whole data. Each partition represents an
observation, which generates 100 different observations, and
3) The result of every partition is considered as a sample.

Thirty three estimators (from E1 to E33) are used in
the analysis. The first eleven estimators are designated for
the runtime performance, the second eleven estimators are
designated for the F-measure performance, and the last eleven
estimators are designated for the AUC performance. The
detailed description of these estimators are given as follows:

Performance estimators

E1=CPU(DBSCAN-GTO)-CPU(kNN-GTO)
E2=E1-CPU(FS-GTO)
E3=E2-CPU(CI-GTO)
E4=E3-CPU(CNN-GTO)
E5=E4-CPU(DGM)
E6=E5-CPU(WATCH)
E7=E6-CPU(ATD)
E8=E7-CPU(AGJFD)
E9=E8-CPU(GM-VSAE)
E10=E9-CPU(IRL-AD)
E11=E10-CPU(OCC)

F-measure estimators

E12=F(DBSCAN-GTO)-F(kNN-GTO)
E13=E12-F(FS-GTO)
E14=E13-F(CI-GTO)
E15=E14-F(CNN-GTO)
E16=E15-F(DGM)
E17=E16-F(WATCH)
E18=E17-F(ATD)
E19=E18-F(AGJFD)
E20=E19-F(GM-VSAE)
E21=E20-F(IRL-AD)
E22=E21-F(OCC)

AUC estimators

E23=AUC(DBSCAN-GTO)-AUC(kNN-GTO)
E24=E23-AUC(FS-GTO)
E25=E24-AUC(CI-GTO)
E26=E25-AUC(CNN-GTO)
E27=E26-AUC(DGM)
E28=E27-AUC(WATCH)
E29=E28-AUC(ATD)
E30=E29-AUC(AGJFD)
E31=E30-AUC(GM-VSAE)
E32=E31-AUC(IRL-AD)
E33=E32-AUC(OCC)

where,
CPU(A): is the average of the runtime values of the given
algorithm A in the 100 observations.
F (A): is the average of the F-measure values of the given
algorithm A in the 100 observations.
AUC(A): is the average of the AUC values of the given
algorithm A in the 100 observations.
A: Algorithm belongs to the set {DBSCAN-GTO, kNN-GTO,
FS-GTO, CI-GTO, and CNN-GTO, DGM, WATCH, ATD,
AGJFD, GM-VSAE, IRL-AD, and OCC}.
First, the normality of the nine algorithms is checked using
the Shapiro-Wilk test which is available on XLSTAT tool.
Therefore, the first hypothesis, H0, and the alternative
hypothesis, Hα are defined as:
H0: The algorithms follow a normal distribution.
Hα: The algorithms do not follow a normal distribution.

The used significance level (α) was set to 2%. The results of
the Shapiro-Wilk test, indicated that H0 cannot be rejected.
Hence, the algorithms follow the normal distribution. The
Z-test is then used with α = 2% to compare the algorithms.
XLSTAT shows E11, E16, and E27 give high values than the
other estimators, which means that CNN-GTO is statistically
better than the other algorithms in terms of F-measure and
AUC, while IRL-AD is better than the other algorithms in
terms of runtime.
From this analysis we can conclude that the deep learning
based solution gives better performances compared to the data
mining and computational intelligence based solutions. The
deep learning based solution extract the relevant features using
the convolution neural network. Several convolution and Max-
Pooling layers are used to efficiently determine such features.
Furthermore, accurate and fast RCNN are used in CNN-GTO
to efficiently identify the group of trajectory outliers. However,
pruning strategies may be investigated to reduce the number of
bounding boxes, and therefore to improve the computational
time of CNN-GTO.

IX. CONCLUSIONS AND FUTURE WORK

The problem of Group Trajectory Outlier detection has been
introduced in this paper, which consists in discovering group
of trajectory outliers. This is different from previous tra-
jectory outlier detection approaches that are only able to
derive individual trajectory outliers. The GTO problem is
particularly relevant to smart city applications, where a large
volume of data on trajectories is collected daily. We propose
three algorithms, DBSCAN-GTO, kNN-GTO, FS-GTO, and
implementation on GPU. All approaches have been tested on
real trajectory databases in comparison with baseline group de-
tection algorithms, and the results demonstrate the usefulness
of exploring ensemble learning, computational intelligence,
and HPC in identifying group trajectory outliers. Moreover,
the GPU-parallel approach outperforms the existing HPC
approaches for dealing with big trajectory databases.

An interesting finding of this study is that the efficient com-
bination of several concepts from different fields in detecting
group of trajectory outliers improves the overall performance
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(for both quality and runtime) compared to the baseline ap-
proaches. This result has been obtaoned by exploring machine
learning algorithms (micro clusters, nearest neighbors, feature
selection), as well as ensemble learning, computational intelli-
gence and HPC. From a machine learning research standpoint,
our GTO solutions are examples of the adaptation of generic
algorithms to a specific context of trajectory outliers. As in
many other cases, porting a pure machine learning technique
into a specific application domain requires methodological
refinement and adaptation [10], [44]. This work is only the
first milestone for the use of ML in GTO, and much more
investigation are needed. This research has potential to pave
the way towards mature solutions that could be exploited by
city planners in smart city environments.

The directions of future work include i) Techniques for
GTO: more sophisticated techniques can be developed for
GTO problem. For instance, other traditional outlier detection
techniques may be adopted such as Local Outlier Factor
(LOF) [61]. This can be done by developing new concepts
of density and local reachability density for the GTO prob-
lem. ii) Visualization: new visualization techniques can be
developed for GTO. This will provide accessible presentation
of groups of trajectory outliers to the city planners. iii)
GTO applications: more effort is needed for targeting new
applications of GTO, such as climate change analysis, finding
a group of hurricane trajectories that deviates from the normal
hurricanes. This allows to identify other cities that could be
affected by the hurricanes. The last hurricanes observed in
the United States during the period of 2018-2019 is a typical
example of a case study.
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