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            Abstract  
Advances in modern chemotherapeutic regimens have led to an increase in the overall survival 

of leukaemia patients in recent years. However, haematopoietic stem cell transplantation (HSCT) 

remains the curative option for these patients. In HSCT, high dose chemotherapy is often given 

pre-transplant to remove the leukaemic stem cells (LSC) within the bone marrow (BM) 

microenvironment of the patients prior to infusion of donor stem cells to reconstitute 

haematopoiesis. Despite its success, HSCT can also lead to development of de novo primary 

malignancy as chemotherapy can also exert deleterious effects on actively dividing cells whilst 

targeting LSC. Donor cell leukaemia (DCL) is a type of de novo primary malignancy whereby 

transplanted stem cells become malignant in the recipient whilst the donor remains healthy. 

Despite the growing incidence of DCL due to advancement in genetic testing, the aetiology and 

mechanism of DCL remain unknown. Therefore, using DCL as a pathological pivot, this thesis 

explored the possible roles of microRNA (miRNAs) and small extracellular vesicles (sEVs) in 

chemotherapy-induced bystander effects (CIBE). Bystander effect occurs when toxic signals 

induce biological effects in unexposed cells, which are in close proximity to the directly exposed 

cells, via intercellular communication. A co-culture bystander model, which promotes cell-to-cell 

communication between cell compartments in vitro was utilised to investigate the concept of 

CIBE thus mimicking the BM microenvironment. HS-5 stromal cells and TK6 lymphoblast cells 

were co-cultured using culture inserts, which allowed isolation of bystander TK6 cells to detect 

cytotoxicity and genotoxicity following indirect exposure to drugs. The drugs used in this study 

were alkylating agents (chlorambucil and carmustine), and topoisomerase inhibitors (etoposide 

and mitoxantrone), which have been shown to induce CIBE in a previous study. Microarray 

analysis was performed using bystander cells’ RNA to identify candidate miRNAs that may be 

involved in CIBE. Drug-treated HS-5 cells were fixed with 2% paraformaldehyde, negatively 

stained with uranyl acetate and examined by transmission electron microscopy (TEM) to visualise 

sEVs release. Furthermore, sEVs derived from drug-treated HS-5 cells were isolated, 

characterised and tracked for uptake and internalization by bystander cells. Expression of 

candidate miRNAs was validated in treated HS-5 cells, conditioned medium (CM), isolated sEVs 

and bystander cells by qRT-PCR following sEVs uptake. 
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All drugs promoted genotoxicity in the bystander cells whilst maintaining good viability. However, 

only mitoxantrone produced statistically significant cytotoxic and genotoxic events in the 

bystander cells. These events persisted within the bystander cells over five days thus suggesting 

that the ‘safe period’ given to transplant patients to recover from the effects of pre-transplant 

chemotherapy may not be safe after all. Further examination of the CM illustrated that 

chemotherapy promotes the release of sEVs into the CM by HS-5 cells in comparison to untreated 

HS-5 cells. These sEVs were internalized by the bystander cells in a time-dependent manner and 

once internalized, released their cargo into the cells to elicit bio-molecular effects. Differential 

miRNA signatures were also found in the treated HS-5 cells and bystander TK6 cells. The 

expression levels of hsa-miR-146a-5p, hsa-miR-16-5p, hsa-miR-20a-5p, hsa-miR-17-5p were all 

upregulated in treated HS-5 cells but repressed in bystander TK6 cells. However, the expression 

level of hsa-miR-30d-5p was repressed in treated HS-5 cells and upregulated in bystander TK6 

cells. These candidate miRNA signatures were also found in CM and sEVs. However, only hsa-

miR-17-5p was found in treated sEVs thus implying hsa-miR-17-5p may play a crucial role in CIBE. 

These candidate miRNAs regulate genes involved in cellular signalling pathways, cell division and 

cell survival. Therefore, these suggest that the miRNAs are selectively sorted and packaged into 

EVs, and subsequently trafficked to the bystander cells wherein they may determine the fate of 

these cells. Collectively, these analyses provide a novel finding that soluble factors such as 

miRNAs and sEVs, released by treated stromal cells within the BM microenvironment may play a 

vital role in the propagation of CIBE signals to the incoming donor cells thereby eliciting 

deleterious effects. However, these may not tell the whole story as there may be an interplay 

between complex signals in CIBE. Thus, further investigation needs to be done to fully understand 

the mechanisms involved. 
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1.0 Introduction 

1.1   Leukaemia 

 1.1.1 Definition 

Leukaemia encompasses a wide range of blood cancers that are characterised by the 

accumulation of abnormal and/or immature white blood cells due to uncontrolled proliferation, 

lack of differentiation and lack of apoptosis in these cells. Due to heterogeneity of the disease, a 

complete blood count is always essential whenever leukaemia is suspected however, the 

hallmark laboratory findings are variable and usually include leucocytosis, anaemia, leukopenia, 

thrombocytopenia or immunosuppression (Davis et al., 2014; Hijiya et al., 2016; Kumar et al., 

2019). Identification of kidney and liver involvement via serum creatinine and electrolyte levels, 

and liver function tests respectively, may also provide clinicians with relevant information to 

make initial diagnosis (Hampel et al., 2017; Suzuki et al., 2017; Wancho et al., 2018). This may be 

due to infiltration of these extramedullary organs by the leukaemia. Nevertheless, leukaemia 

diagnosis is confirmed by further examination of the bone marrow (BM) or peripheral blood (PB). 

Symptoms often include weight loss, fatigue, bleeding, abdominal discomfort, splenomegaly, 

sweats, bone pain and fever, though these symptoms are nonspecific and may not be seen in all 

patients (Suzuki et al., 2017; Kumar et al., 2019). 

 1.1.2 Epidemiology 

Collectively, leukaemias are the 13th most common cancer in the UK and 11th most common 

cancer in the world accounting for 2.6% of all cancer incidences worldwide (International Agency 

for Research on Cancer, 2014; Cancer Research UK, 2016; World Cancer Research Fund, 2018). 

Leukaemia predominantly affects caucasians, with males more predisposed to the disease than 

females and increases with age thus leukaemia affects both adults and children. In a recent 

population-based study conducted on the epidemiological patterns of leukaemia in 184 

countries, the highest regional leukaemia rate for men, estimated at 11.3 per 100,000 population 

for 2012 – was found in Australia and New Zealand, followed by Northern America and western 
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Europe at 10.5 per 100,000 and 9.6 per 100,000 respectively (Miranda-Filho et al., 2018). For 

females, Australia and New Zealand, and Northern America had the highest leukaemia incidence 

rate at 7.2 per 100,000, next was western Europe at 6.0 per 100,000 (Miranda-Filho et al., 2018). 

In the UK, leukaemia is also more common in men than in women: 20.3 versus 11.4 per 100,000 

population for 2016, with about 9,900 new leukaemia cases diagnosed in both sexes every year; 

a marked increase in incidence rate by 16% since the 1990s (Cancer Research UK, 2016). 

However, the outlook for patients is much better than two to three decades ago, with better cure 

rates and longer-term disease free survival. Leukaemia overall survival rate has improved 

remarkably in the last 40 years worldwide with almost half of the population diagnosed with 

leukaemia surviving for at least five years or more (Pulte et al., 2013; Cancer Research UK, 2016). 

This increased survival rate in leukaemia patients has been attributed to advances in the 

treatment of the disease and improved access to treatment (Viesani et al., 2018).  

   1.1.3 Aetiology   

Aetiology of leukaemia remains unclear and perhaps involves multiple factors. However, increase 

in age and exposure to chemicals such as benzene are known risk factors (Appelbaum et al., 2006; 

Khalade et al., 2010). An increased incidence of leukaemia was reported in the inhabitants of 

Hesse County in Germany due to environmental contamination with benzene derivative 

trinitrotoluene (TNT), which was used to produce explosives during World War II (Kolb et al., 

1993; Kilian et al., 2001). 

A higher incidence of leukaemia was found in individuals exposed to ionizing radiation as 

reported in Hiroshima and Nagasaki registries (Preston et al., 1994; Greaves, 1997). There is also 

a reported increase in childhood leukaemia in children under 5 years who live within 5 km of 

nuclear power plants in Germany (Kaatsch et al., 2008; Spix et al., 2008). However, this 

contradicts the findings of Bithell et al., (2013) who found little evidence of a link between 

increased leukaemia risk and distance to nuclear power plants in the UK. This may be because 

nuclear power plants are often installed further away from population centres in the UK 

compared to Germany (Muirhead et al., 2013). 
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Although smoking had not been previously reported to be a classic risk factor for leukaemia, 

evidence from several epidemiological studies indicates an increased risk of leukaemia 

development of the myeloid form among smokers compared to non-smokers (Bjork et al., 2001; 

Chelghoum et al., 2002; Moorman et al., 2002; Fircanis et al., 2014). Interestingly, this risk 

reduced following cessation of smoking (Musselman et al., 2013). 

Furthermore, there are well-established studies that suggest family history as a significant risk 

factor for leukaemia development later in life (Goldin et al., 2004; Segel et al., 2004; Tegg et al., 

2010). However, leukaemia in children is not inherited and may be due to environmental 

exposures in utero. These environmental factors cause chromosomal translocations, functional 

fusion genes or pre-leukaemic clones thereby leading to development of childhood leukaemia 

(Mori et al., 2002; Mitchell et al., 2009; Cárceles-Álvarez et al., 2017). Chromosomal 

abnormalities and acquired genetic abnormalities such as Down’s syndrome also increase the 

risk of leukaemia development by 20-fold (Hasle et al., 2000).  

The aetiological relationship between certain viruses and leukaemia has since been established 

over the years (Almeida et al., 1963; Shafer, 1966; McNally et al., 2013). Some of the viruses that 

have been linked to progression of leukaemia include cytomegalovirus, Epstein-barr virus, human 

herpes virus and human T-lymphotrophic virus (HTLV; Bartenhagen et al., 2017). Therapy-related 

malignancy (TRM) may also arise as a result of long-term complications of chemotherapy and/or 

radiotherapy for an underlying disorder. This leukaemia type is directly related to therapy 

received and has been linked to two drug classes, alkylating agents and topoisomerase inhibitors 

(Joannides and Grimwade, 2010). 

 1.1.4 Types, prognosis and staging 

Accurate classification and diagnosis of leukaemia are important to select the right treatment 

regimen for the patients, as survivors are predisposed to relapse or development of a second 

tumour (Bain, 2017). Leukaemia classification depends on the type of blood cell in which the 

cancer originates, and by the pace of disease progression. Myeloid or myelogenous leukaemias 

arise in early myeloid cells such as red blood cells (RBC), platelets and white blood cells (WBC) 

other than lymphocytes, whilst lymphocytic leukaemia emerge in cells that mature into 
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lymphocytes (Bain, 2017). Leukaemia may also be acute or chronic based on how fast the disease 

progresses. Acute leukaemias are usually aggressive, often begin abruptly and progress rapidly if 

untreated due to rapid accumulation of immature cells called blasts in the BM, whereas chronic 

leukaemias involve maturation arrest at a later stage hence cells grow slowly and the disease 

progresses gradually (Bain, 2017). Acute leukaemia is diagnosed if at least 30% of the total 

nucleated cells in the BM are blast cells with predominance of erythroblasts.  

As a result, leukaemias are divided into four main types: 

• Acute lymphoblastic leukaemia (ALL) 

• Chronic lymphocytic leukaemia (CLL) 

• Acute myeloid leukaemia (AML) 

• Chronic myeloid leukaemia (CML) 

Acute lymphoblastic leukaemia (ALL) arises as a result of a defect in clonal proliferation of 

lymphoid progenitor cells in the BM and sites of extramedullary haematopoiesis, such as spleen 

and liver. ALL occurs mainly in children however, it can also have a debilitating effect in adults. 

ALL was initially classified into three different subtypes (L1, L2 and L3) according to the French-

American-British (FAB) classification system, which is based on assessment of cytochemical and 

morphological features such as size, cytoplasm, nucleoli, vacuolation and basophilia (Bennett et 

al., 1976). It requires the examination of the BM and PB films and differential counts performed 

on both samples (Bain, 2017).  

Over the last two decades, the World Health Organisation (WHO) proposed another classification 

system, which accounts for clinical features, morphology as well as cytogenetic profiles of the 

leukaemic blasts. As a result, three subtypes of ALL were initially identified: B lymphoblastic, T 

lymphoblastic and Burkitt-cell Leukaemia (Bain, 2017). In 2008, the WHO classification system 

was revised and B-lymphoblastic subtype was divided into B-ALL with recurrent genetic 

abnormalities and B-ALL not otherwise specified whilst Burkitt-cell leukaemia was adjudged the 

same entity as Burkitt Lymphoma (Vardiman et al., 2009).  
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The outcome of ALL differs from patient to patient due to different prognostic factors, including 

age and white blood cell (WBC) count at the time of diagnosis, cytogenetic abnormalities and 

response to initial therapy. Age ˃ 60 years, elevated WBC count, presence of Philadelphia 

chromosome t(9;22), hypodiploidy, complex karyotype, and presence of minimal residual disease 

(MRD) portend a worsening prognosis (Terwilliger and Abdul-Hay, 2017).   

Chronic lymphocytic leukaemia (CLL) is the most prevalent form of adult leukaemia in the 

western world, and usually affects elderly patients above 65 years of age (O’Reilly et al., 2018; 

Wancho et al., 2018). CLL is characterised by accumulation of abnormal lymphocytes in the BM, 

blood, lymph nodes and spleen thereby rendering them unable to fight infections (Ghia et al., 

2007). CLL has a heterogeneous course; it can have a fast or slow progression depending on the 

individual. As a consequence, Rai et al. (1975) and Binet et al., (1977) introduced staging systems 

for CLL to ascertain whether and when to start a treatment. 

Many patients, who have the slow progressive form of the disease, do not require treatment at 

the onset of the disease and by the time they do, the disease has progressed with acquired 

comorbidities (Wancho et al., 2018). However, other patients require urgent treatment due to 

fast progression of CLL. Rapidly progressed CLL is more aggressive and indicated by a number of 

genetic factors such as deletion of the short arm of chromosome 17 [del(17p)], deletion of the 

long arm of chromosome 11 [del(11q)], and a mutation of the tumour suppressor gene for 

tumour protein 53 (TP53) (O’Reilly et al., 2018). 

Other prognostic factors capable of predicting an adverse course of the disease at the time of 

diagnosis include lymphocyte-doubling time (<6 months), serum beta-2 microglobulin (˃3.5 

mg/L), cell surface expression of CD38, CD49d and zeta chain-associated protein 70 and presence 

of immunoglobulin heavy chain variable gene mutation in CLL cells (Ghia et al., 2007; Parikh, 

2018). Presence of prolymphocytes (˃10%) in the PB, high levels of thymidine-kinase in the serum 

and soluble CD23 in the serum, and MRD at the end of CLL therapy also correlate with a worse 

prognosis (Ghia et al., 2007; O’Reilly et al., 2018). Nevertheless, some are associated with better 

prognosis such as chromosomal abnormalities including del13q and trisomy 12 (Ghia et al., 2007; 

Wancho et al., 2018).  
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Acute myeloid leukaemia (AML) is the second most common leukaemia after CLL but accounts 

for the majority of most leukaemia-related deaths in the world (National Cancer Institute , 2020). 

AML is characterized by the accumulation of abnormal immature myeloblasts (at least 20%), RBC 

or platelets in BM or PB due to differentiation block and maturation arrest (Estey, 2019). 

However, AML progresses rapidly if left untreated and these abnormal cells can spread to other 

parts of the body such as skin, gums and central nervous system (Estey, 2019).  

AML is highly heterogeneous, hence there are different subtypes of AML. Previously, Bennett et 

al., (1976) classified AML into six subtypes (M1 – M6) based on the FAB classification system 

however, Bloomfield (1985) and Lee et al., (1987), revised this and two new subtypes, M0 and 

M7, were added to the list. However, between 2001 and 2016, the WHO classification system 

was introduced and modified to include all the new approaches in AML diagnosis and 

management (Arber et al., 2016). Consequently, six major subtypes were defined such as AML 

with recurrent genetic abnormalities; AML with myelodysplasia-related features; therapy-related 

AML; AML not otherwise specified; myeloid sarcoma; and myeloid proliferation related to Down 

syndrome. Furthermore, these subtypes are divided into three risk groups: favourable, 

intermediate and adverse-risk groups based on cytogenetics. However, prognosis and response 

to therapy within these groups differ widely, making AML a challenge to treat.  

Clinical factors, such as platelet count, serum creatinine or albumin, increased age and 

performance status of the patient at time of diagnosis constitute prognostic factors for 

determining the outcome of patients, however cytogenetic abnormalities offer the strongest 

prognosis in AML (De Kouchkovsky and Abdul-Hay, 2016; Estey, 2018). In addition to 

cytogenetics, data obtained after commencement of induction therapy are relevant prognostic 

tools in determining patients’ outcomes. Patients who present with MRD, develop a second 

malignancy in the form of AML with a prior haematological malignancy or show symptoms of 

TRM following cytotoxic therapy are associated with poor overall survival (Ng et al., 2000; De 

Kouchkovsky and Abdul-Hay, 2016; Estey, 2018).  

Chronic Myeloid Leukaemia (CML) originates in defective pluripotent stem cells in the BM thus 

leading to accumulation of abnormal progenitors and their precursors in the BM and PB (Elefanty 
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et al., 1990). It is majorly characterised by a specific cytogenetic abnormality called the 

Philadelphia chromosome, which arises because of a reciprocal translocation between 

chromosomes 9 and 22 that disrupts the homeostatic regulation of haematopoiesis in the BM 

(Davis et al., 2014). This generates BCR-ABL1 fusion gene by recombination of the tyrosine kinase 

encoding c-abl oncogene on 9q34 and bcr gene on 22q11.2 (Elefanty et al., 1990). The BCR-ABL1 

fusion gene encodes the oncoprotein BCR-ABL1 that primarily causes the chronic phase of CML 

due to its active tyrosine kinase activity (Mughal et al., 2016). Accelerated and blast phases of 

the disease have also been defined. This is based on the platelet count, percentage of blasts in 

BM or PB, and or proliferation of blasts in extramedullary sites apart from spleen (Baccarani et 

al., 2006; Baccarani et al., 2009).   

Several advances have been made to set hallmark prognostic tools, in addition to the BCR-ABL1 

fusion gene, for patients with CML. A prognostic scoring system for CML was first introduced in 

1984 by Sokal et al., for patients treated with busulfan, followed by Hasford et al., (2008) who 

introduced the Euro score for patients treated with interferon α. Both scoring systems proved to 

be useful in the chemotherapy and interferon era. However, the European Treatment and 

Outcome Study (EUTOS) proposed a simpler scoring system that is specific to imatinib, which 

impedes the tyrosine kinase activity of BCR-ABL1 fusion gene (Hasford et al., 2011). Age, response 

to therapy, presence of comorbidities and phase of disease also offer prognostic information in 

these patients (Mughal et al., 2016). 

1.2 Bone marrow involvement in leukaemia 

Haematopoiesis, the process by which blood cells are produced, primarily occurs in the BM. The 

haematopoietic system is hierarchically organised, with the haematopoietic stem cells (HSC) at 

the apex, and eventually leads to production of RBC, WBC and platelets (Figure 1.1). HSC possess 

self-renewal and multi-potential capabilities that enable them to provide a constant output of all 

blood cell lineages throughout life (Kumar et al., 2018). Consequently, haematopoiesis is strictly 

regulated by intrinsic and extrinsic factors to maintain homeostasis (Testa, 2004; Hattangandi et 

al., 2011). The rate of production of new blood cells balances the rate of destruction of aged 

blood cells via programmed cell death or apoptosis (Paulson et al., 2011). However, stress 
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triggers increased haematopoiesis leading to resumption of haematopoiesis in extramedullary 

sites, such as spleen and liver, to restore normalcy (Rivella, 2012). 

 

Figure 1.1: Developmental hierarchy of haematopoietic cells. Different blood cell lineages develop from 

haematopoietic cell precursors to mature blood cells. Haematopoiesis starts in the yolk sac then proceeds to the 

liver where committed myeloid and lymphoid progenitors are produced. This leads to the production of 

haematopoietic stem/progenitor cells in the bone marrow, which then undergo self-renewal to constantly produce 

permanent adult stem cells to maintain the haematopoietic pool throughout life. This figure is credited to 

Mahalingaiah et al., (2018) with permitted usage under the creative common license. 
 

Furthermore, increased BM activity driven by stress can lead to ‘ineffective haematopoiesis’ 

resulting in cytopenia, with anaemia the most frequent (Ginzburg & Rivella, 2011; Davis et al., 

2014). This is due to multistep alterations in the normal cell regulatory processes that cause an 

imbalance in the number of progenitor cells proliferating and number of mature blood cells 

produced. This misregulation in the haematopoietic process results in the development of varied 
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pathological conditions including leukaemia (Tsiftsoglou et al., 2009; De Luisi et al., 2013; Karlic 

et al., 2013). 

1.2.1 Bone marrow microenvironment  

The BM is a multifunctional soft tissue that consists of a heterogeneous mixture of stem, 

progenitor and mature cells of different lineages. The parenchyma contains HSC and 

haematopoietic progenitor cells whereas the stroma consists of non-haematopoietic 

mesenchymal stem cells (MSC) (Zhao et al., 2012). Similar to HSC, MSC that regulate bone 

remodelling, are multipotent in nature and have the ability to self-renew and differentiate into 

varied tissues of mesenchymal origin including adipocytes, osteoblasts, fibroblasts, reticular cells, 

endothelial cells, tissue macrophages and osteoclasts (Zhao et al., 2012; Raegan & Rosen, 2016).  

MSC were initially identified as fibroblastic cells that are capable of adhering to culture flasks and 

eventually growing into cells of mesenchymal origin, but recent reports suggest that MSC can 

also differentiate into myocytes, neurons, hepatocytes and cardiomyocytes (Friendenstein et al., 

1970; Caplan, 1991; Catacchio et al., 2013). The International Society for Cellular Therapy (ISCT) 

has since proposed the minimal criteria to define MSC in vitro: adherence to a plastic surface, 

proliferation as colony forming unit fibroblasts (CFU-F), multipotent mesodermal differentiation 

and characteristic phenotype of surface markers, including CD44, CD90, CD105, CD106, CD166 

and Stro-1 (Dominici et al., 2006; Horowitz et al., 2006; Ramakrishnan et al., 2013).  

MSC and HSC inhabit a unique hypoxic microenvironment in the BM referred to as the BM niche 

(Figure 1.2). This BM niche provides autocrine, paracrine and endocrine signalling that maintain 

and support the properties of regenerative cells (Anthony & Link, 2014; Scadden, 2016). The 

direct interaction between MSC and HSC in the perivascular space of the BM is critical to the 

regulation of haematopoiesis. HSC quiescence, a fundamental property of HSC that enables them 

to protect themselves from functional exhaustion and cellular insults thereby maintaining 

lifelong production of blood cell lineages, is strongly dependent on the MSC and their derived 

cells (Nakanmura-Ishizu et al., 2014; Reagan & Rosen, 2016).  
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Figure 1.2 Involvement of the BM microenvironment in leukaemia. A. An overview of a normal BM 

microenvironment in homeostasis. B. This normal BM microenvironment can be altered via invasion of malignant 

cells, which release soluble factors like exosomes and cytokines to suppress HSC differentiation partially due to 

several signalling pathways. C. These malignant cells remodel the cells in the niche to create a malignant BM niche 

thereby suppressing haematopoiesis whilst supporting leukaemic cell growth. This figure is credited to Cheng et al., 

(2018) with permitted usage under the creative common license. 

 

MSC also secrete growth factors and cytokines involved in anti-apoptosis, angiogenesis and 

immunoregulation (Gnecchi & Melo, 2009; Gottipamula et al., 2013; Norozi et al., 2016). MSC 

carry out immunoregulatory functions either through direct intercellular contact with a large 

number of effector cells, or through secretion and release of soluble factors and extracellular 

vesicles (EVs) into the extracellular milieu, which are then taken up by these effector cells 

(Savukinas et al., 2016; Fracchiolla et al., 2017). Consequently, MSC maintain the BM 
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microenvironment or niche to ensure immune surveillance and homeostasis of haematopoietic 

activity (Wexler et al., 2003; Chan et al., 2006; Castillo et al., 2007). 

However, this intricate balance between HSC and MSC may be disrupted by malignant cell 

invasion and excessive reactive oxygen species (ROS) production thus altering cellular 

differentiation within the BM niche (Figure 1.2) and result in malignancy (Reagan & Rosen, 2016; 

Prieto-Bermejo et al., 2018). Malignant cells accumulate and colonize the BM niche thereby 

modulating the niche to be pro-inflammatory to support their own expansive growth at the 

expense of normal cells, marked by cytopenia (Fracchiolla et al., 2017; Kumar et al., 2018). 

Depending on the type of malignant cells colonizing the BM niche and the extent to which the 

BM niche has been altered, normal and malignant BM niches differ in varied ways. MSC in the 

malignant BM niche become abnormal and stimulate evasion of immune surveillance with 

increased number of regulatory T cells and decreased number of effector T cells that have the 

ability to kill malignant cells (Chiarini et al., 2016; Fracchiolla et al., 2017). In a recent study by 

Mansour et al. (2016), BM isolated from 20 AML samples had increased levels of regulatory T 

cells compared to healthy subjects, contributing to an immunosuppressive microenvironment. 

Also, incorporation of EVs containing proteins and microRNA (miRNA) signatures, derived from 

CLL patients, into MSC led to the secretion of pro-inflammatory cytokines and other soluble 

factors by target cells thereby contributing to a malignant BM niche (Paggetti et al., 2015). 

Furthermore, AML-derived EVs also induced suppression of normal haematopoiesis in mice 

through the expression of DKK1 whilst blockade of regulator of EVs release, Rab27a, resulted in 

delayed leukaemia development in these mice (Kumar et al., 2018). 

1.3 Treatment of leukaemia  

Treatment of leukaemia can be difficult and depends on many factors due to the complexity of 

the disease. To define treatment, leukaemia patients are usually categorised into different risk 

groups based on prognostic factors such as age, type of leukaemia and other clinical and 

laboratory features. Chemotherapy and radiotherapy remain the mainstay treatment for 

leukaemia however, clinicians also employ monoclonal antibodies (e.g. rituximab for ALL), 

targeted therapies (e.g. tyrosine kinase inhibitors for CML) and haematopoietic stem cell 
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transplantation (HSCT) in the treatment of leukaemia (Sacha, 2014; Jabbour et al., 2015). 

Chemotherapeutic drugs used for leukaemia are administered either alone or as a combination 

therapy. These include alkylating agents, topoisomerase inhibitors, antimetabolites, plant 

alkaloids and antibiotics (Figure 1.3). However, the focus will be on the drugs related to the work 

in this thesis.  

 

 

Figure 1.3 Mechanisms of action of anti-cancer drugs. Different drug groups are employed in the treatment of 

cancer such as alkylating agents, antimetabolites, cytotoxic antibiotics, purine antagonists, pyrimidine antagonists, 

plant alkaloids, topoisomerase inhibitors, and other unclassified agents. Alkylating agents alter cell function by 

forming covalent bonds with amino, carboxyl, sulphydryl and phosphate groups in DNA, RNA and proteins of cells. 

They attach an alkyl group to the nitrogen atom at the 7 position of the purine base guanine in DNA thus resulting 

in cross-linkage of DNA strands. Topoisomerase inhibitors inhibit the enzymatic activity of DNA topoisomerase II in 

tumour cells, such as replication and transcription thus exposing them to DNA damage. Alkylating agents and 

topoisomerase inhibitors are the main drug groups used in this study. 

1.3.1 Alkylating agents 

Alkylating agents are the oldest class of drugs used in the treatment of leukaemia. They are a 

diverse family of reactive compounds that covalently bind to electron-rich atoms in biological 

molecules such as nucleic acids (DNA and RNA) and amino acids thereby interfering with DNA 

replication and transcription (Colvin, 2003; Fu et al., 2012). 
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Alkylating agents can inflict cytotoxic DNA damage or mutagenic damage by three different 

mechanisms. Firstly, they act by transferring their alkyl carbon groups onto the guanine base of 

the DNA molecule thereby altering the DNA structure and function in the process (Fu et al., 2012). 

This disrupts the ability of leukaemic stem cells to proliferate and in an attempt by DNA repair 

enzymes to rectify the damage, the DNA fragments and the cells die.  

In the second mechanism, alkylation of the DNA may result in mispairing of the nucleotide bases 

thus causing mutation (Ralhan and Kaur, 2007; Fu et al., 2012). Lastly, they can induce DNA 

damage via formation of cross-linkage bonds between atoms in the DNA. Cross-linking of the 

DNA strands, by bifunctional alkylating agents, blocks the separation of the DNA strands, which 

is a prerequisite for DNA synthesis during cell division or transcription (Figure 1.4; Clauson et al., 

2013; Huang and Li, 2013). However, binding to one strand of the complementary DNA double 

helix, by monofunctional alkylating agents, does not prevent separation of the DNA strands but 

hinders the ability of important DNA enzymes – helicase, polymerase and ligase - to access the 

DNA thereby resulting in cell death (Kondo et al., 2010; Fu et al., 2012). 

 

  

Figure 1.4 Formation of crosslinks by DNA-damaging agents. Bifunctional alkylating agents, chlorambucil and 

carmustine form bifunctional adducts including interstrand and intrastrand crosslinks between DNA strands. These 

cause DNA lesions or double strand breaks that require complex repair mechanisms especially nucleotide and/or 

base excision repairs and if irreparable, may lead to cell death. These drugs can also be metabolised to their 

intermediates, which could act by forming monofunctional adducts and/or DNA-protein crosslinks thereby causing 

DNA fragmentation, protein synthesis inhibition and eventually cell death.  
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Furthermore, there are six classes of drugs that make up this drug group and these include 

nitrogen mustards derived from mustard gases (e.g. chlorambucil), nitrosoureas (e.g. 

carmustine), alkyl sulfonates (e.g. busulfan), triazines (e.g. dacarbazine), piperazines and 

ethyleneimines (e.g. thiotepa) (Colvin, 2003; Ralhan and Kaur, 2007). These drugs are further 

divided into those that react directly with DNA (e. g. nitrosureas and nitrogen mustards) and 

those that form a reactive intermediate, which then reacts with the DNA (e.g. alkyl sulfonates).  

Following preliminary research findings, which showed that main alkylating agents – 

chlorambucil and carmustine – caused increased micronuclei formation in a bystander 

lymphoblast cell line (Okeke, 2019). These drugs were identified as candidate alkylating agents 

to drive this research forward.  

1.3.1.1 Chlorambucil 

Chlorambucil is a non cell-cycle specific nitrogen mustard derivative that acts on lymphocytes 

(IARC, 2012). It is a lipid soluble drug that is rapidly absorbed by cells via passive diffusion, and 

metabolised, once absorbed, to more toxic phenyl acetic acid mustard thus enhancing its toxic 

effects (Mclean et al., 1979; Newell et al., 1981). It acts as a bifunctional alkylating agent that can 

bind to the N7 position of guanine, N3 position of adenine and thiol groups of proteins and 

peptides thereby interfering with DNA, RNA and protein synthesis through the formation of 

cross-links between two DNA strands (Barnouin et al., 1998; Davies et al., 1999). These crosslinks 

are either interstrand or intrastrand with the former being stable and irreparable by nucleotide 

excision repair (NER) enzymes than the latter, thus causing double strand breaks and a block in 

DNA replication and transcription (Loeber et al., 2008; Di Antonio et al., 2014). 
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Figure 1.5 Chemical structure of chlorambucil 

1.3.1.2 Carmustine 

Carmustine, also known as bis-chloroethylnitrosourea or BCNU, belongs to the nitrosoureas 

family of alkylating agents, which are capable of crossing the blood brain barrier due to their 

lipophilic nature. Although alkylating agents are generally considered cell cycle phase 

nonspecific, carmustine causes formation of interstrand cross-links that block DNA replication 

and transcription, inhibit progression of S phase of cell cycle and subsequently causes cell death 

in dividing cells (Nikolova et al., 2017). It requires hydrolysis to its active intermediates, in the 

liver, which act by alkylating the purine bases of DNA thus forming monoadducts and 

subsequently interstrand crosslinks thus inhibiting DNA, RNA and protein synthesis and causing 

fragmentation (Colvin, 2003; Bethseda, 2012). 

 

Figure 1.6 Chemical structure of carmustine 
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1.3.2 Topoisomerase inhibitors  

Topoisomerase inhibitors are antineoplastic agents that impair the ability of the nuclear, 

topoisomerase enzymes, to regulate DNA topology during various genetic processes including 

DNA transcription and replication (Wilson et al., 2001; Meier et al., 2017). There are two main 

types of topoisomerase enzymes: topoisomerase I and topoisomerase II, which are present in all 

cells. Topoisomerase I makes single-strand breaks whilst topoisomerase II makes double-strand 

breaks to allow the separation and unwinding of the intertwined DNA strands (Hande, 2008; 

Kathiravan et al., 2013). Similar to alkylating agents, topoisomerase inhibitors are cell cycle non-

specific however, they would work most successfully during the ligation step in S-phase of cell 

cycle thereby causing both single and double strand breaks that affect the genome and thus lead 

to cell death (Nunhart et al., 2019). 

These inhibitors may block the effect of either topoisomerase enzymes however, the two main 

topoisomerase inhibitors, etoposide and mitoxantrone, chosen for this study target 

topoisomerase II enzyme. Topoisomerase II inhibitors may be poisons or catalytic inhibitors, and 

are both capable of inhibiting the enzymatic action of topoisomerase II. However only the poisons 

cause accumulation of topoisomerase II-linked double strand breaks whilst catalytic inhibitors 

act on the enzyme prior to formation of DNA breaks (Figure 1.7; Jensen and Sehested, 1997).  

1.3.2.1 Etoposide 

Etoposide or VP-16 is derived from podophyllotoxin, an anti-microtubule agent, which is 

extracted from the May apple plant (Kathiravan et al., 2013). Etoposide poisons topoisomerase 

II and converts it into a potent cellular toxin by stabilizing and interacting with the enzyme’s 

covalently cleaved DNA complexes (Jacob et al., 2011). This inhibits the ability of the enzyme to 

ligate and repair the DNA thereby causing accumulation of DNA strand breaks. These 

accumulated breaks cause cell cycle arrest at S and G2/M phases hence preventing transition into 

the mitotic phase of cell cycle (Smith et al., 1994; Jacob et al., 2011). 
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Figure 1.7 Mechanism of action of topoisomerase inhibitors. Topoisomerase inhibitors exert inhibitory effects on 

DNA topoisomerase enzymes’ functions by acting as either catalytic topoisomerase inhibitors or topoisomerase 

poisons. This impedes DNA replication, recombination, transcription and decatenation thus causing DNA damage. 

This leads to cellular stress, cell cycle blockade and eventually cell death. This figure is credited to Jain et al., (2017) 

with permitted usage under the creative common license. 

Two known homologous isoforms, alpha (α) and beta (β), of the topoisomerase II enzyme exist. 

Two separate genes produce these isoforms during cell cycle but they differ in their molecular 

weight (Boland et al., 2000; Hande, 2008). Etoposide targets the α isoform, which is essential for 

cell proliferation thereby inducing an anti-tumour effect, however it can also interact with β 

isoform, which is non-essential for cell growth to induce treatment-associated malignancy (Gatto 

and Lee, 2003; Asarova et al., 2007). Etoposide is metabolised by cytochrome P450 in the liver, 

to etoposide catechol, which can be further oxidised to a quinone by cellular oxidases (Jacob et 

al., 2011). These metabolites are also potent poisons that maintain the disruption of 

topoisomerase II enzymatic activity. 
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Figure 1.8 Chemical structure of etoposide 

 

1.3.2.2 Mitoxantrone 

Mitoxantrone (or novatrone) is a synthetic dihydroxyanthracenedione derivative that modulates 

the immune system through the interference of topoisomerase II activity to religate DNA strand 

breaks. It binds to the enzyme and disrupts its catalytic cycle thereby generating free radicals and 

making the DNA double strand breaks to persist, which may eventually lead to cell death (Faulds 

et al., 1991; Jacob et al., 2011). However, its cytotoxic effects may also result from aggregation 

and compaction of DNA, inhibition of microtubule assembly and inhibition of protein kinase C 

activity (Wiseman and Spencer, 1997). This mitoxantrone-induced DNA damage acts as a stimulus 

for NF-kappa β activation thereby increasing the secretion of pro-inflammatory genes including 

cytokines such as tumour necrosis factor alpha (Boland et al., 2000). 

Although mitoxantrone is not considered cell cycle specific, it can cause cell cycle arrest, 

particularly in late S phase (G2/S), by intercalating the DNA thereby causing DNA aggregation and 

DNA strand breaks (Faulds et al., 1991; Wiseman and Spencer, 1997). Mitoxantrone is rapidly 

absorbed by tissues, penetrates blood cells and persists in the body for long periods (Faulds et 

al., 1991). Mitoxantrone is also metabolised and readily oxidised, by cytochrome P450 in the 

liver, to several metabolites including monocarboxylic and dicarboxylic acid derivatives (Ehninger 

et al., 1990). Mitoxantrone can also be oxidised by myeloperoxidases to an active metabolite, 

naphthoquinoxaline, which covalently binds DNA and RNA hence enhancing the cytotoxic effect 

of the drug (Mewes et al., 1993; Panousis et al., 1995). However, resistance to mitoxantrone has 
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been identified in leukaemia cell lines due to different mechanisms such as alterations in 

topoisomerase II activity and/or levels, enhanced DNA repair mechanisms, over-expression of P-

glycoprotein, decreased intracellular drug binding and prevention of drug-induced apoptosis 

(Faulds et al., 1991; Dunn and Goa, 1996). 

 

 

Figure 1.9 Chemical structure of mitoxantrone 

 

1.4 Genotoxicity following chemotherapy 

Although these chemotherapeutic agents are crucial in the treatment of leukaemia, they can also 

exert toxic effects on normal cells that are dividing frequently, particularly those in the BM, 

gonads and gastrointestinal tract thereby leading to formation of DNA lesions in these cells. As a 

result, biological response to these drugs is complex due to the diverse cellular repair 

mechanisms and response pathways that are often elicited. The genotoxicity of these drugs seem 

to be dependent on impaired DNA replication and transcription (Frei et al., 1992).  

1.4.1 Chromosomal/cytogenetic aberrations 

Genomic instability via chromosomal or cytogenetic aberrations in cancer cells as well as normal 

cells often limit the efficacy of these drugs. These drugs may induce clastogenic (chromosomal 

breakages) or aneugenic (loss of chromosome) effects in cells thereby increasing the frequency 

of numerical or structural aberrations in the DNA. 
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Alkylating agents, chosen for this study, are associated with clastogenic effects in cells following 

treatment. Carmustine induced deletion mutations in mice (Chinnasamy et al., 1997). This was 

associated with high frequency of micronuclei (MN), a chromosomal instability and/or 

genotoxicity marker. Chlorambucil induced structural chromosome aberrations and deletion 

mutations in Drosophila melanogaster and spermatogonial stem cells of mice respectively (Russel 

et al., 1989; Rodriguez-Arnaiz et al., 2004). Chlorambucil also increased the frequency of 

chromosomal abnormalities such as deletions, translocations and inversions in fibroblasts of 

patients with hairy cell leukaemia (Haglund et al., 1997).  

Similarly, topoisomerase inhibitors, mitoxantrone and etoposide, induced chromosomal breaks 

and exchanges in Chinese hamster lung fibroblastic cells (Yang and Rafia, 1985; Suzuki and Kane, 

1994; Suzuki et al., 1995). This clastogenic effect is linked to their ability to stabilize the cleavage 

complex of the topoisomerase enzyme. However, etoposide only induced chromatid-type 

aberrations in mutant KB cell lines that are resistant to etoposide with no accumulation of the 

cleavage complex (Suzuki et al., 1997).  

Furthermore, these drugs can also cause interchromosomal translocations such as MLL gene on 

chromosome 11 band q23 by blocking the G2/M checkpoint during cell cycle (Ohshima et al., 

1996; Nakada et al., 2006; Brassesco et al., 2009). This MLL gene plays a critical role in 

mutagenesis through misregulation of gene expression and creation of oncogenic fusion genes. 

Etoposide-induced partial chromosomal duplications and deletions were also reported in B6C3F1 

mice (Marchetti et al., 2001; Marchetti et al., 2006). Consequently, these genetic aberrations 

enhance the risk of developing a second primary cancer. This risk increases 5 years post-

chemotherapy and has been frequently observed in long-term survivors (Hijiya et al., 2009; 

Bhatia, 2013; Cheung-Ong et al., 2013). 

1.4.2 Mutagenicity and apoptosis  

Cells respond to DNA damage by DNA repair mechanisms, activating cell cycle checkpoints or 

trigerring apoptosis, and these processes overlap each other. However, genomic damage in the 

nucleus can also be signalled to mitochondria tipping the balance in favour of apoptosis rather 

than repair and survival (Norbury and Zhivotovsky, 2004). Apoptosis is thought to be crucial in 
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the maintenance of homeostasis through elimination of worn out, aged or dying cells with 

damaged DNA from the replicating pool, in order to inhibit genomic instability and associated 

risk of cancer (Meinteres et al., 2001). Therefore, it would be expected that suppression of 

apoptosis would result in increased survival of mutant cells and thence enhanced mutagenesis. 

Several reports revealed that chemotherapeutic drugs at concentrations that induce apoptosis 

result in mutation with the overexpression of BCL2, a proto-oncogene that can block apoptosis 

induced by these chemotherapeutic drugs. Carmustine-induced apoptosis in isogenic Chinese 

hamster ovary cell lines was eliminated by expression of BCL2 and repair mechanism (Meikrantz 

et al., 1998). However, transfection of mouse B-cells (CH31 clones) with human BCL2 sense 

plasmids inhibited etoposide-induced cytotoxicity/apoptosis but had no effect on the production 

of DNA-protein cross-links and DNA strand breaks (Kamesaki et al., 1993). This shows that BCL2 

can block DNA fragmentation, which is a hallmark of apoptosis, but cannot disrupt initial DNA 

damage that may possibly lead to mutagenic events. This was supported by the findings of 

Hashimoto et al., (1995), which revealed that etoposide-cytotoxicity induced DNA recombination 

and increased mutant frequency in Chinese hamster V79 cells despite suppression of apoptosis 

in these cells through BCL2 overexpression. DNA recombination seems to be responsible for the 

large deletions and rearrangements in the genome. Etoposide-induced cell death has also been 

reported in HeLa cells through the formation of giant multi-nucleated cells that are characteristic 

of aberrant mitotic events (Lock and Stribinskiene 1996). Furthermore, formation of micronuclei 

(MN), a chromosomal instability and/or genotoxicity marker, was evident in CTTL-2 cytotoxic T-

cells from mouse strain C57bl/6 that was transfected with BCL2 plasmids following treatment 

with etoposide despite a significant reduction in apoptosis (Meintieres et al., 2001). Etoposide 

and mitoxantrone, even at low levels of toxicity, also induced MN formation despite little or no 

reduction in cell growth (Stopper et al., 1999). Collectively, these suggest that inhibition of 

biochemical steps in apoptosis could be accompanied by induction of mutagenic events in cells 

following exposure to etoposide and mitoxantrone. 

Furthermore, the genotoxic effects of drugs could be enhanced by modifying the ability of these 

drugs to directly target mitochondrial DNA to induce apoptosis and mutagenicity. According to 

Fonseca et al., (2011), the effect of chlorambucil can be potentiated through 
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compartmentalisation and activation in the mitochondria thus leading to cell death in patient 

samples, cancer cell lines and cells with resistance to chlorambucil or inhibited apoptotic signals. 

Additionally, Milliard et al., (2013) showed that localization of chlorambucil to the mitochondria 

led to cell cycle arrest and apoptosis in breast and pancreatic cell lines that are resistant to 

chlorambucil. Resistance to chlorambucil may be due to inhibition of apoptotic signals initiated 

by the overexpression of genes such as BCL2 and p53 hence mitochondrial targeting of 

chlorambucil could lead to biochemical alterations in the apoptotic pathway and thence cell 

death. 

1.5 Haematopoietic stem cell transplantation 

Although chemotherapy and radiotherapy serve as the main approaches, HSCT remains the only 

curative therapy for leukaemia. HSCT has been employed in the treatment of numerous 

malignant and non-malignant haematological diseases ever since it was demonstrated over 50 

years ago that infused HSC have the ability to reconstitute immuno-haematopoiesis after 

myeloablative conditioning (MAC) and transplantation (Thomas et al., 1957). Due to a continued 

improvement in HSCT outcome, indications for HSCT continue to grow across the world, however 

HSCT does not correct underlying diseases. A recent study by the European Society of Blood and 

Marrow Transplantation revealed that over 400,000 transplants were done in Europe in 2015 

(Passweg et al., 2016). The principle of HSCT involves the reconstitution of BM with 

donor/harvested cells, following maximal reduction of damaged stem cells with MAC (high dose 

chemotherapy and/or radiotherapy), and adequate immunosuppression to enhance successful 

engraftment of ‘new’ stem cells and destruction of defective cells (Dominquez-Gonzalez & 

Moore, 2013; Perumbeti et al., 2013).  

1.5.1 Types of stem cell transplantation 

HSCT may be autologous (using cells from the same person) or allogeneic (another person). 

Autologous transplantation is not usually indicated in leukaemia due to the high risk of disease 

relapse in these patients through the infusion of leukaemic stem cells (LSC) which may persist. 

However, it is used in the treatment of other haematological malignancies such as lymphoma 
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and multiple myeloma (Passweg et al., 2016). Allogeneic transplantation offers a better disease-

free survival in leukaemia due to its ability to create a graft-versus-leukaemia (GVL) effect 

through reconstitution of immuno-haematopoiesis in the patient.  

1.5.2 Sources of stem cells  

Choosing the appropriate stem cell source for allogeneic transplantation can be a difficult task 

for clinicians. There are certain factors to consider and these include the primary disease, stage 

of the disease, age of the patient, time and urgency of transplantation, human leucocyte antigen 

(HLA) match between patient and the donor, stem cell quantity and the experience of the 

transplantation centre (Demiriz et al., 2012).  

There are three main sources of stem cells that can be used for HSCT such as BM, PB stem cells 

(PBSC) and umbilical cord blood (UCB) and each has its own pros and cons that makes it suitable 

for particular disease settings (Demiriz et al., 2012; Cheuk, 2013). However, these benefits and 

risks conferred by each stem cell source may alter depending on the conditioning regimen, 

strategies for prophylaxis and treatment for graft-versus-host-disease (GVHD) and graft 

manipulation (Cheuk, 2013). Nevertheless, the aim of choosing the right stem cell source is to 

enhance disease-free survival in the patient through GVL effect at the expense of high risk of 

graft rejection, disease relapse or GVHD.  

1.5.3 Conditioning regimen 

The conditioning regimen can be either one or a combination of chemotherapy, radiotherapy or 

immunotherapy (Gyurkocza and Sandmaier, 2014; Jethava et al., 2017). Some of the 

chemotherapeutic drugs commonly used in conditioning regimens are alkylating agents and 

topoisomerase inhibitors. Previously, HSCT was restricted only to young patients in good 

condition due to toxicity of MAC. MAC requires use of high intensive conditioning, which rids BM 

of LSC. However, reduced intensity conditioning (RIC) or non-myeloablative conditioning (NMAC) 

has enabled treatment of the elderly, high-risk patients and patients with comorbidities that 

make up the major proportion of leukaemic patients (Champlin, 2013; Babushok & Hexner, 

2014). The difference between RIC and NMAC regimens is that the former require stem cell 
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support whilst the latter may result in minimal cytopenias that do not require stem cell support 

(Sengsayadeth et al., 2015). NMAC entails the induction of mixed chimerism between the host 

and donor lymphocytes and this genetic mismatch causes an immune reaction that is tipped in 

favour of cells from the donor through donor lymphocyte infusions in order to elicit GVL effect. 

However, the risk of graft rejection or disease relapse is higher in these less intensive conditioning 

regimens compared to MAC due to persistence of LSC in BM. Furthermore, the MSC population 

remains host-derived following allogeneic transplantation despite sustaining MAC or RIC capable 

of inducing stromal damage (Spyridonidis et al., 2005; Bartsch et al., 2009). This pre-exposure of 

MSC to chemotherapy during conditioning cause phenotypic and differentiation alterations that 

may lead to protection of leukaemic cells during chemotherapy (Kumar et al., 2017; Somaiah et 

al., 2018). 

1.6 Complications after stem cell transplantation 

Despite the success recorded with HSCT, it is limited by numerous complications (Table 1.1). 

These sequelae, most importantly graft rejection and GVHD, may develop early or late following 

HSCT. GVHD, caused by a HLA mismatch and/or genetic disparity between the donor and 

recipient, is the major cause of morbidity and mortality following allogeneic HSCT (Hartwig et al., 

2007; Atarod and Dickinson, 2013). This disparity leads to the destruction of the host’s tissues by 

the donor lymphocytes. GVHD may be acute or chronic depending on timing and clinical 

manifestations, and is often treated with corticosteroids. However, some patients do not 

respond to corticosteroid treatment and are usually treated with different immunosuppressive 

drugs with varying responses (Przepiorka et al., 2020). Acute GVHD occurs under 100 days of 

HSCT whereas chronic GVHD manifests after 100 days (Sung and Chao, 2013). Interestingly, GVHD 

is invariably linked to the beneficial GVL effect hence dissociating GVL from GVHD remains the 

basis of various transplantation studies. 

Furthermore, a relapse, which indicates a return of the original disease, may arise due to intrinsic 

or acquired resistance of cancer to the drug (Swift et al., 2014; Xu et al., 2014). For example, this 

may be due to immune evasion, by LSC, through upregulation of CD47, an anti-phagocytic 

marker, and presentation of MHC class II associated invariant chain derived peptide on their 
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surfaces (Majeti et al., 2009; van Lujin et al., 2012). Thus, LSC persist in the BM and cause MRD. 

As a result, leukaemia relapse is a major cause of post-transplant mortality. 

Table 1.1 Complications associated with stem cell transplantation 

 

Due to a lack of specificity of chemotherapeutic agents whilst targeting cancer cells, during 

conditioning, the genotoxic damage may be extended to non-targeted cells thus enhancing the 

risk of developing a malignancy in these normal cells. This phenomenon of a second primary 

cancer that develops following treatment for a primary disease is known as TRM. This has been 

more frequently observed in long-term survivors and this has been linked to alkylating agents 

and topoisomerase inhibitors (Bhatia, 2013; Cheung-Ong et al., 2013). These different drug 

Complication HSCT type Reference (s) 

Graft-versus-host disease (GVHD) Allogeneic Hartwig et al., (2007); Atarod and 

Dickinson, (2013). 

Graft rejection Allogeneic Chevallier et al., (2012); Mehta and 

Faulkner, (2013). 

Secondary malignancy Autologous, allogeneic La Nasa et al., (2013); Atsuta et al., 

(2014). 

Therapy-related malignancy Autologous, allogeneic Bhatia, (2013). 

Treatment-related mortality Autologous, allogeneic Champlin, (2011); Reisner et al., (2011). 

Disease relapse Autologous, allogeneic Chevallier et al., (2012); Atarod and 
Dickinson, (2013); Cheuk, (2013). 
 

Donor cell leukaemia  Allogeneic Wisemann, (2011); Bobadilla et al., 

(2015). 

Non-relapse mortality Autologous McClune et al., (2010). 

Post-transplant lymphoproliferative 

disease (PTLD) 

Allogeneic Kontoyiannis, (2013). 

Long-term complications Allogeneic Atarod and Dickinson, (2013); Mehta 

and Faulkner, (2013); Perumbeti et al., 

(2013). 

Autoimmune disease Autologous, allogeneic Faraci et al., (2014). 
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groups induce different types of TRM, which are distinguished by the course of the disease and 

the time it takes for leukaemia to develop following conditioning. 

The first type induced by alkylating agents often presents as a pre-leukemic period of 

myelodysplasia (MDS) and usually develops after 5-7 years, whilst the topoisomerase inhibitors-

induced type is not preceded by MDS and occurs after 2 years (Kröger et al., 2003). However, the 

prognosis for TRM is poor regardless of the type that develops. This is mainly due to the fact that 

TRM shares cytogenetic aberrations with de novo leukaemia of unknown aetiology, such as 

monosomy or deletions on chromosomes 5 and/or 7, and TP53 mutation (Pedersen-Bjegaard et 

al., 2008; Bhatia, 2013). As a result, TRM may serve as “in vivo model” to study the origin of de 

novo leukaemia. Furthermore, recent findings have shown that HSCT can also lead to a new 

haematological malignancy known as donor cell leukaemia (DCL). Whilst TRM is due to direct 

exposure of non-target cells to drugs, DCL will be because of indirect exposure to drugs. 

1.7 Donor cell leukaemia 

DCL is a rare type of leukaemia that develops in a patient following allogeneic HSCT, in which the 

transformed cells are donor-derived. This can occur as either a very early complication or a late 

complication. These donor-derived cells have not been exposed to any form of conditioning so it 

remains unknown why the donor remains healthy but the donor cells become malignant when 

transplanted in a patient.  

1.7.1 Epidemiology 

In 1971, Fialkow and colleagues described the case of a female patient who relapsed, under 100 

days, after HSCT from her HLA-matched brother for ALL; the leukaemic cells contained a Y 

chromosome. Due to irregularities in its recognition and in reporting, DCL is not always clear and 

often confused for relapse. According to Wiseman (2011), DCL might be responsible for 5% of all 

post-transplant ‘relapses’. Consequently, the incidence of DCL remains relatively unknown as the 

cases were previously reported as relapse, however there has been a massive increase in 

reported cases in the literature, which suggests that this may be more common than initially 

expected. It has been reported to be 0.12% by the European Society for Blood and Marrow 
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Transplantation during a 21-year period (Hertenstein et al., 2005) and 0.84% by the Tokyo Cord 

Blood Bank (Nagamura-Inoue et al., 2007).  

About 75% of DCL cases are different from the original disease and often arise as AML in 53% of 

cases, 25% as ALL and 20% as MDS (Wisemann, 2011). Most reported cases arise from adult 

patients however, there are several reported cases of paediatric DCL to date (Stein et al., 1989; 

Haltrich et al., 2003; Fraser et al., 2005; Cetin et al., 2006; Sevilla et al., 2006; Crow et al., 2010; 

Wang et al., 2011; Bobadilla-Morales et al., 2015). Most adult DCL cases present as AML or MDS 

whereas paediatric DCL present as mostly AML and/or ALL (Bobadilla et al., 2015).  

However, DCL has a poor prognosis in both groups. The interval between transplant and the 

occurrence of a second primary cancer is an important parameter for the study of risk, cause and 

pathogenesis of the disease (Wang et al., 2011). The latency period between allogeneic HSCT and 

occurrence of DCL covers a range of 1 to 193 months (Hertenstein et al., 2005; Wang et al., 2011). 

However, the maximum interval in children who developed DCL was 156 months (median, 23 

months).  

1.7.2 Aetiology and proposed mechanisms 

Understanding the conundrum that surrounds the oncogenic transformation of donor cells in a 

patient may provide insights in studying leukemogenesis. However, the aetiology is unknown due 

to difficulty in determining its diagnosis and incidence. As a result, several scientists have 

proposed different mechanisms, involving interplay between many factors, to explain this 

anomaly (Figure 1.8). These factors may be extrinsic factors provided by the patient’s BM 

microenvironment or intrinsic factors in the donor (Torra and Loeb, 2011). 

  1.7.2.1 Extrinsic factors  

Due to the lack of leukaemia development in the donors, a number of hypotheses suggest that 

extrinsic factors, in the patient, contribute to this rare malignant transformation of the incoming 

cells thus promoting DCL. Such extrinsic factors may include damaged BM microenvironment and 

impaired immunosurveillance. A growing body of evidence suggests that the homeostatic nature 
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of the BM microenvironment is altered by the conditioning regimen prior to HSCT. According to 

Flynn and Kaufman (2007), this alteration reflects the ‘seed and soil’ hypothesis, whereby the BM 

microenvironment serves as the soil whilst the donor cells act as the seed. 

 

Figure 1.10 Proposed mechanisms of donor cell leukaemia. Different theories have been proposed to explain this 

phenomenon such as prior genetic predisposition to cancer, altered telomere homeostasis, impaired immune 

surveillance, occult leukaemia and conditioning treatment, which will further debilitate the BM, cause a bystander 

effect in non-targeted cells or release oncogenic materials  Adapted from Wiseman (2011).  

Consequently, this encompasses the dysregulation of genes, cytokine signalling, transcription 

factors and receptors/ligands involved in intercellular communication. This is due to the residual 

effects of radiotherapy and/or chemotherapy thereby causing inter-cellular communication 

between recipient’s cells and the transplanted cells from the donor in the BM microenvironment 

as a consequence of an inflammatory-type response (Ruiz-Arguelles et al., 2007; Wisemann, 

2011). Transfer of radiotherapy/chemotherapy-induced residual effects or oncogenic materials 

present in the BM microenvironment may also occur through a bystander effect or by genomic 

fusion of the patient’s LSC to the donor cells (Wiseman, 2011; Bobadilla-Morales et al., 2015). 

Furthermore, increased DNA replication/repair errors and mutations may succeed 
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transplantation due to enhanced proliferative drive in a bid to reconstitute haematopoiesis in 

the BM (Nagamura-Inuoe et al., 2007; Gustafsson et al., 2012). 

Communicable and infectious agents such as Epstein-Barr virus may impair the patient’s immune 

system post-transplantation thus leading to the development of a malignant disorder known as 

post-transplant lymphoproliferative disorder (PTLD) (Nagamura-Inuoe et al., 2007; Torra and 

Loeb, 2011). This is often due to dire need to suppress the immune system, to prevent graft 

rejection, during HSCT thus leading to the depletion of T-cells, which will in turn hamper the 

ability of T-cells to stimulate B-cells and subsequently alleviate any immune attack. 

Histocompatibility disparities in the patient may also cause a sustained antigenic stimulation of 

donor cells as seen in lymphoid DCL (Wang et al., 2011). 

  1.7.2.2 Intrinsic factors  

All these aforementioned extrinsic factors are speculative however, and seem like looking at the 

far end of a rather complex process, as cells require multiple hits to their DNA, without repair, 

for cancer to develop. Thus, there may be environmental factors that cause these multiple hits 

to the DNA and thence induce dysregulation of numerous signalling pathways. This suggests that 

certain factors may cause these intrinsic changes in the donor and provide the ‘first hit’ whilst 

these extrinsic factors in the recipient serve as the ‘second hit’ thereby leading to oncogenic 

transformation of these cells and/or their progeny (Flynn and Kaufman (2007). 

Donor-derived factors such as genetic predisposition to leukemogenesis or presence of a pre-

leukaemic clone may also contribute to the development of DCL especially when the donor is a 

sibling. The occult leukaemic clone could evolve independently through acquisition of a 

prerequisite second ‘hit’ in the damaged BM microenvironment thus causing it to proliferate 

uncontrollably (Hertenstein et al., 2005). 

 1.7.3 Diagnosis, prognosis and treatment  

Initially, the diagnosis of DCL was based only on morphological differences and this may have 

contributed to its under-detection, especially in sex-matched cases. However, the advent of new 
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molecular techniques has led to an improvement in detection and analysis of donor-host 

chimerism. As a result, the diagnosis of DCL is dependent on accurate identification of the donor 

origin of the leukaemic cells to rule out any confusion with relapse (McCann and Wright, 2003).  

Karyotype analyses or genetic analyses using markers such as variable number of tandem repeats 

(VNTR) or short tandem repeats (STR) must be carefully performed to obtain accurate results 

(Wang et al., 2011). The use of karyotype analyses has enabled the identification of abnormal 

karyotype such as deletions, translocations, whole or partial loss of chromosome 5/7 and 

rearrangement of the 11q23 locus containing the MLL gene that are all frequently found in DCL 

cases (Ma and Tiu, 2016). However, Spinelli et al., (2000) were the first to illustrate the 

importance of using microsatellite analysis to identify the donor origin of leukaemia. They 

reported the presence of an XX clone, found in a male patient, following HSCT from his HLA-

identical sister. The XX clone was shown by STR typing to be of patient origin hence suggesting 

the probable loss of Y chromosome followed by duplication of the X chromosome. Other 

molecular methods that have been reliably used in the investigation of DCL include fluorescent 

in situ hybridization (FISH), YCS-PCR for detecting Y-specific chromosome sequence (YCS), single 

nucleotide polymorphisms (SNP), restriction fragment length polymorphisms (RFLP), and short 

inversion or deletion polymorphisms (SIDP) (Thiede, 2004; Ruiz-Arguelles et al., 2007). 

Nevertheless, DCL is very severe largely due to its heterogeneous presentation, however it is only 

treatable with chemotherapy or HSCT hence the need for further studies (McCann and Wright, 

2003). Consequently, there are important factors to consider in order to accurately classify DCL. 

These include stem cell source, type of conditioning regimen given, age and sex of the patient 

and donor, histocompatibility differences and family ties between the patient and donor, health 

status of the donor, types of primary and DCL malignancies, method(s) used for analysis of 

patient-donor chimerism and confirmation of donor origin of the leukaemia (Wiseman, 2011).  

1.8 Bystander effect  

Every live cell, whether normal or tumour, inherently responds to threat by sending signals to 

the surrounding neighbours. The neighbouring cells could respond to these signals immediately 
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or cause genomic instability in their progeny (Perumal et al., 2017). Bystander effect (BE) refers 

to the manifestation of treatment-related toxic effects on unexposed cells, which are in close 

proximity to the directly exposed cells. This BE is well described after radiotherapy.  

 1.8.1 Radiation-induced bystander effect  

Radiation-induced bystander effects (RIBE) was first described in 1992 when it was shown that 

DNA damage-dependent effects are not restricted to directly targeted cells but these irradiated 

cells can release signals to unirradiated cells post-treatment (Nagasawa and Little, 1992). About 

1% of cells underwent α-particle irradiation, however 30% of cells exhibited increased sister-

chromatid exchange (SCE) highlighting possible communication between damaged and normal 

cells. Ever since then, extensive research has been done in this field confirming the existence of 

RIBE.  

RIBE manifests via a wide range of biological endpoints. These include formation of MN, 

chromosomal aberrations, apoptosis or cell death, cell cycle deregulation, increased 

mitochondrial mass, reduced clonogenic survival, inflammation, gene mutation, altered gene 

expression, SCE, DNA double strand breaks, loss of global DNA methylation, neoplastic 

transformation, differentiation and proliferation (Kortubash et al., 2007; Najafi et al., 2014; Song 

et al., 2016). The signals that mediate this RIBE, such as cytokines, reactive oxygen species (ROS), 

nitric oxide, proteins, RNA, mRNA and miRNAs, can be transferred between cells via gap junctions 

or the extracellular medium (Prise & O’Sullivan, 2009; Dickey et al., 2011; Sokolov and Neumann, 

2018). 

These bystander endpoints may be due to molecular changes caused by alterations in the 

expression of miRNAs. The expression of miRNAs was reportedly altered in a bystander 3-

dimensional tissue, which was distinct from the microRNAome changes found in the directly 

irradiated cells (Kovalchuk et al., 2010). MiRNA profiles were also differentially expressed in 

irradiated and bystander lymphoblast cells whilst miR-21 was implicated in RIBE in fibroblast cells 

(Chaudhry and Omaruddin, 2012; Xu et al., 2014). 
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However, emerging reports support that miRNA, RNA and proteins can be packaged into EVs, 

including microvesicles, exosomes and apoptotic bodies (from fragmented apoptotic cells), which 

are taken up by the neighbouring or distant cells (Chen et al., 2012; Lou et al., 2017). According 

to Al-Mayah et al., (2015), irradiated MCF7 breast epithelial cells released exosomes containing 

proteins and RNA, which induced DNA damage in unirradiated cells. This BE persisted in the 

progeny of the bystander cells, which were also found to be capable of inducing BE themselves 

via exosomes. Furthermore, exosomes isolated from irradiated conditioned medium induced BE 

through transfer of miR-21 (Xu et al., 2015). Exosomes also propagated RIBE signals via miR-7 

thereby inducing autophagy in the lung (Song et al., 2016; Cai et al., 2017). These EV-derived 

miRNAs can also induce RIBE in the BM and spleen (Szatmari et al., 2017). 

Furthermore, the effects of radiation can be delayed and thence appear long periods after 

exposure, thereby causing genomic instability and enhancing the risk of oncogenic 

transformation. Radiation also induced telomere shortening and bridge formation ex vivo, which 

are indicative of genomic instability (Gorman et al., 2009). Radiation-induced genomic instability 

can also manifest as chromosomal alterations, MN, gene amplification, gene mutations, delayed 

cell killing and cell transformation (Preston, 2005; Perumal et al., 2017).  

1.8.2 Chemotherapy-induced bystander effect 

Although there is ample evidence of RIBE, BE is not exclusive to radiotherapy but can also be 

triggered by other forms of cellular stress including genotoxic agents, whether physical or 

chemical (Figure 1.9). Normal human fibroblasts exhibited high levels of DNA double-strand 

breaks following exposure to low concentrations of sodium dodecyl sulphate (SDS) via the release 

of cytokines (Dickey et al., 2009). Therefore, BE is variable and depends on dose, type of 

radiation/chemical agents, experimental model, and type of donor and recipient cells (Perumal 

et al., 2017).  

The concept of chemotherapy-induced bystander effect (CIBE) has piqued the interest of 

researchers in recent times ever since it was shown that these chemotherapeutic agents have 

the ability to exert BE similar to ionizing radiation. In 1990, Moolten and Wells became the first 

researchers to describe the ability of treated cells to confer chemosensitivity upon their 
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untreated neighbours. They reported that ganciclovir, a nucleoside analogue specifically 

activated by herpes simplex virus thymidine kinase (HSV-TK) gene, induced CIBE in vitro. This was 

further supported by a report that these HSV-TK expressing cells need to be in contact with the 

non-transduced cells for this BE to occur (Freeman et al., 1993).  

1.8.2.1 Possible mechanisms 

The possible mechanisms of CIBE are poorly understood due to limited evidence of CIBE in 

literature. However, some researchers have implicated conditioned medium (CM) containing 

soluble factors such as EVs released by the treated cells, and ROS in addition to direct cell contact 

in the mechanism of CIBE. Cells, in direct contact with each other, can also communicate via gap 

junctions (Dickey et al., 2011; Sokolov and Neumann, 2018). 

                        
Figure 1.11 Cell-damaging effects in cells exposed and unexposed to therapy. Treatment of cells with radiation 

and/or chemicals induces different effects such as micronuclei (MN) formation, apoptosis, necrosis and genomic 

instability. These same effects can also be induced in non-targeted cells in close proximity or far from these treated 

cells via secretion and release of alterative signals from the treated cells, which are internalised by the untreated 

cells. AC; chromosomal aberrations. Adapted from Widel (2012).  
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There is evidence that cells treated with alkylating agents can transfer DNA-damaging effects of 

these drugs to their untreated neighbours via gap junctions. Cisplatin conferred BE in bystander 

embryonic fibroblasts by direct cell contact via gap junctions (Jensen and Glazer, 2004; Peterson-

Roth et al., 2009). This agrees with the results of Arora et al., (2018), which revealed that 

bystander lung and ovarian cells also receive cisplatin-induced BE via gap junctions. These suggest 

that the sensitivity of bystander cells to cisplatin is potentiated via the gap junctions. Mitomycin 

C (MMC) also induced BE in unexposed bystander cells via gap junctions (Rugo et al., 2005). 

Nevertheless, alkylating agents can also induce CIBE via CM, hence it seems that these BE 

triggered by alkylating agents is dependent on the type of cell used and may involve more than 

one mechanism. This is in line with the findings of Kumari et al., (2009), which revealed that MMC 

induced BE in hepatoma cells via CM, but not in cervical cancer cells. In support of these findings, 

MMC also failed to induce bystander killing in cervical cancer cells following CM transfer and co-

culture experiments with macrophages due to proteasomal degradation in the cancer cells (Singh 

et al., 2015). However, bystander cell death was achieved when these cells were pre-treated with 

MG132 to inhibit these proteasomes. Furthermore, MMC and phleomycin, caused BE in human 

B lymphoblastoid cells via release of soluble factors in the CM (Asur et al., 2009). 

In addition, chloroethylnitrosourea agents such as fotemustine and cystemustine, unlike 

carmustine, induced BE in tumour cells via CM containing proteins (Demidem et al., 2006; Merle 

et al., 2008). This conferred protection to the cells against chemotherapy via growth inhibition 

and alterations in glutathione. This may explain why carmustine causes TRM. Doxorubicin, an 

anthracyline antibiotic that also targets topoisomerase enzyme, can also cause BE via CM, 

however this effect may be dependent on cell type. The work of Di et al., (2008) revealed that 

doxorubicin, sold as Adriamycin, induced BE in naïve breast cancer cells, but not in naïve colon 

cancer cells, via CM. Chinese hamster V79 cells treated with another antibiotic, actinomycin D, 

also relayed treatment signals, via CM containing soluble factors, to the untreated cells (Jin et al., 

2011). 

However, paclitaxel and vincristine, unlike doxorubicin and 5-fluoracucil, increased the release 

of ROS thereby inducing BE in breast, lung and leukaemia cells in a co-culture model (Alexandre 
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et al., 2007). The discrepancy in the ability of doxorubicin to induce BE in breast cancer cells may 

be due to differences in experimental models and endpoints, chosen by the researchers, to 

evidence CIBE in these cells. Furthermore, bleomycin and neocarzinostatin induced BE via 

generation of ROS in lung adenocarcinoma cells, PB lymphocytes and human BMSCs that were 

grown in co-culture (Chinnadurai et al., 2011). The ability of bleomycin to potentiate BE was 

further supported by the findings of Chinnadurai et al., (2013), which revealed that this drug 

could induce BE in lung adenocarcinoma cells grown both in 2D and 3D co-cultures. 

Chemotherapy-treated cells can also release EVs into the CM following treatment, which have 

the ability to trigger phenotypic changes in naïve recipient cells when engulfed by these cells. 

Ovarian cells, when treated with cisplatin, released EVs that caused BE in non-treated cells 

(Samuel et al., 2017). This collaborates with the reports of Lin et al., (2017), in which etoposide-

treated prostate cancer cells released microvesicles that caused DNA damage, when taken up by 

bystander cells. Furthermore, MSC treated with paclitaxel released microvesicles that induced 

growth inhibition in human pancreatic cells (Pascucci et al., 2014). 

Regardless of the mechanism of CIBE, the biological endpoints from these studies include cell 

death or inhibition of cell growth, chromosomal aberrations, DNA damage, MN formation and 

drug resistance. However, these effects could be delayed thereby inducing genomic instability in 

the progeny of bystander cells. Bleomycin-induced effect in bystander lung adenocarcinoma cells 

persisted at delayed times following co-culture (Chinnadurai et al., 2013). This is in line with the 

reports of Gorman et al., (2009), which showed that the bystander cells had a reduction in 

telomere length and an increase in bridge formations following exposure to medium from 

tumour treated with a combination of folinic acid, oxaliplatin and fluorouracil.  

1.9 MicroRNAs in response to bystander effects 

MiRNAs are single stranded non-coding RNAs that are approximately 19-22 nucleotides in length 

that repress mRNA translation or inhibit gene expression at the post-transcriptional level by 

binding to the 3′-untranslated region of specific target mRNAs. These miRNAs are produced in 

the nucleus and cytoplasm where they undergo successive enzymatic cleavage by RNA 
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polymerase II, DROSHA and DICER1 from primary transcripts through hairpin precursors miRNA 

to mature miRNA before integration into the RNA-inducing silencing complex (Gordon et al., 

2013). Due to their ability to modulate gene expression, miRNAs play significant roles in the 

regulation of haematopoiesis by targeting various genes and transcription factors involved in cell 

proliferation, differentiation and apoptosis (Cammarata et al., 2010). 

However, aberrant miRNA expression is also associated with pathogenesis of various diseases, 

including leukaemia. The linkage between aberrant miRNA expression and leukaemia was first 

reported in CLL (Cammarata et al., 2010). These miRNAs may act as oncogenes or tumour 

suppressors. Upregulation of oncogene miRNAs and downregulation of tumour suppressor 

miRNAs support leukemogenesis (Gordon et al., 2013).  

1.9.1 MicroRNAs and extracellular vesicles 

Recently, miRNAs have attracted much attention in cell communication and bystander studies. 

These small RNA molecules were first discovered in Caenorhabditis elegans by Lee et al., in 1993 

but have since been confirmed to be present in mammals and plants. There are 1917 mature 

human miRNA sequences in the miRNA registry (miRBase ver. 22;12). However, miRNAs may also 

circulate in extracellular compartments, including blood (serum/plasma), saliva, milk and urine 

(Chen et al., 2012). 

These extracellular miRNAs are stable, with sufficient integrity, despite high extracellular 

ribonuclease (RNase) activity, hence suggesting that these extracellular miRNAs are protected 

from RNAse degradation in some way (Chen et al., 2008). The extracellular miRNAs also remained 

stable when exposed to different temperatures, pH or freeze-thaw cycles. To explain this 

phenomenon, it was suggested that these extracellular miRNAs are enclosed in lipid-bilayered 

vesicles called EVs. This was further supported by the findings of Ge et al., (2014), which revealed 

that plasma miRNAs enclosed in EVs remained stable at different temperatures and different 

storage times. These EV miRNAs act as secreted molecules capable of travelling between 

neighbouring cells to alter the recipient cell’s phenotype thus influencing various biological 

processes (Katsuda et al., 2014). 
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1.9.2 Extracellular vesicles and cell-to-cell communication 

EVs are lipid bilayered membrane vesicles that are naturally released by cells. EVs are grouped 

into exosomes (≤ 200 nm), microvesicles (≥ 200 nm and ≤ 1000 nm) and apoptotic bodies based 

on their size, intercellular origin and release mechanisms (Figure 1.10). Exosomes originate from 

endosomes, formed from inward budding of the plasma membrane into the cytoplasm to form 

multivesicular bodies (MVB), and are released into the extracellular milieu via the fusion of the 

MVB with the plasma membrane (Wilms et al., 2014). Microvesicles are derived from plasma 

membrane and released into the extracellular space by outward budding of the plasma 

membrane (Wilms et al., 2014). Other sub-types of EVs have also been mentioned in literature 

such as exomeres, large oncosomes and enveloped viruses (Lou et al., 2017; Zhang et al., 2018). 

Due to this heterogeneity, detection and classification of these EVs is challenging. Although most 

researchers use ‘exosomes’ to describe EVs, EVs will be referred to as small extracellular vesicles 

(sEVs) within this study. This is in line with the guidelines from the International Society for 

Extracellular Vesicles (ISEV) for characterising EVs (Thèry et al., 2018). 

sEVs are produced by different cell types and have different fates and functions. Their function 

is determinant on cell-to-cell communication via transport of their cargo of proteins, lipids and 

nucleic acids to recipient cells (Figure 1.11). Recipient cells internalise sEVs by either clathrin-

dependent endocytosis or clathrin-independent pathways, such as phagocytosis, 

macropinocytosis, caveolin-mediated uptake or lipid raft-mediated internalization (Mulcahy et 

al., 2014; Durak-Kozica et al., 2018). This illustrates that sEVs may gain entry into a cell via 

different routes. 

However, reports by Horibe et al., (2018) revealed that recipient cells take up sEVs via different 

mechanisms that depend on the recipient cells. sEVs uptake by breast cancer cells (BT-549) was 

inhibited following the disruption of exosomal lipid rafts whilst annexin involved in cell adhesion 

and growth were shown to play a role (Koumangoye et al., 2011). Furthermore, proteinase K 

treatment inhibited sEVs uptake by ovarian cancer cells whilst glycoproteins containing sialic 

acids were found on the surface of sEVs (Escrevente et al., 2011). These suggest that the uptake 

mechanism used by sEVs may be determined by factors, such as the surface proteins, 
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glycolipoproteins and glycoproteins found on both sEVs and recipient cells. However, the 

mechanism of exosome internalisation remains poorly understood. Following internalization, 

sEVs may fuse with endosomes and become transcytosed, or mature into lysosomes and become 

degraded (Zhang et al., 2015). However, EVs can also have an effect on bystander cells without 

uptake or release of their cargo. A recent study by Salimu et al., (2017) revealed that EVs derived 

from prostate cancer cells reduced T cells’ response and induced immunosuppression without 

cellular uptake or transfer of their cargo.  

 

Figure 1.12 Biogenesis and secretion of extracellular vesicles (EVs). Eukaryotic cells release three different types of 

EVs. First, microvesicles are shed via outward budding of the plasma membrane, which is engineered by 

redistribution of phospholipids and contraction of cytoskeletal proteins. Secondly, exosomes arise as intraluminal 

vesicles by inward budding of endosomal membrane to form multivesicular bodies (MVB). MVB fuse with plasma 

membrane to release their contents into the extracellular milieu. Thirdly, apoptotic bodies are the largest and 

formed during programmed cell death or apoptosis mediated by membrane blebbing. These EVs have characteristic 

markers such as proteins, lipids and nucleic acid. This figure is credited to Gustafson et al., (2017) with permitted 

usage under the creative common license. 
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Figure 1.13 The composition of small extracellular vesicles. sEVs carry a wide array of membrane-bound and 

cytosolic molecular content including DNA, mRNA, miRNA and proteins. This figure is credited to Hu et al., (2012) 

with permitted usage under the creative common license. 

1.9.3 Evidence of EV-microRNAs in bystander effect 

In 2007, Varadi et al. published the first reported evidence of miRNA transfer between cells via 

exosomes (cited in Zhang et al., 2015). Since then, there has been a number of publications with 

similar observations (Kosaka et al., 2010; Kogure et al., 2011; Montecalvo et al., 2012). Once 

transported, EV-derived miRNAs play different functions, such as characteristic changes in the 

expression levels of target genes and phenotypic changes in the recipient cell. These functions 

may depend on the nature of the secreting and recipient cells (Figure 1.12). Cellular stress 

conditions have been reported to reflect in the RNA content of cell-derived EVs (de Jong et al., 

2012). 

Exosomes derived from cisplatin-treated A549 lung cancer cells were found to contain miRNAs 

and mRNA, and conferred chemo-resistance to cisplatin when added to untreated A549 cells 

(Xiao et al., 2014). This was further supported by the work of Pink et al., (2015), which showed 
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that exosomes isolated from cisplatin-resistant ovarian cancer cell line, CP70, increased 

resistance to cisplatin in another ovarian cancer cell line, A2780, however this was independent 

of miRNAs. Furthermore, exosomal miR-96 from H1299 lung cancer cell line also increased 

resistance to cisplatin in bystander cells via interaction with LIM-domain only protein 7 (Wu et 

al., 2017). However, exosomes from A2780 treated with curcumin mediated transfer of miR-214 

thus leading to an increase in cisplatin-sensitivity (Zhang et al., 2017). These suggest that 

curcumin abrogates this chemo-resistance and modulates expression of miRNAs capable of 

conferring chemo-sensitivity in cells. 

 

  

Figure 1.14 Possible effects of chemotherapy-induced extracellular vesicles (EVs). (A) The amount of EVs secreted 

by cells following treatment with chemotherapeutic drugs could depend on the time it takes for the drugs to be 

absorbed. (B) These chemo-EVs could modulate the immune system but whether they lead to immune-suppression 

or immune-activation remains to be fully investigated. (C) Depending on the type and nature of the secreting cell, 

chemo-EVs may affect different biological processes such as proliferation and cell viability through transport of its 

cargoes. (D) Chemo-EVs could be heterogeneous thereby making it hard to fully understand the role of these chemo-

EVs.  This figure is credited to Razak et al., (2019) with permitted usage under the creative common license. 
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Furthermore, chemotherapeutic agents used in the treatment of breast cancer have also been 

shown to mediate CIBE and modulate gene expression via transfer of exosomal miRNAs. 

Docetaxel resistance was transported via exosomal miRNA, breast cancer cells to GFP-S cells, 

which stimulated the alteration of gene expression in GFP-S cells and enhanced the resistance of 

the cells to docetaxel (Chen et al., 2014). MCF-7 breast cancer cells resistant to tamoxifen relayed 

BE signals via transfer of exosomal miR-221/222 thereby conferring resistance to tamoxifen in 

recipient cells by altering the expression of P27 and ERα in these cells (Wei et al., 2014). 

Interestingly, MSC can also mediate BE in the BM microenvironment. MSC-derived exosomes 

conferred sensitivity to temozolomide, an alkylating agent, in glioblastoma cells via transfer of 

anti-miR-9 thus increasing cell death and caspase activity (Munoz et al., 2013). Furthermore, the 

expression of vascular endothelial growth factor (VEGF), a potent angiogenic factor, was found 

to be downregulated in mouse breast cancer line (4TI) both in vitro and in vivo following 

internalization of MSC-derived exosomes that contained miR-16 (Lee et al., 2013). Additionally, 

increased proliferation and metastasis was reported in MCF-7 breast cancer cells following 

treatment with serum-derived MSC-exosomal miR-21 and miR-34a (Vallabhaneni et al., 2014). 

Collectively, these suggest a dichotomy in the BE-mediated by MSC-derived EVs within the 

tumour microenvironment and this may be dependent on the miRNA(s) in the EVs cargo. 

Cancer cells may also transfer oncogenic phenotypes to bystander cells via EV-derived miRNAs. 

Human umbilical vein endothelial cells (HUVEC) internalised K562 leukaemic cells-derived 

exosomal miR-92a, which triggered an increase in cell migration and tube formation via reduced 

expression of integrin α5 (Umezu et al., 2012). Exosomes isolated from MYCN-amplified 

neuroblastoma cell lines contained oncogenic miRNAs, which were internalised by recipient cells 

thus diminishing cell growth (Haug et al., 2015). 

Furthermore, EVs can also directly export or sequester anti-cancer drugs. Several reports have 

shown that chemotherapeutic drugs such as paclitaxel could be loaded onto MSC-derived EVs as 

well as macrophages-derived EVs and then exported or sequestered to elicit bystander effects in 

cancer cells (Pessina et al., 2013; Pascucci et al., 2014; Kim et al., 2016). Similar results have also 

been reported for cancer cells-derived EVs following exposure to chemotherapeutic agents such 
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as etoposide, mitoxantrone, cisplatin, mitomycin, paclitaxel, doxorubicin, irinotecan, 

gemcitabine, methotrexate and topotecan (Ifergan et al., 2005; Safaei et al., 2005; Chapuy et al., 

2008; Goler-Baron and Assaraf, 2011; Lv et al., 2012; Federici et al., 2014; Aubertin et al., 2016; 

Koch et al., 2016; Muralidharan-Chari et al., 2016; Goh et al., 2017).  

Based on this premise, it is reasonable to acknowledge that CIBE has been established however, 

the potential mechanism(s) by which this happens remains to be fully elucidated and forms the 

basis of this research. As new drugs are introduced, at a fast pace, into the market, this poses 

great clinical implication for improved cancer therapy. Therefore, better understanding of the 

mechanism of DCL aetiology will help improve patient outcome. Since donor-derived 

haematopoiesis is supported and maintained by host-derived stromal microenvironment 

following allogeneic-HSCT through intercellular communication, it is likely that MSC also transfer 

‘damage’ to incoming cells from the donor in the BM microenvironment. 

1.10 Hypothesis 

Using DCL as the clinical pivot, this research hypothesises that miRNA transferred via EVs are 

involved in CIBE in the BM microenvironment and can induce toxicity in HSC following exposure 

of MSC to pre-transplant chemotherapy. Monitoring the secretome of cells and content of MSC-

derived EVs following exposure to chemotherapy may identify molecular changes that may have 

a functional effect in HSCT recipients that could potentially be used to indicate and detect DCL 

development.  

1.11 Aims and Objectives 

Since chemotherapy agents have been shown to be able to induce bystander effect from MSCs 

and EVs released by MSC are known to play an important role as message delivery vehicles, this 

project aimed: 

1. To develop a co-culture model that will enable the confirmation of CIBE following 

treatment with alkylating agents and topoisomerase inhibitors  
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• Culture conditions of the chosen cell lines, HS-5 and TK6, were optimised to 

ensure optimum growth of these cells throughout the experiments. 

• Optimisation include morphology, cell viability assessments as well as other 

minimal criteria proposed by the International Society for Cellular Therapy (ISCT) 

to define MSC in vitro. 

2. To evaluate the ability of the chosen alkylating agents and topoisomerase inhibitors 

to induce CIBE  

• HS-5 cells were treated with two alkylating agents and two topoisomerase 

inhibitors for 1 hour and 24 hours to ascertain the ability of these drugs to induce 

stromal damage. 

• HS-5 cells were treated with these drugs for 24 hours, washed off afterwards 

and co-cultured, in fresh culture medium, with TK6 cells. CIBE was evaluated by 

cell viability and genotoxicity in the bystander cells 

• The chosen drugs were chlorambucil and carmustine (alkylating agents) and 

topoisomerase inhibitors (etoposide and mitoxantrone), which have been 

implicated in the development of TRM.  

3. To explore the duration of CIBE 

• HS-5 cells were treated, as above, and conditioned medium harvested after 24 

hours. HS-5 conditioned medium was then used to co-culture TK6 over a period 

of 5 days (duration that is safe for a transplant) with replacement of conditioned 

medium each day. 

• CIBE was evaluated and determined by cell viability in bystander cells. 

• HS-5 cells were treated with ranging doses of these drugs to determine if the 

dosage has an effect on the bystander effect.  

4. To evaluate the role of miRNAs and EVs as a mode of action for CIBE 

• MiRNAs – Changes in miRNA expression due to drug exposure were compared 

between treated HS-5 cells and untreated HS-5 cells using kits available from Qiagen.  

• Changes in miRNA expression were also compared between TK-6 exposed to treated 

HS-5 cells and TK6 cells exposed to untreated HS-5 cells following co-culture.  
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• MiRNA expression profiles in HS-5 conditioned medium and serum used in cell 

culture was also be explored. 

• EVs - HS-5 cells were found to release EVs hence these EVs were isolated and 

characterised by electron microscopy and nanoparticle tracking analysis. 

• HS-5 cells-derived EVs were co-cultured with TK6 cells to show the internalisation of 

the EVs by these cells using fluorescent labelling. 

• HS-5 cells-derived EVs were also co-cultured with TK6 cells and bystander effects 

were determined by cell viability and genotoxicity assays.  

• Trafficking of these miRNAs in EVs from HS-5 cells to bystander TK6 cells by qRT-PCR 

was also explored. 
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2.0 Materials and Methods 

All reagents that were used in this research work were purchased from Sigma Aldrich, UK except 

where otherwise stated. 

2.1 Samples 

Two human cell lines were chosen to mimic what happens in the BM microenvironment where 

MSC and HSC in the stroma interact to promote haematopoiesis. 

2.1.1 Stromal cell line 

HS-5, a human stromal cell line, was purchased from American Type Culture Collection (ATCC 

through LGC standards, UK). HS-5 is an adherent human (male) fibroblast cell line that was 

derived from long-term BM culture transformed with amphotrophic retrovirus vector (Roecklein 

and Torok-Storb, 1995; Torok-Storb et al., 1999). HS-5 cells secrete cytokines, miRNAs, 

macrophage colony stimulating factor (M-CSF), granulocyte colony stimulating factor (G-CSF) and 

stem cell factor (SCF; kit ligand), which play a key role in its support for proliferation of progenitor 

cells (Roecklein and Torok-Storb, 1995; Torok-Storb et al., 1999; Graf et al., 2002; Balakrishnan 

et al., 2014). 

2.1.2 Lymphoblast cell line 

TK6, human B-lymphoblastoid suspension cells were supplied by Professor Ann Doherty 

(AstraZeneca, Cambridge UK). These cells were derived from the spleen from a patient with 

hereditary spherocytic anaemia (Xu et al., 2017). TK6 possess a number of characteristics, which 

make them suitable for genetic toxicology studies such as functional p53 protein, heterozygosity 

at the TK locus, stable genome and stable mutation frequencies (Zhang et al., 1995; Xu et al., 

2017). 
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2.2 Chemotherapeutic agents  

Two chemotherapeutic agents were chosen from each of the two drug groups, alkylating agents 

and topoisomerase inhibitors, which are linked to TRM. For alkylating agents, chlorambucil (CHL; 

10 µM, 20 µM, 40 µM) and carmustine (CAR; 1 µg/µl, 5 µg/µl, 10 µg/µl) were used whilst 

etoposide (ETO; 1 µM, 5 µM, 10 µM) and mitoxantrone (MTX; 100 ng/µl, 250 ng/µl, 500 ng/µl) 

(both Stratech Scientific, UK) were the topoisomerase inhiitors used. The top dose for each drug 

is a clinically relevant dose. Stock solutions of all drugs were made in 100% ethanol except 

etoposide, whose stock was prepared in chloroform/methanol (1:1). All drugs were further 

diluted in isotonic phosphate buffer saline (PBS), to 100x the final dose concentrations. The 

dosage range corresponds to the clinically relevant plasma serum concentrations measured in 

patients receiving these drugs (table 2.1). The levels used correspond to the conditioning doses 

for these drugs and patient’s plasma levels in a HSCT setting. These concentrations were selected 

in order to determine the maximal tolerable dose relevant to the patient’s plasma levels where 

HS-5 cells were capable of inducing a bystander effect.  

Table 2.1: Plasma concentrations of chemotherapeutic agents. Peak plasma concentrations of these agents 
obtained from literature was used to determine the concentrations used in the present study. 

Drugs Solubility Plasma Concentration 

(this study) 

Clinical dose References 

Chlorambucil Ethanol (100%)  40 µM 0.6 mg/kg 

0.2 mg/kg (oral) 

Hong et al., (2010) 

Carmustine  Ethanol (100%) 10 µg/ml 300-750 mg/m2 Henner et al., (1986) 

Etoposide Ethanol/Chloroform 

(1:1) 

10 µM 100 mg/m2 (oral) Clark et al., (1994); Millward 

et al., (1995) 

Mitoxantrone  Ethanol (100%) 500 ng/ml 12 mg/m2 (IV) Smyth et al., (1986); van 

Belle et al., (1986)  
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2.3 Cell culture  

 2.3.1 HS-5 stromal cells 

HS-5 were cultured in high glucose Dulbecco’s Modified Eagles medium (DMEM-HG) 

supplemented with 10% heat-inactivated foetal bovine serum (FBS), L-glutamine (2 mM), 

penicillin (100 U/ml) and streptomycin (100 µg/ml) at 37oC in a humidified atmospheric 5% CO2 

air (Heracell CO2 incubator; Thermofisher Scientific, UK). However, for study of sEVs, HS-5 cells 

were maintained in a similar fashion with slight modification; exosome-depleted FBS (Systems 

Biosciences, US) was used instead of heat inactivated FBS. Cells were grown in a 75cm2 vent cap 

Corning cell culture flask (Fisher Scientific, UK) by changing the medium every 2-3 days until cells 

were in log growth phase (concentration of 1 x 106 cells). Subsequently, cells were trypsinized 

(see section 2.5), counted manually by trypan blue dye dilution (see section 2.10) or using the 

Luna FL automated cell counter (Logos Biosystems, France) and seeded in a 1:3 split at a density 

of 1 x 104 cells/cm2. Cells in passage 3-9 were used for experiments. 

 2.3.2 TK6 lymphoblastoid cells 

TK6 cells were cultured in RPMI 1640 medium (Gibco Invitrogen, UK) supplemented with heat 

inactivated FBS (10%), L-glutamine (2 mM), penicillin (100 U/ml) and streptomycin (100 µg/ml) 

at 37oC in a humidified atmospheric 5% CO2 air. For sEVs studies, TK6 cells were grown in similar 

conditions to HS-5 in DMEM-HG supplemented with 10% exosome-depleted FBS, L-glutamine (2 

mM), penicillin (100 U/ml) and streptomycin (100 µg/ml). TK6 cells were visualised under the 

microscope and had a medium change every 1-2 days until they reached 70-80% confluence. Cell 

pellets were then obtained after centrifugation at 300 g for 10 minutes (Harrier; MSE, UK) re-

suspended in fresh medium and counted manually by trypan blue dye dilution or using the Luna 

FL automated cell counter. Cells were then sub-cultured at a density of 3 x 105 cells per ml.  
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2.4 Thawing of cryopreserved cells 

Cells were transferred from liquid nitrogen to an ice box for transport between labs and then 

thawed in a 37oC water bath (Grant Instruments, UK) by rapid agitation. The vial was then 

transferred to a biohazard level 2 culture hood (Scanlaf Mars; Labogene, UK) just before the ice 

completely melts and quickly thawed by adding a wash medium (either RPMI 1640 or DMEM-HG 

supplemented with 20% FBS) in a dropwise manner to fill the vial. The content of the vial was 

aliquoted into a 15 ml tube and made up to the 15 ml mark using 1ml aliquots of the wash 

medium and subsequent mixing over a 10-minute period. HS-5 cells were spun at 230 g for 5 

minutes whilst TK6 cells were spun at 300 g for 10 minutes. The washing and centrifugation 

process were performed quickly as possible to ensure the removal of dimethylsulphoxide (DMSO) 

from the cells. The supernatants were discarded and the washing process repeated before 

seeding the cells at the appropriate densities. 

2.5 Detachment of adherent cells 

HS-5 cells were sub-cultured by trypsinization after attaining 70-80% confluence, using a working 

solution (1X) containing 0.25% trypsin and 1 mM ethylenediaminetetraacetic acid (EDTA).  The 

culture medium was discarded before washing the cells with 1X PBS. Depending on the surface 

area of the culture flask used, enough volume of 1X trypsin solution was added to the cells just 

to cover all the cells and incubated at 37°C. After 3-5 minutes, the culture flask was given a gentle 

tap to ensure detachment of the cells followed by addition of fresh complete culture medium to 

deactivate the trypsin effect. Cells were spun at 230 g for 5 minutes, the wash step repeated and 

then re-suspended in fresh medium. Cells were counted as previously mentioned and re-seeded 

at the appropriate density. 

2.6 Cryopreservation of cells  

Cryopreservation of the cell lines was done to ensure that a master stock and a large batch of 

working stock are preserved in a viable state for future assays at the same passage. This 



49 
 

eliminates the need to maintain cells in culture for a long time, the risk of mutation of cells that 

leads to a change in their characteristics and the risk of microbial and cross-contamination with 

other cell lines (Fogh, 1973; Wang et al., 2013).  

Both cell lines were frozen using a solution containing 65% culture medium, 25% FBS and 10% 

DMSO. The DMSO was added to prevent formation of ice crystals during the process; lest the 

cells will be destroyed. The solution was placed on ice before adding it dropwise into the cells. 

Cell suspensions were transferred into cryovials at a concentration of 3 x 106 cells per ml and 1 x 

106 cells per ml for TK6 and HS-5 respectively. The cryovials were then placed into a cryovial-

holding chamber (‘Mr Frosty’), which contains isopropanol and enables gradual freezing at a rate 

of approximately 1oC per minute, and placed in a -80oC ultra low temperature freezer (New 

Brunswick Scientific, UK) for 2-3 hours. Afterwards, the cells were transferred to vapour phase 

liquid nitrogen. 

2.7 CFU-F assay 

The colony forming capacity of HS-5 cells as MSC was determined and compared in five culture 

media: DMEM-HG, low glucose DMEM, DMEM-F12 Ham, RPMI 1640 and Iscove’s Modified 

Dulbecco’s medium (IMDM) (Gibco Invitrogen, Paisley, UK). All media were supplemented with 

10% heat inactivated FBS, 2 mM L-glutamine, penicillin (100 U/ml) and streptomycin (100 µg/ml). 

Cells were seeded at 10 cells/cm2, 20 cells/cm2, 30 cells/cm2 and 50 cells/cm2 into a 6-well plate 

containing 2 ml of medium in a humidified culture chamber with a 5% CO2 atmosphere. The cells 

were incubated at 37oC for 14 days, changing the culture medium every 2-3 days. After 14 days, 

the cells were washed with PBS and colonies were fixed with methanol for 5 minutes. 

Subsequently, crystal violet solution (0.5%) was used to stain the cells at room temperature (RT) 

for 10 minutes and later washed thrice with distilled water to remove excess dye. The colonies, 

which were defined as a group of more than 20 cells, were counted manually by light microscopy 

using the NIKON Eclipse TE 300 inverted microscope.    
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2.8 Cell proliferation assay 

To determine the optimum medium for the co-culture model, HS-5 cells were seeded at 10,000 

cells per cm2 in three culture media: DMEM-HG, RPMI 1640 and IMDM, in 25cm2 vent cap Corning 

cell culture flasks (Fisher Scientific, UK). After approximately 120 hours, the cells looked confluent 

under the microscope and were trypsinized, centrifuged at 230 g for 5 minutes, harvested and 

counted as described earlier. In contrast, TK6 cells were seeded at 2.5 x 104 cells/ml in three 

culture media: DMEM-HG supplemented with heat-inactivated FBS or sEVs-depleted FBS, and 

RPMI 1640, in 25cm2 vent cap Corning cell culture flasks for 72 hours. Afterwards, cells were 

centrifuged at 230 g for 5 minutes, harvested and counted as described earlier. For sEVs studies, 

HS-5 cells were seeded at 10,000 cells per cm2 respectively in DMEM-HG with sEVs-depleted FBS, 

DMEM-HG with heat-inactivated FBS and RPMI 1640; in 25cm2 vent cap Corning cell culture flasks 

and maintained for 42 hours. As mentioned earlier, cells were then harvested and counted.  

2.9 Drug sensitivity measurement 

Before drug treatment, HS-5 cells (at 70-80% confluence) were seeded in a 12-well plate at a 

density of 132,000 cells per cm2 in 500 µl DMEM-HG (HS-5 complete medium). Cells were allowed 

to attach overnight at 37oC, treated with increasing doses of the drugs and incubated for 1 hour 

and 24 hours respectively. Afterwards, cells were washed three times with PBS to remove the 

drugs and fresh medium added to the wells. Cells were returned to the incubator for a period 

equivalent to one doubling time (42 hours) for normally dividing HS-5 cells. The percentage of 

surviving cells relative to untreated controls was determined immediately after drug treatment 

and 72 hours later to determine the recovery ability of HS-5 following chemotherapy based on 

the previous work of (Li et al., 2004). Morphology of the cells was observed by light microscopy 

using the ZEISS Primovert inverted microscope for the duration of the experiment. 
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2.10  Cell viability assay  

2.10.1 Trypan blue exclusion dye assay 

This dye exclusion test detects viable cells present in a cell suspension. It is based on the principle 

that dead cells absorb trypan blue dye due to loss of cell membrane selectivity whereas viable 

cells, which have intact cell membrane, do not (Tennant, 1964; Strober, 2001). Cell suspensions 

of HS-5 and TK-6 were harvested and spun at 230 g and 300 g respectively for 5 minutes. The 

resulting supernatant was discarded and cells re-suspended in complete culture medium. About 

10 µl of the cell suspension was aliquoted into a microcentrifuge tube and mixed with an equal 

volume of 0.45% trypan blue. The mixture was loaded onto a Neubauer haemocytometer and 

the viable and non-viable cells were counted immediately by light microscopy at low 

magnification (X10). To calculate the number of viable cells per mL of culture, the formula below 

was applied. 

(𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑜𝑜𝑜𝑜 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ÷ 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑜𝑜𝑜𝑜 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐) × 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 × 10,000 

Percentage viability was calculated as: (𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑟𝑟 𝑜𝑜𝑜𝑜 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ÷ 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑜𝑜𝑜𝑜 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐)  ×  100 

To validate these counts, the number of viable cells and percentage viability were determined 

using the Luna FL automated cell counter thus minimising possible error from manual cell count.  

 2.10.2 Acridine orange/propidium iodide assay  

Furthermore, cell viability was also determined by acridine orange/propidium iodide (AO/PI) 

fluorescence assay in order to make these findings robust. It is based on the principle that AO 

can permeate both live and dead cells, and as such stain all nucleated cells to generate green 

fluorescence whilst PI stains dead nucleated cells with poor membrane integrity and generates 

red fluorescence. Cells stained with AO/PI solution (50 µg/ml), in a 1:10 dilution, were counted 

using the Luna FL automated cell counter. Protocols were set to take cognizance of the ranges of 

sizes of cells used in this study. The automated counter produced figures for live, dead and total 

cells, and percentage viability within seconds. 
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2.11  Genotoxicity assay: in vitro micronucleus assay 

This assay detects genotoxic damage in cells that have undergone cell cycle, through the 

formation of MN within the cytoplasm of interphase cells. MN may be as a result of loss of either 

fragments of chromosome or whole chromosomes during nuclear division (Fenech, 2007). 

Cell viability was determined in both treated and control cells by trypan blue exclusion or AO/PI 

assay to ensure that there were enough viable cells (50% viability) to perform the genotoxicity 

assay (OECD, 2014).  Cells (2 x 104 per slide) were aliquoted into micro-centrifuge tubes and spun 

at 200 g in a Micro-centaur Plus micro-centrifuge (Sanyo MSE, UK) for 5 minutes. After decanting 

the supernatant, the cell pellets were re-suspended in PBS (150 µl) and dispensed into Shandon 

cytofunnels attached onto a clean grease free microscope slide. The cells were then centrifuged 

at 300 g for 8 minutes using a Shandon Cytospin 4 (ThermoScientific, UK). Microscope slides were 

carefully removed from the centrifuge and air-dried. Slides were fixed using 90% methanol for 

10 minutes, to avoid detachment of cells from the slides, and air-dried. Slides were dipped in 

fresh phosphate buffer (0.66% w/v potassium monobasic + 0.32% w/v sodium phosphate dibasic; 

pH 6.4), and stained with 24mg/200ml AO (w/v in phosphate buffer) for 45 seconds. Slides were 

then ‘washed’ twice in fresh phosphate buffer for 10 and 15 minutes respectively, air-dried and 

stored in the dark at RT to avoid fading. 

For analysis, slides were mounted with phosphate buffer, cover slipped with a clean grease-free 

cover slip and viewed under the microscope (Nikon Eclipse 80i) at x40 magnification using triple 

band pass (standard excitation and emission wavelength range of 435-660nm for DAPI, FITC and 

Texas Red filters). Images were visualised with NIS Elements software and captured with a Nikon 

Digital Sight DSF1 camera (Nikon Instruments, Europe). Aberrant cells were identified through 

the distinctive properties of AO where the cytoplasm stains orange/red and nuclear material 

(including MN) appear green. Slides were scored for mononucleated cells (normal), binucleated 

and multinucleated cells with or without micronuclei, lobed cells, apoptotic and necrotic cells. 

1000 cells were scored per culture and 2000 cells scored per treatment. 
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2.12 HS-5 and TK6 bystander co-culture 

A co-culture model has been previously developed by another PhD student (Figure 2.1; Kelechi 

Okeke, personal communication). HS-5 cells were seeded at a density of 132,000 cells/cm2 into a 

12-well plate containing 1ml of DMEM-HG medium per well and allowed to attach overnight in 

an incubator at 37oC.  This density was sufficient enough to ensure cells were confluent before 

and during the experiment due to the surface area of the well. HS-5 cells were then treated with 

clinically relevant doses of chlorambucil, carmustine, etoposide and mitoxantrone (see table 2.1). 

These treated cells were incubated at 37oC, 5% CO2 for 24 hours respectively. Cells were washed 

twice to ensure removal of the drugs and 1 ml of fresh complete DMEM-HG medium was added 

into the wells. Culture inserts with pore size of 0.4 µm (Millipore, UK) were transferred into the 

wells using sterile forceps and TK6 cells (5.0 x 105/ml) suspended in 1ml of complete medium 

aliquoted within the culture insert. Cells were allowed to co-culture at 37oC and 5% CO2 for 24 

hours before TK6 cells were harvested, viability assessed and adequate density aliquoted for the 

MN assay. TK6 cells served as bystander cells in all experiments. 

 

 Figure 2.1 Representation of the co-culture model to determine bystander effect. HS-5 cells were exposed for 1 

or 24 hours to drugs, then washed free of drug treatment, followed by addition of TK6 (bystander cells) into the well 

via a culture insert. Both cell lines were suspended in DMEM-HG medium and incubated at 370C at 5% CO2 for 24 

hours before assessing the viability and genotoxicity of bystander cells.  
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2.13 Evaluation of the duration of bystander effect 

2.13.1 Collection of conditioned medium  

As previously mentioned in section 2.12, HS-5 cells were treated with clinically relevant doses of 

carmustine, chlorambucil, etoposide and mitoxantrone for 24 hours, washed free of drug and 

added fresh medium. After 24 hours, CM was collected and centrifuged sequentially for 5 

minutes at 1000 g and 10 minutes at 3000 g using Beckman Allegra X-22R centrifuge with SX 4250 

rotor (Beckman Instruments, USA) to remove cell debris. The CM was collected and filtered using 

0.22 µm filter (Merck Millipore, UK) to remove contaminating apoptotic bodies and cell debris, 

and stored at -20oC until needed. This was repeated for a period of five days; collecting CM every 

24 hours for the duration of the experiment. 

             2.13.2 Co-culture of TK6 cells with conditioned medium  

This was done to ascertain if HS-5 cells release soluble factors into the culture medium following 

drug treatment, which are capable of mediating a bystander effect in nearby cells, and to 

determine how long this bystander effect persists in the nearby cells. CM obtained as 

aforementioned, was used to seed TK6 cells (5 x 105 cells/ml) in a 12 well plate and co-cultured 

over a period of five days. The filtered CM was used to seed a new batch of TK6 cells. This was 

repeated every 24 hours over a period of five days. The number of viable cells and percentage 

viability of the cells were assessed every day using the Luna FL automated cell counter. 

 2.14 Small extracellular vesicles in bystander effect 

 2.14.1 Transmission electron microscopy (TEM) 

HS-5 (1x106) cells were treated with clinically relevant doses of carmustine (10 µg/ml), 

chlorambucil (40 µm), etoposide (10 µm) and mitoxantrone (500 ng/ml) for 24 hours. Afterwards, 

cells were washed three times with PBS and then fixed in 5% glutaraldehyde (TAAB Laboratories 

Equipment Ltd, UK) in 0.1M sodium cacodylate (TAAB Laboratories Equipment Ltd, UK) buffer 
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(pH 7.43). Cells were then washed three times in 0.1M sodium cacodylate buffer and post-fixed 

in 0.75% osmium tetroxide (TAAB Laboratories Equipment Ltd, UK) containing 1.5% potassium 

ferrocyanide. The cells were enrobed in low temperature gelling agarose (0.3g in 10ml of distilled 

water) and gradually dehydrated in ascending concentrations (70%; 90%; 100%) of ethanol, 

transferred to propylene oxide (TAAB Laboratories Equipment Ltd, UK) and embedded in Taab 

embedding resin (TAAB Laboratories Equipment Ltd, UK). After embedding, samples were 

sectioned using a Reichert-Jung Ultracut E ultramicrotome. They were double stained with 

potassium permanganate (Agar Scientific Ltd) in 0.1M phosphate buffer pH 6.5 and Reynold’s 

lead citrate (1963). Samples were observed using a Phillips CM10 transmission electron 

microscope with a Gatan Orius SC 100 charge coupled device camera (model 832) operating at 

60kV. 

2.15 Isolation of small extracellular vesicles 

Small extracellular vesicles (sEVs) were isolated by two methods: size exclusion column 

chromatography (SEC; iZON Science, UK) and ExoQuick Precipitation kit (System Biosciences, US). 

For SEC, HS-5 cells (13,000 cells per cm2) were seeded in triplicates in a 75cm2 vent cap Corning 

cell culture flask whilst 125,000 cells per cm2 were seeded in triplicates in a 12-well plate for 

ExoQuick-based extraction. Both extraction methods employed DMEM-HG medium 

supplemented with 10% exosome-depleted FBS and glutamine. Cells were treated with clinically 

relevant dose of mitoxantrone (500 ng/ml) for 24 hours, washed three times with PBS and re-

seeded in fresh medium.  

 2.15.1 ExoQuick precipitation method 

About 10ml of CM was obtained as previously described, transferred to a sterile microcentrifuge 

tube and mixed with 200 µl of ExoQuick TC (System Biosciences, US) and incubated at 4oC for 18-

24 hours. The ExoQuick TC-CM mixture was spun at 1500 g for 30 minutes (Beckman Allegra X-

22R centrifuge with SX 4250 rotor) to obtain a white pellet. The supernatant was aspirated off 

whilst the pellet was spun at 1500 g in a microcentaur plus microcentrifuge for 5 minutes to 

remove residual ExoQuick solution and then resuspended in 250 µl PBS. Microsphere beads 
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(System Biosciences, US), which were prepared by washing 0.2 unit of beads twice with 80 µl of 

PBS, were used to purify the isolated sEVs. The beads were mixed with the isolated sEVs, vortexed 

(Whirlimixer, Laboratory FSA Supplies, UK) for 3 minutes and placed on an Stuart SSL3 gyro-

rocker at RT for 35 minutes to ensure complete mixture. The sample was sequentially centrifuged 

for 3 minutes at 3000 g and 5 minutes at 8000 g. The supernatant, which contains the purified 

sEVs, was aspirated into sterile micro-centrifuge tubes and stored at -80oC until needed for 

further analysis. 

 2.15.2 Size exclusion column chromatography  

About 10ml CM obtained from HS-5 cells was concentrated to 500 µl using Amicon Ultra-15 

centrifuge tubes (Merck Millipore, UK) by centrifuging them sequentially for 18 minutes at 3900 

g (Beckman Allegra X-22R centrifuge with SX 4250 rotor) and 10 minutes at 10,000 g (Beckman 

Allegra X-30R centrifuge with F2402H rotor) to remove any precipitate that may cause problems 

during downstream analysis. The qEV columns (iZON Science, UK) were placed in a vertical 

position using a stand tube clamp (Figure 2.2) and equilibrated by rinsing the column with 10 ml 

of fresh filtered (0.22 µm) PBS.  

The time taken for 5 ml of buffer to flow through the qEV columns was noted (started timing at 

2 ml and stopped at 7 ml) in order to detect when to clean the column. The concentrated sample 

(500 µl) was loaded onto the columns before adding the buffer to aid its movement down the 

column. The resulting fractions (500 µl) were collected immediately; the first six fractions do not 

contain vesicles and were collected in one collection (15 ml) tube to save time and avoid 

measurement error of six individual tubes whilst fractions 7, 8 and 9 were collected separately 

for sEVs analysis. 

Following collection of the vesicles, about 2 ml buffer was added above the top filter of the qEV 

column to collect the fraction 10, which was discarded. Fractions 7, 8, 9 were stored at -80oC until 

needed for further analysis. Each qEV column was used just twice before discarding them and 

was flushed with 10 ml of buffer in order to avoid sample contamination. The time taken for 5 ml 

of buffer to flow through was also noted, and then stored in 20% ethanol at 4oC.  
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Figure 2.2 Representation of the size exclusion column chromatography model. Samples were passed through the 

column with the aid of filtered PBS buffer and resulting fractions were collected in 15ml tubes (for fractions 1-6) 

and/or 1.5ml microtubes (for fractions 7-9). 

2.16 Quantification of small extracellular vesicles  

There are a number of ways to identify and characterise isolated sEVs. Here, TEM, nanoparticle 

tracking analysis (NTA) and particle to protein estimation to determine identification and purity 

of the samples. 

2.16.1 Transmission electron microscopy 

TEM was performed based on Sohel et al., (2014) with slight modifications. sEV samples (30 µl) 

were diluted 1:2 in freshly prepared 4% paraformaldehyde (60 µl) and incubated for 15 minutes. 
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sEV samples were then distributed on parafilm as 10 µl droplets. Carbon formvar coated copper 

400 mesh grids (TAAB Laboratories Equipment Ltd, UK) were discharged with 0.01% alcian blue 

solution (TCS Biosciences Ltd, UK) or bacitracin for 30 seconds, rinsed three times in filtered (0.22 

µm) ultra-pure water and dried under a lamp. Grids were then inverted over the sEV sample 

droplets and incubated at RT for 30 minutes. Excess water was removed by blotting with filter 

paper in between washes. The grids were then stained with one 20 µl droplet of 2% (w/v) 

aqueous uranyl acetate for 10 minutes and washed three times with droplets of filtered ultra-

pure water. Excess solution was blotted with filter paper. The sample was dried under a lamp for 

one hour. Grids were visualised under a Phillips CM10 electron microscope with a Gatan Orius SC 

100 (model 832) operating at 60kV. 

 2.16.2 Nanoparticle tracking analysis 

The size and concentration of sEVs were measured by NTA using a NanoSight LM10 with a laser 

wavelength of 642 nm and the NTA 2.3 build 0033 analytical software (Malvern Instruments Ltd, 

UK). Samples were vortexed to ensure complete mixture and then diluted in Dulbecco’s 

phosphate buffered saline (DPBS; x50 for control; x100 for MTX treated cells). At least five 30 s 

videos were recorded for each sample and the software was used to estimate concentration (x 

108/ml) and mean diameter (nanometres) of the sEVs. The recording was monitored manually 

and performed at RT. Camera gain was 350 and the shutter speed was 14.99 ms. For analysis, the 

detection threshold was set to 10 and the type to multi. The blur, minimum track length and 

minimum expected particle size were all set to auto. Calibration was carried out using 100 nm 

silica beads diluted to a known concentration in PBS.  

2.16.3 Protein estimation  

Protein concentration in sEV samples was estimated via two different but similar methods: 

Bradford assay and Bicinchoninic acid (BCA) assay. 
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  2.16.3.1 Bradford assay 

To estimate the purity of sEV samples, sEVs were prepared and diluted in PBS (X100 for ExoQuick 

isolated sEVs; X50 for SEC isolated sEVs) and then compared in triplicates against serially diluted 

bovine serum albumin (BSA) as standard, with PBS used as a blank. BSA standards (2.5 – 25 µg/ml) 

were prepared. Each standard or unknown sample (150 µl) was ejected into appropriate wells in 

a 96-well microplate (Corning, UK) before adding 150 µl of the Coomasie Reagent (Thermofisher 

Scientific, UK) to each well and left to mix for 30 seconds on a plate orbital shaker. The plate was 

further incubated for 10 minutes at RT. The absorbance of each standard and unknown sample 

was then measured at 570 nm on a FLUOstar Omega Microplate Reader (BMG Labtech, UK), 

which uses the MARS data analysis software to generate values. A standard calibration curve was 

generated and values for the unknown sEV samples were extrapolated from this standard curve, 

using a third-order polynomial equation, with r2 ˃ 0.98 for each assay. As described previously by 

Tang et al., (2017), the ratio of particles to protein was determined using the formula:  

Ratio = log [(particles concentration/protein concentration)]  

2.16.3.2 Bicinchoninic acid assay 

sEV samples isolated by SEC were also compared in triplicates against serially diluted BSA as 

standard, with PBS used as a blank. Each standard or unknown sample (25 µl) was pipetted into 

appropriate wells in a 96-well microplate before adding 200 µl of the Working Reagent, prepared 

by mixing 50 parts of BCA reagent A (Bicinchoninic acid) and 1 part of BCA reagent B (copper 

sulphate) [Thermofisher Scientific, UK], to each well to ensure that the sample to working reagent 

ratio is 1:8. The samples were mixed thoroughly on a plate orbital shaker for 30 seconds before 

incubating at 37oC for 30 minutes. Afterwards, the plate was allowed to cool at RT and then the 

absorbance of each standard and unknown sample was read at 570 nm on a FLUOstar Omega 

Microplate Reader. Protein concentrations were calculated using a standard calibration curve 

generated using BSA standards (5 - 250 µg/ml). The ratio of particles to protein as stated in 

section 2.16.3.1.   
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2.17 Cytotoxic effect of GW4689 on HS-5 

GW4869 is an inhibitor of sEV biogenesis/release that blocks the ceramide-mediated inward 

budding of MVB and the release of mature sEVs from MVB (Essandoh et al., 2015). Following the 

previous work of Essandoh et al., (2015), GW4869 powder (0.2 mg; Sigma Aldrich, UK) was 

initially dissolved in 1ml of DMSO into a stock solution of 0.346 mM GW4869 before dilution in 

culture supernatants to achieve 5 µM, 10 µM or 20 µM GW4869 concentration. To determine 

the possible cytotoxic effect of GW4869, HS-5 cells were seeded in triplicates at a density of 

132,000 cells/cm2 into a 12-well plate containing 1 ml of DMEM-HG medium per well and allowed 

to attach overnight in an incubator at 37oC. Cells were then treated with increasing doses (5 µM, 

10 µM, 20 µM) of GW4869 and 0.01% DMSO for 24 hours. DMSO serves as the vehicle control. 

Afterwards, cell injury was determined by measuring the number of viable cells and percentage 

viability using the Luna FL automated cell counter (section 2.10). 

2.18 Effect of GW4869 on bystander effect 

Using the aforementioned bystander model (Section 2.12), HS-5 cells were seeded at a density 

of 132,000 cells/cm2 into a 12-well plate containing 1 ml of DMEM-HG medium per well and 

allowed to attach overnight in an incubator at 37oC. HS-5 cells were pre-treated with GW4869 (5 

µM) for an hour to inhibit the generation of sEV prior to drug treatment of chlorambucil (40 µM), 

carmustine (10 µg/ml), etoposide (10 µM) and mitoxantrone (500 ng/ml), and incubated at 37oC. 

Twenty-four hours after commencement of drug treatment, the medium containing these drugs 

was removed, cells were washed three times with PBS and fresh medium was added. Culture 

inserts (0.4 µm pore size) was transferred into the wells using sterile forceps and TK6 cells (5 x 

105 cells/ml) were aliquoted into the culture inserts. Cells were allowed to co-culture at 37oC for 

24 hours and harvested afterwards to assess the viability and genotoxicity of these bystander 

cells (sections 2.10 & 2.11). 
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2.19 Uptake of sEVs by bystander cells 

        2.19.1 Labelling of sEVs’ membrane 

ExoGlow-Membrane EV Labelling Kit (Systems Biosciences, US), which is a red fluorescent dye 

that labels sEVs with intact lipid membranes, was used according to the manufacturer’s 

instructions with slight modifications. Reaction buffer (12 µl) was initially mixed with 2 µl dye 

before adding the mixture to 0.2 µg of sEV sample and incubated in the dark at RT for 30 minutes. 

ExoQuick-TC (10 µl) was added afterwards to the mixture and incubated at 4oC for 30 minutes to 

remove unlabelled dye. The sample was spun at 10,000 g for 10 minutes to obtain sEV pellets. 

The supernatant was carefully aspirated from the side of the tube and the sEV pellet was re-

suspended in PBS. An aliquot was taken to confirm labelling and then the rest stored at -20oC 

prior to use. The labelled sEVs were transferred onto a clean, grease free slide and visualised 

under a Leica confocal microscope TCS SP8. Images were taken with the LAS X software.   

        2.19.2 Labelling of sEVs’ RNA 

The RNA of sEVs was labelled using the ExoGlow-RNA EV Labelling Kit (Systems Biosciences, US), 

a green fluorescent dye that specifically labels sEV RNA cargo, by following the manufacturer’s 

instructions. Each sEV sample (0.2 µg) was initially mixed with 300 µl incubation buffer before 

adding 5 µM of ExoGlow RNA probe to the mixture. The mixture was then incubated in the dark 

for an hour at 37oC. An aliquot was taken to confirm labelling and then the rest stored at -20oC 

prior to use. The labelled sEVs were placed on a clean, grease free slide and visualised under a 

confocal microscope.  

         2.19.3 Uptake of sEV by TK6  

TK6 cells (1 x106 cells) were seeded into a 6-well plate containing 2 ml of serum-free medium or 

DMEM-HG complete medium. Membrane-labelled sEVs were added to TK6 cells cultured in 

serum-free medium whilst RNA-labelled sEVs were cultured in DMEM-HG complete medium to 
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inhibit transfection of free RNA probe into the cells. Cells cultured in both conditions were 

incubated for 3 hours at 37oC. Afterwards, TK6 cells were stained for 25 minutes with 20 µl/ml of 

DiO or Dil dye (Thermofisher Scientific, UK) for those cultured with membrane-labelled sEVs and 

RNA-labelled sEVs respectively. Cells were then washed three times with PBS and resuspended 

in PBS. Cells were transferred to a clean, grease free slide and visualised under a confocal 

microscope.  

         2.19.4 Inhibition of sEV uptake by TK6  

As previously described (sections 2.19.1 and 2.19.2), the membrane and/or RNA of sEVs were 

labelled with dyes before incubating them with heparin (10 µg/ml) or PBS as control at 37oC for 

30 minutes. Heparin is an anti-coagulant that delays blood coagulation but also inhibits sEVs’ 

uptake. TK6 cells (1 x106 cells) were seeded into a six-well plate in serum-free medium and 

DMEM-HG medium respectively and co-cultured with the labelled sEVs for 3 hours at 37oC. 

Following incubation, cells were stained with DiO or Dil dye (20 µl/ml) and incubated at 37oC for 

25 minutes. Cells were washed three times with PBS to remove unbound dye and resuspended 

in PBS. Cells were then transferred to a clean, grease free slide and visualised under a confocal 

microscope.  

2.20 Effect of sEVs on bystander cells   

TK6 cells were seeded into 12 well plates (day 0) at 500,000 cells per well. After 24 hours, cells 

were treated with PBS and sEVs extracted from untreated or MTX-treated HS-5 cells (0.2 µg), and 

allowed to co-culture for 24 hours at 37oC. On day 2, the number of viable cells and percentage 

viability were determined using the Luna FL automated cell counter as described in section 2.10. 

Genotoxicity in these cells were also determined by MN assay (section 2.11). 

To inhibit this effect, TK6 cells were seeded on day 0 as previously described. Twenty-four later, 

cells were pre-treated with 10 µg/ml of heparin for 30 minutes at 37oC prior to treatment with 

PBS and sEVs extracted from untreated or mitoxantrone-treated HS-5 cells (0.2 µg) for 24 hours. 

On day 2, cells were further treated with 10 µg/ml of heparin for 30 minutes at 37oC. The number 
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of viable cells and percentage viability, and genotoxicity were then assessed using the Luna FL 

automated cell counter and MN assay respectively (sections 2.10; 2.11).  

2.21 Effect of sEVs on direct effect of mitoxantrone on 

bystander cells 

TK6 cells were seeded into 12 well plates (day 0) at 500,000 cells per well. After 24 hours, cells 

were treated with PBS and sEVs extracted from untreated or MTX-treated HS-5 cells (0.2 µg) and 

allowed to co-culture for 24 hours at 37oC. On day 2, cells were treated with MTX (500 ng/ml) for 

24 hours. On day 3, the number of viable cells and percentage viability were determined using 

the Luna FL automated cell counter as described in section 2.10. Genotoxicity in these cells were 

also determined by MN assay (section 2.11).   

To inhibit this effect, TK6 cells were seeded as initially described and pre-treated with heparin 

(10 µg/ml) for 30 minutes. Cells were then incubated with sEVs extracted from untreated or MTX-

treated HS-5 cells (0.2 µg) in the presence or absence of 10 µg/ml heparin for 24 hours at 37oC. 

On day 2, heparin treatment (10 µg/ml) was continued for 30 minutes before treating the cells 

with MTX (500 ng/ml) for 24 hours. On day 3, the number of viable cells and percentage viability 

were determined using the Luna FL automated cell counter (section 2.10). Genotoxicity in these 

cells were also determined by MN assay (section 2.11). 

2.22 RNA extraction 

2.22.1 Cells 

RNA from cells (HS-5 and TK6) was isolated using the Absolutely RNA miniprep kit (Agilent 

Technologies, UK) according to the manufacturer’s instructions. HS-5 and TK-6 cells were 

harvested following 24-hour treatment with mitoxantrone (500 ng/ml) and counted using the 

Luna FL automated cell counter. The cells were further spun at 230 g (HS-5) and 300 g (TK6) for 

5 minutes and 10 minutes respectively to obtain a pellet. The supernatant was completely 
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removed before adding lysis buffer-β-mercaptoethanol mixture (140:1) to the pellet, then 

vortexed properly to homogenize the mixture. The homogenate was transferred to a seated 

prefilter spin cup and spun in a microcentaur plus microcentrifuge at 14,500 g (maximum speed) 

for 5 minutes. The resulting filtrate was retained and mixed thoroughly with an equal volume of 

70% ethanol by vortexing the tube for 5 seconds. The mixture was then transferred to a seated 

RNA binding spin cup and spun at maximum speed for 60 seconds in a microcentrifuge. Low-salt 

wash buffer (600 µl; 1X) was added to the spin cup and spun in a microcentrifuge at maximum 

speed for 60 seconds. The spin cup was placed in a new microcentrifuge tube and spun at 

maximum speed for 2 minutes. DNase solution, prepared by mixing 50 µl of DNase Digestion 

Buffer with 5 µl of reconstituted RNase-free DNase I, was added onto the matrix and incubated 

on a Dri-block DB-2A heat block (Techne, UK) at 37oC for 15 minutes. The matrix was then washed 

with 600 µl of 1 X High-Salt Wash Buffer and spun in a microcentrifuge at maximum speed for 60 

seconds before further washes in 600 µl and 300 µl of 1 X low-salt wash buffer respectively. 

Elution buffer (30 µl) was then added to the spin cup, placed in a fresh 1.5ml microcentrifuge, 

and incubated for 10 minutes at RT. The sample was then spun at maximum speed for a minute 

to obtain purified RNA. The elution process was repeated to obtain RNA with a better 

concentration. The purified RNA was then stored at -20oC until further use.  

2.22.2 Conditioned medium 

As previously described in section 2.13.1, CM was obtained and mixed with 10 µl/ml of β-

mercaptoethanol and incubated on ice for 15 minutes and then spun at 3000 g for 60 minutes. 

The resulting supernatant was concentrated down to 200 µl using Amicon ultra-15 tubes 

(Millipore UK) by spinning the tubes at 3900 g for 85 minutes at 4oC (Beckman Allegra X-22R wit 

SX4250 rotor). The concentrates were treated as previously described in section 2.22.1 using the 

Agilent kit in order to extract the RNA. The eluted RNA was also transferred to -20oC refrigerator 

until further use. 
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2.22.3 Small extracellular vesicles  

Following the manufacturer’s instructions with slight modifications, sEVs were lysed with 350 µl 

of lysis buffer and 2.5 µl of β-mercaptoethanol and vortexed for a few seconds to homogenise 

the mixture. The homogenate was then treated as previously described in section 2.22.1 using 

the Agilent kit to isolate the RNA. The isolated RNA was stored at -20oC until further use. 

2.23 RNA purity and concentration  

The purity and concentration of RNA in all samples was quantitated and measured by 

spectrophotometry using a Nanodrop one (Thermofisher Scientific, UK). The purity of RNA 

samples was determined by the 260/280 and 260/230 ratios of absorbance values. A range of 

~ 2.0 for 260/280 and a range of 2.0–2.2 (260/230 ratio) was accepted as “pure” for RNA. Lower 

ratios may indicate the presence of DNA, protein, phenol, EDTA, guanidine or other contaminants 

that absorb at or near 260, 230 or 280 nm. 

2.24 RNA integrity – agarose gel electrophoresis  

The integrity of the RNA was determined for all samples using agarose gel electrophoresis. Dry 

agarose powder (0.5g; Bioline, UK) was mixed in 50 ml of 1X Tris Acetate EDTA (TAE) buffer and 

heated intermittently for 1.5 minutes in a microwave (SANYO super microwave 900 W) to 

dissolve the 1% w/v TAE agarose gel until the solution became clear. Ethidium bromide (3 µl at 

10 µg/ml) was added to the  gel and mixed properly. The gel was then poured into a sealed casting 

tray with a comb and allowed to cool for 10-15 minutes. The casting tray was assembled in a FHU 

10 or FHU6 miniplus submarine gel (Fisher Scientific, UK) containing enough 1X TAE Buffer to 

cover the gel before removing the comb. The samples and a kilobase (kb) DNA ladder (500 bp to 

10kb; New England Bio Labs, UK) were loaded into the wells, and electrophoresed for 30 minutes 

at 80 V electrophoresis power supply - EPS 601 (Amersham, Biosciences, UK). The gel product 

was visualised using a MiniBIS UV illuminator (DNR Bio-imaging System, Israel). 



66 
 

2.25 Complimentary DNA (cDNA) synthesis 

RNA from cells, conditioned medium and sEVs were converted to complimentary DNA (cDNA) 

using the miScript II RT kit (Qiagen, UK) based on the manufacturer’s instructions. Reverse 

transcriptase master mix was prepared by mixing 2 µl of 10 X miScript Nucleic mix, 4 µl of 5X 

miScript Hi Spec Buffer, 2µl of miScript Reverse Transcriptase mix and variable amount of RNAse 

free water. The template RNA was mixed with the reverse transcriptase master mix bringing the 

volume to 20 µl and incubated sequentially for 60 minutes at 37oC and 5 minutes at 95oC (Scotlab 

Dri-block DB-1, Techne, UK). The reverse transcription reaction was then diluted in 200 µl RNAse 

free water and stored in 110 µl aliquots at -80oC ultra low temperature freezer (New Brunswick 

Scientific, UK) until needed.  

2.26 qRT-PCR array analysis of bystander cells RNA 

The reverse transcription reaction was performed as previously described in section 2.27 using 

about 250 ng of RNA sample to synthesize cDNA from TK6 cells. The synthesized cDNA was 

diluted with 200 µl RNAse-free water (Qiagen, UK). For microarray analysis, miScript SYBR Green 

PCR kit and pathway-focused miScript miRNA PCR Arrays (both Qiagen, UK) were used according 

to the manufacturer’s instructions. Diluted cDNA (200 µl) was mixed thoroughly but gently with 

RNAse free water (1000 µl), 10X miScript Universal primer (275 µl) and 2X Quantitect SYBR Green 

PCR master mix (1375 µl) to obtain a final volume of 2750 µl. Thus, this ensured that each well 

contained about 0.5-1.0 ng cDNA. Reaction mix (25 µl) was added to each well in a 96-well 

miScript miRNA PCR Array containing forward primers for 84 human miRNAs and tightly sealed 

with an optical adhesive film. The PCR array was centrifuged at RT for a minute at 1000 g 

(Beckman Allegra X-22R centrifuge with S2096 rotor) to remove bubbles. The PCR array plate was 

placed in a thermal cycler (Applied Biosystems Step One Plus, Thermofisher Scientific, UK) and 

run for 40 cycles with the thermal cycler conditions indicated in table 2.2.  

Unknown miRNAs were quantitated by SYBR green-based quantitative real time polymerase 

chain reaction (qRT-PCR). Dissociation (melting) curve analyses of the PCR products was 
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performed to verify the specificity and identity of the generated amplicons. The Ct value or 

threshold cycle, which indicates the number of cycles required for the fluorescent signal of the 

reaction to cross a threshold, was generated. The Ct value is inversely proportional to the amount 

of the target cDNA in the sample. Using the Ct value, the positive PCR control (PPC) and reverse 

transcription control (miRTC) served as quality control at every step of the process. The 

difference between the Ct values of PPC and miRTC were used to determine the success of the 

reverse transcription reaction whilst a Ct value of 19 ± 2 (PPC) was used to identify high quality 

RNA, correctly run cycling program and correctly defined thresholds. 

 Table 2.2 qRT-PCR cycling conditions. Denaturation, annealing and extension steps were cycled. 

 

The expression of 84 miRNAs was normalized with the average Ct value of six small nuclear RNAs 

– SNORD61, SNORD68, SNORD72, SNORD95, SNORD96A and RNU6B/RNU6-2. The array also 

contained non-human miRNA, cel-miR-39-3p, from Caenorhabditis elegans that could be used as 

an alternative normalizer. Fold changes in the level of each miRNA was relatively quantified using 

the comparative CT (2−ΔΔCT) method as described by Rao et al., (2013). The array was repeated 

three times for the both batches of cells – control and test. 

 

 

Step Time Temperature Remarks 

Initial activation step 15 minutes 95oC HotStar Taq DNA 
Polymerase was 
activated by this step 

Denaturation 15 s  94oC  

Annealing  30 s 55oC  

Extension 30 s 70oC Fluorescence data was 
collected  

Hold  4oC  

Number of cycles 40 - - 



68 
 

2.27 Bioinformatics: miRNA target genes prediction 

To predict miRNA targets, target prediction programs such as Target Scan Human 

(http://targetscan.org), miRBase (http://mirbase.org), miRDB (http://mirdb.org) and TargetLink 

(https://ccb-web.cs.uni-saarland.de/mirtargetlink/) were used. These target prediction 

programs contain human miRNA targets and also offer information on human miRNA-miRNA 

interactions. The predicted miRNA target genes were identified and analysed by using Functional 

Enrichment analysis tool (http://www.funrich.org/). FunRich (Version 3.1.3) is a stand-alone 

software that can leverage the Gene Ontology (GO) to identify and determine the biological, 

molecular and cellular processes represented in the gene profile. 

2.28 Quantitative real time polymerase chain reaction 

(qRT-PCR) 

To validate the PCR array, quantifications were performed using the SYBR green qRT-PCR assay 

(Qiagen, UK) with a two-step reaction process of the following miRNAs: miR-146a-5p, miR-30d-

5p, miR-16-5p, miR-17-5p, miR-20a-5p, and miR-200c-3p. In the first step, reverse transcription 

was performed as previously described in section 2.27 using about 125 ng (CM and sEVs) or 250 

ng (HS-5 and TK6) of RNA by incubating for 60 minutes at 37oC followed by heat inactivation for 

5 minutes at 95oC. The newly synthesized cDNA was diluted with 200 µl of RNAse free water to 

ensure at least 50 pg – 3 ng of cDNA per PCR. Each sample was run in duplicate for analysis using 

the same cycling conditions as previously mentioned in section 2.26. At the end of the PCR cycles, 

dissociation (melting) curve analyses were performed to validate the specificity and identity of 

the generated PCR products. The Ct value of each miRNA was normalised using small nuclear 

RNAs (SNORD61 and RNU6B/RNU6-2) as internal controls for cells whilst miR-150-5p was used 

as a negative control. As previously described by St Pierre et al., (2017), the small nuclear RNAs 

were deemed appropriate for data normalization by BestKeeper, GeNorm and NormFinder. The 

NormFinder (version 0.953) algorithm was used as an Excel add-in and as an R-script (NormFinder 

for R version 2015-01-25; available at http://moma.dk/normfinder-software). The qbase+ 

http://targetscan.org/
http://mirbase.org/
http://mirdb.org/
https://ccb-web.cs.uni-saarland.de/mirtargetlink/
http://www.funrich.org/
http://moma.dk/normfinder-software
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software (version 3.1) was used to perform data normalisation using GeNorm algorithm; 

available at https://genorm.cmgg.be/) whilst BestKeeper software tool (version 8.1) available at 

https://www.gene-quantification.de/bestkeeper.html was also used to perform data 

normalization. These software pacgkages compute variations of different reference small nuclear 

RNAs indicating the two that are suitable for qRT-PCR data normalisation in this study. Refinder 

(https://www.heartcure.com.au/reffinder/?type=reference) was then used to integrate the data 

from these computational software tools to compare and rank the tested candidate normalizers. 

Fold changes in the level of each miRNA was relatively quantified using the comparative Ct 

(2−ΔΔCT) method except where the Ct values were too low to be considered. A schematic 

illustration of the bioinformatics workflow, which illustrates the tools and databases employed 

to uncover the interactions in the miRNA-based regulatory networks is shown in figure 2.3. 

 

 
Figure 2.3 Schematic illustration of miRNA bioinformatics workflow.  PCR microarray was performed to identify 

possible candidate miRNAs involved in chemotherapy-induced bystander effects. The fold changes in these 

candidates were analysed using the 2−ΔΔCT method. Predictions of the target genes of these microRNAs were mapped 

out using various target prediction programs. The predicted target genes were further analysed by using the 

FUNRICH software.  

2.29 Cell cycle analysis 

TK6 cells were seeded into 12 well plates (day 0) at 500,000 cells per well. After 24 hours, cells 

were treated with PBS and sEVs extracted from untreated or mitoxantrone-treated HS-5 cells 

(0.2µg), and allowed to co-culture for 24 hours at 37oC. On day 2, the number of viable cells and 

percentage viability were determined using the Luna FL automated cell counter (section 2.10). 

About 200,000 cells were taken from each treatment and transferred into a 15 ml falcon tube. 

The samples were centrifuged at 400 g for 5 minutes at 4oC. About 200 µl of cold PBS was added 

https://genorm.cmgg.be/
https://www.gene-quantification.de/bestkeeper.html
https://www.heartcure.com.au/reffinder/?type=reference
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to each tube and kept on ice. Samples were vortexed to minimise cell aggregation before adding 

1 ml 80% ice-cold ethanol. Samples were transferred to a 4oC refrigerator for 24 hours. After 24 

hours, samples were left on the bench to warm to RT before adding 2 ml of RT PBS. Samples were 

pelleted at 600 g for 5 minutes and then resuspended in 480 µl PBS-RNase A mixture (478.5 µl of 

PBS and 1.5 µl of 10 mg/ml RNase A). The samples were transferred to 1.5 ml microcentrifuge 

tube and incubated at RT for an hour. About 20 µl PI (1 mg/ml stock, final concentration 40 µg/ml) 

was added to each sample and analysed with the flow cytometer. Cells treated with 

mitoxantrone was used as a positive control. Gating (see appendix) was done to exclude debris 

and collect cell cycle data. Flow cytometry data analysis was performed using FCS Express flow 

cytometry software (version 7.04.0014). 

2.30 Statistics 

All graphs were made and statistical analyses performed, using GraphPad Prism version 8.2.1 

except where otherwise stated. D’Agostino-Pearson omnibus and Shapiro-Wilk normality test 

were used to test for normality. All experiments were done a minimum of three biological repeats 

unless otherwise stated. The unpaired Student t-test was used to determine direct significance 

between treated and untreated (control) samples, while one-way or two-way ANOVA was used 

for group comparisons followed by a Tukey or Dunnett posthoc multiple comparison test. Data 

are expressed either as mean ± standard deviation (SD) of replicates. Statistical significance of 

the presented graphs were identified as * p<0.5, ** p<0.01, *** p<0.001 **** p<0.0001. 
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3.0 Cell line characterization 

3.1 Introduction 

Several physiological and biological processes in the body such as cell differentiation, migration, 

and growth require in vivo research, which is not always attainable, and thus, we are restricted 

to experimentation of animal models or human samples ex vivo. However, ex vivo culture 

conditions are not physiological in its entirety and may influence the biological properties of cells 

(Drela et al., 2018). Furthermore, these samples are not readily available, as they require ethical 

clearance to obtain them. Therefore, a cost-effective alternative, an appropriate in vitro model, 

needed to be developed to enable the study of cells, at a cellular and molecular level, in a 

controlled environment. Such models have enabled scientists to have an advanced perception 

and understanding of the mechanisms that underlie cell behaviour in vivo thus inferring their 

function during health and disease (Duval et al., 2017). As a result, cell cultures are prerequisite 

in vitro tools for the study of cell and tissue physiology and pathophysiology.  

Furthermore, mammalian cell culture systems have also been widely applied in life sciences and 

medicine for drug and vaccine discovery, and development and determination of drug efficacy 

and toxicity. These cell culture systems may either be primary cell culture or cell line culture; each 

with its own pros and cons (Silicka, 2017). However, these culture systems are usually single 

cellular entities that ignore cellular crosstalk, which is relevant to the current study. The efficacy 

of these culture systems is also limited by growth conditions, which do not give a true 

representation of the natural cellular microenvironment. Misrepresentation of the natural 

microenvironment has led to persistent problems encountered in interpreting in vitro data (Huh 

et al., 2011; Yao and Asayama, 2017). The cellular microenvironment is biochemical in nature and 

heavily influenced by the way cells interact with each other as well as their functionality. The 

proliferation of cells depends on growth factors, cytokines and integrins, which are surface 

receptors that ensure that the position of the cells is correctly situated within the tissue thereby 

activating varied signalling cascades (Guadamillas et al., 2011). These factors also influence cell 

responses to other stimuli.  
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Although CIBE studies initially employed in vivo mice models (Demidem et al., 2006; Merle et al., 

2008), others have since turned to in vitro models by culturing the cells separately in monolayers 

and transferring the CM to the bystander cells (Di et al., 2008; Jin et al., 2011). However, CIBE has 

also been shown in a co-culture system (Jensen & Glazer, 2004; Alexandre et al., 2007; Arora et 

al., 2018). As a result, co-cultures have generated more interest in recent times to potentiate 

drug research. A co-culture entails culturing two distinct cell populations in such a way that there 

is communication between them. Co-cultures provide information on cell-to-cell communication 

and may serve as a good in vivo model representative. Due to its robustness, predictability and 

scalability compared with monocultures, the current model has enabled comprehensive testing 

and monitoring of drug effects on cell-to-cell interactions. This intercellular interaction is 

dependent on soluble factors released into the extracellular environment, which is determined 

by the experimental set up (Goers et al., 2014). However, these co-cultures require in vitro 

characterization and optimisation of culture conditions, which can be labour intensive.  

Therefore, it is pertinent to ensure that cell culture conditions are optimised for cellular growth 

and to enhance reproducibility of experimental data. In order to better mimic cell and tissue 

physiology, cells require certain prerequisites such as adequate growth medium, substrates that 

enable cell attachment, a temperature control system, and an incubator that provides the 

optimum osmolality and pH for these cells. However, the choice of a quality culture medium is 

the most essential aspect of cell culture as this can affect the quality of the cells and cause 

experimental variation thereby affecting the general research outcome (Arora, 2013; Yao and 

Asayama, 2017). It is important to mention that there is no evidence of in vitro co-culture medium 

in support of miRNA involvement in CIBE. Kelechi Okeke (personal communication) first 

established an in vitro transwell co-culture model using HS-5 stromal cells and TK6 cells within 

our research group. Although these cell lines have been previously characterised separately, her 

study first explored the functionality of these cells as a co-culture in DMEM-HG supplemented 

with FBS, 2mM L-glutamine and antibiotics. Both cell lines of choice are of human origin and were 

chosen to represent the heterogeneity of the BM microenvironment and to provide the optimum 

standard culture conditions. TK6 cells is a human B lymphoblastoid cell line that is commonly 

used in genotoxicity studies because they are p53 proficient and karyotypically stable (Lorge et 
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al, 2016). Peforming genotoxicity studies in TK6 cells eliminates donor availability seen in human 

peripheral blood lymphocytes and reduces the percentage of non-relevant positive results 

compared to p53-mutated cell lines (Smart et al, 2020). 

Additionally, culture medium is usually supplemented with serum, glucose, antibiotics and 

growth factors that can cause alterations in the production and composition of EVs. In order to 

avoid the co-isolation of exogenous EVs, EVs are usually isolated from culture medium 

conditioned by cells in serum with depleted exosome, serum from other species, or serum-free 

culture medium (Pachler et al., 2017; Saury et al., 2018). Nevertheless, the need to deplete EVs 

in the serum depends on the downstream use of the isolated EVs. Culture medium supplemented 

with FBS may contain abundant nucleic acids that can interfere with the cell-culture derived 

extracellular nucleic acids (Wei et al., 2016). However, commercially available exosome-depleted 

sera are rarely devoid of xenogeneic substances such as recombinant growth factors whilst 

serum-free culture medium can affect the proliferation and differentiation of MSCs in vitro 

(Pachler et al., 2017). Therefore, there is need to optimise the choice of culture medium and 

equipment, and other experimental conditions to ensure that robust data is generated.  

3.2 Methods 

      3.2.1 CFU-F Assay 

The colony forming capacity of HS-5 cells as MSC was determined and compared in five culture 

media: DMEM-HG, DMEM-LG, DMEM-f12, RPMI 1640 and Iscove’s Modified Dulbecco’s medium 

(IMDM) (Gibco Invitrogen, Paisley, UK) as described in section 2.7. All cell culture procedures 

were performed as described in section 2.3. The colonies were counted manually by light 

microscopy using the NIKON Eclipse TE 300 inverted microscope.    

      3.2.2 Cell culture medium optimization  

To determine the optimum medium for the co-culture model, HS-5 cells were seeded at 10,000 

cells per cm2 in three culture media: DMEM-HG, RPMI 1640 and IMDM, in 25cm2 vent cap Corning 
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cell culture flasks. TK6 cells were seeded at 2.5 x 104 cells/ml (low density) and 3.0 x 105 cells/ml 

(high density) in three culture media: DMEM-HG supplemented with FBS or sEVs-depleted FBS 

and RPMI 1640 as described in section 2.8. All cell culture procedures were performed as 

discussed in section 2.3. Cell viability assessment in different media was determined by the 

trypan blue exclusion assay and acridine orange/propidium iodide assay using the LUNA counter 

as discussed in section 2.10. 

      3.2.3 Serum optimization for extracellular vesicular studies 

HS-5 cells were seeded at 10,000 cells per cm2 in DMEM-HG with sEVs-depleted FBS, DMEM-HG 

with heat-inactivated FBS and serum-free DMEM-HG; in 25cm2 vent cap Corning cell culture 

flasks and maintained for 42 hours as described in section 2.8. All cell culture procedures were 

performed as discussed in section 2.3. Cell viability assessment in different media was 

determined by the trypan blue exclusion assay and acridine orange/propidium iodide assay using 

the LUNA counter as discussed in section 2.10. 

3.3 Results 

      3.3.1 Morphology and growth of cells 

First, the morphologies and growth potentials of the cells used in this study were investigated to 

ascertain the alternative growth conditions for these cells. A number of commercially available 

culture medium was explored to choose the most appropriate culture medium for maintaining 

good functionality of the cells but in a co-culture environment. MSC are anchorage-dependent 

cells that require a culture surface to proliferate whilst HSC do not need any surface for growth 

and can grow optimally in suspension (Merten, 2015). 

             3.3.1.1 Functionality and quality of HS-5 cells 

MSC form colonies and grow as CFU-F over time, and the efficiency with which they form colonies 

is an important assay for determining the functionality and quality of cell preparations 

(Kuznetsova et al., 2009). According to ISCT, MSC must have the ability to adhere to culture plate, 
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generate density-independent CFU-F colonies and differentiate into osteoblasts, adipocytes and 

chondrocytes. To satisfy this aspect of the ISCT criteria, cells were seeded at varying low densities 

in five media (DMEM-HG, DMEM-LG, IMDM, RPMI 1640 and DMEM-f12) supplemented as 

previously described in Chapter 2.7 and incubated for 14 days. A colony was described as a group 

of more than 20 cells. It is noteworthy that this batch of HS-5 cells has been previously shown to 

be capable of differentiating within this lab (Saeed Kabrah, personal communication). 

Colonies were observed 6-8 days after initial plating. These resultant colonies contained a 

subpopulation of cells capable of generating new fibroblast colonies from single cells. The cells 

were of different sizes and shapes, which might be representative of cell function as shown in 

figure 3.1. The CFU-F count was significantly higher at 50 cells/cm2 therefore the use of this 

seeding cell density might prove to be the most advantageous condition. The basal medium for 

HS-5 cells is DMEM-HG however; RPMI 1640 and IMDM produced more colonies than other 

medium used, including DMEM-HG (Figure 3.2). The cells produced the most colonies in RPMI 

1640, followed by IMDM and DMEM-HG. Whilst the difference between the number of colonies 

observed in RPMI 1640 and IMDM at 10 cells/cm2 (p = 0.9999) and 20 cells/cm2 (p = 0.5773) was 

not statistically significant, the difference between colonies observed in these media was 

statistically significant when the cells were seeded at 30 cells/cm2 (p = 0.0442) and 50 cells/cm2 

(p = 0.009). Similarly, DMEM-LG produced more colonies than DMEM-HG at 10 cells/cm2 and 20 

cells/cm2 whilst DMEM-HG produced more colonies than DMEM-LG when seeded at a higher 

density (30 cells/cm2 and 50 cells/cm2). However, these differences in the number of the colonies 

were not statistically significant regardless of the seeding density. Furthermore, there was a 

statistically significant difference in the colonies produced in DMEM-HG and DMEM-LG media 

compared to RPMI 1640 and IMDM at all cell seeding densities. DMEM-f12 produced no colony 

regardless of the density the cells were seeded. Collectively, these suggest that there is a 

correlation between the number of cells plated and the number of CFU-F counted when analyzing 

the effect of densities. In addition, it can also be inferred that all these medium, except DMEM-

f12, can support the colony formation or the funcationality of HS-5 cells. RPMI 1640 is the best 

for growth of HS-5 cells and the morphology of the cells most closely matches primary MSC 

(personal communication).  
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Figure 3.1 HS-5 cells form colonies and grow as colony forming unit-fibroblasts (CFU-Fs) over time. Cells were 

seeded at 10 cells/cm2, 20 cells/cm2, 30 cells/cm2 and 50 cells/cm2 in a 6-well plate and incubated for 14 days. The 

plates were visualized under an inverted phase-contrast microscope at x10 magnification. (Scale bar = 30µm) 
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 Figure 3.2 HS-5 cells produce colonies when seeded at low densities. Cells were seeded at 10 cells/cm2, 20 cells/cm2, 

30 cells/cm2 and 50 cells/cm2 with 2 ml of medium in a 6-well plate and incubated for 14 days. Number of colonies 

produced by these cells were counted using the inverted phase contrast light microscope. Histogram shows that HS-

5 produce more colonies in RPMI and IMDM than other medium especially DMEM-HG, which is the recommended 

medium for these cells. Error bars show mean ± standard deviation. Statistical significance was done using the 

ANOVA for two-way factorial design (n=3; * p<0.05, ***p<0.001, ****p< 0.0001). 

However, when the seeding density of the cells was increased to 1000 cells/cm2, 2000 cells/cm2, 

3000 cells/cm2 and 5000 cells/cm2, uncountable colonies were observed in cells that were 

cultured in DMEM-HG, RPMI 1640 and IMDM but not in DMEM-LG as depicted in figure 3.3. The 

rationale here is that cell seeding density is an important transplantation variable and these cells 

are usually cultured at high densities. These results suggest that DMEM-LG may not be a good 

culture medium option for these cells at high density. In addition, the cells looked confluent and 

a bit detached from the plastic surface. It can be inferred that the reason for this is that the cells, 

at confluency or high-cell density, undergo contact inhibition of proliferation, which is a 

fundamental property whereby normal cells cease proliferation and cell division. Anchorage-

dependent cells are known to undergo cell-detachment-induced cell death (anoikis) once 

confluent. The well plates used in the experiment can be seen in figure 3.4. 
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Figure 3.3 HS-5 cells produce colonies when seeded at high densities. Cells were seeded at 1000 cells/cm2 , 2000 

cells/cm2, 3000 cells/cm2 and 5000 cells/cm2 with 2 ml of medium in a 6-well plate and incubated for 14 days. 

Number of colonies produced by these cells were assessed under an inverted phase contrast light microscope x10 

magnification). Cells produced numerous colonies in DMEM-HG, RPMI and IMDM showing that these media are 

suitable for their growth (Scale bar = 30µm). 

 

            

Figure 3.4 Representative colony formation assay plates after seeding HS-5 cells at high densities. Cells were 

seeded at (A) 1000 cells/cm2, (B) 2000 cells/cm2, (C) 3000 cells/cm2 and (D) 5000 cells/cm2 with 2 ml of medium in a 

6-well plate and incubated for 14 days. Afterwards, cells were fixed with methanol and stained with crystal violet. 



79 
 

Number of colonies produced by these cells were assessed under an inverted phase contrast light microscope. 

Representative colony formation assay plates  

        3.3.1.2 HS-5 cells grow in different media 

Following the previous observations that HS-5 cells can adhere to cell culture surfaces and grow 

in colonies with a fibroblast-like morphology as MSCs do in culture, cells were seeded in three 

chosen culture media – (DMEM-HG, RPMI 1640 and IMDM) – all supplemented with 10% FBS for 

120 hours to determine the proliferation rate of these cells as discussed in section 2.8. Light 

micrographs of the HS-5 cells were taken every 24 hours for the duration of the experiment. Cell 

proliferation rate and percentage viability for these cells were determined every day for a total 

of 120 hours. Cells were seeded in triplicates for each 24 hours count. 

Cells appeared singly, exhibited a spheroid shape and adhered to the culture flask within 24 hours 

after commencement of culture in all media used. However, the cells reverted to their 

characteristic fibroblast-like morphology in all media used after 48 hours. This may be due to the 

fact that these cells grow by forming colonies, which they seem to have formed after 48 hours. 

The cells’ morphologies appeared to be similar in all media used however; fibroblastic projections 

of the cells in RPMI 1640 appeared to be highly elongated when compared to DMEM-HG and 

IMDM after 96 hours. A morphologically homogenous population of fibroblastic cells with 90% 

confluence was seen after 120 hours (Figure 3.5). 

All the media used produced viable cells of over 90% (Figure 3.6A); DMEM-HG had the highest 

with 97% whilst RPMI 1640 had the least with 93% despite the morphological advantage it seems 

to confer on these cells. About 96% of the cells in IMDM were viable. However, there is no 

significant difference between the viability of the cells in these media. Furthermore, cells that 

were cultured in DMEM-HG had the highest cell count after 120 hours (Figure 3.6B) with a six-

fold expansion rate (Figure 3.6C) and a doubling time of just over 41 hours (Figure 3.6D). This 

may be because DMEM-HG, as the recommended medium for these cells, provides the optimum 

culture conditions. RPMI 1640 produced similar results to DMEM-HG; with doubling time of 47 

hours and four-fold expansion rate. IMDM had the least cell growth with a 3-fold expansion rate 

and doubling time of 54 hours. However, there was no statistical significant difference between 
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the rate of growth of HS-5 cells in these three media. Due to this reason, DMEM-HG was chosen 

as the culture medium for the growth of HS-5 cells throughout this study. 

        

 

Figure 3.5 Morphology of HS-5 in different culture media. Photomicrographs were taken every 24 hours for five 

consecutive days when HS-5 were cultured in complete DMEM-HG (A), IMDM (B) and RPMI 1640 media (C). The 

fibroblastic morphology of HS-5 cells is observed in all media used. Cells were seeded at 10,000cells/cm2 in a 25cm2 

culture flask with 5ml of medium. Representative results from 3 experiments are shown. Scale bar, 30µm. 
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Figure 3.6 Proliferation of HS-5 cells. Cells were seeded at 10,000 cells/cm2 in a 25cm2 culture flask with 5ml medium 

and counted every day for 5 days. The cell viability (A), total live cells (B), doubling time (C) and fold expansion rate 

(D) of these cells in different media are shown here. The fold expansion rate shows how much the cells grew from 

their initial seeding density to the final count. Error bars show the mean ± SD (n=3). Statistical significance was done 

using the ANOVA for one-way factorial design.   
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3.3.1.3 HS-5 cells grow in medium supplemented with sEVs-

depleted serum 

Since DMEM-HG has been chosen as the appropriate medium for HS-5 cells to grow, different 

serum supplementation of DMEM-HG was tested inorder to ascertain the appropriate for 

vesicular studies. FBS used in cell culture may contain exogenous sEVS that may contaminate the 

endogenous sEVs isolated from cells. In order to eliminate this problem downstream, cells were 

grown in DMEM-HG supplemented with no FBS (serum-free medium), 10% FBS and commercially 

obtained exosome-depleted serum as previously described in section 2.8 to determine the 

growth potential of HS-5 in these media. This was to choose the appropriate medium for 

assessing sEVs involvement in CIBE. This is in reference to the minimal information for studies of 

extracellular vesicles (MISEV) guidelines proposed by the International Society for Extracellular 

Vesicles (ISEV) in 2018 (Thèry et al., 2018). Percentage viability of the cells was determined after 

41 hours, which has been previously ascertained as the doubling time for these cells in DMEM-

HG.  

Here, a similar rate in proliferation of cells was observed in these media. However, cells that were 

cultured in DMEM-HG with FBS had the highest cell count (8.89 x 105 cells/ml; Figure 3.7) as 

expected. This was followed by cells grown in DMEM-HG with exosome-depleted FBS with a cell 

count of 7.74 x 105 cells/ml. Less growth was seen in cells that were seeded in serum-free medium 

but the differences were not statistically significant for any of the culture conditions. Therefore, 

the results suggest that the reproducibility of cellular values is better for both FBS and exosome-

depleted medium but more inconsistent for serum-free medium. As a result, DMEM-HG with 

exosome-depleted medium was confirmed as a suitable choice for culture and would be less 

likely to interfere with downstream analyses of sEVs and miRNA due to CIBE. 
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Figure 3.7 HS-5 cells can grow in DMEM-HG made-up with different serum supplements. Cells were seeded at 

10,000 cells/cm2 with 5 ml of medium in a T-25 culture flask and incubated for 42 hours. Percentage viability of the 

cells were determined. Error bars depict the mean ± SD (n=3). There was no statistically significant difference 

between the three media. Statistical significance was done using the ANOVA for one-way factorial design.   

 

        3.3.1.4 TK6 cells grow in different media 

Following the previous observations that HS-5 cells can grow in DMEM-HG supplemented with 

FBS or sEVs-depleted FBS and RPMI 1640, TK6 cells were seeded in these three culture media to 

determine the proliferation of these cells as discussed in section 2.8. Cell proliferation rate and 

percentage viability for these cells was determined every day for a total of 72 hours. Cells were 

seeded in triplicates for each 24 hours count. 

The growth rate curve of the cells in all media used is shown in figure 3.8A and illustrates that 

cells grow faster in RPMI 1640 compared to DMEM-HG. This may be because RPMI 1640 is the 

recommended medium for these cells that provides the appropriate environment for these cells 
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to grow optimally under standard conditions. However, there was no statistical difference 

between the growth rates of the cells in these media. Interestingly, the cells seeded in DMEM-

HG grew at the same rate regardless of the serum supplement. Furthermore, the viability of the 

cells in all media was over 90% (figure 3.8B); DMEM-HG with FBS had the highest with 94.9% 

whilst RPMI 1640 had the least with 93.7% despite the growth advantage it seems to confer on 

the cells. About 94.8% of the cells in DMEM-HG with sEVs-depleted FBS were viable. However, 

there is no significant difference between the viability of the cells in these media. 

In addition, the cells grown in RMPI 1640 had a four-fold expansion rate (figure 3.8C) and a 

doubling time of 16 hours (figure 3.8D). DMEM-HG produced similar results to RPMI 1640 

irrespective of the serum supplement. DMEM-HG with FBS had a doubling time of 19 hours and 

a 3.82-fold expansion rate whilst cells grown in DMEM-HG with sEVs-depleted FBS had a 3.93-

fold expansion rate and doubled within 18.3 hours. However, there was no statistical significant 

difference between the media. Since the cells have shown to be able to grow in all three media, 

RPMI 1640 was chosen to monoculture the cells whilst DMEM-HG with FBS was chosen for co-

culture with HS-5 cells. DMEM-HG with sEVs-depleted FBS was used to grow the cells for vesicular 

studies. 

Furthermore, when these cells were grown at a higher density (3 x 105 cells/ml) for 72 hours, the 

cells grew exponentially in all media (figure 3.9A) however the growth of the cells in RPMI 1640 

slowed down after 48 hours, indicating that the cells grow at a higher rate in RPMI 1640 than in 

DMEM-HG with different serum supplements. This is further supported by the viability of the 

cells after 72 hours (figure 3.9B), which showed that the viability of the cells in RPMI 1640 

dropped down to 87% compared to 91% and 93% in DMEM-HG with FBS and DMEM-HG with 

sEVs-depleted FBS respectively. This difference in viability in different media was statistically 

significant (RPMI 1640 vs DMEM-HG with FBS, p = 0.0030; RPMI 1640 vs DMEM-HG with sEVs-

depleted FBS, p = 0.0002; DMEM-HG with FBS vs DMEM-HG with sEVs-depleted FBS, p = 0.0170). 

This suggests that the growth of cells in RPMI 1640 when maintained in an over-dense 

environment may have resulted in nutrient depletion, an accumulation of waste products, 

hypoxia or a combination of these events. 
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Figure 3.8 Proliferation of TK6 cells when seeded at low density. Cells were seeded at 2.5 x 104 cells/ml in a 25cm2 

culture flask with 10ml medium and counted every day for 72 hours. The growth rate (A), total live cells (B), fold 

expansion rate (C) and doubling time (D) of these cells in different media are shown here. The growth rate curve 

shows how these cells grow exponentially in different media whilst this exponential growth from the initial seeding 

density to the final count is exhibited as the fold expansion rate. Error bars show the mean ± SD (n=3). Statistical 

significance was done using the ANOVA for one-way factorial design.   
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Figure 3.9 Proliferation of TK6 cells when seeded at high density. Cells were seeded at 3.0 x 105 cells/ml in a 25cm2 

culture flask with 10ml medium and counted every day for 72 hours. The growth rate (A) and total live cells (B) of 

these cells in different media are shown here. Cells grow exponentially in different media however the growth of 

cells in RPMI 1640 appears to be slow down after 48 hours. Error bars show the mean ± SD (n=3). Statistical 

significance was done using the ANOVA for one-way factorial design test (*p<0.05, **p<0.01, ***p<0.001).   

 

3.4 Discussion 

Cell culture conditions are crucial to the overall outcome of the study. A current survey in Nature 

by Baker (2016) revealed that many scientists fail to reproduce their own experiments. Therefore, 

it was important to set the suitable culture conditions for the cell lines to grow in order to ensure 

accuracy, reliability and reproducibility of assay outcomes. It is important to note that the co-

culture model had been previously set up within the research group and described by Kelechi 

Okeke (personal communication). The two cell lines that were used were HS-5 stromal cells and 

TK6 lymphoblast cells, which were grown in DMEM-HG supplemented with FBS, 2mM L-

glutamine and antibiotics. HS-5 is widely used as a model bone marrow niche cell line to 

understand the functionality of MSC (Weisberg et al., 2008; Vangapandu et al., 2017). TK6 

lymphoblast cells was also chosen as the ideal cell line for this genototxicity study due to: (a) 

widely accepted status by the OECD for use in in vitro mammalian genetic toxicology studies 

(OECD, 2012). (b) Chromosomal stability and proficiency in cellular defence mechanisms (Lorge 
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et al., 2016. (c) Rich supply of benchmark data from key genetic toxicology labroatories around 

the world (Lorge et al., 2016; Detringer et al., 2017; Bryce et al., 2017; Bryce et al., 2018; Smart 

et al., 2020). 

Whilst the HS-5 cells and TK6 cells were separately grown in DMEM-HG and RPMI 1640 

respectively, DMEM-HG was chosen as the appropriate medium for these cells to grow in co-

culture. HS-5 and TK6 cell lines have also been utilized in co-culture systems. The results, 

supported by evidence in literature, suggest that these cells are quite flexible in which media 

they can grow in and can grow competently in several conditions. Recently, conditioned serum-

free αMEM medium from HS-5 cells was used to co-culture NB4, an AML-derived cell line (Chen 

et al., 2015). In another study, HS-5 cells was separately grown in DMEM-HG medium prior to co-

culture, in RPMI 1640 medium supplemented with 10% FBS, with an AML cell line, HL-60 (Guan 

et al., 2018). Furthermore, flow cytometry was used to study the live characteristic parameters 

of HS-5 cells in a hypoxic co-culture model with different AML cell lines (Podszywalow-Bartnicka 

et al., 2018). Their cells were cultured in RPMI 1640 medium supplemented with 10% FBS whilst 

HS-5 cells was seeded on a collagen precoated glass bottom dish unlike in this study in which 

culture inserts were used to separate the cell lines. In addition, TK6 was also used to co-culture 

Caco-2 intestinal cells in RPMI 1640 with glutamax and supplemented with 5% FBS (Le Hègarat 

et al., 2012) whereas in another study, TK6 was co-cultured with RAW264.7 macrophage cells in 

a modified transwell system containing DMEM-HG medium supplemented with 10% FBS (Kim et 

al., 2016). In the Kim et al., (2016) paper, the genotoxicity of the cells was measured following 

exposure to nitric oxide and ROS.  

In this chapter, three approaches were taken to ascertain and confirm the suitable culture 

conditions for the stromal cell line, HS-5. In the first approach, the ability of the cells to form 

colonies or grow as CFU-F in five different culture media was investigated whilst in the second 

approach, the growth rate of the cells in three different culture media, chosen from the first 

approach, was calculated. Lastly, the suitable cell culture conditions to prevent contamination 

and/or enable optimal isolation of sEVs from the cells was also determined. Afterwards, the 

suitable culture conditions for TK6 cells was determined by growing the cells in different culture 

media. Sterile culture technique was employed whilst culture medium was replaced with fresh 
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medium every three days. Cell morphology and cell growth were monitored microscopically. 

CFU-F was also counted microscopically whilst cell viability was determined by trypan blue 

exclusion assay and AO/PI viability assay. 

    3.4.1 Cell culture medium: CFU-F colony formation 

HS-5 cells were seeded at ‘high’ densities that correspond to normal culture conditions and at 

low densities, in five conventional cell culture media; DMEM-HG, DMEM-LG, DMEM-f12, IMDM 

and RPMI 1640 supplemented with 10% FBS. This is to fulfil one of ISCT criteria of confirming the 

functionality of stromal cells, which is the ability to adherently grow as CFU-F. This is also 

indicative of the proliferative and migratory abilities of MSC (Mareschi et al., 2012). When 

cultured at low densities, the HS-5 cells formed colonies after 6-8 days and this is in line with the 

findings of Dexheimer et al., (2011) who showed that MSC formed colonies within 7 days of 

culture. The colonies were also of varying sizes depicting the heterogeneous nature of HS-5 cells 

as MSC. These results herein are also similar to the reports of Mareschi et al., (2012), which 

revealed that MSC colonies appear heterogeneous however; they considered clusters of 50 cells 

as colonies in contrast to this study in which 20 cells were considered. Twenty (20) cells is a 

reasonable cut-off to eliminate colonies that are actually growing from smaller ‘clusters’ of cells 

with ceased proliferation. Although DMEM-HG is usually the preferred medium of choice for MSC 

culture (Dexheimer et al., 2011) however the medium that proved to be the most suitable for 

these cells to form colonies was RPMI 1640, followed by IMDM and then DMEM-HG. The cells 

produced more colonies in RPMI 1640 and IMDM compared to DMEM-HG. Culture conditions 

such as choice of culture media, supplements and serum compositions have been shown to have 

an effect on the phenotypes of MSC colonies and also cause a variation in CFU-F yield and number 

(Lapi et al., 2008). 

In addition, there seems to be a direct correlation between the number of cells seeded and the 

number of CFU-F colonies counted as the number of colonies increased in accordance with the 

number of cells. This is supported by a 2008 study, Neuhuber et al., which revealed that MSC 

grow as very dense colonies at low plating density but spread evenly across the plates at high 

density. However, these findings are in contrast to the findings of Mareschi et al., (2012), which 
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showed no direct correlation between the parameters. Nevertheless, in their study, when the 

cells were seeded at high densities between 1000 cells/cm2 and 5000 cells/cm2, cells formed 

colonies rapidly. The colonies were too large and overlapping to count in DMEM-HG, RPMI 1640 

and IMDM but not in DMEM-LG unlike in the reports of Delk and Farasch-Carson (2012), which 

showed that HS-5 cells grow well in DMEM-LG supplemented with 10% FBS. 

The results from this study suggest that the cells have spread evenly across the plates thus 

reaching confluency within 14 days of culture. As a result, the cells looked stressed and detached 

from the plastic surface. It took BM MSC (1000 cells) grown in T25 or T75 flasks to reach 

confluence within 16 days (Mareschi et al., 2012). Confluence has been shown to affect MSC 

colony formation, particularly for 100% confluent cells. BM-MSC were able to form colonies as 

the confluence of the cells increased until reaching 80% followed by a decrease (Abo-Aziza and 

Zaki, 2016). In another study, cells seeded at high densities became overpopulated at the colony 

center and this led to the inhibition of cell growth at the colony center because of contact 

inhibition (Neuhuber et al., 2008). The median number of colonies formed, in BM MSC extracted 

from donors, dropped from 62.5 at 10,000 cells/cm2 to 11.3 at 100,000 cells/cm2 (Mareschi et al., 

2012). 

Therefore, these suggest that the stressed morphology of the cells seen in this study is typical of 

anchorage-dependent cells detaching from their surrounding extracellular matrix. Since HS-5 

cells are anchorage-dependent cells that require adherence to plastic surface to proliferate, 

inability of the cells to adhere to the plastic surface may lead to growth arrest and induction of 

cell death (Merten, 2015).  

    3.4.2 Cell culture medium: Growth rate 

To determine the growth rate of HS-5 cells, cells were grown in three culture media - IMDM, 

RPMI 1640 and DMEM-HG. The cells exhibited a fibroblastic-like morphology in all media used 

after just 48 hours. This is characteristic of all MSCs as previously reported by the ISCT 

(Ramakrishnan et al., 2013). The fibroblastic projections of the cells were more elongated in RPMI 

1640 than other culture medium. This is similar to the in-house findings of Kelechi Okeke 

(personal communication), which showed that the elongated projections found in RPMI 1640 
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were similar to those found in primary MSC. The morphologies of HS-5 in these media could be 

further explained by the possibility of these stromal cells differentiating into osteoblasts, 

adipocytes and chondrocytes (Nombela-Arrieta et al., 2012). The ability of HS-5 to differentiate 

in vitro had been established within the research group. 

However, the cells grew best in DMEM-HG after 120 hours, with a six-fold expansion rate in a 

doubling time of 41 hours. This is in line with the reported findings of Kabrah et al., (2015) 

however they used DMEM-HG medium supplemented with 11% FBS and 2mM L-glutamine. 

Several researchers have also shown that HS-5 cells are capable of growing in DMEM-HG medium 

(Furukawa et al., 2016; Wasnik et al., 2016, Liao and Sharma, 2016; Sane et al., 2018; Deynoux et 

al., 2019). Nevertheless, the viability of the cells in these three media was above 90% thus 

highlighting the capability of these media in promoting optimum growth of these cells. Similarity 

in the results reported in DMEM-HG and RPMI 1640 may be due to flexibility of these cells to 

thrive in different culture conditions. In 2015, Chen et al., reported that HS-5 cells are capable of 

growing in RPMI 1640 medium supplemented with 10% FBS. Also, Roecklein et al., (1998) 

revealed that HS-5 cells can grow in RPMI 1640 medium containing 5% FBS as well as serum-

deprived IMDM. However, it is important to mention that the later experiments do not go on for 

120 hours but for 24 hours. Therefore, DMEM-HG was chosen as the appropriate medium to 

grow HS-5 cells in this study. The rationale is that although the cells can thrive in different culture 

conditions, growth rate and expansion rate of the cells was best in DMEM-HG.  

The TK6 cells used in this study was also grown in DMEM-HG supplemented with heat-inactivated 

serum or sEVs-depleted serum, and RPMI 1640. The growth rate curves indicated that the cells 

grew exponentially in all media. This is similar to the previous report by Lorge et al., (2016) that 

revealed that RPMI 1640 provides the optimum culture conditions for TK6 cells to grow. In 

another study, Chyall et al., (2006) also revealed that TK6 cells grown in RPMI 1640 grow 

exponentially when diluted to optimal concentrations. Their cells doubled within 15 hours, which 

is similar to the results in this study that revealed a doubling time of 16 hours for these cells in 

RPMI 1640. In contrast to this study, Ngo et al., (2019) illustrated that TK6 cells doubled within 

20 hours in RPMI 1640. Furthermore, Kelechi Okeke (personal communication) also revealed that 
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TK6 cells are capable of proliferating optimally in DMEM-HG and RPMI 1640. The results herein 

suggest that TK6 cells can thrive in different culture conditions. 

In addition, when the cells were seeded at a high density in these three media, the growth of the 

cells in RPMI 1640 slowed down after 48 hours thus suggesting that the cells may have become 

over-confluent thereby leading to nutrient depletion and starvation, accumulation of waste 

products, hypoxia or a combination of these events. This highlights the need to subculture and 

passage these cells atleast twice a week to ensure that the nutrients required for their growth 

are preserved and maintained. This is supported by the findings of Lorge et al., (2016) that 

revealed that growth of TK6 cells was slower and the cell counts were lower in heavily confluent 

cultures in relation to exponentially growing subconfluent cells after 48 hours. Similarly, Chyall 

et al., (2006) also illustrated that TK6 cells maintained at a higher density grow at a slower rate. 

They showed that the growth of TK6 cells slowed down when the cells were diluted to 3.1 x 105 

cells/ml after 72 hours compared to cells that were diluted to 4.04 x 104 cells/ml. 

Therefore, it is important that cells seeded from healthy exponentially growing cultures be used 

in genotoxicity studies. Over-confluent cultures may affect the growth of the cells thence making 

them to grow slowly, which may be detrimental to the outcome of the experiments. It has been 

previously reported that seeding of cells from over-confluent cultures leads to misleading 

genotoxicity data (Lorge et al., 2016). However, it is important to mention that the later 

experiments such as genotoxicity assay (MN assay) last for 24 hours and not 72 hours (Chapter 

4). Nevertheless, the ability of HS-5 cells and TK6 cells to grow in DMEM-HG medium with 

different serum supplements means that this medium can serve as the medium of choice for the 

co-culture of these cells in this study. 

    3.4.3 Cell culture medium: sEVs isolation 

The composition of the cell culture medium used in the recovery of sEVs is a key factor in the 

production of sEVs. This is because these components are capable of influencing the production 

and/or composition of sEVs hence it is important to choose the right components and report 

them accordingly as directed in the ISEV guidelines (Thèry et al., 2018). Different parameters of 



92 
 

cell culture such as glucose level, antibiotics and FBS can drastically alter the yield and cargo of 

sEVs. FBS contains sEVs, proteins and nucleic acids that may be co-isolated thus leading to 

interference in downstream in vitro studies (Wei et al., 2016; Ludwig et al., 2019). The 

commercially purchased FBS used in this study was depleted of exosome. The exosome-depleted 

serum was purchased in batches and the same one was used throughout the study to exclude 

any variations from that.  

As a result, the cargo or purity of sEVs and their intended use downstream have to be taken into 

consideration during medium composition. This highlights the importance of ensuring that the 

medium that best aid the growth of HS-5 cells and yield sEVs with a stable cargo was selected 

and consistently used for cell culture. However, the compromise between optimal conditions for 

cell growth and those for sEVs production has made determining the optimal conditions for sEVs 

production a challenge. Some researchers opt to use commercial exosome-depleted FBS whilst 

others choose to use different in-house approaches to deplete the EVs in FBS as there is no 

standardized protocol for depletion of EVs in FBS (Samuel et al., 2017; Panigrahi et al., 2018; Lee 

et al., 2019). Alternatively, many researchers choose to culture cells in serum-free medium during 

the period of EVs production (Haraszti et al., 2019; Mannerstrom et al., 2019).  

Here, HS-5 cells were grown in DMEM-HG supplemented with no FBS (serum-free medium), 10% 

FBS and commercially obtained exosome-depleted FBS to determine the optimal conditions for 

cell growth and EVs production (chapter 5). The rationale here is that cells produce and release 

EVs continuously as a means of cellular communication but may be slightly increased or 

decreased in response to chemotherapy. Therefore, growing HS-5 cells in DMEM-HG with 

different serum supplements was important to ascertain the appropriate culture conditions that 

would not interfere with the composition of the vesicles produced and released by these cells 

following exposure to chemotherapeutic agents. Interestingly, HS-5 cells grew in all medium 

most especially in DMEM-HG with FBS. The growth rate in commercial exosome-depleted FBS 

was similar to that found in DMEM-HG with FBS. However, the manufacturer failed to describe 

the method used for EV depletion. The most common protocols for EV depletion in serum are 

ultracentrifugation and filtration, and these may result in loss of growth factors in FBS that may 

impede growth of cells (Ludwig et al., 2019). In 2014, Eitan et al., showed that EV-depleted FBS 
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obtained by ultracentrifugation has limited capacity to promote cell growth. This was later 

supported by the findings of Aswad et al., (2016), which revealed that culture of skeletal muscle 

cells in EV-depleted FBS, obtained by ultracentrifugation, led to altered proliferation and 

differentiation of the cells. Nevertheless, this contrasts the findings in this study, which showed 

that commercial EV-depleted FBS has the capacity to support cell growth. This suggests that there 

are components in commercial EV-depleted FBS that may be absent in EV-depleted FBS by 

ultracentrifugation. These may be xenogeneic substances such as recombinant growth factors, 

which give the cells a proliferative advantage (Pachler et al., 2017). It is noteworthy to mention 

that a full depletion of EVs may not be possible hence ISEV guidelines recommend the use of 

fresh medium not cultured with cells as controls in downstream EV assays (Thèry et al., 2018), 

which can be seen in Chapter 5. 

Furthermore, cell growth in serum-free medium was reduced compared to other medium used. 

This may be explained by extensive starvation of the cells, caused by lack of serum, thus changing 

cellular morphology and behaviour (Ludwig et al., 2019). The number and content of released 

EVs can also be affected by serum conditions. Serum-free culture led to alterations in the quantity 

and protein composition of EVs derived from neuroblastoma cells (Li et al., 2014). This is similar 

to the findings of Haraszti et al., (2019), which revealed that serum-deprivation of MSC led to 

increased EV production and modification of its lipid and protein composition. However, it is 

important to mention that comparison of the production of EV by these cells in DMEM-HG with 

different serum supplements was not done as this isn’t within the cope of this study. 

3.5 Summary 

This chapter has shed some light on the importance of optimization of cell culture conditions in 

order to produce reliable and reproducible data. The in vitro bystander co-culture model had 

been developed within the research group using HS-5 stromal cell line and TK6 lymphoblast cell 

line. Here, the functionality and characterization of HS-5 as MSC was identified via their ability to 

produce CFU-F in different culture medium such as DMEM-HG, DMEM-LG, RPMI 1640 and IMDM 

when seeded at low and high densities. The colonies were formed within days and the cells 

exhibited detachment from the plates when seeded at high densities. 
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HS-5 cells also showed that they could proliferate and differentiate in these media, with DMEM-

HG chosen as the appropriate culture medium to drive this study forward. Following 120-hour 

culture, cells grew exponentially in six folds in under 41 hours. The other media, RPMI 1640 and 

IMDM, also proved to be good alternatives, with the cells doubling within 47 and 54 hours 

respectively. However, due to presence of EVs and other xenogeneic substances in serum that 

may hinder EV production and content, the optimal condition that would allow cell growth for 

downstream EV production was determined. Cells grew in all three media used, which were 

serum-free medium, DMEM-HG with FBS and DMEM-HG with exosome-depleted FBS. However, 

the latter was chosen as the medium to conduct all experiments as it showed that cells can grow 

in this growth medium. Exosome-depleted FBS also posed the least danger, from the literature, 

to contaminate the number and content of EV produced by these cells. Therefore, it was 

important to illustrate that TK6 cells were capable of growing in different media such as RPMI 

1640, which is the recommended medium for these cells and DMEM-HG supplemented with FBS 

and exosome-depleted FBS. Although RPMI 1640 seemed to confer proliferative advantages to 

these cells, the cells grew exponentially in all growth media when seeded at a low density. 

However, the growth of cells in RPMI 1640 slowed down when seeded at a high density thus 

suggesting that this proliferative advantage conferred by RPMI 1640 may cause cells to grow at 

a faster rate and become over-confluent within a short period. As a result, DMEM-HG 

supplemented FBS was chosen as the medium for co-culture of HS-5 cells and TK6 cells in this 

study. 
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4.0 Evidence of chemotherapy-induced bystander effect 

4.1 Introduction  

Chemotherapy and radiotherapy can cause DNA damage by targeting the genome of actively 

dividing cells and thence result in genomic instability. The survival of an organism depends on 

the maintenance and stability of its genome and as a result, genomic instability can lead to the 

development and progression of leukaemia if the cell is a HSC. Leukaemia is characterised by DNA 

mutations such as DNA strand breaks (clastogenicity), point mutations and loss or gain of 

chromosomes (aneugenicity) caused by uncontrolled cell division (McCann and Wright, 2003). 

Furthermore, de novo primary malignancy such as DCL can also arise following chemotherapy 

and radiotherapy. This may be due to the transfer of residual chemotherapeutic effects from the 

exposed cells to their neighbouring cells through various signalling molecules, including cytokines 

and EV.  

Intercellular communication can be propagated by live cells, both normal and tumour, in diverse 

ways through gap junctions and release of soluble factors into the extracellular fluid. These cells 

release autocrine and paracrine signals for normal cellular processes and in response to an 

impending threat or insult on their DNA. The recipient cell can either respond to these signals 

immediately or transfer these signals to their progenies however, the signals induced by genomic 

insult may cause genomic instability in the progenies (Perumal et al., 2017). These signal-induced 

effects that manifest in the recipient cells that had not been initially exposed to direct genomic 

insult are known as BE. As previously described in section 1.8, these BE could equally manifest as 

cell death or formation of MN, which is one of characteristics of DNA damage. 

It has been established that BE occurs following radiotherapy however there is evidence that 

other physical and chemical forms of cellular stress can also trigger BE. The BE triggered by these 

forms vary and depend on the dose, type of radiation/chemical agents, experimental model, and 

type of donor and recipient cells (Perumal et al., 2017). Moolten and Wells first described the 

concept of CIBE in 1990, when they revealed that drug-treated cells can transfer treatment 
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signals to the untreated neighbouring cells thereby resulting in chemosesnsitivity. Since then, 

CIBE has become an area of interest for many researchers. There is evidence that alkylating 

agents such as cisplatin and MMC can induce CIBE via gap junctions or release of soluble factors 

into the CM (Jensen and Glazer, 2004; Rugo et al., 2005; Asur et al., 2009; Peterson-Roth et al., 

2009; Kumari et al., 2009; Samuel et al., 2017; Arora et al., 2018). In addition, other alkylating 

agents such as fotemustine and cystemustine, which are chloroethylnitrosourea agents, have 

also been implicated in CIBE via release of proteins into the CM (Demidem et al., 2006; Merle et 

al., 2008). However, there is no evidence in literature that carmustine and chlorambucil, 

alkylating agents of interest in this study, can cause CIBE. The only evidence that these drugs can 

induce CIBE comes from an in-house study by Kelechi Okeke (personal communication), which 

revealed that these drugs transfer treatment signals to the neighbouring cells thus resulting in 

the formation of MN in the untreated cells. 

Furthermore, topoisomerase inhibitors such as etoposide have been shown to induce CIBE. 

Prostate cancer cells, treated with etoposide, released microvesicles that induced DNA damage 

in the untreated cells upon uptake (Lin et al., 2017). Although there is no evidence of 

mitoxantrone-induced CIBE in literature, the study by Kelechi Okeke (personal communication) 

also revealed that mitoxantrone caused formation of MN in the neighbouring cells. In addition, 

other antitumour antibiotics such as bleomycin and doxorubixin induced CIBE in cancer cells, PB 

lymphocytes and BMSC (Di et al., 2008; Chinnadurai et al., 2011; Chinnadurai et al., 2013). 

Regardless of the drug employed in these studies, the biological endpoints of CIBE were cell death 

or inhibition of cell growth, chromosomal aberrations, DNA damage, MN formation and drug 

resistance. However, these effects could be delayed thereby inducing genomic instability in the 

progeny of bystander cells. Bleomycin-induced effect in bystander lung adenocarcinoma cells 

persisted at delayed times following co-culture (Chinnadurai et al., 2013).  

Whilst chemotherapy targets haematopoietic cell compartment in the BM microenvironment 

during pre-transplant conditioning, the MSC in the tumour microenvironment also undergo 

persistent damage from high-dose chemotherapy thereby resulting in phenotypic and functional 

abberations that may render them chemo-resistant (Kumar et al., 2018). In addition, leukaemia 
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can alter and transform the MSC in the tumour microenvironment to differentiate into tumour-

associated fibroblasts, which play crucial roles in chemo-resistance and tumour progression 

(Chan et al., 2006; Castillo et al., 2007). This may explain why MSC are capable of withstanding 

and resisting the cytotoxic and genotoxic effects of several drugs such as cisplatin, vincristine, 

paclitaxel, etoposide and camptothecin (Li et al., 2006; Mueller et al., 2006; Liang et al., 2011; 

Bosco et al., 2015; Bellagamba et al., 2016). However, the pattern of MSC response to 

chemotherapy varies and depends on the drug; for example, drugs like busulfan, 

cyclophosphamide and methotrexate have reportedly failed to induce cell death in these cells. 

Regardless of the conflicting reports, the consensus is that the microenvironment remains of the 

host origin despite the damage incurred. 

Therefore, it is important to understand the possible effects of the chosen drugs – chlorambucil, 

carmustine, etoposide and mitoxantrone – on HS-5 stromal cells and explore the potential 

transfer of the residual effects of chemotherapy to the bystander cells as the stroma remains 

host-origin following HSCT (Spyridonidis et al., 2005; Bartsch et al., 2009). In this chapter, an in 

vitro co-culture model was modified based on the previous work of Kelechi Okeke (personal 

communication) to represent the BM microenvironment and possibly show the interaction of the 

cells, caused by soluble factors released into the extracellular environment, leading to CIBE. Using 

HS-5 and TK6 as the model cell lines, separated by a culture insert, to mimic the BM 

microenvironment, cell death and DNA damage were assessed as bystander endpoints. DNA 

damage was assessed using the MN assay whilst cell death was measured based on the trypan 

blue exclusion dye assay. Longevity of the drug-induced bystander effects was also explored. 

Lastly, the mechanism of CIBE was explored by assessing differential miRNA expression profiles 

in the HS-5 and bystander TK6 cells.   
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4.2 Methods 

       4.2.1 The effect of chemotherapeutic drugs on HS-5 cells 

HS-5 stromal cells were were seeded in a 12-well plate at a density of 132,000 cells per cm2 in 

500 µl DMEM-HG medium supplemented with 10% FBS and treated with different 

chemotherapeutic drugs: chlorambucil, carmustine, etoposide and mitoxantrone as described in 

section 2.9. All cell culture procedures were performed as discussed in section 2.3. Cell viability 

after drug treatment was determined by trypan blue assay and acridine orange/propidium iodide 

assay using the LUNA FL automated cell counter as described in section 2.10. 

       4.2.2 Recovery ability of HS-5 cells from chemotherapeutic effects  

HS-5 stromal cells were treated with different chemotherapeutic agents for 1 hour and 24 hours 

respectively as described in section 2.9. Afterwards, the cells were washed with fresh medium 

and re-seeded in fresh DMEM-HG medium and allowed to grow for 72 hours to determine if the 

cells would recover from these chemotherapeutic effects. All cell culture procedures were 

performed as discussed in section 2.3. Cell viability after drug treatment was determined by 

trypan blue assay and acridine orange/propidium iodide assay using LUNA FL automated cell 

counter as described in section 2.10. 

       4.2.3 Bystander Effects 

The in vitro co-culture bystander model was described in section 2.12. HS-5 stromal cells were 

treated with different chemotherapeutic agents for 1 hour and 24 hours respectively as described 

in section 2.9.  Afterwards, the treated HS-5 cells were co-cultured, separated by a culture insert, 

with TK6 cells. After 24 hours, TK6 cells were harvested and cell viability was performed by trypan 

blue assay and acridine orange/propidium iodide assay using the LUNA FL automated cell counter 

counter as described in section 2.10. Genotoxicity was also assessed in the cells as described in 

section 2.11. 
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       4.2.4 Bystander duration study 

Conditioned medium from HS-5 cells was harvested as described in section 2.13.1 following 

exposure to chemotherapeutic agents for 24 hours. The conditioned medium was filtered with 

0.22 µm filters to remove any cell debris before co-culture with TK6 cells (5 x 105 cells/ml) in a 12 

well plate as described in section 2.13.2 over a period of five days. Filtered conditioned medium 

from treated HS-5 cells was used to seed fresh batches of TK6 cells every 24 hours and was 

repeated over a period of 5 days. Cell viability was performed by trypan blue assay and acridine 

orange/propidium iodide assay using the LUNA FL automated cell counter counter as described 

in section 2.10. 

       4.2.5 qRT-PCR array analysis in bystander TK6 cells  

Following co-culture of TK6 cells with treated HS-5 cells as previously described in section 2.12, 

RNA from TK6 cells was extracted as illustrated in section 2.22.1. The purity and concentration 

(section 2.23) and integrity (section 2.24) of the RNA were determined, and converted to cDNA 

(section 2.25). The resultant cDNA was then used to perform microarray RNA analysis as 

described in section 2.26. Unknown miRNAs were quantitated by SYBR green based qRT-PCR 

(Section 2.28). Using the Ct value, the positive PCR control (PPC) and reverse transcription control 

(miRTC) served as quality control at every step of the process. The difference between the Ct 

values of PPC and miRTC were used to determine the success of the reverse transcription reaction 

whilst a Ct value of 19 ± 2 (PPC) was used to identify high quality RNA. The expression of 84 

miRNAs was normalized with the average Ct value of six small nuclear RNAs – SNORD61, 

SNORD68, SNORD72, SNORD95, SNORD96A and RNU6B/RNU6-2. Fold changes in the level of 

each miRNA was relatively quantified using the comparative CT (2−ΔΔCT) method. 

       4.2.6 MicroRNA profiling and bioinformatics 

Five upregulated miRNAs (miR-146a-5p, miR-30d-5p, miR-16-5p, miR-17-5p and miR-20a-5p) and 

one downregulated miRNA (miR-200c-3p) were chosen as candidates in this study. To predict the 

target genes of these miRNAs, different target prediction programs that offer information on 

human miRNA-miRNA interaction were used as described in section 2.7. The genes chosen by 
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these different target prediction programs were collated together and functional enrichment 

analysis was performed as described in section 2.7. The FunRich software produces data on the 

biological processes the predicted target genes of these miRNAs are involved in. 

       4.2.7 Validation of miRNA in HS-5 and bystander TK6 cells  

The expression of the candidate miRNAs (miR-146a-5p, miR-30d-5p, miR-16-5p, miR-17-5p, miR-

20a-5p, and miR-200c-3p) was validated in the treated HS-5 cells and the bystander TK6 cells by 

qRT-PCR as described in section 2.28. The RNA from the cells were extracted (section 2.22.1), 

purity (section 2.2.3) and integrity (section 2.24) measured before converting the RNA to cDNA 

(section 2.25). The newly synthesized cDNA was diluted with 200 µl of RNAse free water to ensure 

at least 50 pg – 3 ng of cDNA per PCR. Each sample was run in duplicate for analysis using the 

same cycling conditions as previously mentioned in section 2.26. The Ct value of each microRNA 

was normalised using small nuclear RNAs (SNORD61 and RNU6B/RNU6-2) as internal controls for 

cells whilst miR-150-5p was used as a negative control. GeNorm and NormFinder softwares were 

used to analyse the small nuclear RNAs to ascertain those that were appropriate for data 

normalization. Fold changes in the level of each microRNA was relatively quantified using the 

comparative CT (2−ΔΔCT) method.  

4.3 Results 

       4.3.1 Chemotherapeutic drugs induce cytotoxic effects on HS-5 cells  

            4.3.1.1 Cytotoxicity effect of chemotherapy on HS-5 cells 

To determine the effect of chemotherapeutic drugs employed in pre-transplant conditioning on 

MSC, cells were seeded in duplicate at 132,000 cells per cm2 with 500 µl of medium in a 24 well 

plate and treated with increasing doses of the 4 drugs for an hour and 24 hours. The highest dose 

of each drug represents the clinically relevant dose used in transplantation settings. Thus, these 

doses were not exceeded because higher doses would not be used in vivo. Each drug group 

produced a cytotoxic effect on the cells after 1 hour and 24 hours (Figure 4.1). 
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Figure 4.1 The effect of chemotherapy on HS-5. Cells were incubated with increasing doses of alkylating agents 

(chlorambucil [CHL], carmustine [CAR]) and topoisomerase inhibitors (mitoxantrone [MTX] and etoposide [ETO]) for 

an hour (A) and 24 hours (B). The drugs are colour coded as increasing shades of the same colour. Data shows the 

mean ± SD (n=3) and represent the percentage of live cells relative to the untreated control. Statistical significance 

was done using unpaired student t-test (*p<0.05, **p<0.01, ***p<0.001, ****p<0.0001). 

However, the drugs were more toxic to the HS-5 cells after an hour than 24 hours. This suggests 

that drugs are capable of inducing cytotoxic effects in the cells after just an hour but upon longer 
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exposure, the cells may undergo signal transduction that ultimately results in a cellular response 

that aids them withstand these chemotherapeutic effects. Nevertheless, mitoxantrone exhibited 

a dose-dependent cell death at both time points. Although chlorambucil also produced a similar 

effect after 24 hours, it induced more cell death at low doses (41.7% and 52.9%) when compared 

to the clinically relevant dose (54.5%) after an hour. These suggest that chlorambucil rapidly 

exerts its effects on the cells at all doses but upon longer exposure, the cells evade cell cycle 

checkpoints thereby undergoing incomplete cell death activation and survival of cells at low dose. 

Etoposide also exhibited an increase in cell death at 5 µM at both time points compared to the 

clinically relevant dose of 10 µM, which appeared to be less toxic to the cells. Carmustine 

produced the highest level of cell death at its clinically relevant dose (10 µg/ml) after an hour 

however, an increase in cell survival was achieved after 24 hours compared to its low doses (1 

µg/ml & 5 µg/ml). The reason why these drugs are more toxic at low concentrations than at high 

concentrations may be due to signal transduction that results in non-specific binding of the drugs 

to their targets on the cells at high concentrations thus causing the drugs to bind to unintended 

targets and perhaps survival of the cells. Nevertheless, these results suggest that these drugs may 

damage the BM microenvironment and attention should be paid to the marrow stromal damage 

induced by these chemotherapeutic drugs as these agents are widely used in clinical settings 

during HSCT. 

               4.3.1.2 The rate of recovery of HS-5 cells from chemotherapy 

varies and depends on the drug 

Since the microenvironment remains of host origin after chemotherapy, it was important to see 

if this is similar in the current model cell line. Following the induction of cell death in HS-5 cells 

by chemotherapy, the cells were monitored and assessed afterwards to see if they can recover 

from the cytotoxic damage induced by these drugs. Chemotherapy-treated cells (for 1 hour and 

24 hours) were washed free of drugs, re-suspended in fresh medium and allowed to grow for 

three days. It is important to mention that the seeding density of the cells was not re-adjusted 

after treatment; only what was left after treatment was re-seeded. The rationale behind this is 

that although the cells reduced in number after chemotherapy as seen in figure 4.1, the cell 
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numbers did not go below 40% of the control cells hence the seeding density is enough to support 

the proliferation of the cells. For full recovery, the cells would need to overcome drug-induced 

cell death and proliferate at a similar rate as the control. In the cells treated for an hour, HS-5 

cells showed improved recovery of proliferaton when the alkylating agents: chlorambucil and 

carmustine were removed (figure 4.2). 

However, the cell number was still lower than the control at their clinically relevant doses (68.4%, 

CHL; 65%, CAR). This further suggests that cells treated at a lower dose of these 

chemotherapeutic drugs may survive with genomic damage despite the therapeutic insult. In 

contrast, cells treated with chlorambucil after 24 hours showed sustained suppression of 

proliferation at 20 µM (27.6 %) and 40 µM (9.22%). It is possible that upon longer exposure, 

chlorambucil undergoes metabolism to its active metabolite phenylacetic mustard, which also 

has cytotoxic and anti-proliferative effects thus explaining the reduced cell numbers compared 

to the control at these doses. As a consequence, the cells appear to have evaded the repair 

mechanisms to undergo cell death.  

Interestingly, mitoxantrone sustained its cytotoxic effect even after 72 hours when compared to 

the same time-point controls. Etoposide also revealed sustained proliferation in cells that were 

exposed to drugs for 24 hours. Since all four drugs produced similar toxic effects at both 

timepoints, these results suggest that these topoisomerase inhibitors induce DNA-damaging 

effects that may be persistent in the cells thus disrupting the growth of the cells during recovery. 

These also highlight the existence of drug/target interactions even at low drug concentrations, 

which may be enough to induce persistent alteration in cellular processes.  
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Figure 4.2 Recovery of HS-5 following exposure to chemotherapy. Cells were incubated with increasing doses of 

chemotherapeutic agents (chlorambucil [CHL], carmustine [CAR], mitoxantrone [MTX] and etoposide [ETO]) for 1 

hour (A) and 24 hours (B), washed with PBS and then cultured in complete medium for another 72 hours. Data shows 

the mean ± SD (n = 3) and represent the percentage of live cells relative to the untreated control. Statistical 

significance was done using unpaired student t-test (*p<0.05, **p<0.01, ***p<0.001, ****p<0.001).  
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     4.3.2 Chemotherapy-induced bystander effect 

                4.3.2.1 Bystander cytotoxic effects are induced in TK6 cells co-

cultured with chemotherapy-treated HS-5 cells 

To ascertain if MSCs can transfer the cytotoxic effects of chemotherapy to a neighbouring cell, 

HS-5 cells were cultured with clinically relevant doses of chlorambucil, carmustine, etoposide and 

mitoxantrone for 1 hour and 24 hours, washed free of drug with PBS and then co-cultured with 

TK6 using 0.4 µm pore size culture insert in a 12 well plate. The cells were co-cultured for 24 

hours. Interestingly, mitoxantrone-treated HS-5 cells induced a decrease in cell number relative 

to the control in the bystander TK6 cells [1 hour (74% p = 0.0030) vs 24 hours (79% p =0.04)] at 

both time points (Figure 4.3). This suggests that the persistent cytotoxicity seen in HS-5 cells 

following mitoxantrone treatment could be transferred to the bystander TK6 cells thereby 

inducing cytotoxic effects in these cells. This also highlights the possibility that HS-5 cells release 

signalling molecules capable of migrating via medium to the bystander cells to induce a cellular 

response. 
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Figure 4.3 Chemotherapy induces varied bystander effects in TK6 cells depending on the drug. HS-5 cells were 

treated with clinical doses of drugs and washed with PBS before co-culturing them with TK6 cells using a cell culture 

insert. Data show mean ± SD (n=3) of percentage total cells relative to the untreated control. Statistical significance 

was done using the unpaired student t-test (* p<0.05, **p<0.01, ***p<0.001).  

In contrast, the TK6 cells exhibited an increase in cell number following exposure to HS-5 cells 

treated with chlorambucil, carmustine and etoposide. The cells proliferated at an abnormal rate 

compared to the controls at both time points. Carmustine produced the highest increase in cell 
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number after 1-hour treatment (118.5%) whereas etoposide did the same after 24 hours 

(208.1%) however; the reason for this is unclear. It can be inferred that the HS-5 cells may 

accumulate genetic damage and may aim to ‘protect’ the bystander cells by promoting their 

proliferation to replace any lost cells via the signalling molecules released into the medium by 

HS-5 cells. If this is the case then an increase in proliferation of the bystander TK6 cells may have 

more devastating effects than a decrease in cell proliferation longterm. An increased 

proliferation of the cells along with evasion of the cell cycle checkpoints due to increased cell 

division may suggest that the bystander cells might become cancerous in future.   

         4.3.2.2 TK6 cells exhibit bystander genotoxic damage following 

exposure to drug-treated HS-5 cells  

The induction of MN formation in TK6 cells was also assessed following co-culture with 

chemotherapy-treated HS-5 cells to ascertain the level of genotoxic damage in the bystander 

cells. As shown in figure 4.4, mitoxantrone induced MN formation in the bystander cells, which 

was statistically significant at both time points [1 hour (118 MN scored p = 0.0004) vs 24 hours 

(92.3 MN scored p = 0.0025)]. The manual scoring system remains an important source of 

variability notwithstanding that the criteria for scoring have been standardized inorder to 

minimise analysis error. Nevertheless, the cells must be atleast 50% viable following exposure to 

a genotoxic agent for genotoxicity data to be valid. In addition to its induction of MN formation, 

mitoxantrone induced decreased cell proliferation to 74.7% and 79.1% at both time points (figure 

4.3). Therefore, it can be inferred that mitoxantrone gives the strongest bystander effects. 

However, etoposide, carmustine and chlorambucil, which induced an increased proliferation in 

the bystander cells, also induced MN formation in these cells at both time points but none of the 

drugs showed a statistically significant difference between the drug group and the control. 

Collectively, these infer that a genotoxic bystander effect from chemotherapy treatment exists. 

Etoposide induced the highest increase in bystander cell proliferation and produced high MN 

induction in the bystander cells however, it is inconsistent when compared to mitoxantrone. 

These further suggest that despite the survival of the bystander cells, these cells accumulate 
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genomic damage perhaps because of increased cell division, which may have adverse effects 

longterm. 
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Figure 4.4 Chemotherapeutic drugs induce MN formation in bystander TK6 cells. 24-hour co-culture of TK6 cells 

with HS-5 cells that were treated with drugs for an hour (A) and 24 hours (B) resulted in the formation of MN in 

these cells at different time points. Data show mean ± SD (n=3) of average MN scored per 2000 cells. Statistical 

significance was done using the unpaired student t-test (**p<0.01; ***p<0.001). 
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         4.3.2.3 Bystander damage induced in TK6 cells by chemotherapy 

lasts over 5 days  

The duration of BE was investigated over five days to ascertain if these effects are maintained for 

that period. The five-day gap was chosen in order to correspond to the total gap in time, which a 

patient is allowed to recover from the effects of pre-transplant conditioning prior to infusion of 

stem cells. As previously described in section 2.13.2, HS-5 cells were conditioned for 24 hours 

with clinically relevant doses of chlorambucil, carmustine, mitoxantrone and etoposide before 

harvesting the conditioned medium, which was then used to seed TK6 cells for 24 hours. 

Afterwards, the lymphoblastic cells were harvested and assessed for viability. This process was 

repeated for 5 days as the conditioned medium was double filtered with a 0.22 µm filter every 

day to remove cellular debris and then used to co-culture a new batch of lymhoblastic cells 

seeded at 2.5 x 105 cells/ml.  

As shown in figure 4.5, alkylating agents (chlorambucil and carmustine) induced little or no 

reduction in cell numbers rather chlorambucil increased the proliferation of the cells after day 1 

(103%) in comparison to the control but this was not significant. This is similar to the bystander 

cytotoxicity data presented in figure 4.3, which resulted in an abnormal increase in bystander cell 

proliferation after 24-hour co-culture with drug-treated HS-5 cells. The number of the cells 

seeded in chlorambucil-treated CM in relation to the control ranged from 93.9% to 113.5%, with 

the latter the highest cell number recorded on day 3. These suggest that chlorambucil promotes 

variable proliferative effects in the bystander cells. Similarly, the viability of cells exposed to 

carmustine-treated CM changed from 98.1% (day 1) to 114.2% (day 3) over 3 days relevant to 

the control. However, the viability slightly reduced to 98.2% on day 4 and maintained a similar 

count (98.9%) after day 5. This indicates that carmustine promotes increased bystander cell 

proliferation up to 3 days but then confers bystander cytotoxicity from day 4 to 5. In addition, 

this contradicts the bystander cytotoxicity data that revealed an increase in cell numbers to 163% 

compared to the control. Nevertheless, it is clear that the bystander cells survive despite 

exposure to HS-5 cells treated with alkylating agents and medium conditioned by these drug-

treated HS-5 cells. 
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Figure 4.5 Chemotherapy-induced BE can last over five days. Seeding TK6 lymphoblast cells in medium conditioned 

with chemotherapy led to differential effects on the viability of the cells depending on the drug involved. Data show 

mean ± SEM (n=3) of percentage total cells relative to the untreated control. Statistical significance was done using 

the two-way ANOVA (* p<0.05, **p<0.01, ***p<0.001, ****p<0.001). 

 

Contrastingly, topoisomerase inhibitors (ETO and MTX) reduced the number of cells in relation 

to control to 79% and 77% respectively on day 1. MTX maintained this effect over the five day 

period with the lowest reduction in the number of cells recorded on day 4 (67.7%) followed by 

day 5 (69.3%). All these were still above the 50% threshold recommended by OECD in its 

guidelines. Therefore, results suggest that mitoxantrone is the most toxic to the cells similarly as 

was shown in the co-culture experiment using culture inserts (section 2.12). The bystander 

cytotoxicity data revealed that bystander cell number percentage reduced to 79.1% relative to 

the control. In contrast, the cells recovered from the toxic effects of ETO and gradually increased 
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its viability to 93.1%, 92.2%, 100.4% and 107.6% respectively from day 2 to day 5. Thus, this 

suggests that ETO continues to promote bystander cell proliferation over 5 days at a rate that is 

higher than the control because the cell number percentage appears to be increasing. This 

corresponds to the data from the bystander cytotoxicity data, which exhibited that ETO causes a 

marked increase in bystander cell proliferation. Nevertheless, it is noteworthy that these 

bystander cells showed good viability in response to the drugs and this could be highly relevant 

if it is associated with increased genotoxic events and may lead to mutagenic events in vivo.  

4.3.3 Differential miRNA expression profiles in cells 

Leukaemia treatment is often performed in cycles and any change in gene expression profiles of 

the MSC could lead to resistance to chemotherapy and progression of leukaemia. As a result, the 

miRNA signature profiles of HS-5 cells and bystander TK6 cells were examined to determine if 

these drug-induced effects could alter the expression of miRNA by these cells. Since a relay of 

damaging effects can cause bystander effects as previously shown in section 4.22, the rationale 

here is that miRNA control gene expression at the post-transcriptional level hence any 

deregulation of miRNA expression in the cells may have important biological implications.  

Mitoxantrone was chosen as the main drug of interest due to consistency in its ability to transfer 

both cytotoxic and genotoxic effects to the bystander cells.  

      4.3.3.1 qRT-PCR array analysis of miRNA expression in bystander 

TK6 cells 

Firstly, microarray analysis of TK6 bystander cells was assessed by qRT-PCR in order to choose 

candidate miRNAs in the microRNAome of the bystander cells that could be involved in this CIBE. 

The rationale here is that if miRNAs were transferred from HS-5 cells to TK6 cells then a candidate 

miRNA has to be upregulated in the bystander cells to effect CIBE. By identifying these 

upregulated miRNA candidates in the bystander cells, their expression levels can then be 

explored in drug-treated HS-5 cells to see if they had been transferred via the CM.  
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As described in section 2.28, RNA from these bystander cells, obtained following co-culture with 

treated HS-5 cells, were converted to cDNA and used to profile the expression of 84 human 

miRNA signatures. Ct values were obtained and normalised using six small nuclear RNAs. Ct 

values are inversely proportional to the amount of miRNAs in the sample. The lower Ct values 

(below 30 cycles) indicate high amount of the miRNA target sequence whilst the higher Ct values 

(above 35 cycles) reveal low amount of the miRNA target sequence but can also reveal problems 

with the target or the experimental set up. Fold changes in the level of each miRNA was relatively 

analysed by comparing with the untreated control and quantified using the comparative 2−ΔΔCT 

method. 

Whilst choosing the candidate miRNAs, it is noteworthy to mention that only miRNAs with Ct 

values below 30 were considered for analysis inorder to be accurate and minimise analysis error. 

In addition, the fold change cut-off was set at ≥1.5 whilst statistical significance p-values of ≤0.05 

was considered as the cut-off inorder to eliminate any cofounding effects that may skew data 

analysis and interpretation. Where a miRNA is increased by ≥1.5 folds without statistical 

significance, miRNAs close to the statistical significant p-value cut-off was chosen. Table 4.1 

shows the miRNAs that had Ct values of less than 30 and were upregulated in bystander cells. 

The most upregulated miRNA in these cells was hsa-miR-30d-5p (1.89), followed by hsa-miR-155-

5p (1.82) and hsa-miR-146a-5p (1.78) respectively. However, none of these was statistically 

significant. Similarly, miRNAs that had Ct values of less than 30 and were downregulated in 

bystander cells are shown in table 4.2. The most downregulated miRNA in these cells was hsa-

miR-200c-3p (-6.20) followed by hsa-miR-92a-3p (-1.71). However, none of these was statistically 

significant. Although one of the rules set above for choosing a candidate miRNA include 

upregulation of the miRNA, hsa-miR-200c-3p was chosen as the only downregulated candidate 

miRNA given its large change here. A loss of signal could affect the viability and functionality of 

cells if an essential message was silenced hence for this purpose, it was relevant to follow up on 

such a large loss of signal. 
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Table 4.1 List of upregulated miRNAs that are in bystander TK6 cells with Ct values less than 30.  

Relative expression levels of the upregulated miRNAs are shown. Student t-test of the replicate normalized miRNA 
expression values was performed for each miRNA in the control and treatment groups. Red colour indicates the 
candidate miRNAs that were chosen for further tests and validation. Fold change values greater than one indicate 
an upregulation whilst fold regulation represents the negative inverse of the fold change hence the fold regulation 
is equal to the fold change. 

 

 

 

 

MiRNA(s) Control 
(Average 
Ct value) 

Treatment 
(Average Ct 
value) 

Fold 
change  

Fold 
Regulation 

95% CI P-value 

hsa-miR-30d-5p 29.17 29.27 1.89 1.89 0.00001, 3.99 0.339 
hsa-miR-155-5p 24.22 24.37 1.82 1.82 0.00001, 5.88 0.407 

hsa-miR-146a-5p 28.06 28.25 1.78 1.78 1.00, 2.57 0.076 
hsa-miR-30e-5p 29.99 30.21 1.74 1.74 0.00001, 5.08 0.422 

hsa-miR-103a-3p 28.82 29.06 1.73 1.73 0.51, 2.94 0.261 
hsa-miR-20a-5p 27.14 27.34 1.71 1.71 0.77, 2.65 0.125 

hsa-miR-29a-3p 27.87 28.12 1.71 1.71 0.00001, 4.83 0.424 

hsa-miR-16-5p 27.7 28.04 1.61 1.61 0.56, 2.66 0.218 
hsa-miR-21-5p 27.31 27.71 1.54 1.54 0.00001, 5.08 0.444 

hsa-miR-320a-5p 27.69 28.04 1.54 1.54 0.00001, 4.53 0.436 
hsa-miR-17-5p 28.16 28.6 1.50 1.50 0.84, 2.15 0.162 

hsa-miR-181a-5p 29.48 29.96 1.45 1.45 0.49, 2.41 0.339 

hsa-miR-29c-3p 28.21 27.39 1.45 1.45 0.00001, 3.54 0.462 

hsa-miR-106b-5p 28.41 28.9 1.45 1.45 0.81, 2.09 0.122 
hsa-miR-30a-5p 29.1 29.73 1.31 1.31 0.47, 2.16 0.419 

hsa-miR-24-3p 30.14 30.56 1.30 1.30 0.59, 2.01 0.362 
hsa-miR-181b-5p 28.18 28.85 1.28 1.28 0.00001, 2.75 0.501 

hsa-miR-93-5p 27.97 28.65 1.27 1.27 0.02, 2.52 0.523 
hsa-miR-let 7f-5p 29.84 30.55 1.24 1.24 0.26, 2.23 0.525 
hsa-miR-195-5p 27.83 28.54 1.23 1.23 0.82, 1.65 0.249 
hsa-miR-30c-5p 28.12 28.93 1.15 1.15 0.53, 1.78 0.697 
hsa-miR-let 7a-5p 27.69 28.52 1.14 1.14 0.27, 2.02 0.604 
hsa-miR-23a-3p 25.79 26.63 1.13 1.13 0.00001, 2.57 0.65 
hsa-miR-15b-5p 25.1 26.01 1.07 1.07 0.00001, 2.47 0.656 
hsa-miR-23b-3p 28.66 29.58 1.07 1.07 0.13, 2.00 0.698 
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Table 4.2 List of downregulated miRNAs that are in bystander TK6 cells with Ct values less than 30. 

Relative expression levels of the downregulated miRNAs are shown. Student t-test of the replicate normalized 
miRNA expression values was performed for each miRNA in the control and treatment groups. Red colour indicates 
the candidate miRNA(s) that was chosen for further tests and validation. Fold change values less than one indicate 
a negative or down-regulation, and the fold-regulation is the negative inverse of the fold-change. Since the control 
is assumed to be ‘1’, when divided by the fold change yields the fold regulation. 

 

Furthermore, miRNAs that had Ct values above 30 in the control and treatment groups are also 

shown in Table 4.3. Interestingly, these miRNAs had a fold change of more than 1.9 folds 

however; none of these was statistically significant. The miRNAs that had the highest fold 

changes were hsa-miR-424-5p (5.62), hsa-miR-194-5p (4.27) and hsa-miR-374-5p (4.17). Higher 

fold changes observed here are because the amount of miRNA goes from nothing to something 

thus such inconsistency can cause false elevated fold changes. However, it is important to 

highlight that microarray only determines a relative change and not an absolute amount. 

Furthermore, other miRNAs had Ct values of more than 35 and were assumed to be either less 

expressed or not expressed in these cells. These include hsa-miR-150-5p, hsa-miR-32-5p, hsa-

miR-101-3p, hsa-miR-302b-3p, hsa-miR-376c-3p, hsa-miR-144-3p and hsa-miR-122-5p (data 

shown in appendix). 

 

 

MiRNA(s) Control 
(Average 
Ct value) 

Treatment 
(Average 
Ct value) 

Fold 
change  

Fold 
Regulation 

95% CI P-value 

hsa-miR-200c-3p 28.95 32.61 0.16 -6.20 0.00001, 2.47 0.383 
hsa-miR-92a-3p 23.26 25.05 0.58 -1.71 0.18, 0.99 0.202 
hsa-miR-191-5p 26.49 27.79 0.82 -1.21 0.44, 1.20 0.417 
hsa-miR-25-3p 26.39 27.69 0.83 -1.20 0.18, 1.47 0.797 
hsa-miR-222-3p 27.66 28.85 0.89 -1.12 0.59, 1.19 0.499 
hsa-miR-26b-5p 28.28 29.45 0.90 -1.11 0.20, 1.60 0.926 
hsa-miR-423-5p 27.69 28.53 0.92 -1.08 0.47, 1.38 0.878 
hsa-miR-26a-5p 28.15 29.23 0.96 -1.04 0.43, 1.49 0.921 
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Table 4.3 List of differentially expressed miRNAs in bystander TK6 cells with Ct values more than 30.    

    

      4.3.3.2 MiRNA profiling and bioinformatics target analysis  

Following the results from the microarray analysis of bystander TK6 cells, six miRNAs were chosen 

for further analysis. Despite none of the miRNAs being statistically significant, the miRNAs were 

chosen based on two main parameters: fold change ≥1.5 folds and proximity to statistical 

significance. Thus, five upregulated miRNAs - hsa-miR-146a-5p, hsa-miR-30d-5p, hsa-miR-20a-

5p, hsa-miR-17-5p, hsa-miR-16-5p and one downregulated miRNA - hsa-miR-200c-3p - were 

chosen for further analysis. To act as a negative control, one of the miRNAs, hsa-miR-150-5p, that 

had average Ct values of 35 and above was chosen. The programs geNorm and NormFinder were 

MiRNA(s) Control 
(Average 
Ct value) 

Treatment 
(Average Ct 
value) 

Fold change  Fold 
Regulation 

95% CI P-value 

hsa-miR-194-5p 32.4 31.32 4.27 4.27 0.00001, 11.61  0.209 
hsa-miR-19a-3p 31.98 31.43 2.96 2.96 0.00001, 7.14 0.302 
hsa-miR-99a-5p 32.52 31.61 3.81 3.81 0.00001, 9.47 0.310 
hsa-miR-125b-5p 31.14 30.96 2.29 2.29 0.00001, 4.81 0.313 
hsa-miR-151-5p 31.12 31.02 2.18 2.18 0.00001, 4.46 0.316 
hsa-miR-19b-3p 31.89 31.52 2.62 2.62 0.00001, 6.47 0.328 
hsa-miR-128-3p 31.44 31.2 2.35 2.35 0.00001, 5.11 0.331 
hsa-miR-186-5p 32.63 31.86 3.48 3.48 0.00001, 9.05 0.336 
hsa-miR-374-5p 33.51 32.47 4.17 4.17 0.00001, 12.90 0.358 
hsa-miR-18a-5p 31.71 31.56 2.25 2.25 0.00001, 5.42 0.363 
hsa-miR-185-5p 32.96 32.32 3.16 3.16 0.00001, 9.31 0.364 
hsa-miR-15a-5p 33.59 32.65 3.89 3.89 0.00001, 12.46 0.366 
hsa-miR-424-5p 34.71 33.24 5.62 5.62 0.00001, 22.09 0.373 
hsa-miR-142-3p 32.5 32.14 2.60 2.60 0.00001, 7.51 0.377 
hsa-miR-29b-3p 33.74 33.18 2.98 2.98 0.00001, 10.53 0.384 
hsa-miR-100-5p 34.81 34.2 3.09 3.09 0.00001, 13.73 0.390 
hsa-miR-let7i-5p 32.7 32.62 2.15 2.15 0.00001, 6.66 0.393 
hsa-miR-96-5p 35 34.95 2.10 2.10 0.00001, 10.45 0.394 
hsa-miR-210-3p 33.2 33.27 2.07 2.07 0.00001, 7.64 0.394 
hsa-miR-130a-3p 34.99 35 2.11 2.11 0.00001, 10.11 0.395 
hsa-miR-27a-3p 31.1 31.17 1.93 1.93 0.00001, 4.81 0.429 
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also used to evaluate the small nuclear RNAs. The algorithm recommended the combination of 

SNORD61 and RNU6B/RNU6-2 for data normalization (data shown in appendix). 

As previously mentioned in section 2.27, the miRNAs were then put through different target 

prediction programs to predict their targets and get further insight on the miRNA-miRNA 

interactions in humans. It is of particular interest to reliably predict potential miRNA targets as 

both the deregulation of genes controlled by miRNAs and altered miRNA expression have been 

linked to cancer and other disorders. However, it is important to mention that the interaction 

between these miRNAs is complex due to numerous putative miRNA recognition sites in mRNAs. 

Due to this relative heterogeneity and complexity, no single target prediction program would 

depict all miRNA-miRNA interactions thus this is why the miRNAs were put through different 

target prediction programs inorder to make the data robust.  

Using the TargetLink software, 47 different targets of these miRNAs were identified. The 

interactions between these miRNAs and their predicted target genes are illustrated in figure 4.6. 

There seems to be many interactions between hsa-miR-20a-5p and hsa-miR-17-5p compared to 

other miRNA-miRNA interactions, with about 32 target genes shared between them. This infers 

that these miRNAs may control similar cellular and biological processes. Some of their predicted 

target genes such as CCDN2, STAT3, MYC, MAP3K, PTEN and RUNX1 further suggest that these 

miRNAs may be involved in bystander effects (Concepcion et al., 2012; Lovat et al., 2015; Fischer 

et al., 2015; Chakraborty et al., 2016). STAT3 controls the expression of genes in response to cell 

stimuli and play a key role in apoptosis and cell growth. MAP3K and MYC are also involved in the 

control of cell proliferation, differentiation and survival whilst CCDN2 and PTEN are involved in 

the regulation of cell cycle thus implying that these genes may be deregulated in CIBE. 

The least miRNA-miRNA interaction was found to involve hsa-miR-30d-5p, which had just one 

interaction with hsa-miR-16-5p and hsa-miR-200c-3p respectively but no further interaction with 

the other miRNAs. However, it is of interest to mention that this little interaction may be 

important in CIBE as the genes implicated here, TP53 and NOTCH1, are involved in the control of 

cell cycle and intercellular signalling pathway respectively thus controlling bystander cell fate 

decisions. As a ‘decision maker’ of DNA repair versus apoptosis, the interaction with p53 tumour 
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suppressor protein is an important one if the cell survives or not which could be important for 

bystander and DCL. 

Furthermore, when the miRNAs were analysed with TargetScan, miRBase and miRDB, 132 

different targets of hsa-miR-16-5p were identified. Three miRNAs, hsa-miR-200c-3p (69), hsa-

miR-17-5p (66) and hsa-miR-20a-5p (54) had a similar number of predicted target genes 

identified. Only 17 target genes were identified for hsa-miR-30d-5p. The interaction between 

these miRNAs via targets genes are illustrated in figure 4.7. The number of interactions between 

these miRNAs is given whilst colour codes were used to depict most and least interactions. The 

most interactions were found between hsa-miR-20a-5p and hsa-miR-17-5p compared to other 

miRNA-miRNA interactions, with about 32 target genes shared between them (36.4%). This 

agrees with the previous data in figure 4.6 thus further supporting the possible involvement of 

these miRNAs and their predicted genes in CIBE. 
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Figure 4.6 MiRNA gene target predictions and the interaction between these miRNAs via their targets. As predicted by TargetLink, the candidate miRNAs 

interact and share about 47 genes between them. Hsa-miR-17-5p and hsa-miR-20a-5p had the most interactions with 25 genes shared between them. 

 



119 
 

 

   

Figure 4.7 Interaction between these miRNAs via their targets. When the miRNAs were further analysed with 

TargetScan, miRBase and miRDB software, about 54 gene target predictions were identified. The most interaction 

between miRNAs is depicted in purple whilst the least interaction is depicted in brown. These genes were then 

analysed with FUNRICH software to understand the interactions between these miRNAs and their target genes.  

 

       4.3.3.3 MiRNA functional enrichment analysis  

Since the miRNAs control gene expression at the post-transcriptional level, the predicted target 

genes for each miRNA were then further analysed using the FUNRICH program to identify the 

functional categories including biological processes these genes regulate. Where mentioned, it is 

important to note that positive regulation means that the upregulated or downregulated 

expression of a miRNA results in an increase in the frequency, rate or extent of that particular 

biological process. In contrast, a negative regulation means an upregulated or downregulated 

expression of a miRNA would result in a decrease in the frequency, rate or extent of a particular 

biological process. The biological processes linked to hsa-miR-146a-5p-regulated genes are 

shown in figure 4.8. Positive regulation of transcription (27.3% p = 0.007), negative regulation of 

apoptotic pathway (24.2% p = 0.027) and positive regulation of NF-kappa β activity (21.2% p < 

0.001) were the most enriched biological pathways for the target genes of hsa-miR-146a-5p. 

Other signalling pathways such as toll-like receptor signalling pathway (15.25 p < 0.01) and nitric 

oxidase synthase biosynthetic process (9.1% p = 0.02). Taken together, these suggest that the 

retention of different signalling molecules and transcription factors may be important 

intercellular cues in determining bystander cell fate in CIBE. If these transcription factors can 



120 
 

move between the two cell models therefore it can be inferred that the movement of RNA 

molecules may be one of the intercellular cues behind the short-distance signals seen in CIBE. 

   

Figure 4.8 Enriched biological processes linked to the predicted target genes of hsa-miR-146a-5p.  The bar graphs 

represent the – log (p value) for each biological process against the percentage of genes from the data set to the 

total number of genes involved in respective biological process. Statistical analysis was performed within the 

software by hypergeometric test, Benjamini-Hochberg and Bonferroni correction test.  
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For hsa-miR-16-5p (figure 4.9), the most enriched biological processes controlled by its predicted 

target genes were negative regulation of apoptosis (14.5% p < 0.001), protein phosphorylation 

(12.9% p < 0.003) and positive regulation of cell proliferation (12.1% p = 0.033), which were 

statistically significant. This is interesting as one of the regulatory roles that protein 

phosphorylation plays is the p53 tumour suppressor protein, whose activation can lead to cell 

cycle arrest or apoptotic cell death thereby suggesting an important role for TP53 gene in CIBE. 

However, for hsa-miR-17-5p (figure 4.10) and hsa-miR-20a-5p (figure 4.11), which showed the 

most miRNA-miRNA interactions, there was an overlap of the biological processes regulated by 

their predicted target genes. The most enriched biological processes were positive and negative 

regulation of transcription, positive and negative regulation of transcription from RNA 

polymerase II promoter and cytokine-mediated signalling pathway. Furthermore, their predicted 

genes also show these miRNAs negatively control the G1/S phase of the mitotic cell cycle in a 

statistically significant manner (p < 0.001). These further support the idea that cell cycle arrest, 

signalling molecules, transcription factors and RNA molecules may play important roles in 

transferring chemotherapeutic effects to the bystander cells. 
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Figure 4.9 Biological pathways predicted to be targeted by genes controlled by hsa-miR-16-5p. The bar graphs 

represent the – log (p value) for each biological process against the percentage of genes from the data set to the 

total number of genes involved in respective biological process. Statistical analysis was performed within the 

software by hypergeometric test, Benjamini-Hochberg and Bonferroni correction test. 
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Figure 4.10 Biological pathways predicted to be targeted by genes controlled by hsa-miR-17-5p.  The bar graphs 

represent the – log (p value) for each biological process against the percentage of genes from the data set to the 

total number of genes involved in respective biological process. 
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Figure 4.11 Biological pathways predicted to be targeted by genes controlled by hsa-miR-20a-5p.  The bar graphs 

represent the – log (p value) for each biological process against the percentage of genes from the data set to the 

total number of genes involved in respective biological process. Statistical analysis was performed within the 

software by hypergeometric test, Benjamini-Hochberg and Bonferroni correction test. 
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However, the biological processes controlled by hsa-miR-30d-5p target genes (figure 4.12) were 

mostly related to cell death such as degradation of mitochondria (23.5% p < 0.001), assembly of 

the autophagy vacuole (23.5% p = 0.003) and negative regulation of cell death (17.6%). However, 

its negative regulation of cell death is not statistically significant (p =0.249). This suggests that 

bystander cell death may be as a result of apoptosis and/or autophagy. This also implies that 

chemotherapy can be the induction stimuli for these outcomes in bystander cells.  

Furthermore, the downregulated hsa-miR-200c-3p was also linked to negative regulation of 

transcription from RNA polymerase II promoter (23.4% p = 0.001), positive regulation of cell 

proliferation (21.9% p < 0.001) and positive regulation of gene expression (17.2% p < 0.001) as 

shown in figure 4.13. Other biological pathways identified were positive regulation of the MAPK 

signalling pathway (12.5% p < 0.001) and positive regulation of protein phosphorylation (10.9% 

p = 0.012). These suggest that the downregulation of this miRNA may lead to a decrease in DNA 

transcription but an increase in cell proliferation and cell signalling, which contradicts the effects 

of hsa-miR-17-5p and hsa-miR-20a-5p. In addition, hsa-miR-200c-3p was also found to control 

sprouting angiogenesis (6.3% p = 0.054) and cellular response to VEGF stimulus (6.3% p = 0.03). 

These further suggest that there may be complex intercellular cues involving signalling molecules, 

proteins, angiogenic and transcription factors as well as RNA molecules in CIBE. 
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Figure 4.12 Biological pathways predicted to be targeted by genes controlled by hsa-miR-30d-5p.  The bar graphs 

represent the – log (p value) for each biological process against the percentage of genes from the data set to the 

total number of genes involved in respective biological process. Statistical analysis was performed within the 

software by hypergeometric test, Benjamini-Hochberg and Bonferroni correction test. 
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Figure 4.13 Biological pathways predicted to be targeted by genes controlled by hsa-miR-200c-3p.  The bar graphs 

represent the – log (p value) for each biological process against the percentage of genes from the data set to the 

total number of genes involved in respective biological process. Statistical analysis was performed within the 

software by hypergeometric test, Benjamini-Hochberg and Bonferroni correction test. 
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      4.3.3.4 Validation of selected miRNAs in HS-5 and bystander cells 

The change in expression of these candidate miRNAs in HS-5 cells as well as bystander TK6 cells 

was further explored by qRT-PCR following bioinformatics. HS-5 cells were treated with MTX (500 

ng/ml) for 24 hours. After 24 hours, the drugs were removed by washing the cells three times 

with PBS. Fresh medium was added to the cells and then using a culture insert, bystander TK6 

cells were co-cultured with the drug-treated HS-5 cells. After 24 hours, both cells in the upper 

compartment (bystander TK6 cells) and lower compartment (HS-5 cells) were harvested and their 

RNA extracted as previously discussed in section 2.22.1. The RNA was converted to cDNA as 

previously illustrated in section 2.25 before using the cDNA obtained to perform qRT-PCR as 

described in section 2.28. Ct values of the individual miRNAs in both cell lines were obtained and 

normalised using SNORD61 and RNU6B/RNU6-2 whilst hsa-miR-150-5p was used as a negative 

control. Fold changes in the level of each miRNA was analysed using the comparative Ct (2−ΔΔCT) 

method. 

As shown in figure 4.14, the expression of the miRNAs was contrastingly distinct in both cell lines. 

If a miRNA was highly expressed in one cell line, it was less expressed in the other cell line and 

vice versa. It is of interest to mention that this difference in miRNA expression in both cells was 

statistically significant (p < 0.001). The most expressed miRNA in HS-5 cells was hsa-miR-16-5p, 

which increased over 3.99 folds but was decreased by 0.62 folds in bystander TK6 cells. This 

contradicts the microarray data in which hsa-miR-16-5p was upregulated by 1.61 folds in the 

bystander cells (table 4.1). High expression of this miRNA in the treated HS-5 cells suggests that 

chemotherapy modulates proliferation, protein phosphorylation and angiogenesis in these cells 

thereby deciding their fate.  

The miRNAs, hsa-miR-17-5p and hsa-miR-20a-5p, which shared the most interactions also 

showed similar expression levels in both cell lines. In HS-5 cells, the expression levels of hsa-miR-

17-5p and hsa-miR-20a-5p increased by 2.61 and 2.32 folds respectively compared to 0.58 and 

0.59 folds in bystander TK6 cells. This increase suggests that altered expression of these miRNAs 

in the treated stromal cells may result in cellular response to hypoxia, cell cycle control and DNA 
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transcription. However, these results contradict the microarray data that revealed 1.5 (hsa-miR-

17-5p) and 1.71 (hsa-miR-20a-5p) fold increase in the bystander cells (table 4.1). 

However, the expression of hsa-miR-30d-5p was higher in bystander TK6 cells (1.15 folds) than 

HS-5 cells (0.85 folds); in similar fashion to the microarray data that showed 1.89-fold increase in 

the bystander TK6 cells. These suggest that autophagy may be involved in bystander 

chemotherapeutic effects but not direct chemotherapeutic effects. Interestingly, the only miRNA 

that showed similar expression levels in both the microarray (table 4.2) and qRT-PCR data in the 

bystander TK6 cells was hsa-miR-200c-3p however it was also downregulated by 0.14 folds in HS-

5 cells. This indicates that angiogenesis, cell signalling and cell proliferation may be involved in 

deciding the fate of the treated stromal cells and the bystander cells. 
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Figure 4.14 Validation of expression levels of miRNAs in HS-5 and bystander TK6 cells. The expression of the 

candidate microRNAs – (a) hsa-miR-146a-5p (b) hsa-miR-16-5p (c) hsa-miR-20a-5p (d) hsa-miR-17-5p (e) hsa-miR-

30d-5p (f) hsa-miR-200c-3p – were validated in HS-5 cells and bystander TK6 cells following 24-hour co-culture. 

Statistical significance was done using the student t-test (****p<0.001). 
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4.4 Discussion 

The maintenance of haematopoiesis in the BM largely depends upon the interactions between 

MSC and HSC, and their progeny. MSC play important roles in the maintenance of homeostasis 

of an organism through cell-to-cell contact and the modulation of cytokine secretion and other 

signalling molecules involved in intercellular communication in the BM microenvironment 

(Reagan & Rosen, 2016). However, MSC can turn ‘rogue’ during tumorigenesis and 

unintentionally stimulate tumour progression through paracrine factors, suppression of the 

immune system, migration to the tumour site or differentiation into tumour-associated 

fibroblasts (Fracchiolla et al., 2017). These tumour-associated fibroblasts are also involved in 

chemo-resistance. Furthermore, chemotherapy, particularly high-dose chemotherapy 

administered during conditioning, can also induce morphological and functional damages in MSC 

thereby causing proliferative problems that will promote chemo-resistance (Shipounova et al., 

2017). This study also revealed that there were alterations in the gene expression levels of these 

drug-treated MSC, which lasted for a year. As a result, a damaged stromal microenvironment 

may lead to impaired haematopoiesis in patients following HSCT (Storek et al., 2008; Bemark et 

al., 2012). Dysregulation of haematopoiesis is associated with the development of leukaemia. 

Therefore, these suggest that a damaged microenvironment and dysregulated haematopoiesis 

may lead to the development of de novo primary malignancy such as donor cell leukaemia. 

Herein, the hypothesis is that MSC persist in the BM microenvironment following pre-transplant 

conditioning during HSCT. As a result, different approaches were taken to ascertain and confirm 

a possible BE role for MSC. First, HS-5 cells were treated with two different drugs from two drug 

groups: alkylating agents and topoisomerase inhibitors. Secondly, since MSC can develop 

functional and morphological damage following chemotherapy, the ability of HS-5 cells to recover 

from the effects of chemotherapy was determined. Thirdly, the ability of HS-5 cells to transfer 

these chemotherapy-induced effects to bystander TK6 cells was explored. The duration of these 

CIBE was also explored over a five-day period. Lastly, the changes in miRNAs expression in both 

HS-5 cells and bystander TK6 cells were explored to ascertain if these changes under the direct 

and indirect influence of chemotherapy. Cell viability was determined by trypan blue exclusion 
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assay and AO/PI viability assay whilst DNA damage was ascertained by MN assay. Changes in 

miRNA expression was quantified by microarray analysis and validated by qRT-PCR. 

    4.4.1 Cytotoxicity effect of chemotherapy on HS-5 cells 

Chemotherapy damages the BM microenvironment during HSCT and this has been a challenge in 

the treatment of leukaemia. High-dose chemotherapy has been reported to cause disruption of 

the marrow architecture and loss of stromal compartments (Kemp et al., 2011). Although a 

combination of drugs is used during pre-transplant conditioning, understanding the effects of 

individual drug at clinically relevant dose is important. This study characterizes the effects of 

chemotherapeutic agents used clinically during HSCT on HS-5 stromal cells. 

Firstly, it was demonstrated that all drugs used (chlorambucil, carmustine, etoposide and 

mitoxantrone) induced stromal cell death after an hour and 24 hours respectively. However, the 

cells remained viable and proliferated at a reasonable rate thus suggesting chemotherapy did not 

abrograte their proliferative potential. Several researchers have shown that chemotherapy 

administered to MSC in vitro induce heterogeneous effects on MSC and stromal elements that 

may affect their functionality (Liang et al., 2011; Oliveira et al., 2014; Bosco et al., 2015; Nicolay 

et al., 2016; Bellagamba et al., 2016; Somaiah et al., 2018; Wenk et al., 2018).  Although there is 

little or no evidence in literature about the direct effects of carmustine and chlorambucil on MSC, 

heterogeneous effects of topoisomerase inhibitors on MSC have been reported. Human MSC 

were relatively sensitive to etoposide following 72-hour treatment (Li et al., 2004) whilst MSC 

derived from human adipose tissue was resistant to etoposide (10 µM) after 24-hour treatment 

(Rylova et al., 2012). In addition, BM-derived MSC was resistant to the effects of etoposide whilst 

mitoxantrone was shown not to have an effect on MSC (Mallam et al., 2010; Nicolay et al., 2016). 

Another published report revealed that the resistance to etoposide under clinically relevant 

conditions (0.01 – 100 µM) after 72-hour treatment is associated with an increased level of p53 

expression and unaltered phenotype and differentiation potential in MSC in vitro (Mueller et al., 

2006).  
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Secondly, mitoxantrone was the only drug to achieve this apoptotic effect in a dose-dependent 

manner at both time points. Similar effects were found in dental pulp stem cells, which are a 

valuable source of MSC. Exposure of the cells to lower and higher concentrations of mitoxantrone 

resulted in premature senescence and caspase-mediated apoptosis respectively (Seifrtova et al., 

2013). In addition, Mergenthaler et al., (1987) also revealed that mitoxantrone induce stem cell 

toxicity at low doses (0.075-20 ng/ml) whilst Chow et al., (2002) also exhbitied a dose-effect of 

mitoxantrone (0.05 – 0.50 µg/ml) on stem cells after 24 hours. This further suggests that a dose-

effect relationship in mitoxantrone-induced toxicities may be more damaging to MSC during pre-

transplant conditioning.  

Taken together, these results suggest that MSC respond to a variety of chemotherapeutic drugs 

used in pre-transplant conditioning in different ways. Furthermore, the effects of these 

chemotherapeutic drugs on MSC vary in severity, and may depend on the dosage of the drugs 

used. Nevertheless, the cells remained viable thus suggesting that these cells survive despite 

high-dose chemotherapeutic insult. Although the cellular mechanisms that govern the injured 

state of these stromal cells are not elucidated in this study, it is likely that MSC have the capacity 

to survive and maintain their stem cell character in response to these chemotherapeutic agents. 

Thus, this highlights the importance of assessing the state of the BM microenvironment post-

chemotherapy prior to transplantation. 

    4.4.2 The rate of recovery of HS-5 cells from chemotherapy varies and 

depends on the drug 

The intrinsic recovery of a damaged BM microenvironment is dependent on the stem cell pool, 

which are normally maintained in a quiescent state but are induced into cell cycle to re-establish 

the depleted marrow cavity. Upon depletion, BM partially recover at a fast rate due to MSC that 

undergo differentiation thus enabling them to regenerate or proliferate and self-renew 

(Georgiou et al., 2010). However, severe damage to MSC may be irreversible especially if effected 

at the DNA level, with the ability to re-constitute haematopoiesis being completely recoverable 

in children under the age of four (Galotto et al., 1999; Le Blanc and Ringden, 2005).  To recover 

from the effects of chemotherapy, cells have to grow and overturn toxicity of chemotherapeutic 
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agents. Cells, treated for an hour, recovered from the effects of chlorambucil, carmustine and 

etoposide, with at least 60% cell percentage at doses other than the clinically relevant doses. 

However, the recovery was stunted in cells treated with these drugs after 24 hours, with cell 

percentage ≤ 50%. 

Mitoxantrone was the only drug that maintained its cytotoxic effects at both time points. The 

reason for this is not clear but reports have shown that mitoxantrone is easily absorbed within 

minutes however its distribution half-life is between 0.3 and 50 hours, and its terminal half-life 

varies between 8.9 hours and 9 days (Ehninger et al., 1989; Richard et al., 1992; Canal et al., 

1993). Hence, its stability is probably more of an issue and/or the capacity of HS-5 cells to 

metabolise it, possibly into more metabolites that are toxic. 

Mitoxantrone is activated by hepatic microsomal enzyme, P450 mixed-function oxidase to 

several metabolites, including naphthoquinoxaline that enhance its cytotoxic effect (Mewes et 

al., 1993; Panousis et al., 1995). Interestingly, MSC are metabolically competent and express 

cytochrome P450 enzymes and glutathione transferase enzymes both in vitro and in vivo (Esmaeli 

et al., 2012; Alonso et al., 2015; Larsen et al., 2020). In addition, HS-5 stromal cells are also 

metabolically competent and rely on both glycolysis and mitochondrial phosphorylation for their 

energy supply to modulate the metabolic status of co-cultured cancer cells (Cavnar et al., 2016; 

Vangapandu et al., 2017). These infer that HS-5 cells may have the capacity to metabolise 

mitoxantrone to its metabolites thereby enhancing its effects. 

The results from mitoxantrone in this study correspond to the previous findings of May et al., 

(2018), which revealed that HS-5 cells were sensitive to cyclophosphamide-induced DNA damage 

and this damage persisted in the cells after treatment withdrawal. However, the cells were grown 

in fresh medium and allowed to recover from cyclophosphamide-induced damage for 48 hours 

unlike in this study whereby the cells were allowed to recover for 72 hours. Although 

cyclophosphamide is a bi-functional DNA alkylating agent, it is also a pro-drug just like 

mitoxantrone. Cyclophosphamide can be metabolised by hepatic p450 enzymes to its active and 

inactive compounds (Pinto et al., 2009; Veal et al., 2016). These further infer and support the 

notion that the persistence of the mitoxantrone-induced effects in the stromal cells may be due 
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to presence of metabolic enzymes in the stromal cells, which metabolises mitoxantrone to its 

active metabolites.  

Furthermore, etoposide can also be metabolised by cell oxidases to metabolites such as 

etoposide catechol and quinone (Jacob et al., 2011). These metabolites also enhance the toxicity 

of etoposide thus; this may explain the sustained cytotoxic effect in cells following 24-hour 

treatment with etoposide in this study. These correspond to the previous reports in literature, 

which revealed that human MSC that had been exposed to etoposide, paclitaxel and cytarabine 

in vitro for 72 days failed to recover from drug-induced effects after 9 days (Li et al., 2004). 

However, it is important to note that the dose for etoposide used in this human study (10 mol/L) 

was well in excess of those used in this study (1 µM, 5 µM, 10 µM), with the latter the clinically 

relevant dose. It has also been reported that etoposide can easily be absorbed and distributed 

throughout the body with an elimination half-life of 20 hours to 2 days (Hande et al., 1984; 

Holthuis et al., 1986; Slevin, 1991). These further suggest that these topoisomerase inhibitors 

may persist in the cells thereby sustaining their cytotoxic effects in the HS-5 stromal cells. 

Nevertheless, HS-5 cells recovered from the cytotoxic effects of carmustine in this study at both 

time points. Stability studies of carmustine reveal a very short half-life of about 70 minutes, with 

majority of its metabolites eliminated within 24 hours hence carmustine is often combined with 

other drugs with prolonged elimination half-life such as vincristine to intensify the 

chemotherapeutics effects of carmustine (Kyle et al., 2009; Gerson et al., 2018).  

In this study, HS-5 stromal cells recovered from the effects of low-dose chlorambucil but did not 

recover from the effects of high-dose chlorambucil. Although there is little or no data to support 

the effects of chlorambucil on MSC, chlorambucil that can be metabolised to its active 

metabolite, phenylacetic acid mustard. However, the elimination of half-lives of chlorambucil 

and its metabolite are reported to be 1.5 hours and 2.5 hours respectively (Silvennoinen et al., 

2000; Gerson et al., 2018). This further suggests that the stability of each drug and metabolism 

may play a huge role in the recovery of the stromal cells to these chemotherapeutic effects. This 

is supported by the report that it took 14 days for MSC to achieve full recovery from the cytotoxic 

effects of cisplatin in vitro (Liang et al., 2011). Cisplatin is a cross-linking agent but degrades in a 
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biphasic manner, with an initial half-life of 25–49 minutes and a terminal half-life of 58–73 hours 

thereby accumulating in tissues, with the drug detected up to 6 months after dosage (Gerson et 

al., 2018).   

Therefore, the recovery of HS-5 cells from chemotherapeutic effects may be differential and 

depends on time, stabiliy of each drug and the metabolic properties of these stromal cells thus 

suggesting that MSC uptake drugs and may release them in a time-dependent manner. There is 

good evidence that MSC are capable of releasing drugs in a time-dependent manner in vitro 

(Pessina et al., 2011; Bonomi et al., 2013; Bonomi et al., 2015; Clavreul et al., 2017; Coccè et al., 

2017). The results of this present study suggest that mitoxantrone, etoposide and chlorambucil 

significantly reduced the proliferative potential of MSC following 24-hour treatment and this 

persisted over 3 days. This process may also involve deregulation of gene expression involved in 

the regulation and maintenance of haematopoiesis in the BM microenvironment. The alteration 

of gene expression levels in MSC persisted for a year in AML patients following exposure to pre-

transplant conditioning (Shipounova et al., 2016). As a result, it is reasonable to think that 

chemotherapy treatment could affect the functionality of MSC hence this is a great concern 

during pre-transplant conditioning as these effects may persist in the BM microenvironment and 

subsequently cause irreversible damage that may lead to the development of de novo primary 

malignancy. Nevertheless, it is important to note that the response of HS-5 stromal cells in vitro 

may not be a true representation of their behaviour in vivo and as a consequence, the results 

inferred from this study may be limited. 

    4.4.3 Bystander cells are induced in TK6 cells co-cultured with 

chemotherapy-treated HS-5 cells  

Although the co-injection of donor MSC with HSC enhances the engraftment of HSC in patients, 

haematopoietic recovery and functioning is dependent on the host MSC post-transplantation 

(Ball et al., 2007; Jaganathan et al., 2010). However, the mechanism by which the host MSC 

engineer repopulation and reconstitution of the recipient haematopoietic system post-

transplantation is yet to be understood. Whilst the direct effects of chemotherapeutic agents on 

MSC have been described above, there is a paucity of information about their ability to transfer 
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these chemotherapeutic effects to HSC in bystander co-culture settings. Existing data infer 

conflicting effects of MSC, pre-exposed to chemotherapy, on the response of cancer cells to 

chemotherapy. Various studies have reported the ability of chemotherapy-treated MSC to confer 

protection, from chemotherapy, to leukaemic cells following co-culture via direct cell-cell contact 

and release of soluble factors (Roodhart et al., 2011; Skolekova et al., 2016; Somaiah et al., 2018). 

In contrast, co-culture of cancer cells with MSC primed with chemotherapeutic drugs or their 

conditioned medium enhanced the sensitivity of these cancer cells to chemotherapy (Pessina et 

al., 2011; Bonomi et al., 2015). Both protection and sensitisation to chemotherapy are bystander 

effects as there is communication between the treated cells and neighbouring cells that have not 

been exposed to chemotherapy. The drugs that have been implicated in these effects include 

vincristine, gemcitabine, paclitaxel, cytarabine, daunorubicin, cisplatin and other platinum agents 

such as oxaliplatin and carboplatin. These suggest that the MSC contains cells that may play a 

dual role in controlling drug toxicity in patients’ BM microenvironment. The reason for this 

remains unclear as these studies showed that MSC primed with drugs like paclitaxel, induced 

both increased and decreased drug sensitivity in leukaemia cells. However, it is clear that MSC 

can uptake and release a drug in a timely manner via communication with the neighbouring cells 

that have been unexposed to chemotherapy. Therefore, an important aspect of this study was to 

determine and understand if HS-5 stromal cells exposed to chemotherapeutic drugs could 

transmit toxic signals capable of inducing mutagenic events to bystander TK6 cells.  

Several researchers have reported evidence of CIBE in cells other than MSC such as hepatoma 

carcinoma cells, prostate cancer cells and lung adenocarcinoma cells using drugs such as MMC, 

etoposide, bleomycin, doxorubicin, phleomycin and nitrosureas (Di et al., 2008; Asur et al., 2009; 

Kumari et al., 2009; Chinnadurai et al., 2013; Lin et al., 2017). Traditionally, bystander effects had 

been defined as damage in cells that have not been directly exposed to toxic insult however, 

bystander effects manifested as a wide range of biological endpoints including DNA damage, cell 

death, proliferation and differentiation in these studies. 

Here, the bystander TK6 cells co-cultured with HS-5 cells pre-treated with chlorambucil, 

etoposide and carmustine exhibited an increase in cell number in relation to the control cells at 
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both time points whilst those exposed to HS-5 cells pre-treated with mitoxantrone recorded a 

decrease in cell number. The reason for this variation in CIBE biological endpoints is unknown but 

may depend on the drug properties that contribute to its mechanism of action or MSC responses, 

which may differ and be specific to each drug. The results here are similar to the findings of Kumar 

et al., (2009), which revealed that hepatoma cells treated with mitomycin C transferred cellular 

signals to the naïve hepatoma cells when co-cultured together, thereby inducing cell death in a 

dose-dependent manner by propagation of death ligands such as Fas ligand (FasL) and TRAIL. 

However, mitomycin C-treated cervical cancer cells failed to induce bystander killing in naïve 

cervical cancer cells when co-cultured together instead the cells proliferated at a similar rate as 

the control. This infers that the bystander outcome may be linked to intrinsic factors within the 

bystander cells thus suggesting that these bystander cells may play an important role in CIBE. 

Furthermore, the treatment of B16 melanoma cells, from C57BL6/6J mice, with cystemustine and 

fotemustine induced bystander killing in untreated B16 melanoma cells, unlike in cells pre-

treated with carmustine (Merle et al., 2008). The untreated B16 melanoma cells exposed to cells 

pre-treated with carmustine proliferated at a rate similar to the control, which is similar to the 

findings in this study. The reason for this is unknown but it favours the idea that the drug 

properties may contribute to CIBE outcomes. These drugs belong to the same family, as 

chloroethylnitrosourea whose cellular effects are dependent on DNA alkylation by carbocation 

(chloroethyldiazohydroxide group) and protein carbamylation by the isocyanate group (Merle et 

al., 2008). Carmustine contains two carbocation groups (as seen in figure 1.5) compared to the 

other nitrosourea drugs, which have only one.  

In another study within the research group, carmustine, chlorambucil and etoposide also failed 

to induce bystander killing in AHH-1 lymphoblast cells; mitoxantrone was the only drug to achieve 

bystander killing in these cells, however all four drugs induced bystander killing in TK6 

lymphoblast cells (Kelechi Okeke, personal communication). The reason for this discrepancy in 

the data from this study and theirs could be due to interindividual differences such as consistency 

in pipetting and cell counting. In addition, experimental differences such as duration of cell 

culture and treatment may have played a role. In their study, the stromal cells were treated for 
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an hour and co-cultured with the bystander cells for 24 hours whilst the stromal cells were 

treated for 24 hours and co-cultured with the bystander cells for 24 hours in this study. 

Nevertheless, overall survival is better than for direct treatment in both studies thus suggesting 

that if this is translated to an in vivo setting, most of the cells are surviving whilst showing a 

bystander effect. Several researchers have shown that direct exposure to chemotherapy leads to 

higher cell death compared to bystander cell death (Alexandre et al., 2007; Di et al., 2008; Asur 

et al., 2009; Chinnadurai et al., 2011; Singh et al., 2015; Arora et al., 2018). These also suggest 

that bystander killing depends on the drug and cell type used in the experiment. The differential 

response in the bystander TK6 cells observed with these drugs in this study also suggests that the 

damage to HS-5 cells does not dominantly explain the mechanism at the origin of CIBE.  

The evaluation of cytotoxic as well as genotoxic effects of a chemotherapeutic agent occur 

concomitantly; its cytotoxic evaluation gives information on its lethal and tolerable dose whilst 

the genotoxic evaluation measures a drug’s capacity to induce DNA damage (Shi et al., 2010). In 

this study, the cell viability did not go below 70% in the bystander TK6 cells, which is enough for 

genotoxic assessment according to the OECD guideline (OE CD, 2012), which states that cell 

viability must be at least 50% (± 5%) prior to genotoxic assessment. The good viability in these 

cells infers that the genotoxic events measured in the bystander TK6 cells are real and of great 

concern. Mutagenic events can only be manifested in live cells, so good viability following 

bystander suggests a mechanism by which toxicity of chemotherapeutic agents can be 

potentiated. TK6 cells have been widely used in genotoxicity testing with reported advantages 

such as presence of an active tumour protein (p53) involved in cell cycle regulation (Fowler et al., 

2012; Lorge et al., 2016). This protein acts as a decision maker in recruiting DNA repair proteins 

in genotoxic environments as well as apoptosis in high toxicity. Thus, this explains why TK6 was 

chosen as the bystander cells of choice in this study. 

Genotoxic damage was measured by the MN assay, a standard technique used in genetic 

toxicology studies that is usually reported as the number of cells containing MN per total cells 

counted. MN arise in the cell cytoplasm because of clastogenic (fragmentation or breakage of 

chromosomes or chromatids) or aneugenic (abnormal number of chromosomes) events in cells 
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that fail to be included in the daughter nuclei at the completion of telophase during mitosis 

(Fenech et al., 2011). Data from this study revealed that all drugs induced MN formation in the 

bystander TK6 cells above the untreated control however; mitoxantrone was the only drug that 

caused a significant increase in MN frequency at both time points. Increased MN frequency is 

often evident in cells following exposure to a toxic substance long before clinical symptoms 

appear and is associated with increased risk of cancer development (Pardini et al., 2017; 

Podrimaj-Bytyqi et al., 2018). 

The results from this study are in agreement with the findings of Asur et al., (2009) who were the 

first researchers to use MN frequency as a CIBE endpoint. Naïve human B lymphoblastoid cells 

(GM15036 and GM15510) exposed to medium conditioned by lymphoblastoid cells cultured in 

MMC and phleomycin had 3-4 fold increase in MN frequency hence suggesting that the treated 

cells release soluble factors in the medium capable of inducing bystander effects in the naïve 

cells. In contrast to their model, an in vitro bystander co-culture model was adopted in 

investigating CIBE in bystander TK6 cells in this study. A porous membrane (pore size 0.4 µm) 

separated the cell populations thus allowing the study of cell interaction through direct signalling 

whilst maintaining proper growth and identity of cell types. Similarly, BM MSC, lung 

adenocarcinoma cells, peripheral blood lymphocytes and normal lung fibroblasts co-cultured for 

24 hours with their equivalent cell type that were pre-treated with bleomycin and 

neocarzinostatin for an hour exhibited an increase in MN frequency (Chinnadurai et al., 2011). 

However, a higher magnitude of MN frequency was found in peripheral blood lymphocytes and 

BM MSC. This infers that the MSC and HSC are more susceptible to bystander damage than other 

types of cells. Thus, it is likely that treated stromal compartment in a patient may transfer 

chemotherapeutic effects to incoming cells from a donor following HSCT. 

Furthermore, it is important to note that increased MN frequency can also arise because of long-

term cell culture (Falck et al., 1997). Since the cells were in co-culture for just 24 hours, which is 

enough time for the dividing cells to undergo cell cycle, it negates the idea that the increased MN 

frequency found in this study is because of prolonged cell culture but a true representation of 

the genotoxic effects of the drugs in the bystander cells. It is also negated by comparison with 

untreated controls of the same culture longevity. This further suggests that the genotoxic effects 
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in the bystander TK6 cells may be more deleterious than direct exposure thereby causing 

genomic instability in the progeny, as the cells seem to be viable despite the toxic insult. 

    4.4.4 Damage induced by chemotherapy lasts over 5 days 

Following identification of CIBE with cytotoxic and genotoxic endpoints in the cells by all 

chemotherapeutic agents via co-culture, it became apparent to understand the duration and 

mechanism (section 4.4.5) of CIBE in these cells. Whilst a co-culture system was used to study 

bystander killing and genotoxic events as aforementioend, medium conditioned by treated HS-5 

cells was used to assess the duration of these CIBE. This involves transfer of medium, which 

contains soluble factors released by treated or untreated cells, to bystander cells thereby 

inducing various biological effects such as DNA damage, cell death, proliferation and 

differentiation (Asur et al., 2009; Skolekova et al., 2016). Previously, it has been shown that 

medium conditioned by untreated HS-5 cells was capable of inducing resistance to 

chemotherapeutic agents, in cancer cells (Weisberg et al., 2008; Zhang et al., 2010; Furukwa et 

al., 2017; Huang et al., 2017).  

Therefore, medium conditioned by HS-5 cells treated with the four chemotherapeutic agents was 

used to culture bystander TK6 cells for 24 hours and this process was repeated for 5 days to 

assess any cellular changes. Patients are usually given 2-3 days to recover from the therapeutic 

effects of pre-transplant conditioning prior to HSCT, however 5 days was chosen for this 

experiment as this is suggested to be the maximum time that patients could safely be without a 

transplant. It has been argued that washing of cells after drug exposure is unlikely to remove 

drug completely from the medium and vital components such as serum, glutamine and glucose 

may be depleted in conditioned medium. As a result, the conditioned medium was filtered twice 

with 0.22 µm filters in order to remove any cell debris and remnant of the drugs. It has been  

previously suggested that the filter material, filter pore size and filter surface area can affect drug 

clearance (Monaghan and Acierno, 2011).  

Interestingly, mitoxantrone was the only drug that maintained its cytotoxic effects in the 

bystander TK6 cells from day 1-5 whilst etoposide initially reduced the viability of the bystander 
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TK6 cells on day 1 but recovered on day 2 and maintained this viability for the remainder of the 

study. However, these results (section 4.3.2.3) are similar to the results observed herein in the 

bystander in vitro co-culture model in which fresh medium was used to culture the cells following 

drug exposure. This further agrees with the findings of Kelechi Okeke (personal communication), 

which showed that increased MN frequency was similarly recorded in the bystander TK6 cells 

following co-culture and conditioned medium experiments with treated HS-5 cells. Collectively, 

the results herein support the idea that drug-treated HS-5 cells retain the effects of the 

chemotherapeutic agents and subsequently release bystander signals in the medium that are 

capable of inducing cellular changes in the bystander TK6 cells. This infers that the bystander 

signals released by the treated cells into the conditioned medium is stable over a period of five 

days. 

However, it is important to note that there are little data available on the longevity of CIBE. In 

fact, the longevity of CIBE has only been explored within our research group. The first evidence 

of CIBE longevity experiments used cell number and MN as cytotoxic and genotoxic endpoints 

respectively (Kelechi Okeke, personal communication). Data from their study revealed that HS-5 

cells treated with chlorambucil, carmustine, etoposide and mitoxantrone induced an increase in 

MN frequency in bystander TK6 cells over 5 days. Furthermore, the cell number of the bystander 

cells relative to the control was also reduced to 60% over a five-day period in all drugs used. In 

this study, only cytotoxic endpoint (cell number) was explored in the longevity study. The 

cytotoxicity results with mitoxantrone are similar to the findings from the previous report; 

mitoxantrone-induced bystander killing herein also lasted for five days. However, their findings 

with the other drugs contradict the results in this study; the bystander cells exposed to medium 

conditioned by HS-5 cells treated with chlorambucil, carmustine and etoposide proliferated at a 

similar rate to the control cells. The reason for this discrepancy could be due to differences in 

experimental factors as the methods from both studies differ. The longevity experiment herein 

was done using conditioned medium from treated HS-5 cells whilst theirs was performed in a co-

culture system. This suggests that CM produces less of a CIBE and that a short-lived signal or 

messenger is released from the cells, which may have been lost when the CM was harvested after 

24 hours however in their study, the bystander cells were constantly exposed to this signal thus 
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explaining why there was a higher bystander killing in their study. The propagation of bystander 

signals has also been reported to be dependent on the number of cells present at the time of 

exposure (Lyng et al., 2002). However, the number of HS-5 cells (1 x 105 cells/cm2) and TK-6 cells 

(5 x 105 cells/ml) used in this study corresponds to the same number used in their study as well. 

This further infers that the stability of the released factors is the main issue. 

Furthermore, previous duration studies have been focused on the propagation of RIBE signals. In 

1997, normal human lung fibroblasts treated with low irradiation α-particles induced SCE that 

persisted in bystander cells. The conditioned medium from normal human lung fibroblasts 

treated with low irradiation α-particles was frozen at – 20oC for 16 hours, then thawed and 

transferred onto unirradiated cells and incubated for an additional 24 hours (Lehnert and 

Godwin, 1997). This suggests that these bystander signals are stable at low temperature, can 

survive freeze-thaw and is heat-labile. In a similar fashion, fractionated irradiation induced DNA 

hypomethylation in bystander spleen in vivo, which lasted for 14 days however this prolonged 

signal transduction was not recorded with acute radiation instead DNA hypomethylation was 

found in bystander spleen up to 6 hours (Baskur, 2010). These support the previous findings in 

the 70s, which revealed that plasma of atomic bomb victims induced chromosomal breaks in 

their normal leukocyte cultures 31 years later (Pant and Kamada, 1977). These explain why it has 

been proposed that RIBE signals are capable of inducing genomic instability that persists from 

generation to generation. It also supports the fact that it is not just about mutated stem cells in 

exposed individuals – the affected progeny can induce bystander effects as well. 

However, the mechanisms of RIBE and CIBE may differ so care should be taken whilst comparing 

data from these studies. Variation in the response to chemotherapeutic drugs by HS-5 cells and 

bystander TK6 cells suggests that CIBE is dependent on the chemotherapeutic agent used and 

the nature of the cells involved. Furthermore, the persistence of CIBE over five days negates the 

idea that the suggested 5-day ‘recovery’ period possible in clinical settings during HSCT is actually 

a safe window. However, further studies need to be developed and performed to fully 

understand if the viability of the cells coincides with the genotoxic effects in the bystander cells 

over a long period. Where genotoxic events persist, the functionality/viability of the cells should 

also be assessed longterm. The drugs used in this study are part of intensive chemotherapy 
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regimens used clinically in the treatment of leukaemia and lymphoma (Hecker et al., 2018; Wang 

et al., 2018; Okay et al., 2019). These cancers have since been linked to the development of DCL 

in patients months or years after undergoing HSCT (Shiozaki et al., 2014; Bobadilla-Morales et 

al., 2015; Gabay et al., 2020). Therefore, the limited evidence from this data should be further 

explored, and with a bigger range of drugs to show which may be or are not safe during pre-

transplant conditioning. This should help clinicians to make an informed decision about the 

therapies given to patients during pre-transplant conditioning thus ensuring preference is given 

to drugs that can induce little or no CIBE in order to reduce the risk of patients developing a 

second malignancy. 

    4.4.5 Differential miRNA expression in HS-5 and TK6 cells 

In this study, it has been shown that CIBE signalling can be propagated via two distinct systems 

involving the use of culture medium: co-culture and medium transfer so it is suggestive that these 

bystander signals are medium-borne however direct cell-cell signalling whilst in contact cannot 

be ruled out. These medium-borne bystander signals may be soluble signalling molecules such as 

cytokines, which have previously been implicated in CIBE (Demidem et al., 2006; Asur et al., 2009; 

Pessina et al., 2013; Skolekova et al., 2016; Somaiah et al., 2018). Interestingly, this increased 

expression of cytokines in MSC following chemotherapy coincided with altered expression of 

different genes including VEGFA, BRCA1, MYC, NOTCH and NME1 that have been implicated in 

the development and progression of cancers (Devereux et al., 1999; Zhang et al., 2018). In 

addition, a recent review by Garavelli et al., (2018) illustrated that there appears to be a 

bidirectional relationship between cytokines and miRNAs. 

Therefore, this evidence suggests that CIBE may be epigenetically mediated. Epigenetic changes 

are alterations in gene expression that include RNA-associated silencing, DNA methylation and 

histone modification. To investigate the possibility that CIBE is epigenetically mediated, the 

differential expression of miRNAs in the treated HS-5 cells as well as bystander TK6 cells was 

explored. However, the microarray experiment of miRNAs expression in bystander TK6 cells after 

exposure to treated HS-5 cells was first investigated to identify candidate miRNA(s) of interest as 

this is the first time the possibility of involvement of miRNA in CIBE has been explored. Whilst we 
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might infer that upregulation of miRNAs that might then be transported to the bystander cells 

seems like a reasonable premise for CIBE, observations from literature (Chaudhry and 

Omaruddin, 2011; Xu et al., 2014) showed that simply being vastly upregulated in the treated 

cells does not guarantee transfer via medium – instead the transport appears to be selective. 

Thus, in order not to miss a possible candidate for bystander by only focusing on those highly 

upregulated in HS-5 cells, instead candidates were looked for as upregulated miRNAs in 

bystander cells, assuming that an increase may result from trafficked signalling molecules. 

Previously, a range of investigations have revealed the involvement of miRNAs in the propagation 

of RIBE signals via medium to bystander cells. Kortubash et al., (2007), who reported deregulation 

of miR-194 in the bystander spleen, did the first study involving miRNAs in RIBE. There were also 

alterations in the microRNAome in bystander spleen following exposure to irradiated cells 

(Kortubash et al., 2008; Kortubash et al., 2010). However, the most common miRNA that has 

been reported in RIBE studies is miR-21; its deregulated expression coincided with the 

deregulation of tumour growth factor beta (TGF-β) and release of ROS (Chaudhry and 

Omaruddin, 2011; Xu et al., 2014; Jiang et al., 2014; Yin et al., 2015). In addition, increased 

expression of miR-663 led to the downregulation of TGF-β in bystander HeLa cells (Hu et al., 

2015). 

In the current study, microarray analysis of miRNA expression revealed that hsa-miR-21 was also 

upregulated in bystander TK6 cells by 1.54 folds. Of the total 84 miRNAs in the PCR array, nine 

other highly expressed miRNAs that were upregulated by at least 1.50 folds were hsa-miR-155-

5p, hsa-miR-30d-5p, hsa-miR-20a-5p, hsa-miR-16-5p, hsa-miR-17-5p, hsa-miR-30e-5p, hsa-miR-

103a-5p, hsa-miR-29a-3p, and hsa-miR-320a-5p. However, their expressions were not 

statistically significant. Furthermore, the expression of hsa-miR-200c-3p was downregulated by 

(-6.20 folds) in this study but its expression was also statistically insignificant. These contrast the 

findings of Chaudhry and Omaruddin (2011), which revealed that the expression of hsa-miR-155-

5p and hsa-miR-16-5p were downregulated in bystander non-irradiated cervical cancer cells 

whilst hsa-miR-17-5p was only upregulated for a short period.  
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In practice, many researchers use array experiments as an indicator and then confirm with qRT-

PCR however, these were repeated three times and the data from various arrays integrated to 

ensure more robust data or outcome. Whilst microarrays are the most logical method for 

identifying which miRNAs are being expressed, qRT-PCR is often used to validate those results 

(Camarillo et al., 2011). Therefore, in order to validate this result, miRNAs that were upregulated 

by at least 1.50 folds were compared against their respective p-values to identify those that were 

close to statistical significance. The rationale behind this is that one would expect that CIBE 

signals to be propagated by miRNAs that are upregulated rather than downregulated in the 

treated stromal cells and transferred to the bystander cells. However, a large downregulation of 

hsa-miR-200c-3p does beg the question that removal of a miRNA could equally change the 

bystander cell’s functionality. As a result, hsa-miR-30d-5p, hsa-miR-20a-5p, hsa-miR-146a-5p, 

hsa-miR-16-5p, hsa-miR-17-5p and hsa-miR-20a-5p were chosen as upregulated candidates, 

whereas hsa-miR-200c-3p was chosen as the only downregulated miRNA. However, further 

differential expression of miRNAs in the treated HS-5 cells and bystander TK6 cells revealed that 

hsa-miR-146a-5p, hsa-miR-16-5p, hsa-miR-20a-5p and hsa-miR-17-5p were all upregulated in the 

treated cells but repressed in the bystander cells. This infers that the modulation of these miRNAs 

might have a role in the response of bystander cells after chemotherapy. These results are similar 

to the findings of Chaudhry and Omaruddin (2011), which revealed that miRNAs that were 

upregulated in irradiated TK6 cells were downregulated in non-irradiated TK6 cells. These further 

highlight that there may be selectivity in the trafficking of miRNAs from cell to cell irrespective of 

the amount produced. This is supported by recent findings by Skopelitis et al., (2018), which 

revealed that the trafficking of miRNAs from cell to cell is a regulated process via a gating 

mechanism polarised at defined cell-to-cell interfaces, and these gatekeepers generate 

selectivity in long distance trafficking. Furthermore, the differential miRNA expression in the 

bystander cells could be due to several possible reasons such as increase in the activity of 

transcription factors, cytokine signalling pathways or induction of ROS from the medium.  

Since there’s limited data about CIBE, the mechanisms of RIBE and CIBE may differ, however, the 

results herein imply that cellular modulation of miRNA expression occur following exposure to 

chemotherapeutic agents, and could be responsible for large-scale gene expression alterations 
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thereby highlighting a role in regulating drug response. There is a consensus that miRNAs play an 

important role in pharmacogenomics through the regulation of specific genes that many drugs 

require to function (Hummel et al., 2010; Rukov et al., 2013; Kortubash et al., 2015; Awan et al., 

2017; Han et al., 2017). As a result, these differential changes in the miRNA profiles may mediate 

regulatory changes leading to the induction of non-targeted cellular effects in the bystander cells 

that may cause them to transit from healthy cell to disease cell. 

Furthermore, the reason for the discrepancy in the microarray qRT-PCR data and differential 

miRNA qRT-PCR data is unknown however this may be due to lower expression (<2 folds) of these 

miRNAs in the bystander cells thus suggesting the greater sensitivity of qRT-PCR in identifiying 

these miRNAs at lower expression levels. There is evidence in literature that there is considerable 

variability between the two assay platforms at lower expression levels of miRNAs (Ach et al., 

2008; Chen et al., 2009; Camarillo et al., 2011). Nevertheless, these miRNAs may be involved in 

the intercellular signalling pathway between treated HS-5 cells and bystander TK6 cells. In order 

to evaluate the potential role of these differentially expressed miRNAs, their target genes were 

predicted bioinformatically and their biological functions and gene ontology were determined. 

Results from the bioinformatics study herein revealed that pathways involved in various signal 

transductions such as VEGF signalling pathway, MAPK signalling pathway, NF-Kβ signalling 

pathway, cytokine-mediated signalling pathway, protein phosphorylation, myD88 signalling 

pathway and toll like receptor signalling pathway were all enriched pathways for the target genes 

of the differentially expressed miRNAs. All these pathways are known to be involved in cellular 

communication and immunomodulatory processes (Osaki and Gama, 2013; Deguine and Barton, 

2014; Wu et al., 2018). Alterations of these signalling pathways have also been associated with 

carcinogenesis (Sever and Brugge, 2015; Wu et al., 2018). Mutations of the MAPK and myD88 

signalling pathway genes are found in leukaemia cases whilst leukaemia patients have been 

shown to have a significantly higher level of VEGF, an important mediator of angiogenesis, in 

their blood (Pasmat et al., 2015; Improgo et al., 2018; Song et al., 2020). myD88 is crucial in innate 

immunity especially in toll like receptor signalling and interleukin-1 signalling (Improgo et al., 

2018). In addititon, interleukin-21 activates the Raf-ERK-MAPK and Jak/STAT signalling pathways 

and promotes apoptosis and chemotaxis in leukaemia cells by promoting differential expression 
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of many cytokines (Faqua et al., 2020). Furthermore, NF-κB controls different biological processes 

by switching on and off genes; however its activity in AML is altered thus enabling leukaemia cells 

to proliferate and evade apoptosis (Zhou et al., 2015). 

Furthermore, other dominant categories enriched by predicted genes were related to cell 

division and survival such as transcription factors, cell cycle, cell proliferation, mitochondria 

degradation, autophagy, cell shape and cellular response to hypoxia and mechanical stress. These 

infer that genes belonging to signalling pathways associated with cell cycle, DNA damage and 

DNA repair may be potentiated by CIBE and may have a driving effect on the cells thereby 

determining their fate (Koussounadis et al., 2014; Foukakis et al., 2018). Therefore, these 

immune-related and cell-survival signalling factors may predict the development of a second 

malignancy in the bystander cells following CIBE.  

Alterations in the expression of these miRNAs have also been associated with leukaemia. The 

miR-17-92 cluster (hsa-miR-17-5p & hsa-miR-20-5p) are well known proto-oncogenes that 

regulate different cellular processes that promote carcingogenesis (Fang et al., 2017). The miR-

17-92 cluster has been reported to be involved in CLL, MLL, philadelphia-positive leukaemia and 

diffuse large B-cell lymphoma (Bo et al., 2015; Mian and Zeleznik-Le, 2016; Spagnuolo et al., 

2019). In contrast, hsa-miR-16-5p and hsa-miR-200c-3p both act as tumour suppressor genes that 

affect cell proliferation, division and apoptosis, and are commonly downregulated in leukaemia 

cases (Filip et al., 2017; Sun et al., 2019; Casabonne et al., 2020). The expression of hsa-miR-146a-

5p and hsa-miR-30d-5p, which are regulated by the NF-κB pathway and c-Myc transcription 

factors, is also downregulated in leukaemia and lymphoma respectively (Carvalho de Oliveira et 

al., 2018; Zhou et al., 2018). 

Collectively, these results suggest that miRNA profiles in treated and bystander cells are altered 

and may have a role in regulating their response to chemotherapy. However, if these miRNAs are 

released into the medium by treated HS-5 cells then there must be a transport pathway for these 

miRNAs to be internalized by the bystander cells. It is noteworthy to mention that this is the first 

exploration of miRNA involvement in CIBE so this may serve as an insight into this field. This may 
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be a complex process hence there is need to develop and perform more studies to further 

elucidate a detailed understanding of miRNAs function in the mechanism of CIBE.  

4.5 Summary 

This chapter has focused on the chemotherapeutic effects of drugs used in pre-transplant 

conditioning on HS-5 cells and the ability of these treated HS-5 cells to transfer these drug-

induced effects to the bystander TK6 cells. The BM microenvironment is extraordinarily 

heterogeneous and the cells that inhabit the BM microenvironment are expected to experience 

an array of microenvironmental cues following pre-transplant conditioning, which may in turn 

translate to several genotypic and physiological manifestations in these cells. There is a great 

deal of evidence that points to MSC as a major regulator of tumour development and 

progression, are exposed to pre-transplant conditioning during HSCT. Here, the HS-5 cells 

revealed a variation in response to some of the chemotherapeutic agents used during pre-

transplant conditioning. Although HS-5 cells recovered from the chemotherapeutic effects of 

some of the drugs, the effects of mitoxantrone persisted in the HS-5 cells even after 72 hours. 

The results herein show that MSC are exposed to what is happening around in the BM 

microenvironment and are bathed in chemotherapy thus these drugs may compromise their 

functionality. In addition, MSC may also influence incoming cells from the donor, which have not 

been exposed to these chemotherapeutic effects, the way we haven’t expected by releasing 

bystander signals that may cause cell death or genotoxic events in these incoming cells upon 

uptake. Therefore, it is important for clinicians to evaluate these chemotherapeutic agents whilst 

deciding the appropriate therapy for patients. Since not all patients develop DCL, it is also 

important for clinicians to review patient/donor-derived issues for influences on response to 

chemotherapy and/or CIBE. 

Following exposure to chemotherapeutic drugs, the profile of HS-5 cells secretome influenced 

cytotoxic, proliferative and genotoxic changes in the bystander TK6 cells with mitoxantrone 

having the biggest cytotoxic and genotoxic effects in the bystander cells over five days. Therefore, 

these suggest that the profile of HS-5 secretome changes following chemotherapy and may be 

released into the medium to cause these CIBE in bystander TK6 cells following uptake. These 
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medium-borne factors could be chemokines or cytokines that coincide with dysregulation of 

miRNA expression profiles in the treated HS-5 cells and bystander TK6 cells. Differential 

expression of miRNAs, RNA-associated molecules that induce epigenetic changes, in the treated 

HS-5 cells and bystander TK6 cells revealed that upregulated miRNAs in the treated cells such as 

hsa-miR-146a-5p, hsa-miR-16-5p, hsa-miR-30d-5p and hsa-miR-17-5p were repressed in the 

bystander cells. Whilst hsa-miR-17-5p acts as proto-oncogene, other miRNAs act as tumour 

suppressors in leukaemia and control target genes that are involved in different cellular 

processes such as apoptosis, proliferation, differentiation and cell division. In addition, the 

predicted target genes of these miRNAs were genes of different signalling pathways thus 

suggesting that these miRNAs may control the fate of these cells. Therefore, it can be suggested 

that if these miRNAs are differentially expressed in these cells hence there may be a vehicle, via 

medium, for these miRNAs to be transported to the bystander cells. Further investigation and 

profiling of the HS-5 secretome (Chapter 5) released into the medium during co-culture with 

bystander TK6 cells has to be done to fully understand the extent of miRNA involvement in the 

mechanism of CIBE.  
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5.0 The possible role of sEVs in chemotherapy-induced 

bystander effect 

5.1 Introduction 

Cells can communicate with each other through the transfer of a range of molecules including 

cytokines, chemokines, miRNA, mRNA and proteins that are released into extracellular 

compartments such as serum, plasma, saliva, milk and urine. These molecules are usually 

packaged into lipid-bilayered EVs, which renders them more stable at different pH and 

temperature, and protect them from RNAse degradation (Chen et al., 2008).  

It has been established that radiotherapy induces cells to release EVs into the extracellular milieu 

both in vivo and in vitro following treatment (Song et al., 2016; Cai et al., 2017; Szatmari et al., 

2017; Schoefinius et al., 2017). However, there is limited evidence of the ability of 

chemotherapeutic drugs to induce EVs secretion and release by cells in vivo and in vitro (Pascucci 

et al., 2014; Lin et al., 2017; Samuel et al., 2017; Bandari et al., 2018; Keklikoglou et al., 2019). 

Some of the drugs that have been able to induce this biological effect include cisplatin, etoposide, 

and paclitaxel with varying phenotypic changes and altered biological processes in the bystander 

cells when these EVs are engulfed by these cells. However, EVs produced by cells differ and 

depend on the secreting cell, hence the fate and functions of these EVs are different. Their 

function depends on their cargo of nucleic acids, proteins and lipids, which may or may not reflect 

the composition of the secreting cells and the molecular processes taking place inside these cells 

(Ludwig et al., 2019; Ortega et al., 2019). Nevertheless, EVs must be taken up by the recipient 

cells to carry out their functions. However, there is selectivity in uptake of these EVs’ contents by 

the recipient cells in vitro (Qiu et al., 2018; Sancho-Alberto et al., 2019; Zhang et al., 2019). The 

recipient cells internalise these EVs via different pathways such as endocytosis and fusion 

however, the mechanism of uptake is unclear and usually depends on the recipient cells (Horibe 

et al., 2018; Durak-Kozica et al., 2018).  
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Recently, EVs have been shown to be important bioactive components of the MSC secretome. 

However, the secretion of EVs by MSC in vitro depends on cell culture parameters such as cell 

passage number and cell seeding density (Patel et al., 2017). MSC-derived EVs can induce 

biological effects including adipogenesis, angiogenesis, apoptosis and proteolysis in recipient 

cells (Chulpanova et al., 2018). MSC-derived EVs also induce HSC development, BM 

microenvironment and immune system functions (Cominal et al., 2019). However, the effects of 

MSC-derived EVs depend on their miRNA signature profiles, which regulate the expression of 

different target genes and influence various cell-signalling processes. In 2016, De Luca et al., 

showed that BM-MSC and UBC CD34+ stem cells can communicate via EVs-derived miRNAs during 

HSCT thereby modifying gene expression and altering biological functions of the recipient cells. 

These predicted target genes participate in the regulation of haematopoiesis and are associated 

with the inhibition of the Wnt/β-catenin signalling pathway (Xie et al., 2016). 

Therefore, MSC-EVs-mediated transfer of miRNAs is an area of active research. Several research 

studies have reported that MSC-EVs possess the ability to induce therapeutic effects in the heart, 

liver and brain via the transfer of miRNAs (Wang et al., 2015; Xin et al., 2017; Chen et al., 2018). 

However, there is a lack of consensus miRNA profile on MSC-EVs and their principal target genes 

due to heterogeneity in culture conditions, cell status, cell origin and methodology (Qiu et al., 

2018). Nevertheless, this may suggest that individual miRNAs combine synergistically to induce 

the effects of MSC-EVs.  

Consequently, it is important to understand the crosstalk between HS-5 cells and bystander TK6 

cells as a model of HSCT, and explore if the CIBE is mediated by HS-5 cells-derived EVs as it has 

been shown that MSC and HSC can communicate via EVs-derived miRNAs during HSCT. This may 

explain why differential miRNA profile signatures were found in HS-5 cells and bystander TK6 

cells (section 4.3.3.4). This chapter explored the release of EVs by HS-5 cells and the investigation 

of the cargo of these EVs to check if they contain miRNAs that are capable of inducing CIBE in the 

bystander TK6 cells. In addition, the ability of the bystander TK6 cells to internalise these HS-5-

derived EVs as well as the effects of HS-5-derived EVs on bystander TK6 cells were further 

assessed. Cell death and DNA damage were also assessed as bystander endpoints. DNA damage 
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was assessed using the MN assay whilst cell death was measured based on the trypan blue 

exclusion dye assay.   

5.2 Methods 

      5.2.1 Release of sEVs following chemotherapy 

HS-5 (1x106) cells were treated with clinically relevant doses of carmustine, chlorambucil, 

etoposide and mitoxantrone for an hour. Afterwards, cells were treated as described in section 

2.14 and stained with potassium permanganate in 0.1M phosphate buffer pH 6.5 and Reynold’s 

lead citrate (1963). Samples were observed using a Phillips CM10 transmission electron 

microscope with a Gatan Orius SC 100 charge coupled device camera (model 832) operating at 

60kV. 

5.2.2 Isolation of sEVs 

HS-5 cells were treated with mitoxantrone for 24 hours. Afterwards, CM from the treated cells 

were prepared and collected as discussed in section 2.13.1. CM was then used as the starting 

material to isolate sEVs by two methods (ExoQuick precipitation method and SEC) discussed in 

section 2.15. Following successful isolation of these vesicles, the vesicles were characterised by 

TEM and NTA as illustrated in section 2.16. The protein levels in the vesicles were estimated by 

BCA and/or Bradford assay as illustrated in section 2.16.3. 

5.2.3 Uptake of sEVs  

The vesicles isolated from treated HS-5 cells were labelled with two separate dyes, Exo-Glow-

Membrane and Exo-Glow-RNA that specifically label the membrane and RNA of these vesicles as 

mentioned in section 2.19. Inhibition of the uptake of these sEVs was also done using heparin as 

described in section 2.19.4. Afterwards, the cells were analysed under a confocal microscope as 

described in section 2.19.3. 

  



154 
 

5.2.4 The effect of GW4869 on HS-5 cells and CIBE 

HS-5 cells were treated with increasing doses of GW4869 (5µ, 10µ, 20µ) dissolved in DMSO as 

discussed in section 2.17 to determine if GW4869 has any anti-growth effect on these cells. 

DMSO was used as the vehicle control. Afterwards, cells were pre-treated with GW4869 before 

exposure to drugs for 24 hours as described in section 2.18. These treated HS-5 cells were then 

co-cultured with TK6 cells as discussed in section 2.12, the TK6 cells were harvested 24 hours 

later and the cell viability and genotoxicity determined as illustrated in sections 2.10 and 2.11 

respectivley. 

     5.2.5 The effect of sEVs on TK6 cells 

sEVs isolated from treated HS-5 cells (section 2.15) were used to co-culture TK6 cells in the 

presence  or absence of heparin as described in section 2.20 to determine if this inhibitor will 

ameliorate any vesicular effect on the cells. TK6 cells were then harvested and analysed for cell 

viability (section 2.10) and genotoxicity (section 2.11).  

     5.2.6 The effect of sEVs on mitoxantrone-induced cytotoxicity 

As described in section 2.21, TK6 cells were pre-treated with sEVs isolated from treated HS-5 cells 

prior to exposure to mitoxantrone 24 hours later to determine if sEVs will have any effect on 

mitoxantrone-induced cytotoxicity in these cells. At the same time, heparin was used to inhibit 

sEVs uptake by the cells before exposure to mitoxantrone for 24 hours. Cell viability was 

determined by Trypan Blue assay (section 2.10) whilst genotoxicity was determined by MN assay 

(section 2.11). 

     5.2.7 The effect of sEVs on cell cycle  

As previously discussed in section 2.29, TK6 cells were exposed to sEVs from treated HS-5 cells in 

the presence or absence of heparin. Next, the cells were either treated with mitoxantrone (as 

discussed in section 2.21) or left untreated. The cells were harvested a day later and cell cycle 

was determined by flow cytometry (section 2.29). TK6 cells exposed to mitoxantrone were used 
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as positive control whilst TK6 cells treated with PBS and untreated cells were used as negative 

controls. 

         5.2.8 Extraction of RNA from extracellular components 

The extracellular components in this study, CM and sEVs were collected as previously described 

in sections 2.13.1 and 2.15 respectively. RNA was collected from these extracellular components 

and sEVs-depleted FBS, which served as the negative control as described in section 2.22. The 

purity and integrity of these RNA molecules were determined as described in sections 2.23 and 

2.24 respectively. 

     5.2.9 Detection of miRNAs in extracellular components  

The RNA from these extracellular components were converted to cDNA as discussed in section 

2.25. The cDNA was then used to determine the levels of the candidate miRNAs previously 

mentioned in section 4.3.3, by qRT-PCR discussed in section 2.28. Small nuclear RNAs, SNORD61 

and RNU6B/RNU6-2 were used as endogenous controls whilst miR-cel-39 was used as a spike-in 

control.  

5.3 Results 

      5.3.1 HS-5 cells release small extracellular vesicles following 

chemotherapy 

The role of EVs in intercellular communication between HS-5 cells and bystander TK6 cells was 

assessed. As previously described in section 2.14, HS-5 cells were treated with drugs for an hour, 

washed and appropriately prepared for observation under the transmission electron microscope. 

Untreated HS-5 cells shed small extracellular vesicles (sEVs), which appeared to be in clusters 

(figure 5.1) however, the vesicles seemed low in number. In addition, the sizes of the sEVs 

appeared to be uniform in contrast to the sEVs released by the cells following treatment with 

alkylating agents (figure 5.2). Vesicles released by chlorambucil-treated HS-5 cells were packaged 
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in a sac-like body whilst vesicles released by carmustine-treated HS-5 cells were of varying sizes, 

which highlights the heterogeneous nature of EVs. This suggests that these vesicles may be 

exosomes (≤ 200 nm) and microvesicles (≤ 500 nm). Similarly, cells treated with topoisomerase 

inhibitors, etoposide and mitoxantrone shed many sEVs in cocoon-like and arm-like structures 

respectively (figure 5.3). Nevertheless, there are clear protruberances from each of the drug 

treated but not the untreated cells. In addition, the cells seem to release more sEVs under drug-

induced stress in comparison to the untreated cells. The sEVs released by alkylating agents also 

appear to be smaller structures compared to those released by topoisomerase inhibitors.  
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Figure 5.1 HS-5 cells release small extracellular vesicles without induction of chemotherapy. Vesiculation (indicted by blue arrow) was observed in cells before 

treatment with drugs but they were not in abundance. Scale bar, 500 nm.



158 
 

A      B  

Figure 5.2 HS-5 cells release small extracellular vesicles following treatment with alkylating agents.  (A) Transmission electron micrographs of cells exposed to 

chlorambucil (40 μM) after exposure for an hour. The small extracellular vesicles are packaged in a sac-like body (indicated by blue arrow) awaiting release to 

the extracellular milieu following fusion of the multivesicular body and the plasma membrane. (B) Transmission electron micrographs of cells treated with 

carmustine (10 μg/ml) after exposure for an hour. Intense shedding of extracellular vesicles of varying sizes (indicated by blue and orange arrows) occurred after 

an hour exposure to carmustine. Scale bar, 500 nm. 
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A   B  

Figure 5.3 HS-5 cells release small extracellular vesicles following treatment with topoisomerase inhibitors. (A) Transmission electron micrographs of cells 

treated with etoposide (10 μM) after exposure for an hour. The small extracellular vesicles are released into the extracellular milieu in a cocoon-like structure 

(indicated by blue arrow). (B) Transmission electron micrographs of cells exposed to mitoxantrone (500 ng/ml) after exposure for an hour. Vesicles (indicated by 

blue arrow) are shed in an arm-like structure. Scale bar, 500 nm. 
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5.3.2 Characterization of sEVs released by HS-5 cells 

      5.3.2.1 Transmission electron microscopy 

Next, vesicles were isolated from HS-5 cells with and without mitoxantrone treatment by SEC and 

ExoQuick precipitation methods as described in section 2.15. Transmission electron micrographs 

of sEVs from untreated and treated cells are shown in figure 5.4 and figure 5.5 respectively. There 

was no difference in the appearance of the vesicles isolated from the untreated and treated cells. 

The morphology and structure of the vesicles were consistent with the particulate structure 

proposed by ISEV. From the figures, it can be seen that the vesicles have a spherical shape. All 

vesicular particles had a bilayer structure and were around 30 – 100 nm in diameter, which is the 

typical size range for exosomes. Larger vesicles (˃ 100 nm) could also be detected (see appendix). 

This supports the data in figures 5.2 and 5.3 above, which revealed heterogeneity in the sizes of 

vesicles released by treated cells. Size distribution of these vesicles was determined and 

confirmed by NTA (section 5.4.2). Based on the different isolation procedures employed in this 

study and the vesicle characteristics, the vesicles used for subsequent analyses were termed sEVs 

although the preparation also contained larger vesicles.  
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A  B  

Figure 5.4 Transmission electron micrographs of sEVs isolated from untreated HS-5 cells. sEVs isolated from untreated HS-5 cells by size exclusion column 

chromatography (A) and ExoQuick Precipitation kit (B) are exhibited. Particles with bilayer structure and of the correct size (30 -100 nm) were observed. Scale 

bars: 50 nm (A); 100 nm (B). 
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A  B  

Figure 5.5 Transmission electron micrographs of sEVs isolated from mitoxantrone-treated HS-5 cells. sEVs isolated from untreated HS-5 cells by size exclusion 

column chromatography (A) and ExoQuick Precipitation kit (B) are exhibited. Heterogeneity in the size of the sEVs (30 -100 nm) was observed. Scale bar, 100 nm.
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5.3.2.2 Sizing and quantification of sEVs 

Sizing and quantification of the sEVs were performed with the NanoSight LM10 instrument and 

analysed with NTA as previously described in section 2.16. The results are shown in figures 5.6A 

(size distribution) and 5.6B (particle concentration) respectively. All sEVs recovered by both 

isolation protocols were smaller than 300 nm, most of them being in the range of 120 – 250 nm. 

This agrees with what can be seen visually in figures 5.1 – 5.5 thus suggesting that the size of sEVs 

released by both untreated and treated HS-5 cells was ≤ 500 nm. However, when the sizes of the 

sEVs were compared between the isolation protocols, the vesicles isolated with ExoQuick reagent 

were smaller than those isolated with SEC and this was statistically significant (control: 128 nm 

vs 205 nm p < 0.0001; treated: 129 nm vs 221 nm p < 0.0001). 

In addition, both protocols ensured that a significant number of sEVs was recovered however, 

the ExoQuick reagent method recovered more sEVs in higher yields compared to SEC (control: 

6.01 x 109 vs 1.89 x 109 p = 0.0015; treated: 7.41 x 109 vs 0.8 x 109 p < 0.0001). Interestingly, more 

sEVs were recovered from the treated cells via the reagent method in comparison to the 

untreated cells. This is in line with the data from the transmission electron micrographs, which 

seemed that cells release more vesicles under drug-induced stress. However, it is in contrast to 

results from the SEC method in which more vesicles were recovered from untreated cells than 

treated cells. The reason for this discrepancy in vesicle yield between these two isolation 

methods may also be due to the co-isolation of non-vesicular aggregates of the same size. 

The quantification of sEVs is commonly done using particle concentration and protein 

concentration. In the SEC method, vesicle recovery is done in fractions 1-9 however, fractions 1-

6 often contain contaminants that may skew further experiments. Therefore, only contents of 

fractions 7-9 were quantified to determine the fraction that produced the most significant 

number of sEVs (figure 5.6C) and how pure these sEVs were (figure 5.6D). The data show that 

fraction 8 produced the most abundant sEVs in the untreated cells (3.47 x 109) followed by 

fraction 9 (1.32 x 109). This difference in particle yield in the untreated cells was statistically 

significant (fraction 8 v fraction 7 p = 0.0035; fraction 8 vs fraction 9 p = 0.0122). However, there 

was no difference in particle yield between the fractions in treated cells. Furthermore, when the 
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fractions of the untreated cells was compared to the fractions of the treated cells, only fraction 

8 proved to be statistically significant (untreated vs treated p = 0.0043).  

The protein concentrations in these fractions were quantified to ensure accurate sEVs 

quantification as soluble proteins could be co-isolated with sEVs and thence interfere with 

downstream experiments. In the control cohort, fractions 7 and 9 contained about 7.83 µg/ml 

and 7.94 µg/ml of protein respectively compared to fraction 8 that was found to have about 4.87 

µg/ml of protein. However, when the treated cohort was assessed, fraction 8 had the highest 

amount of proteins in the sEVs yield (5.26 µg/ml) followed by fraction 9 (3.90 µg/ml) and fraction 

7 (1.06 µg/ml). Interestingly, there was no statistical significant difference found between these 

fractions in the control and treated cohorts due to high variability in outcomes as evidenced by 

the error bars. 

Furthermore, the ratio of particle to protein concentration can also be used to assess the co-

isolation of protein contaminants and thence determine the purity of sEVs. Overall, significant 

differences in this ratio was found between the two sEVs isolation methods (ExoQuick and SEC) 

in both the untreated (P = 0.0177) and treated cells (P = 0.0318) (figure 5.7). SEC-isolated sEVs 

showed a higher ratio than those from ExoQuick (control - SEC vs ExoQuick: 8.63 vs. 7.34; Treated 

- SEC vs ExoQuick: 8.44 vs. 7.48) indicating the less soluble protein contaminants and highest 

purity. This also suggests that large number of protein aggregates may contribute to the high 

sEVs counts in ExoQuick-isolated sEVs particles. Therefore, the SEC-isolated sEVs were used in 

downstream assays to ensure that experimental data was not skewed. 
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Figure 5.6 Quantification of sEVs by nanoparticle tracking analysis (NTA). (A) Size distribution of sEVs isolated from untreated and mitoxantrone-

treated HS-5 cells by size exclusion column chromatography (SEC) and ExoQuick Precipitation kit. SEC-isolated sEVs were larger in size than the 

ExoQuick-isolated sEVs. (B) Particle concentration of sEVs isolated from untreated and mitoxantrone-treated HS-5 cells by SEC and ExoQuick. 

Vesicles release was more abundant using ExoQuick than SEC. (C) Particle concentration of SEC fractions. Fraction 8 produced more abundant sEVs 

than the other fractions. (D) Protein concentration of SEC fractions. Fractions 7 and 9 elutes had more proteins compared to fraction 8. Statistical 

significance was done using the student t-test (A and B) and two-way ANOVA (C and D) (* p<0.05 ** p<0.01; *** p<0.001 ****p<0.0001).
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Figure 5.7 Purity of sEVs isolated by SEC and ExoQuick methods. The ratio of particles to protein [log 

(particles/protein)] was significantly higher for SEC than for ExoQuick. Statistical significance was done using the 

Student t-test (* p<0.05). 

 

5.3.3 Bystander TK6 cells uptake HS-5-derived sEVs  

Following the isolation and characterization of sEVs, the ability of the bystander cells to uptake 

these sEVs was investigated as illustrated in section 2.19. The fluorescent dyes used to track  sEVs 

were Exo-Glow-membrane and Exo-Glow-RNA, red and green fluorescent dyes that are 

commercially available and specifically label SEVs with intact membranes and RNA cargo 

respectively. The labelled sEVs were incubated with the bystander cells and following incubation, 

the bystander cells were stained with a fluorescent dye, DiO (green) or DiL (red), that stain the 

phospholipids on the membrane of the cells.  



167 
 

After 3 hours, there was evidence of sEVs’ uptake by the cells as visualised by confocal  

microscopy. The sEVs’ membrane (red) can be seen on the membrane of the cells (green) as 

illustrated in figure 5.8. However, it wasn’t clear if the sEVs expel their contents into the cells 

following adherence to the cell membrane. As a result, a time lapse experiment was done over 

12 hours to investigate the fate of the sEVs following fusion to the membrane of the bystander 

cells. As shown in figure 5.9, the fusion of the sEVs to the membrane of the cells was evident 

after 1 hour whilst internalization of the sEVs seems to have taken place after 3 hours. The 

internalization process seems to be complete within 6-12 hours of incubation. This indicates that 

sEV uptake may be a time-dependent process and may involve interaction between substances 

found on the surface of the membrane of the bystander cells and sEVs.  

To confirm that sEVs release their contents into the bystander cells following uptake, the cells 

were incubated with sEVs’ with labelled RNA for 3 hours. The results show that sEVs’ RNA are 

endocytosed into the cells. This indicates that the sEVs are internalised into the cells and once 

internalised, sEVs release their cargo into the cells (figure 5.10). It is important to mention that 

unbound dye label was removed to ensure that the fluorescence of cells and sEVs seen in this 

study was specific to the cells and sEVs and not due to the incorporation of free dye into the cells 

or sEVs. 
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Figure 5.8 Confocal images showing that SEVs’ (orange arrow) fuse to the DiO-labelled membrane of the bystander cells (green arrow) via substances found on 

their membranes. Control contains cells only. Magnification, 20X. Scale bar, 20 µm. 

 

 

 

 

Control 
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Figure 5.9 Confocal microscopy uptake analysis of sEVs. DiO-labelled bystander cells (green arrow) were incubated in the presence of Exo-Glow membrane 

labelled sEVs (orange arrow) for 12 hours. Confocal images were taken at 0-12 hours at magnification 20X. Scale bar, 20 µm. 

0 hour  3 hours 

6 hours 9 hours 12 hours 
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Figure 5.10 Confocal microscopy of the release of RNA cargo of sEVs following uptake by bystander cells. Representative micrographs of the labelled RNA of sEVs 

(green arrow) inside the cells (orange arrow). Control contains cells only. Original magnification, 20X. Scale bar, 20 µm.  

 

 

 

Control 
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Next, the ability of heparin to inhibit this uptake of sEVs by TK6 bystander cells was investigated. 

Heparin is an anti-coagulant that prevents the formation of blood clots. As described in section 

2.19.4, sEVs were labelled and incubated with heparin for 30 minutes prior to co-culture with 

bystander cells for 3 hours. Results show that heparin inhibited the fusion of the sEVs, via their 

membrane, to the cells (figure 5.11A/B) and this resulted in the inability of the sEVs to release 

their RNA cargo into the cells (figure 5.11C/D). This further suggests that incorporation of sEVs 

and the release of their cargo into the recipient cells may depend on the successful fusion of 

these vesicles to the membrane of the recipient cells. 
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A    B    

C   D  

Figure 5.11 Confocal images showing heparin inhibiting the fusion of sEVs to the bystander cells via their membranes (A-B) and the subsequent release of sEVs’ 

RNA into cells (C-D). In A and B, green arrow represents the cells whilst orange arrow represents the sEVs. In C and D, micrograhs illustrate the labelled RNA of 

sEVs (green arrow) on the outside or periphery of the cells (orange arrow). Original magnification, 20X. Scale bar, 20 µm       
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5.3.4 The effect of GW4869 on chemotherapy-induced 

bystander effects 

Since the results have supported that sEVs secreted and released by HS-5 cells exposed to 

chemotherapy are taken up by the bystander TK6 cells; next the ability of GW4869 to inhibit the 

secretion and release of sEVs by HS-5 cells was explored. GW4869 is a neutral sphingomyelinase 

inhibitor that blocks the secretion of sEVs by inhibiting the ceramide-mediated inward budding 

of MVBs and the subsequent release of mature sEVs from MVBs (Essandoh et al., 2015).  

      5.3.4.1 GW4689 is cytotoxic to HS-5 cells  

As described in section 2.17, HS-5 cells were first treated with increasing doses of GW4869 (5 

µm, 10 µm, 20 µm) for 24 hours to determine if the inhibitor has a possible cytotoxic effect on 

the cells. Cell viability was measured by trypan blue exclusion dye assay and acridine 

orange/propidium iodide assay. Untreated cells and cells treated with DMSO (solution used to 

dissolve GW4869) were used as negative and vehicle controls respectively. 

As illustrated in figure 5.12, the results showed that cell viability was similar in cells treated with 

DMSO, non-treated group and cells treated with 5 µm. However, cell viability decreased as the 

dose of GW4869 was increased to 10 µM (untreated cells vs 10 µM p = 0.0064; cells + DMSO vs 

10 µM p= 0.0243) and 20 µM (untreated cells vs 20 µM p < 0.0001; cells + DMSO vs 10 µM p < 

0.0001). This suggests that GW4869 has a cytotoxic effect on HS-5 cells in a dose-dependent 

manner. Since GW4869 had little or no effect on the cells at 5 µm, this dose was chosen to drive 

the project forward as it is possible that GW4869-induced cytoxicity in HS-5 cells may alter the 

cargo of the sEVs.  
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Figure 5.12 GW4869 has a cytotoxic effect on HS-5 cells at high concentrations. Cells were treated with three 

different doses of GW4869 (5 μM, 10 μM and 20 μM) for 24 hours. GW869 has a cytotoxic effect on the cells in a 

dose dependent manner. Statistical significance was done using the ANOVA for one-way factorial design (* p<0.05; 

** p<0.01; ****p<0.0001). 

 

      5.3.4.2 GW4869 has no effect on chemotherapy-induced bystander 

effects 

Next, the effect of GW4869 on CIBE was investigated as described in section 2.18 to ascertain if 

blocking the secretion and subsequent release of sEVs by HS-5 cells will ameliorate the BE in 

bystander TK6 cells. HS-5 cells were pre-treated with GW4869 (5 µM) for 24 hours prior to 24-

hour chemotherapy treatment [CHL (40 µM), CAR (10 µg/ml), ETO (10 µM) and MTX (500 ng/ml)]. 

Afterwards, cells were co-cultured with bystander TK6 cells divided by a culture insert for 24 
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hours. TK6 cells were then harvested and analysed for cell death and genotoxicity via trypan blue 

exclusion assay and MN assay respectively. 

The bystander TK6 cells maintained a good viability percentage of more than 90% in all drugs 

used in the absence of GW4689 except mitoxantrone (Figure 5.13). Mitoxantrone induced a 

reduction in cell number of the bystander cells relative to the control to 67.4% and this was 

statistically significant (p = 0.0311). This is supported by the findings in figure 4.3, which revealed 

an increase in cell number of bystander TK6 cells upon exposure to HS-5 cells treated with 

chlorambucil, carmustine and etoposide whilst mitoxantrone induced a reduction in cell number. 

Similarly, when the cells were exposed to HS-5 cells treated with drugs in the presence of 

GW4689, mitoxantrone induced a reduction in cell number to 62.4% (p = 0.0147) whilst number 

of cells exposed to carmustine, chlorambucil and etoposide-treated HS-5 cells did not subceed 

89%. 

Furthermore, mitoxantrone also induced the highest number of micronuclei formed in bystander 

TK6 cells (Figure 5.13). In cells exposed to drugs in the absence of GW4869, mitoxantrone induced 

the formation of 103 micronuclei. When compared to the control (cells only) and control + 

GW4869, the difference was statistically significant (p = 0.0012 vs p = 0.0009). However, when 

the cells were exposed to mitoxantrone in the presence of GW4869, the number of micronuclei 

formed in the bystander cells reduced to 86. The difference was also statistically significant when 

compared to the control (p = 0.0211) and control + GW4869 (p = 0.0152).  

Collectively, these suggest that there is no difference in cytotoxic and genotoxic outcomes in 

bystander TK6 cells exposed to HS-5 cells treated with only drugs and HS-5 cells treated with 

drugs and GW4869. Nevertheless, it is important to note that whilst it is not significant, there is 

definitely in a decrease in MN with GW4869 especially in the mitoxantrone cohort. Therefore, it 

can be inferred from the data that whilst GW4869 does not remove CIBE, sEVs may play a 

contributory role to CIBE.
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Figure 5.13 GW4869 does not have an effect on chemotherapy-induced bystander effect. A. Cell viability of bystander TK6 cells exposed to HS-5 cells that were 

pre-treated with drugs in the presence or absence of 5 µM GW4869. B. Micronuclei formed in the bystander TK6 cells exposed to HS-5 that were pre-treated 

with drugs in the presence or absence of 5 µM GW4869. Statistical significance was done using the ANOVA for one-way factorial design (* p<0.05; ** p<0.01; 

*** p<0.001). 
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   5.3.5 sEVs induce a cytotoxic effect on TK6 cells that is ameliorated by 

heparin  

In order to determine if sEVs from cellular communication are responsible for CIBE, TK6 cells 

were directly exposed to sEVs secreted from mitoxantrone-treated HS-5 cells for 24 hours as 

described in section 2.20. Prior to that, TK6 cells were pre-treated with or without heparin as it 

has been shown, in figure 5.11, to inhibit the uptake of sEVs by recipient TK6 cells. Afterwards, 

the total cell count relative to the control was determined to ascertain any cytotoxic effect on 

the cells.  

As illustrated in figure 5.14, sEVs-derived from mitoxantrone-treated HS-5 cells induced a 

cytotoxic effect in the cells, reducing the relative cell count to 89.8% however when heparin was 

added to the cells, the relative cell count increased to 108.5%. In addition, heparin also increased 

the relative cell count of TK6 cells exposed to sEVs isolated from untreated HS-5 cells from 

100.73% to 114.63%. However, when these were compared, there was statistical significant 

difference in the relative cell count of TK6 cells exposed to untreated HS-5-derived sEVs and 

treated HS-5-derived sEVs (p = 0.0154). Therefore, these infer that heparin may enhance the 

growth of TK6 cells by inhibiting the fusion and uptake of these sEVs by TK6 cells. However, this 

further suggests that heparin may abrogate the ability of mitoxantrone-treated sEVs to mediate 

cytotoxic effects in the TK6 cells.  

Furthermore, sEVs-derived from mitoxantrone-treated HS-5 cells caused an increase in the 

number of MN formed in the cells (74) but this number was drastically reduced to 17.75 upon 

addition of heparin. In addition, heparin also decreased the number of MN observed in TK6 cells 

exposed to sEVs isolated from untreated HS-5 cells from 62.75 to 16.75. When the different set 

of cells were compared, there was statistical significant difference in the number of MN formed 

in TK6 cells exposed to the sEVs with and without heparin (p < 0.0001). These further infer that 

heparin may reduce DNA damage in these cells by enhancing their growth. 
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Figure 5.14 Small extracellular vesicles derived from mitoxantrone-treated HS-5 cells cause cytotoxic effects in 

TK6 cells. TK6 cells were treated with PBS (control), sEVs from mitoxantrone-treated cells or sEVs from untreated 

HS-5 cells with or without pre-treatment with heparin to inhibit sEVs uptake; 24 hours later, cells were harvested 

and relative cell count assessed (A) whilst DNA damage was assessed by counting the number of MN formed in these 

cells (B). Statistical significance was done using the ANOVA for one-way factorial design (* p<0.05; **** p<0.0001). 

 

   5.3.6 Exposure of cells to sEVs protects them from the effects of 

chemotherapy  

Next, TK6 cells, directly treated with sEVs, were exposed to chemotherapy to investigate if these 

vesicles could modulate their response to chemotherapy. As described in section 2.21, TK6 cells 

that had been exposed to sEVs derived from mitoxantrone-treated and untreated HS-5 cells with 

or without pre-treatment with heparin, were treated with mitoxantrone for 24 hours. The 

relative cell count was determined afterwards. 

As illustrated in figure 5.15, TK6 cells that were pre-treated with sEVs-derived from 

mitoxantrone-treated HS-5 cells were more resistant to mitoxantrone compared to the cells pre-
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treated with PBS or untreated sEVs. This protective effect was decreased when the cells were 

pre-treated with heparin to inhibit the uptake of the sEVs. However, this difference was not 

statistically significant. Furthermore, there was an increase in the number of MN formed in these 

cells exposed to these sEVs upon addition of heparin. When compared to the control, there was 

no statistically significant difference between the MN formed in the control and cells exposed to 

sEVs. This infers that simple pre-treatment with sEVs is enough to be protective to mitoxantrone 

whilst heparin promotes the genotoxicity of mitoxantrone.  

Cell
s +

 PBS

Cell
s +

 PBS + Hep
ari

n

Cell
s +

 Untre
ate

d HS-5 
sE

Vs

Cell
s +

 Untre
ate

d HS-5 
sE

Vs+
 Hep

ari
n

Cell
s +

 Trea
ted

 HS-5 
sE

Vs

Cell
s +

 Trea
ted

 HS-5 
sE

Vs+
 Hep

ari
n

0

50

100

150

R
el

at
iv

e 
ce

ll 
co

un
t (

%
 o

f c
on

tro
l)

Cell
s +

 PBS

Cell
s +

 PBS + Hep
ari

n

Cell
s +

 Untre
ate

d HS-5 
sE

Vs

Cell
s +

 Untre
ate

d HS-5 
sE

Vs +
 Hep

ari
n

Cell
s +

 Trea
ted

 HS-5 
(M

TX) s
EVs

Cell
s +

 Trea
ted

 HS-5 
(M

TX) s
EVs +

 Hep
ari

n
0

100

200

300

Av
er

ag
e 

M
N 

sc
or

ed
 p

er
 2

00
0 

ce
lls

* ** *

BA

 

Figure 5.15 Small extracellular vesicles derived from mitoxantrone-treated HS-5 cells enhance survival of TK6 cells 

from the effects of chemotherapy. TK6 cells were treated with PBS (control), sEVs from mitoxantrone-treated cells 

or sEVs from untreated HS-5 cells with or without pre-treatment with heparin to inhibit sEVs uptake; 24 hours later, 

cells were further treated with mitoxantrone (500 ng/ml) for another 24 hours. Cells were then harvested and 

viability assessed (A). DNA damage was also assessed by counting the number of MN formed in these cells (B). 

Statistical significance was done using the ANOVA for one-way factorial design (* p<0.05; ** p<0.01). 

Taken together, the results suggest that the treatment of cells with sEVs derived from 

mitoxantrone-treated HS-5 cells enhances their survival following mitoxantrone treatment. This 
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triggers an adaptive response in the cells that help them to resist and withstand the effects of 

mitoxantrone. However, the cells retain genotoxic effects of mitoxantrone (DNA damage), which 

may be detrimental to their long-term survival and may lead to the development of malignancy 

in these cells. 

     5.3.7 sEVs do not have an effect on TK6 cell cycle  

As shown in section 4.3.3.3, the findings from the bioinformatics analysis revealed that cell cycle 

is one the biological processes regulated by the chosen miRNAs. Therefore, cell cycle analysis in 

TK6 cells was performed to further study whether the cell cycle of TK6 cells was affected by sEVs. 

TK6 cells were treated with sEVs derived from untreated and mitoxantrone-treated HS-5 cells for 

24 hours. Prior to that, TK6 cells were pre-treated with or without heparin for 30 minutes. Cells 

were prepared as previously described in section 2.29 and cell cycle analysis by flow cytometry 

was performed. The cell cycle distribution was determined by flow cytometry with PI staining 

method. The flow cytometry analysis was done in duplicates and repeated at least three times. 

As shown in figure 5.16, the results demonstrated that there was an evidence of cell death (13% 

in sub G1 phase) in cells that were treated with mitoxantrone alone, which served as the positive 

control. Aneuploidy was also found in the cells thus inferring that chemotherapy can cause 

chromosomal instability in these cells (data not shown, see appendix). This is in contrast to the 

untreated cells and cells treated with PBS (negative controls), which had less than 1% of the cells 

in sub G1 phase. Instead, the majority of the cells were in G0/G1 phase (69% vs 66%). In addition, 

the cells were also diploid thus suggesting that the cells had undergone one cell cycle. Similarly, 

cells treated with sEVs derived from untreated and mitoxantrone-treated HS-5 cells were mainly 

in G0/G1 phase (69% vs 67%). There was no statistical significant difference between any of them. 

However, the cells treated with sEVs from mitoxantrone-treated HS-5 cells were aneuploid thus 

inferring that these vesicles induce stress of some sort in these cells. 

When the cells were pre-treated with heparin, the percentage of the cells in G0/G1 phase 

reduced to 53.7 % vs 53.2% in cells treated with sEVs derived from untreated and mitoxantrone-

treated HS-5 cells respectively. In addition, the cells were found to be diploid. Similar cell 

percentages and diploidy were also observed in the negative controls (54% vs 53.2%). There was 
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no statistical significant difference between any of them. The return of the number of 

chromosomes in these cells from aneuploidy to diploidy as well as the reduction in percentage 

of the cells in different phases of cell cycle upon heparin treatment further suggest that heparin 

may have the capacity to alter the cell cycle of TK6 cells.  

Taken together, these results suggest that sEVs do not affect cell cycle, as the percentage cells 

treated with sEVs in each phase of cell cycle was similar to the control. However, the amelioration 

of uncontrolled chromosome content in these cells following exposure to heparin thus further 

suggests that DNA damage may be sustained in these cells due to uncontrolled cycling. The 

regulation of the G0/G1 and G2/M phase checkpoints are necessary to prevent uncontrolled 

cycling and proliferation that may lead to tumorigenesis.  



182 
 

Figure 5.16 Effect of sEVs on cell cycle distribution in the presence and absence of heparin. TK6 cells were treated with sEVs derived from untreated and 

mitoxantrone-treated HS-5 cells for 24 hours without (A) and with (B) pre-treatment with heparin (10 µg/ml) for 30 minutes. Statistical significance was done 

using the ANOVA for two-way factorial design. 
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Next, cell cycle analysis was investigated in TK6 cells following treatment with chemotherapy. 

TK6 cells, directly treated with sEVs, were exposed to chemotherapy and analysed by flow 

cytometry to investigate if these vesicles are capable of altering the cell cycle of these cells. As 

described in section 2.21, bystander TK6 cells that had been exposed to sEVs derived from 

mitoxantrone-treated and untreated HS-5 cells were then treated with mitoxantrone for 24 

hours. Flow cytometry analysis was performed by PI staining. 

As illustrated in figure 5.17, the negative controls (untreated cells and cells treated with PBS) 

maintained a similar cell percentage as observed in figure 5.16. The majority of the cells were in 

G0/G1 phase (64% vs 64%) compared to the cells that were treated with mitoxantrone only and 

cells treated with sEVs. The percentage of cells in G0/G1 phase in these cells were 44%. These 

results also show that a percentage of these cells were in sub G1 phase as well. In addition, 

aneuploidy was found in these cells (cells treated with only mitoxantrone, cells treated with sEVs 

derived from untreated HS-5 cells and cells treated with sEVs derived from mitoxantrone-treated 

HS-5 cells) thus inferring chromosomal instability. 

Taken together, the results suggest that sEVs appear to potentiate the cytotoxic effects of 

mitoxantrone and are equally the same as the positive control in G0/G1 phase. This is in contrast 

to the findings in section 5.6.4, which revealed that exposure to sEVs enhanced an adaptive 

response, in the cells, to mitoxantrone. Nevertheless, these data infer that although pre-

exposure of cells to sEVs before treatment with mitoxantrone did not lead to a block in cell cycle 

at any of the cell cycle checkpoints or confer proliferative advantage to the cells, the cells may 

recover from the brink of cell death and undergo autonomous proliferation in a compensatory 

growth mechanism. In addition, mitoxantrone is considered cell cycle nonspecific however, the 

data herein infer that mitoxantrone may cause cell cycle arrest in G0/G1 phase in TK6 cells.  
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Figure 5.17 The combined effect of sEVs and mitoxantrone on cell cycle distribution. Bystander TK6 cells were 

treated with sEVs derived from untreated and mitoxantrone-treated HS-5 cells for 24 hours and then exposed to 

mitoxantrone (500 ng/ml) for 24 hours. Statistical significance was done using the ANOVA for two-way factorial 

design (* p<0.05; *** p<0.001; **** p<0.0001). 

 

    5.3.8 sEVs have an effect on the miRNA expression levels in TK6 cells 

Next, the miRNA levels in TK6 cells following co-culture with sEVs was investigated. TK6 cells were 

co-cultured with HS-5-derived sEVs with or without pre-treatment with heparin as reported in 

section 2.21. RNA was isolated from the cells 24 hours later, and converted to cDNA. The cDNA 

was then relatively analysed with qRT-PCR to identify any changes in individual miRNA expression 

levels in these samples. The levels of candidate miRNAs (hsa-miR-146a-5p, hsa-miR-16-5p, hsa-

miR-20a-5p, hsa-miR-30d-5p, hsa-miR-17-5p, and hsa-miR-200c-3p), chosen in section 4.3.3, 

were quantitatively measured by qRT-PCR as described in section 2.28. It is important to highlight 
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that the levels of these candidate miRNAs were upregulated in the bystander TK6 cells except 

hsa-miR-200c-3p, which was downregulated. 

As depicted in figure 5.18, TK6 cells showed the presence of all miRNAs analysed in varying 

amounts. The levels of hsa-miR-146a-5p, hsa-miR-16-5p and hsa-miR-17-5p and hsa-miR-20a-5p 

were similar in TK6 cells treated with sEVs derived from untreated HS-5 cells and control (TK6 

cells + PBS). However, when compared to cells treated with sEVs derived from mitoxantrone-

treated HS-5 cells, the expression levels of these miRNAs - hsa-miR-146a-5p (33.80), hsa-miR-16-

5p (31.28), hsa-miR-17-5p (30.60) and hsa-miR-20a-5p (31.26) were reduced. 

The most abundant miRNA was hsa-miR-30d-5p, which had the lowest Ct value in all three 

samples – TK6 cells treated with sEVs derived from untreated HS-5 cells (27.26), TK6 cells treated 

with sEVs derived from mitoxantrone-treated HS-5 cells (27.76) and control (26.59). The second 

most abundant miRNA was hsa-miR-17-5p, which had Ct values of 28.00 and 30.60 in TK6 cells 

treated with sEVs derived from untreated and mitoxantrone-treated HS-5 cells respectively. 

However, its expression was higher in control with a Ct value of 27.49. 

In addition, when the expression levels of these candidate miRNAs were compared between the 

cells treated with sEVs and the control, results show that the expression levels of these miRNAs 

were downregulated in cells treated with sEVs-derived from untreated HS-5 cells and sEVs-

derived from mitoxantrone-treated HS-5 cells (figure 5.18B). When the expression levels of these 

miRNAs in these cells treated with sEVs were compared, data show that these miRNAs were 

further downregulated in the cells co-cultured with sEVs derived from mitoxantrone-treated HS-

5 cells. This difference between the expression levels of these miRNAs in these two sets of cells 

was statistically significant (p < 0.0001). These data infer that sEVs can modulate the expression 

levels of these miRNAs in TK6 cells upon uptake.  

Furthermore, when cells were pre-treated with heparin (figure 5.19), the expression level of hsa-

miR-30d-5p in TK6 cells treated with sEVs-derived from mitoxantrone-treated HS-5 cells was 

reduced with a Ct value of 30.38 compared to control (27.99) and TK6 cells treated with sEVs 

derived from untreated HS-5 cells (27.99). When the expression level of hsa-miR-30d-5p was 

compared between the cells treated with sEVs and the control, results (figure 5.19B) show that 
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this miRNA was upregulated (1.61 folds) in cells treated with sEVs-derived from untreated HS-5 

cells but downregulated (0.35 fold)  in cells treated with sEVs-derived from mitoxantrone-treated 

HS-5 cells. This difference between the expression levels of these miRNAs in these two sets of 

cells was statistically significant (p < 0.0001). These data suggest that heparin has an effect on 

the expression levels of miRNAs. It can be inferred from the data tha the inhibition of sEVs’ uptake 

by heparin causes an increase in the expression levels of miRNAs. However, it is important to 

mention that only one candidate miRNA was assessed due to financial constraints. SNORD61 and 

RNU6B/RNU6-2 were used as normalisers in both sets of experiments whilst hsa-miR-150-5p, 

which has been previously shown to have low expression level in TK6 cells (section 4.3.3), was 

used as negative control. 

Collectively, these results suggest that sEVs can alter the expression levels of miRNAs in TK6 cells 

upon uptake. However, heparin-induced blockade of sEVs uptake led to an increase in the 

expression levels of these miRNAs in TK6 cells.   
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Figure 5.18 sEVs modulate miRNA expression in TK6 cells. TK6 cells were co-cultured with sEVs derived from untreated and mitoxantrone-treated HS-5 cells. 

RNA was isolated from the cells 24 hours later and analysed by qRT-PCR. Individual miRNA expression levels (A) and fold change (B) of six candidate miRNAs are 

shown. RNU6B/RNU6-2 and SNORD61 were used as normalisers whilst miR-150-5p was used as a negative control. Statistical significance was done using the 

ANOVA for two-way factorial design (**** p<0.0001). 
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 Figure 5.19 Heparin causes an increase in the expression levels of miRNA in TK6 cells. TK6 cells, pre-treated with heparin, were co-cultured with sEVs derived 

from untreated and mitoxantrone-treated HS-5 cells. RNA was isolated 24 hours later from the cells and analysed by qRT-PCR. The expression level of one miRNA 

(hsa-miR-30d-5p) is shown. RNU6B/RNU6-2 and SNORD61 were used as normalisers whilst miR-150-5p was used as a negative control. Statistical significance 

was performed by unpaired Student t-test (**** p<0.0001). 
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5.3.9 MiRNA trafficking to bystander TK6 cells 

Previous results have shown that miRNA expression differ between HS-5 cells and bystander TK6 

cells (section 4.3.3.4) and that sEVs, derived from HS-5 cells, release their cargo (RNA) into 

bystander cells (section 5.5). To test the transfer of these miRNAs via sEVs, the levels of miRNAs 

in sEVs and CM was explored. CM and sEVs samples were prepared as described in sections 2.22.2 

and 2.22.3 respectively. RNA, extracted from these samples, was converted to cDNA as previously 

stated in section 2.25 and quantitatively analysed as directed in section 2.28. 

       5.3.9.1 RNA quality and yield   

To assess the RNA yield of sEVs and CM, total RNA was analysed spectrophotometrically with the 

NanoDrop to obtain the concentration, yield and purity. It is important to note that extraction of 

RNA from the sEVs-depleted FBS, which was used to culture the cells, was also done. As 

illustrated in table 5.1, CM of untreated cells and CM of treated cells produced similar RNA 

amount and yield however, the amount of RNA produced by sEVs-depleted FBS was drastically 

reduced (7.98 ± 0.49 ng/µL). RNA concentration from CM of untreated cells was 28.99 ± 6.29 

ng/µL whilst the concentration of RNA from CM of treated cells was 25.13 ± 8.34 ng/µL (figure 

5.20). However, there was no statistical significant difference in the concentration of RNA 

isolated from CM of untreated and treated cells. The purity of the samples (OD at 260/280) were 

all within the range of 2.1 and 2.3.  

Taken together, the results infer that RNA can be successfully isolated from cell-conditioned 

media and FBS in an in vitro setting. Successful RNA isolation is a prerequisite for expression 

analyses of secreted miRNAs. However, the reduced RNA constituent ratio in these samples 

suggests that although RNA are abundantly present in cells, some of these RNA may be present 

in extracellular samples or biological fluid such as cell-conditioned media and FBS but in minute 

amounts. Nevertheless, it is noteworthy to mention that cell-conditioned media containing all 

factors secreted by untreated and treated HS-5 cells, including EVs, were harvested and used in 

this study.  
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For sEVs, the RNA concentration and yield between the samples are illustrated in table 5.2. The 

sEVs extracted from both untreated and mitoxantrone-treated HS-5 cells produced a very small 

amount of RNA. However, there appears to be a slight difference between them. The 

concentration of RNA isolated from the treated sample was more (25.1 ± 6.54 ng/µL) than 

untreated samples (10.6 ± 0.56 ng/µL) but this difference was not statistically significant (figure 

5.21; p = 0.146). RNA yield in sEVs-derived from treated HS-5 cells was also similar to the RNA 

yield in CM from untreated and treated cells illustrated in figure 5.21. Furthermore, the purity of 

the samples (OD at 260/280) were all within the range of 1.74 and 2.89, which is deviant from 

the accepted value of 2.0. These results further suggest that RNA isolated from extracellular 

samples are often depleted when compared to RNA isolated intercellularly. These data also 

support the data in figure 5.10 thus inferring that RNA is packaged into sEVs released by HS-5 

cells. 

 

Table 5.1 Summary of RNA isolated from conditioned medium and sEVs-depleted FBS  

Conditioned medium of untreated and treated HS-5 cells were used. RNA concentration and RNA yield and RNA 

purity were evaluated spectrophotometrically at the absorbance 230, 260 and 280 nm. *OD, Optical density. 

 

Samples RNA concentration 

(ng/µl) 

RNA yield OD (260/280) OD (260/230) 

Untreated CM            16.897       1013.82  2.220 0.075 
           43.311       2598.66  2.337 0.286 
           26.746       1604.76  2.144 0.109 

Treated CM            44.067       2644.02 2.381 0.083 
           22.292       1337.52 2.121 0.206 
             9.047         542.82 2.245 0.104 

sEVs-depleted FBS              7.930         475.80 2.248 0.139 
             9.047         542.82 2.245 0.104 
             6.974         418.44 2.146 0.079 
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Figure 5.20 Concentration of RNA extracted from conditioned medium of untreated and mitoxantrone-treated 

HS-5 cells, and sEVs-depleted FBS used in cell culture. Data show mean values with standard deviation of the mean. 

Statistical significance was performed using the ANOVA for one-way factorial design. 

 

Table 5.2 Summary of RNA isolated from sEVs extracted from HS-5 cells 

 

 

 

 

 

 

 

RNA concentration and RNA yield and RNA purity were evaluated spectrophotometrically at the absorbance 230, 

260 and 280 nm. *OD, Optical density. 

 

Samples RNA concentration 

(ng/µl) 

RNA yield OD (260/280) OD (260/230) 

Untreated sEVs               11.9           714         2.43        0.03 
                9.6           576         2.16        0.02 
              10.3           618         2.24        0.09 

Mitoxantrone-

treated sEVs 
              24.3         1458                2.93        0.04 
              39.3         1768.5         2.89        0.04 

        11.6           696   1.74  0.13 
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Figure 5.21 Concentration of RNA extracted from sEVs isolated from untreated and mitoxantrone-treated HS-5 

cells. Data show mean values with standard error of the mean. Statistics was performed by unpaired student’s t-

test.  

 

      5.3.9.2 miRNAs are detected in cell-conditioned medium, sEVs and 

sEVs-depleted FBS  

To determine the presence of miRNAs in CM, sEVs and sEVs-depleted FBS, RNA isolated from 

these samples were converted to cDNA (section 2.25). The levels of candidate miRNAs (hsa-miR-

146a-5p, hsa-miR-16-5p, hsa-miR-20a-5p, hsa-miR-30d-5p, hsa-miR-17-5p, and hsa-miR-200c-

3p), chosen in section 4.3.3, were quantitatively measured by qRT-PCR as described in section 

2.28. It is important to highlight that the levels of these candidate miRNAs were upregulated in 

the bystander TK6 cells except hsa-miR-200c-3p, which was downregulated. These miRNA 

expression levels in CM, sEVs and sEV-depleted FBS were simultaneously analysed. The rationale 

behind this is to determine if treated HS-5 cells release miRNAs into the CM or package these 

miRNAs in sEVs to influence biological processes in the bystander TK6 cells. In addition, presence 
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of miRNAs in the sEVs-depleted FBS used in culturing the cells may represent confounding factors 

that may interfere with the downstream RNA analysis. 

As illustrated in figure 5.22, these individual miRNAs were mostly not present in the samples 

except hsa-miR-30d-5p and hsa-miR-16-5p. In conditioned medium from both untreated and 

mitoxantrone-treated HS-5 cells, the only miRNA detected was hsa-miR-30d-5p however this was 

in a very minute amount as depicted by the low Ct values of 35.92 and 35.72 respectively (Figure 

5.22A). Furthermore, hsa-miR-30d-5p was also low in sEVs-depleted FBS with a Ct value of 35.59 

(Figure 5.22B). The other miRNA that was found in the sEVs-depleted FBS was hsa-miR-16-5p 

with Ct value of 35.85. These data do not support the transfer of free miRNAs through the CM 

from the drug exposed HS-5 cells to bystander TK6 cells. The results infer that it is likely that the 

measured hsa-miR-30d-5p in CM possibly originated from the sEVs-depleted FBS and not from 

the cells given the similar levels of this miRNA between CM and sEVs-depleted FBS. It is 

noteworthy to mention that the high Ct values in these samples meant that they were too low to 

be considered for delta delta Ct analysis. 

Next, individual miRNA expression levels were detected in sEVs. Interestingly, two miRNAs were 

detected in sEVs isolated from both untreated and mitoxantrone-treated HS-5 cells, which were 

hsa-miR-30d-5p and hsa-miR-16-5p. However, there were no apparent differences in amounts of 

miRNAs, suggesting expression and/or trafficking is unaffected by mitoxantrone exposure. 

Furthermore, hsa-miR-17-5p was exclusively detected in the sEVs derived from the 

mitoxantrone-treated HS-5 cells inferring that hsa-miR-17-5p may play an important role in 

cellular communication following drug exposure. However, the presence of these individual 

miRNAs was low in both samples as indicated by the high Ct values shown in figure 5.22C. This is 

in contrast to the results in section 5.6.7, which revealed that TK6 cells treated with sEVs 

expressed these miRNAs 10 cycles earlier. 

Collectively, these results suggest that a majority of the hsa-miR-30d-5p in the CM samples come 

from the serum used in cell culture rather than through cell secretion. This may explain why hsa-

miR-30d-5p and hsa-miR-17-5p were the most abundant miRNAs in TK6 cells treated with sEVs 

(figure 5.18; section 5.6.7). Although the expression levels of all candidate miRNAs were 
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significantly reduced in TK6 cells co-cultured with sEVs-derived from mitoxantrone-treated HS-5 

cells (figure 5.18; section 5.6.7), data from this vesicular study infer only hsa-miR-17-5p may be 

important, as it was the sole miRNA to be differentiated between untreated and treated sEVs. 

This further suggest that there may be selectivity in packaging of miRNA cargo into the sEVs and 

their subsequent uptake by the recipient cells. Here, hsa-miR-30d-5p, along with hsa-miR-16-5p 

and hsa-miR-17-5p, are enclosed in lipid bilayered vesicles. 
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Figure 5.22 miRNA profiles in extracellular compartments. A. shows the average Ct value or threshold value of hsa-

miR-30d-5p in conditioned media from untreated and mitoxantrone-treated HS-5 cells. B. shows the quantitative 

results of individual miRNAs (hsa-miR-30d-5p and hsa-miR-16-5p) in sEVs-depleted FBS. C. shows the relative levels 

of hsa-miR-30d-5p, hsa-miR-16-5p and hsa-miR-17-5p in sEV samples. 
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5.4 Discussion 

Bystander effects depend on intercellular communication via direct cell contact, gap junctions 

and/or the transfer of signalling molecules from the secreting cells to the neighbouring cells. 

These signalling molecules, including miRNAs, can be exported in high concentrations, to the 

extracellular environment such as urine, breast milk, serum, saliva and plasma for wide-ranging 

effects. Cultured mammalian cells can also export miRNAs to the extracellular environment such 

as the culture medium. However, these secreted miRNAs, released through a ceramide-

dependent secretory machinery, are often packaged into EVs such as exosomes, apoptotic bodies 

and microvesicles to maintain their integrity (Kosaka et al., 2010; Wang et al., 2010). 

The classification of this diverse group of membranous vesicles depends on their sizes, functions, 

methods of biogenesis and RNA profiles. Regardless of the subtype, miRNAs are purposely and 

selectively sorted into EVs to be shuttled between cells thus allowing dissemination of genetically 

encoded messages (Nolte‘t Hoen et al., 2012). Particularly, miRNAs and mRNA sorted and 

transferred via exosomes have been shown to induce and modify various functions of target cells 

(Xiao et al., 2014: Muresan et al., 2015; Sun et al., 2018). There is still a debate about the 

extracellular RNA and miRNA content compared to the intercellular RNA and miRNA content. 

Some believe that EV RNA and miRNA content reflects that of the secreting cell whereas others 

believe there is a marked difference between the miRNA and RNA contents in the EVs and the 

secreting cells that drive the regulatory changes in recipient cells (O’Neill et al., 2019; Groot and 

Lee, 2020). The latter infers that the secreting cell has the capacity to select what is trafficked 

irrespective of the quantity of a particular miRNA in the cell itself. Nevertheless, the miRNA and 

RNA content of EVs are tightly correlated with different pathological conditions, including cancer 

(Kosaka et al., 2016; Groot and Lee, 2020). This suggests that quantification of circulating miRNAs 

packaged in EVs may be an extremely promising biomarker to assess and monitor the body’s 

pathophysiological status.  

Following illustration in chapter 4 (section 4.3.3.4), which revealed that there are significant 

differences in the miRNA content of treated HS-5 cells and bystander TK6 cells following co-
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culture, it was pertinent to understand if these miRNAs are released into the medium or 

packaged into sEVs. This may explain the molecular changes in the treated cells as well as the 

phenotypic changes in the bystander cells. First, the ability of treated HS-5 cells to release EVs 

was determined by TEM. Secondly, the EVs were isolated from medium conditioned by treated 

HS-5 cells and characterised by TEM and NTA. Thirdly, the ability of these bystander cells to 

uptake EVs was ascertained. Afterwards, the secretion of EVs by HS-5 cells was blocked with an 

inhibitor of the ceramide synthesis pathway, GW4869, and its effects on CIBE were determined. 

The miRNA expression profiles in the extracellular components: conditioned medium, sEVs-

depleted FBS and sEVs were then determined to understand if these cells release miRNAs into 

conditioned medium or packaged into sEVs. The miRNA content of serum used in culture was 

explored to understand if there are miRNAs present in the serum that can affect the results of 

this study. Lastly, the effects of these sEVs in bystander cells were explored.  

5.4.1 HS-5 cells release sEVs following chemotherapy 

The release of EVs by cells could be constitutively induced or stimulus-triggered. In particular, 

several researchers have reported that cells release EVs when faced with different kinds of stress, 

such as cytotoxic drugs, heat, hypoxia, radiation and oxidative stress (Xu et al., 2015; Lin et al., 

2017; Aubertin et al., 2018; Panigrahi et al., 2018; Harmati et al., 2019). MSC, derived from 

human umblical cord, also release EVs in response to hypoxia and proliferate faster in hypoxic 

conditions than in normoxic conditions in vitro and in vivo (Zhang et al., 2012). There is a 

consensus that MSC release significant amounts of EVs, which contribute to their paracrine 

capacity and subsequent efficacy in regenerative therapies (Di Trapani et al., 2016; Pachler et al., 

2017; Phinney and Pittenger, 2017). As shown here, in the first quantitative study of its type, HS-

5 cells constitutively shed abundant vesicles however, this increases upon induction by cell 

activation or exposure to cytotoxic insult. This contrasts the previous findings of Javidi-Sharifi et 

al., (2019), which revealed that untreated HS-5 cells shed abundant EVs in comparison to HS-27a, 

another MSC cell line. These two cell lines differ from each other by presence or absence of 

CD146; HS-27a contains CD146 whilst HS-5 cells lack CD146 (Iwata et al., 2014). In addition, there 

was also heterogeneity in the sizes of EVs released by HS-5 cells following chemotherapy whereas 
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the opposite was found in untreated HS-5 cells. The reason for this is unclear but one overarching 

idea theorizes that different subtypes of EVs are released following cellular exposure to cytotoxic 

insult. The sac-like body or cocoon-shaped EV release is very informative and suggests that EVs 

are released in different ways depending on the subtype and sizes.  

Extensive literature review suggested that this study provides the first in vitro evidence that 

mitoxantrone, chlorambucil, carmustine and etoposide may lead to increased EV release by HS-

5 cells.  Previous studies have shown that etoposide (5 µM, 10 µM, 25 µM) can induce abundant 

EV release by prostate cancer cells following two-hour exposure (Lin et al., 2017). Although the 

cells used in their study differ from the one used in this study, the dose used in their study 

correlates to the clinically relevant dose (10 µM) used in this study. In another study, 

mitoxantrone was accumulated in EVs released by MCF-7/MR breast cancer cells following 12-

hour incubation with 20 µmol/L mitoxantrone (Ifergan et al., 2005; Carroll et al., 2016). It is also 

noteworthy that the concentration of mitoxantrone (500 ng/ml) used in this study is less than 

the concentration used in their study. Furthermore, elevated EV production was also found in 

MCF-7 breast cancer cells undergoing doxorubicin-induced DNA damage response whilst a 

quantitative relationship between concentrations of doxorubicin and EV release after 24-hour 

and 1-hour treatments respectively was also illustrated in prostate cancer cells (Aubertin et al., 

2016). Etoposide, mitoxantrone and doxorubicin are well-established DNA topoisomerase 

inhibitors. However, these cancer cells behave differently from the normal cells used in this study 

but what is evident is that chemotherapy can induce the release of EVs by cells. Nevertheless, 

other studies failed to show that drug treatment itself can trigger EV release despite showing 

that EVs could transfer drugs such as doxorubicin and cisplatin to the extracellular medium 

(Shedden et al., 2003; Chen et al., 2006; Samuel et al., 2017). 

Although it has been reported that drugs can be loaded into purified preparations of EVs released 

by MSC to induce therapeutic effects (Pascucci et al., 2014), these results suggest that drugs 

applied to MSC during pre-transplant conditioning may be incorporated and sorted into EVs and 

subsequently released by these cells to be taken up by the neighbouring cells with unfavourable 

outcome. Together, these data support the hypothesis that abundant cellular EV release induced 
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by pre-transplant conditioning regimens may in fact induce complications in cancer patients as 

these EVs may act as signalling molecules to incoming donor cells during HSCT thus promoting 

an oncogenic phenotype. 

5.4.2 Characterisation of isolated sEVs 

Since it has been shown that HS-5 cells release abundant EVs following chemotherapy, it was 

necessary to isolate these EVs from HS-5 cells and characterise them. Mitoxantrone was chosen 

as the appropriate drug to drive the study forward, as it was the drug that produced the highest 

CIBE. In order to ensure uniformity throughout the study, EVs were isolated from cells of the 

passage and seeded at the same density in DMEM-HG medium supplemented with sEVs-depleted 

FBS. These parameters can affect the production and characteristics of EVs by MSC (Szatanek et 

al., 2015; Gudbergsson et al., 2016; Patel et al., 2017; Lee et al., 2019). Two methods were 

employed during isolation of EVs following exposure of HS-5 cells to mitoxantrone: SEC and 

ExoQuick preparation. SEC entails the use of a column of porous beads, with radii smaller than 

the EVs of interest, to filter and separate biomolecules based on their hydrodynamic radius or a 

difference in size (Yamamoto et al., 1970; Boing et al., 2014). In contrast, ExoQuick uses 

polyethylene glycol or superhydrophilic polymers in order to decrease the solubility of EVs, 

forming a pellet precipitate consisting of EVs and some protein contaminants (Yamamoto et al., 

1970). 

ExoQuick is usually used for isolation of EVs from cell culture medium because it has a relatively 

simple and easy-to-follow protocol, and requires no additional equipment, however it is 

expensive and high concentrations of impurities are usually co-isolated with these EVs 

(Yamamoto et al., 1970; Sunkara et al., 2016). Although differential centrifugation and density-

gradient ultracentrifugation are the most widely used protocols for EV isolation, SEC was chosen 

as the alternative protocol as it has several major advantages over these other protocols. The 

processing time for SEC is relatively much faster and there is no risk of vesicle aggregation and 

protein complex formation due to purity of preparation and preservation of vesicle integrity 

(Gamez-Valero et al., 2016; Carnino et al., 2019). Due to this improved sensitivity and ability to 

maintain the biological properties of EVs, the accuracy of downstream assays is improved. 
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However, the process is a bit more complex than the ExoQuick as it requires specialised 

equipment and columns. Furthermore, the sample volume is limited by the size of the column 

and there may be ‘contamination’ of the sample by other molecules of similar size that elute at 

the same rate making it difficult to entirely isolate samples of EVs by their subtypes (Carnino et 

al., 2019). The molecular weight of the column often range between 3 to 100 kDa hence ensuring 

only particles with molecular weights within this range are eluted (Gurreiro et al., 2018). 

However, the molecular weight of the column used in concentrating the samples in this study 

was 100 kDa. In this study, SEC produced sEVs that had little or no protein contaminants hence 

it was chosen for downstream analysis of the contents of sEVs.  

TEM analysis revealed that the morphology and structure (round or cup-shaped appearance) of 

the EV particles released by HS-5 cells were consistent with the particulate structure proposed 

by ISEV. TEM is a crucial tool in the characterisation of the morphology, size and phenotype of 

EVs. Due to its ability to provide a high-resolution image, TEM distinguishes EVs from possible 

contaminants of similar size that may be present after isolation of the EVs thereby ensuring the 

purity of sample (Linares et al., 2017; Rikkert et al., 2019). As a result, it provides visual 

verification that the sample used for the experiment is indeed EVs to refute any possibility that 

contaminants may skew experimental results during downstream assays and ensure accurate 

data analysis (Carnino et al., 2019). Furthermore, EVs derived from HS-5 cells, using the two 

isolation methods in this study, were smaller than 200 nm and covered in a bilayer structure. 

Based on size, it is clear that the majority of the vesicles are probably small and as a result, the 

vesicles were regarded as sEVs to simplify the terminologies and prevent any confusion that may 

arise from the categorisation of the EVs. This is supported by the findings of Ramos et al., (2016), 

which demonstrated that HS-5 cells release vesicles with a bilayer membrane. These vesicles also 

displayed the same immunophenotypic profile (CD73, CD63, CD81) as EVs from primary BM-MSC. 

In this study, the double-layer membrane of sEVs may protect the biomolecular cargo of these 

sEVs and may hugely contribute to their ability to convey cellular signals over long distances. 

Cellular signalling via EVs has been described as ‘rececrine’ and this involves the secretion of 

active cell receptors, including oncoproteins and growth factor receptors, as well as anchored 

and loaded signalling molecules (Dickey et al., 2016).  
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Consequently, concentration and size distribution of the sEVs was characterized by NTA based 

on the Brownian motion of the sEVs particles (Enderle et al., 2015). Similar to TEM, NTA offers a 

higher resolution and measures particle-by-particle ranging from 1 to 1000 nm thereby producing 

a number-based distribution and thus percentage of EVs (Vestad et al., 2017). However, it is 

difficult to characterise heterogeneous EV particles especially apoptotic bodies that are larger 

than 1000 nm (Filipe et al., 2010). There is also difficulty in distinguishing sEVs particles from non-

sEVs particles that also display similar Brownian movement (Sunkara et al., 2016). 

As expected, all sEVs recovered by both isolation protocols were less than 1000 nm, most of them 

being in the 120-250 nm range. This is in support of the previous findings by Ramos et al., (2016), 

which showed that the EVs released by HS-5 cells had an average size of 125.6 nm. However, in 

this study, particles isolated by SEC showed a broader size distribution and the principal 

population was larger with a mean diameter of 205 nm compared to sEVs isolated by the 

ExoQuick method with a mean diameter of 129 nm. Although these results suggest that the 

vesicles produced by ExoQuick and SEC are predominantly sEVs based on these measurements, 

this result was unexpected, as one would have expected that the vesicles isolated by ExoQuick 

method would have a broader particle size distribution profile detected by NTA. The sEVs isolated 

by this method were co-isolated with proteins. These proteins as well as lipoproteins, viruses or 

other aggregates are contaminants that may hinder precise analysis of the results, as the isolation 

of highly pure EVs is paramount to ensure the results are not misleading. These results further 

contrast the findings of Stranska et al., (2018), which revealed that the majority of EVs isolated 

by precipitation method are larger than the particles isolated by SEC qEV columns. However, the 

precipitation method used in their study was the exoEasy kit manufactured by Qiagen.  

Furthermore, the amount of sEVs recovered by the ExoQuick method was more than those from 

SEC thus suggesting that EV isolation method contributes to the amount of sEVs isolated from 

cells in vitro. These findings are further supported by the findings of Tang et al., (2017) and 

Serrano-Pertierra et al., (2019), which demonstrated that vesicle recovery is better with the 

ExoQuick method. The possible reason for this may be due to co-isolation of sEVs with 

contaminants or non-sEVs particles and other aggregates of similar size by the ExoQuick method. 

Similarly, the results in this study also corresponds to the findings of Gamez-Valero et al., (2016) 
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who demonstrated that SEC isolates less sEVs than precipitation methods. This further reiterates 

the notion that the ExoQuick method gives more sEVs because the sample may not be as ‘pure’ 

as sEVs isolated by SEC. Furthermore, measurement of particle purity via assessment of the ratio 

of particle number to protein in these sEVs samples revealed that SEC-isolated sEVs had a higher 

ratio than those isolated by the ExoQuick method. A high ratio indicates the lowest level of 

protein contaminants and highest vesicular purity (Webber and Clayton, 2013; Tang et al., 2017). 

This further implies that the sEVs isolated by SEC may be pure and maintain their integrity. These 

results are further corroborated by the reports that higher concentrations of total protein were 

found in EVs isolated with a precipitation kit compared to the EVs isolated from SEC qEV columns 

(Stranska et al., 2018).  

Additionally, the amount of sEVs particles recovered from untreated HS-5 cells by SEC was more 

than those recovered from treated HS-5 cells whereas treated HS-5 cells shed more sEVs than 

untreated HS-5 cells when EV isolation was performed by the ExoQuick method. The reason for 

this discrepancy in results may be due to differences in the isolation methods but since SEC 

provides the highest vesicular purity, it negates the notion that cells shed more sEVs during 

cytotoxic stress. However, since there is heterogeneity in sizes of EVs, the EVs released by HS-5 

cells following chemotherapy may have different sizes but only the small vesicles are isolated. 

Isolation of large EV particles may be problematic thus making it difficult to differentiate the 

subtypes of EVs and consequently, one cannot identify which subtype of EVs contains any 

packaged nucleic acids during analysis (Taylor & Shah, 2015; Konoshenko et al., 2018). However, 

it is important to mention that this is an important factor if the research requires this knowledge 

but this study was focused on discovering if miRNAs are trafficked between cells and if so, was it 

via EVs of any sort, so the process lends itself to the research question. 

Nevertheless, the amount of sEVs shed by untreated HS-5 cells following SEC isolation (1.89 x 109 

particles/ml) and ExoQuick method (6.01 x 109 particles/ml) in this study were much higher than 

the amount shed by untreated HS-5 cells demonstrated in another study (Javidi-Sharifi et al., 

2019). This difference in EV yield may be due to differences in cell culture conditions and EV 

isolation method. Whilst HS-5 cells were grown in DMEM-HG supplemented with 10% sEVs-

depleted FBS in a 175cm2 flask until 80-90% confluency before EV isolation in this study, their HS-
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5 cells were grown to 80-90% confluency in RPMI 1640 supplemented with 10% FBS (not sEVs-

depleted) in a 15cm dish. Their cells were sub-cultured in an EV-depleted medium overnight prior 

to EV isolation by density-gradient ultracentrifugation.  

Further analysis of the fractions eluted from SEC qEV columns revealed that these fractions were 

rich in sEVs both in the control and treated samples. As suggested by the manufacturer’s 

instructions, a  pool of fractions 7-9 were used in this study, with fraction 8 showing the highest 

particle concentration (3.47 x 109 particles/ml). Similarly, SEC columns were used to isolate 

abundant EVs from cancer cells however, fractions 10-12 were analysed in their study (Guerreiro 

et al., 2018). The difference in the fractions utilised in this study and theirs may be due to 

differences in columns used. They used 30 mL sepharose CL-2B columns from GE Healthcare 

Biosciences, onto which a diluted sample of vesicles (4mL) was loaded to ensure proper yield of 

EVs. It is important to mention that since these columns differ, the molecular weight cutoffs of 

the membranes in these columns would also differ. In addition, Welton et al., (2015) and Baranyai 

et al., (2015) demonstrated that fraction 9 (6.0 x 1011 particles/ml) and fraction 2 (8.5 x 1012 

particles/ml) respectively had the highest particle yield from plasma samples. This differs from 

the particle concentration in the fractions used in this study and this difference could be because 

their EVs were derived from plasma, which contains high lipid and protein content as well as 

platelets (Boing et al., 2013; Menezes-Neto et al., 2015). In contrast, low levels of protein were 

detected in these vesicle-rich fractions especially in the treated samples in this study. 

Collectively, these results suggest that the HS-5 cells may release abundant EVs following 

exposure to chemotherapy however only the sEVs are isolated, from the cells. This further 

reiterates that secreting cell, cell culture conditions and EV isolation method contribute to the 

amount of EVs retrieved from cells in vitro. It also implies that no stand-alone EV isolation method 

results in a complete removal of contaminants. Although ExoQuick method represents a quick 

and easy method that could be implemented in clinical settings, these results suggest that SEC 

would be more suitable for clinical and therapeutic applications of sEVs derived from MSC due 

to its high yield of high-purity sEVs. However, these two isolation methods failed to separate the 

EVs based on their subtypes and produced EVs within 120-250 nm range hence the term sEVs. 

Since the different subtypes may contain different compositions (nucleic acids and/or proteins), 



203 
 

characterising these EVs as sEVs is important and would contribute to the analysis and 

interpretation of results from these vesicles. Furthermore, the integrity and amount of sEVs 

released by HS-5 cells under cytotoxic stress may provide additional information to determine if 

these sEVs are released to communicate damage signals to the bystander cells. The data, along 

with information about the miRNA contents of these sEVs may provide further insight into the 

role sEVs play in CIBE.   

5.4.3 Uptake of sEVs by bystander cells 

It is still unknown whether sEVs are selectively or non-selectively incorporated by bystander cells 

following release by parent cells. Following the evidence that HS-5 cells release sEVs following 

chemotherapy, the possibility of these sEVs being taken up by bystander TK6 cells was explored. 

By assessing cellular uptake of sEVs, the specificity of sEVs to bystander TK6 cells and their 

function upon uptake could be well understood.  

However, the labelling of sEVs is a very difficult process due to their nano-size. Previously, 

researchers have used different lipophilic dyes such as DiO, DiL and PKH to label EVs however; 

these lipophilic dyes are not sEVs-specific and can label other cellular components (Tian et al., 

2013; Takov et al, 2017; Horibe et al., 2018; Zhang et al., 2019). The unbound dyes can also be 

retained in cells thereby producing false positive background signals that may skew experimental 

results. Another concern with the use of these lipophilic dyes is that they can cause an increase 

in vesicular size as well as changes in the homing characteristics of these vesicles and 

subsequently undermine cellular uptake and biodistribution studies (Dehghani et al., 2019). 

Alternatively, protein dyes such as CFSE and antibodies to surface and intravesicular proteins 

such as CD63, CD9, CD81, calnexin and TSG10, which do not cause a shift in sizes of the labelled 

vesicles, have been suggested to be better options in labelling vesicles (Dehghani et al., 2019; 

Mondal et al., 2019).  

In order to eliminate this problem of specificity of EV labelling and ensure EV uptake and 

visualisation, the membrane of sEVs was labelled with a red fluorescent dye that is commercially 

available (Exo-Glow-membrane) whilst the bystander TK6 cells were labelled with DiO in this 

study. The Exo-Glow-membrane dye has high specificity and high selectivity for sEVs membrane 
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with very low level of background noise. The time-lapse experiment revealed that sEVs 

membrane fused with the membrane of the bystander TK6 cells within an hour, and were 

internalised into the cells after 3 hours. However, it took 6-12 hours for the internalization 

process to be complete. These results imply that stromal cells could release sEVs into the BM 

microenvironment, which may be subsequently engulfed and internalised by incoming donor 

cells within a short time. The results also suggest that there may surface receptors on the 

membrane of the sEVs and cells that facilitate their uptake by the cells. In a similar study, sEVs 

released by HS-5 cells were internalised by leukemic cells and this protected the cells from the 

chemotherapeutic effects of tyrosine-kinase inhibitors in vitro (Javidi-Sharifi et al., 2019). 

However, they stained the sEVs and leukemic cells with two lipophilic dyes, DiL and DiO, 

respectively.  

Furthermore, another study also demonstrated that EVs do not remain attached to the outer cell 

membrane but are incorporated into the cytoplasm of the recipient cells (Durak-Kozica et al., 

2018). In the current research, the results suggest that the uptake process may be time-

dependent and may depend on direct fusion between sEVs’ membrane and the cell membrane 

based on molecules found on the surface of the vesicles and the bystander TK6 cells. This is 

similar to previous findings by Verdera et al., (2017) that demonstrated that cellular 

internalization of EVs occurred within 4 hours in a time-dependent manner. However, their data 

suggest that lipid components such as cholesterol and phosphatidylserine (PS) found on the 

surface of the vesicles and cells play important role in EV uptake. These lipid components are 

very crucial to the maintenance and restoration of the cellular plasma membrane where they 

participate in macromolecular transport processes such as endocytosis and exocytosis (Zhang et 

al., 2017). These lipid components have also been implicated in endocytic pathways that have 

been mentioned in EV internalization, which include clathrin-independent endocytosis, caveolae-

dependent endocytosis, macropinocytosis and phagocytosis (Mulcahy et al., 2014). Although this 

is beyond the scope of this study, the data in this study suggest that the sEVs are endocytosed or 

engulfed into the cells. These also suggest that the only live cells can engulf or internalise sEVs as 

disruption or loss of the plasma membrane integrity by damaging environmental forces will lead 

to cell death. 
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Furthermore, sEVs internalization was blocked by heparin, a soluble analogue of heparan sulfate 

proteoglycans (HSPG) in this study, as previously described by Atai et al., (2013) and Christianson 

et al., (2013). Heparin is a biological molecule that is primarily produced by mast cells and 

basophils, and thus influences a variety of biological processes such as cell adhesion, coagulation 

and growth factor signalling (Yang et al., 2011; Balaj et al., 2015). It acts primarily in preventing 

blood clotting through a complex with antithrombin, which prevents the formation of fibrin from 

fibrinogen but can also bind and sustain or control the release of cytokines including growth 

factors thereby enhancing the biological effects of proteins. Structurally, it is related to HSPG, 

which acts as receptors on the surface of many cells including MSC, where they play a key 

regulatory function in the interaction between the MSC and HSC within the BM niche (Papy-

Garcia and Albanese, 2017).  

Thus, heparin blocks off the ligand binding to HSPG but this effect may be dependent on the 

concentration used. A previous study demonstrated that time-dependent internalization of EVs 

by cells was abrogated in the presence of 10 µg/ml of heparin (Verdera et al., 2017). It remains 

unclear how heparin disrupts EVs uptake but the results within the current study support the 

observations of Verdera et al., (2017), suggesting a block of fusion of sEVs with TK6 cell 

membrane, possibly through a HSPG-mediated process. The sEVs seemed unable to fuse to the 

membrane of the cells (Figure 5.11) to facilitate the membrane-bound interaction between the 

cells and sEVs thus supporting the adhesive HSPG-mediated process. Therefore, the data from 

this study suggest that sEVs may be internalised into TK6 cells by receptor-mediated endocytosis 

as illustrated in figures 5.9 and 5.10. In support of this, heparin may bind to both sEVs and/or 

cells, and prevent adhesion of sEVs and subsequently cellular internalization (Sustar et al., 2009; 

Atai et al., 2013). However, since different inhibitors such as amilioride and dynasore can 

abrogate cellular internalization of sEVs into cells in different ways, it appears that sEVs can be 

internalised in a very complex mechanism via more than one route.  

Although the detailed mechanism of sEVs uptake remains unknown, it has been suggested that 

the mechanism through which sEVs are taken up determine their ability to deliver their cargo 

and elicit a bio-molecular response. As a result, the RNA of the sEVs released by HS-5 cells was 

specifically labelled with a commercial dye (Exo-Glow-RNA) to understand if these sEVs deliver 
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their cargo once internalized by bystander TK6 cells. The Exo-Glow-RNA specifically binds to EV 

RNA with very low levels of background noise. The results suggested that these sEVs deliver their 

RNA cargo into the cytoplasm of bystander TK6 cells once taken up. In a similar fashion, it has 

been shown that the selected protocol is suitable for labelling and visualising isolated sEVs both 

in in vitro and in vivo systems (Li et al., 2014; Reif et al., 2015; Zhang et al., 2019). These studies 

further support that sEVs are capable of adhering and fusing to the plasma membrane of the 

bystander TK6 cells, with the contents gradually released into the cytoplasm upon internalization 

– a classic mechanism used for cellular uptake of materials. Further pre-treatment of HS-5 cells-

derived sEVs with heparin before labelling the RNA led to disruption of the sEVs uptake by the 

bystander cells. This further shows that the fusion of sEVs to the cells may be a very important 

step in the uptake of sEVs by bystander TK6 cells and may subsequently result in the ability of 

the sEVs to release their contents into sub-cellular compartments of these bystander cells to elicit 

bio-molecular effects. 

Collectively, these results imply that stromal cells release sEVs that can be engulfed by the 

bystander cells within the BM microenvironment via direct fusion between the sEVs and 

bystander cells, which may be dependent on the surface molecules on their membranes. Once 

internalized, the RNA of sEVs could be seen within the cytoplasm of the recipient cells thus 

suggesting the release of sEVs’ contents into the bystander cells. This is critical to further 

understanding how these sEVs may function as a delivery system in the human body as well as 

how they may be involved in the development or modulation of a second malignancy following 

HSCT. Any evidence of involvement in these processes may help clinicians to develop more 

effective methods to detect and monitor leukaemia patients following HSCT. 

5.4.4 Effect of GW4869 on CIBE 

The possibility that these sEVs may play important roles in the BM microenvironment highlights 

the importance to understand how their secretion can be inhibited. Thus, it was appropriate to 

inhibit sEVs secretion by stromal cells in a model of the BM microenvironment. Several 

researchers have explored the use of pharmacological agents, as potential therapeutic 

approaches, to inhibit the secretion and release of sEVs (Samuel et al., 2017; Biemmi et al., 2018). 
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However, the complexity and heterogeneity of the EV subtypes and their biogenesis pathways 

means using a single drug to block cellular production of EVs remains a challenge. Nevertheless, 

blocking the predominant EV subpopulation released by stromal cells, which are sEVs as seen in 

this study, may provide some answers.  

The most widely used chemical in the inhibition of sEVs biogenesis and release is GW4869. In 

2010, Kosaka et al., became the first people to successfully inhibit the release of EVs in HEK293 

cells using GW4869. GW4869 is a potent neutral sphingomyelinase inhibitor that acts by 

preventing the inward budding of MVBs and the subsequent release of exoosmes upon fusion of 

the MVBs with the plasma membrane (Essandoh et al., 2015). Thus, neutral sphingomyelinase is 

ubiquitous and found in a range of compartments in all cells, including the membrane of cells 

where it acts as an enzyme that catalyses the hydrolysis of the membrane lipid sphingomyelin 

thereby leading to the generation of the bioactive lipid ceramide (Shamseddine et al., 2015). The 

lipid bilayer of sEVs contains more ceramide, cholesterol and sphingolipids than cellular 

membrane as illustrated in a quantitative study (Catalano and O’Driscoll, 2019). 

In the current study, GW4869 was used to inhibit the secretion and release of sEVs by stromal 

cells. However, GW4869 exerted a cytotoxic effect on the stromal cells in a dose dependent 

manner. The concentrations used in this study (5 µM, 10 µM, 20 µM) have been previously 

considered not to have any cytotoxic effect on RAW264.7 macrophages (Essandoh et al., 2015). 

Thus, the reason for this discrepancy may be explained by the abundance of lipid bioactive 

molecules such as ceramide and sphingomyelin on the membrane of HS-5 stromal cells (Haraszati 

et al., 2016). Although the structure of the cell membrane is similar in different cells, they are not 

exactly the same. The report by Haraszati et al., (2016), which revealed that the MSC membrane 

is enriched in ceramide and sphingomyelin in comparison with glioblastoma and hepatocellular 

carcinoma cells, support these findings. It is well known that sphingomyelin, ceramide and 

phosphatidylserine are involved in a variety of biological functions such as proliferation, 

differentiation and apoptosis through the maintenance of the plamsa membrane integrity 

(Bartke and Hannun, 2009). Therefore, blocking the sphingomyelin pathway and thus formation 

of ceramide with GW4869 in these HS-5 stromal cells may explain this cytotoxic effect of GW4869 

on the cells. GW869 was also cytotoxic to myeloma cells with highly expressed 
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phosphatidylserine on their cell membrane in a dose dependent manner (Vuckovic et al., 2017). 

These suggest that at high dose, GW4869 may cause disruption or loss of plasma membrane 

integrity of the cells through interaction with anionic phospholipids. The loss of cell membrane 

integrity renders the cell vulnerable and may lead to cell death (McNeil and Steinhardt, 1999). It 

is also likely that GW4869 causes deformation of the structure of the cell membrane, which may 

in turn cause irregularities in the fluidity of the cell membrane thereby disrupting critical 

signalling or transport pathways required for cell survival.  

Since GW4869 is cytotoxic to these stromal cells, the non-toxic concentration (5 µM) of GW4869 

was used to inhibit the secretion and release of sEVs. The hypothesis is that blocking the secretion 

of sEVs may reduce the CIBE in bystander TK6 cells. The anti-proliferative effects of the drugs 

were modestly promoted especially mitoxantrone but the difference in proliferation of the cells 

treated with or without GW4869 was not significant. Since the concentration of GW4869 used 

was not cytotoxic, hence it is assumed that the anti-proliferative effects recorded were solely 

dependent on the chemotherapeutic agents used. However, mitoxantrone induced more DNA 

damage in the bystander TK6 cells in the absence of GW4869 supporting a role for sEVs in the 

mutagenesis of the bystander cells. While this study does not necessarily confirm that GW4869 

inhibits the secretion and release of sEVs by the stromal cells, the results suggest that the 

reduction in DNA damage in bystander TK6 cells could be attributed to blocking sEVs release. 

Extensive literature review supports that this is the first study to illustrate that GW4869 can 

reduce chemotherapy-induced DNA damage in a model of the BM using MSC. It is important to 

mention that this was a subtle change and not significant, and requires further assessment of 

definitive blocking of sEVs’ secretion and release to be certain that this is a key process. The fact 

that the change was subtle, and that the lower doses of GW4869 were used, it is possible that 

some sEVs are still released at these lower doses and a reduction in MN could be more 

pronounced with complete blockade but this would need further validation.  

However, the effect of GW4869 on vesicles’ secretion and release, and subsequently CIBE has 

been extensively studied using fibroblasts. The ability of cancer-associated fibroblasts (CAF) to 

prime cancer stem cells in colorectal cancer and protect them from the chemotherapeutic effects 

of oxaliplatin or 5-fluorouracil was markedly reduced when the CAF were pre-treated with 10 µM 
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GW4869 (Hu et al., 2015). In addition, exposure of CAF to gemcitabine induced an increase in the 

release of vesicles that conferred chemo-resistance on pancreatic epithelial cancer cells when 

co-cultured however, these survival benefits were significantly reduced when CAF were pre-

treated with 20 µM GW4869 (Richards et al., 2017). The concentrations of GW4869 used in both 

studies correspond to the concentrations used in this study however, they did not explore if 

GW4869 had any cytotoxic or anti-proliferative effects on the cells at these concentrations. 

Nevertheless, Richards et al., (2017) showed that high concentration of GW4869 (20 µM) 

decreased CAF vesicles’ secretion by 70% in both untreated and treated CAFs. In another study 

using lung cancer cells (PC9), Li et al., (2016) showed that although GW4869 (5 µM, 10 µM, 20 

µM) did not affect the proliferative ability of these cells, there was a significant decrease in 

vesicles secreted by lung cancer cells (PC9) treated with gefitinib. GW4869 (10 µM) also did not 

enhance the impact of gefitinib- or cisplatin-induced growth inhibition on these cells. 

Collectively, these suggest that GW4869 is capable of inducing cytotoxic effects on stromal cells 

at high concentrations and this may be due to the enrichment of lipid bioactive molecules on 

their cell membrane. GW4869 may also block the secretion and release of sEVs by these cells in 

the BM microenvironment. Although this blockade may not be total, it may lead to a block in the 

transfer of residual effects of pre-transplant chemotherapy via sEVs to the neighbouring cells 

during HSCT.  

5.4.5 Effect of sEVs on bystander cells 

The evidence provided in this study supports a subtle role of sEVs in inducing CIBE. This concept 

is based on the observations that sEVs derived from stromal cells exposed to chemotherapeutic 

effects can induce CIBE in naïve TK6 cells and the inhibition of the secretion of these sEVs with 

GW4869 reduced the CIBE outcomes. Thus, it became necessary to directly treat the naïve TK6 

cells with these sEVs derived from drug-treated stromal cells. Interestingly, the sEVs derived from 

mitoxantrone-treated HS-5 cells caused a reduction in bystander TK6 cell number, which was 

recovered upon treatment with heparin. This reduction in cell number coincided with increased 

MN frequency in the bystander cells. Furthermore, pre-treatment of bystander TK6 cells with 

sEVs from mitoxantrone-treated HS-5 cells conferred resistance to mitoxantrone despite 
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increased genotoxic events in the cells. However, the cells became sensitive to mitoxantrone 

upon heparin treatment. These suggest that sEVs may elicit bysander cellular response to 

different stimuli in diverse ways, and may be capable of sending both damaging and protective 

signals to the bystander cells despite the cells retaining genotoxic effects from mitoxantrone. 

However, these signals are negated when heparin blocks their uptake thereby making the 

bystander cells to be more prone to toxicity from the genototxic environment. The data from this 

study correspond to the previous findings by Samuel et al., (2017), which demonstrated that sEVs 

derived from cisplatin-treated ovarian cancer cells, caused a reduction in cell numbers of naïve 

ovarian cancer cells when co-cultured and protected them from the chemotherapeutic effects of 

cisplatin. However, these effects were ameliorated upon treatment of the cells with inhibitors of 

sEVs uptake such as heparin, dynasore and amiloride. 

Taken together, these data suggest that chemotherapy may alter the contents of released sEVs 

such that sEVs can cause damage in the bystander cells upon uptake but enhance the protective 

role of MSC towards the HSC within a genotoxic environment. It could be notionally assumed 

that the MSC are ‘telling’ the HSC to behave in such a way that would protect them from the toxic 

environment, such as controlling cell cycle, proliferation and exocytosis, pathways influenced by 

hsa-miR-16-5p, hsa-miR-17-5p, hsa-miR-200c-3p, hsa-miR-30d-5p and hsa-miR-20a-5p (section 

4.3.3.4). In preventing the uptake of sEVs using heparin, the bystander cells do not get the 

protetctive messages and instead succumb in the presence of the chemotherapeutic agent. This 

protective effect may be due to the induction of signalling pathways that may be critical to their 

survival. Cell signalling to stress-response often takes a dual role thus activating both survival and 

death pathways to buffer and repair the damage but when the damage is beyond repair, cell 

death is triggered (Flusberg and Sorger, 2015). Stress-response and death signalling pathways 

seem to be tightly linked and involve cellular proteins that regulate cell death as well as normal 

cellular processes such as proliferation, differentiation and metabolism simultaneously (Yuan et 

al., 2006; Munoz-Pinedo et al., 2012).  

Furthermore, these sEVs could contain molecules on their surfaces that may be able to promote 

resistance to chemotherapeutic drugs in these bystander cells upon uptake. Chemotherapy-

induced sEVs released by myeloma cells have been shown to contain high levels of heparanase 
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on their surface (Bandari et al., 2019). Heparanase is an enzyme that remodels the extracellular 

matrix thereby regulating multiple cellular processes and can be transferred to elicit biological 

activities in the neighbouring cells (Bandari et al., 2019). Heparanase is also found on the cell 

membrane and its overexpression corresponds to tumour progression and poor prognosis 

(Mohan et al., 2019). However, heparin is endowed with anti-heparanase activity (Cassinelli et 

al., 2020). This may explain why heparin disrupted the uptake of sEVs and subsequent chemo-

protective effects of sEVs in this study. It can be inferred that heparin digested the heparanase 

on the surface of the cells and sEVs thereby blocking the uptake of these sEVs by the bystander 

cells. However, this was beyond the scope of this study and needs further investigation to explore 

if heparanase can be found on the bystander TK6 cell membrane and the membrane of sEVs 

released by HS-5 stromal cells. 

Other researchers have also demonstrated that chemotherapy-induced sEVs contain high levels 

of survivin and annexin A6 respectively, which were able to induce survival signals in 

neighbouring breast cancer cells (Kreger et al., 2016; Keklikoglou et al., 2019). Survivin is a pro-

apoptotic protein that belongs to the group of inhibitor of apoptosis proteins whilst annexin A6 

is a calcium-dependent protein that belongs to the annexin family. Expression of these proteins 

is elevated in several cancers (Cheung et al., 2013; Qi et al., 2015). Although there is no evidence 

in literature that shows that sEVs released by stromal cells express these proteins, annexin A6 

found on vesicles derived from CAF enhanced the aggressiveness of pancreatic ductal 

adenocarcinoma in vitro (Leca et al., 2016). Therefore, this needs further investigation in HS-5 

cells-derived sEVs.  

The survival of sEVs-treated bystander TK6 cells exposed to mitoxantrone may also depend on 

factors that control their cell cycle. Cells have a response system to combat deleterious genotoxic 

attacks on the DNA by inducing cell cycle arrest to allow sufficient time for the incurred damage 

to be repaired, and if this damage is irreparable, apoptosis is induced. Therefore, cell cycle and 

its checkpoints are tightly regulated and maintained in order to drive normal cellular processes 

including proliferation and differentiation; hence deregulation of the cell cycle may play an 

important role in the development of cancer (Satyanarayana and Kaldis, 2009). The G1- and G2-
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phase checkpoints are crucial in preventing cancer cells from uncontrolled cycling and 

proliferation. 

Previously, some researchers have shown that mitoxantrone can induce cell cycle arrest and 

growth inhibition by forcing G1- and G2 phase arrest in yeast cells (Khan et al., 2010). No evidence 

of apoptotic peaks (sub-G1 phase) was also recorded with the different concentrations (0, 2.5, 5 

µg/ml) used. Thus, mitoxantrone was used as a positive control in this study however when the 

bystander TK6 cells were treated with mitoxantrone, there was no evidence of cell cycle arrest 

instead there were apoptotic peaks even though the concentration of mitoxantrone (500 ng/ml) 

used in this study is smaller than the concentration used in their study. Therefore, the difference 

in results may be due to the differences in cell types and sampling times. The cycling time of TK6 

cells in DMEM-HG media supplemented with sEVs-depleted FBS is about 18.3 hours (section 

3.3.1.2) however; the cells were pre-treated with sEVs for 24 hours before exposing them to 

mitoxantrone for 24 hours. Therefore, the cells could well have moved through cell cycle block 

after accumulating genotoxic effects and either resumed cycling or died. A series of timepoints 

could have been useful in this study. 

Furthermore, diploidy (a balanced complement of chromosomes) was found in the negative 

controls whilst uncontrolled chromosome content (aneuploidy) was found in the cells that were 

exposed to mitoxantrone. Aneuploidy is the gain or loss of chromosome in a cell, and is associated 

with significant cellular stress as well as cancer initiaition and progression (Molina et al., 2020). 

However, aneuploidy is context-dependent and may depend on the cell type, genomic context, 

cellular microenvironment and immune system of the patient involved (Ben-David and Amon, 

2019). Interestingly, aneuploidy was also found in the cells that were treated with sEVs from 

treated HS-5 cells but this chromosomal imbalance was corrected upon pre-exposure to heparin. 

This infers that the vesicles convey stress to the bystander cells perhaps chemotherapy-induced, 

which may be of great significance to their long-term survival.  

Although the miRNAs such as hsa-miR-17-5p, hsa-miR-16-5p and hsa-miR-30d-5p that control cell 

cycle and cell death were found in sEVs released by treated HS-5 cells (Section 4.3.3.4), there was 

no evidence of cell cycle arrest in cells treated with sEVs from treated HS-5 cells. Most of the cells 
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were in G1 phase similar to the negative controls (untreated cells and cells treated with PBS). 

Similarly, there was no evidence of cell cycle arrest when the cells were pre-treated with heparin. 

These data further support the idea that bystander cell exposure to sEVs may trigger cell survival-

signalling pathways such as cell cycle control, which also involves the apoptotic machinery to 

ensure cell cycle progression. However, exposure of the sEVs-treated bystander TK6 cells to 

mitoxantrone caused apoptotic peaks in the sub-G1 phase, which were more than the peaks 

found in cells treated with only mitoxantrone. This may explain the genotoxic events, which was 

interestingly accompanied by an increase in cell number, seen in sEVs-treated bystander TK6 cells 

upon exposure to mitoxantrone (section 5.6.4). Nevertheless, the data suggest that although that 

the cells progress through cell cycle, the DNA of these cells may become damaged upon exposure 

to mitoxantrone however, the data does not provide information on the mechanism of cell death 

(programmed or stress-induced). Therefore, the fate of these cells with damaged DNA remains 

unknown. Nevertheless, the sustained genotoxic effects in the bystander cells is of great concern 

and may cause genomic instability and cancer development. 

Following extensive literature review, this is the first study of its kind to explore the effects of 

sEVs from drug-treated MSC on the cell cycle of the recipient cell. However, it has been previously 

shown that untreated MSC release sEVs that subsequently trigger breast cancer cells into 

dormancy or quiescence (G0 phase) and protect them from the effects of chemotherapy (Lim et 

al., 2011; Bliss et al., 2016). This effect was mediated by miRNAs in the sEVs cargo, which are 

transported from the BM stroma to the breast cancer cells. These further suggest that the miRNA 

content of the sEVs released by HS-5 cells may have an important role in the adaptive response 

of TK6 cells to mitoxantrone through the regulation of cell cycle. Summarily, stromal cell-derived 

sEVs, which are released into the BM microenvironment following pre-transplant chemotherapy, 

may induce adaptive and invasive effects in the neighbouring cells, and protect them from the 

effects of chemotherapy. However, this protection from chemotherapy may be accompanied by 

sustained DNA damage in some of the cells. It is worth exploring the value of this sustained DNA 

damage in diagnosis. 
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5.4.6 miRNA expression profiles in extracellular components 

It has been established that extracellular RNAs circulate in body fluids of healthy and diseased 

individuals, such as milk, urine, serum and plasma with sufficient integrity. Despite the presence 

of ribonuclease enzyme in these samples, circulating RNAs are stable and their stability is due to 

enclosure of these circulating RNAs within lipoprotein vesicles (Kosaka et al., 2010). Nevertheless, 

there is selectivity in the packaging of the vesicular cargo and as a result, RNA and protein that 

make up a majority of the cargo may or may not reflect the nature of the parental cell (Li et al., 

2014; Groot and Lee, 2020). Recent studies have demonstrated that vesicles are targeted to 

recipient cells to exchange proteins and deliver nucleic acid cargo to facilitate intercellular 

communication within the BM microenvironment (Wang et al., 2016). 

Within the current study, analysis of RNA extracted from extracellular components such as sEVs, 

CM and sEVs-depleted FBS, was performed. FBS, usually used as a medium supplement, contains 

substantial particle population as well as bovine RNA in vesicular and non-vesicular particles that 

may skew the experimental results (Szatanek et al., 2015; Wei et al., 2016). In order to prevent 

the mixture of the serum EVs and cell-derived EVs during cell culture, which is a potential source 

of interference, the cells were grown in medium supplemented with commercially available sEVs-

depleted FBS in this study. This eliminates the any bias from RNA species in the serum influencing 

or confusing the outcomes of the experiments.  

Previously, it has been shown that the sEVs-depleted FBS has no negative effect on cell 

proliferation (Guerreiro et al., 2018). Similarly in this study, HS-5 cells and TK6 cells grew in 

DMEM-HG medium supplemented with sEVs-depleted FBS at a similar rate as those grown in 

DMEM-HG medium supplemented with non-sEVs-depleted FBS (section 3.3). Whilst this confirms 

proliferation was unaffected, to ensure that no other experimental outcomes were affected, 

sEVs-depleted FBS was used throughout the experimentation to confirm that only the nucleic 

acid cargo of the sEVs released by HS-5 cells due to chemotherapeutic stress were present. 

Although there are very few published reports on the isolation of RNA from CM of cells, RNA was 

successfully extracted in this study from these extracellular components, of CM from HS-5 cells. 

The ability to achieve reliable and reproducible RNA yield from these extracellular components 
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is vital for the successful amplification of miRNAs by qRT-PCR. Successful miRNA analysis also 

relies heavily on the purity and integrity of extracted RNA. Thus, the concentration, yield and 

purity of these RNA were determined. The concentration of RNA from CM of untreated cells was 

28.99 ± 6.29 ng/µl whilst the concentration of RNA from CM of treated cells was 25.13 ± 8.34 

ng/µl. RNA from both sets of samples had purity ratios within the range of 2.1 and 2.3. This 

indicates that the samples were free of contaminants such as peptides, phenols, aromatic 

compounds, carbohydrates and proteins. These results correspond to the previous findings that 

demonstrated that the amount of RNA extracted from CM of primary stromal cells was 42.85 

ng/µl (Glynn et al., 2013). However, their data showed that the amount of RNA extracted from 

CM depends on the extraction method and cell type.  

The amount of RNA isolated from sEVs derived from untreated and treated stromal cells in this 

study was 10.6 ± 1.18 ng/µl and 25.07 ± 13.87 ng/µl respectively. It should be noted that HS-5 

cells contain about 19-fold more RNA and the fractions of vesicles isolated by SEC were not 

pooled together rather RNA was isolated from each 500 µl fraction containing vesicles. These 

suggest that the sEVs isolation method, starting material, RNA extraction method and cell type 

may have contributed to the reduction in sEVs-RNA recovery seen in this study. The sEVs’ 

membrane may contain molecules that could cause incomplete lysis of the sEVs membrane 

during RNA isolation. However, this is above the scope of this study and needs to be further 

evaluated. 

Furthermore, the sEVs-depleted FBS used in this study was tested for RNA to establish a baseline 

level of RNA as a control to minimise the confounding effect of FBS. RNA yield was also small in 

sEVs-depleted FBS used in cell culture (8.51 ± 0.56 ng/µl). This data is consistent with the previous 

assessments of the sEVs-depleted FBS used in culturing HEK293 kidney cells and A20 lymphoblast 

cells (Driedonks et al., 2019). RNA yield in the serum samples ranged between 2-3 ng/µl. 

However, the RNA yield from ‘crude’ FBS was much larger and ranged between 5-40 ng/ml whilst 

sEVs-depleted FBS contained 34 ng/ml on average (Wei et al., 2016). These indicate that FBS used 

as supplement for cell culture medium contains vesicle particles as well as RNA. Therefore, as a 

rule of thumb, medium and medium supplements including FBS that is free of vesicle particles as 

well as RNA should be prioritised.  
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Regardless of the extracellular component, it is worth mentioning that a fixed concentration of 

RNA of good quality was used for cDNA synthesis whilst the concentration of total cDNA used 

was the same in all samples analysed. These follow the suggestions proposed in the Minimum 

Information for Publication of Quantitative Real-Time PCR Experiments (MIQE) guidelines (Bustin 

et al., 2009; Guenin et al., 2009). This was to ensure that qRT-PCR analysis yields reliable results 

and enable the comparison of miRNA expression profiles in two different samples (treated and 

untreated). However, these small RNA species of non-miRNA origin, SNORD61 and RNU6B/RNU6-

2, were either totally absent or present in trace amounts with significantly low Ct values (Ct ˃ 

34). This was expected as these small RNA species are produced intercellularly and may not be 

found in these extracellular components (Bustin et al., 2009; Guenin et al., 2009).  As a result, 

normalisation of data with the endogenous controls and subsequent relative quantification could 

not be performed.  

The only miRNA detected in the CM of untreated and treated stromal cells was hsa-miR-30d-5p, 

which has been previously reported to be a novel biomarker in the clinical therapy of human 

cancers (Gaziel-Sovran et al., 2011; Zhang et al., 2017). However, hsa-miR-30d-5p in the CM 

samples from HS-5 cells was in trace amount with Ct values above 35. A Ct value of 35 and above 

normally represents single template detection and is usually considered to be below detection 

level of the assays of intercellular miRNAs. However, these high Ct values in extracellular miRNAs 

suggest that miRNAs are highly expressed in the cell monolayers than in the CM, and only is 

released when intercellular communication is required. This is supported by the previous findings 

that demonstrated that the amount of miRNAs detected in CM (Ct values ranging from 32.6 to 

33.8) was 180 times less than in cell monolayers (Turchinovich et al., 2011). However, their data 

indicated that hsa-miR-16, hsa-miR-21 and hsa-miR-24 are common miRNAs that are readily 

detected in FBS used in cell culture. Instead, only hsa-miR-16-5p (Ct value 35.59) and hsa-miR-

30d-5p (Ct value 35.85) were found in the sEVs-depleted FBS used in this study. It is important to 

note that the FBS used in their study was non-sEVs-depleted FBS. This may have contributed to 

the differences in the type and amount of miRNAs detected in this study. Nevertheless, other 

studies have also shown that miRNAs are present in sEVs-depleted FBS (Wei et al., 2016; 

Mannerström et al., (2019). These miRNAs include hsa-miR-122, hsa-miR-203a, hsa-miR-451a 
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and hsa-miR-1246, which do not correspond to the miRNAs detected in this study. These FBS-

associated RNA species were also found to be protected from the effects of proteinase K and 

RNAse A treatment (Shelke et al., 2014). 

Therefore, it can be inferred that the hsa-miR-30d-5p detected in the CM of treated and 

untreated HS-5 cells in this study may stem from the sEVs-depleted FBS used in this study. This 

suggests that the prolonged bystander effects found in TK6 cells exposed to CM from 

mitoxantrone-treated HS-5 cells (section 4.3.2.3) may not be due to the miRNA content in CM 

but may be because of complex signals released into the medium by HS-5 cells upon drug 

treatment. Since this study has shown that CM from HS-5 cells contain EVs and miRNAs, CIBE may 

result from an interplay between different signalling molecules. It has been reported that a 

complex of growth factors, cytokines, chemokines, EVs and other extracellular matrix molecules 

can be found in CM from MSC (Benavides-Castellanos et al., 2020). In addition, these components 

of CM from MSC may differ depending on their accumulation in the cell growth medium (Lee et 

al., 2017; Sagaradze et al., 2019). Taken together, these results suggest that the depletion of sEVs 

does not completely remove RNA from FBS thus highlighting the need and importance to 

carefully select the appropriate medium/supplements for the investigation of RNA biomarkers. 

The presence of RNA in FBS also suggests that RNA may have an effect on cell behaviour in vitro 

and may have interfered with the analysis of CM and sEVs-associated RNA in CIBE. However, the 

functional effect of this ‘contaminant’ RNA on recipient cells needs to be determined to 

understand their biological roles.  

Lastly, the RNA cargo of the stromal cell-derived sEVs was analysed. Data revealed that two 

miRNAs, hsa-miR-30d-5p and hsa-miR-16-5p, were expressed in sEVs derived from both 

untreated and treated HS-5 cells. These were the miRNAs found in sEVs-depleted FBS thus 

suggesting these may have been trafficked via culture medium and incorporated into the sEVs. 

However, hsa-miR-17-5p was detected in treated sEVs but not in untreated HS-5 cells. This 

suggests that hsa-miR-17-5p may be an ‘alarm signal’ from the treated HS-5 cells and when 

trafficked to TK6 cells, may contribute to the CIBE seen in TK6 cells. Hsa-miR-17-5p is involved in 

the regulation of fundamental cellular processes such as proliferation, autophagy and apoptosis 

(Bobbili et al., 2017). This supports the findings in this study that hsa-miR-17-5p control genes 
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involved in cell cycle and proliferation (Section 4.3.3.4) and may explain the reduction in cell 

numbers of TK6 cells following exposure to sEVs from treated HS-5 cells (section 5.5.3). It can 

also be inferred that the recovery of TK6 cell numbers following pre-treatment to heparin 

(section 5.5.3) may be due to inhibition of uptake of these treated sEVs containing hsa-miR-17-

5p. Hsa-miR-17-5p also belongs to the miR-17-92 family, known as onco-miRs that are elevated 

in many human cancers wherein they promote unrestrained cell growth thereby enhancing 

cancer aggressiveness and responsiveness to chemotherapeutics (Li et al., 2017; Kong et al., 

2018). The cluster could also act as tumour suppressors in some circumstances with pro-tumour 

properties (Li et al., 2017). Despite the low detection in sEVs, these suggest that hsa-miR-17-5p 

may act as a biomarker of CIBE, which can trafficked to the recipient TK6 cells thus controlling 

their response to genotoxic effects of chemotherapy (section 5.5) as well as CIBE (section 4.3.2.2) 

seen in this study.  

In support of this data, the expression of these miRNAs, including hsa-miR-17-5p, in bystander 

TK6 cells was downregulated following co-culture with sEVs from untreated and treated HS-5 

cells (section 5.6.7).  Interestingly, there was a significant difference in the miRNA levels detected 

in cells exposed to untreated sEVs and cells exposed to treated sEVs. These data support the 

findings in section 4.3.3.4, which revealed these miRNAs were detected at lower levels in TK6 

cells exposed to drug treated HS-5 cells. Underexpression of these miRNAs have been implicated 

in tumourigenesis (Yan et al., 2017; Zhang et al., 2017; Chen et al., 2018; Dong et al., 2019). 

Therefore, it can be inferred that sEVs can sequester drugs from parent cells and transport them 

to neighbouring cells. Although only hsa-miR-17-5p was the differential miRNA between the 

untreated and treated sEVs, all miRNAs explored may have significant roles in CIBE seen in this 

study. These suggest that CIBE may be because of an interplay between complex molecular cues 

in TK6 cells. These further suggest that there may be selectivity in the packaging of miRNAs and 

not all the functional miRNAs are packaged into the sEVs. In addition, the expression of hsa-miR-

30d-5p was elevated in these cells upon inhibition of sEVs uptake with heparin (section 5.6.7). 

These suggest that the cargo from the sEVs inhibits the expression of these miRNAs in bystander 

cells. These are further supported by the findings that heparin can differentially modulate gene 

expression of stromal cells (Laner-Plamberger et al., 2019). Therefore, the CIBE in the bystander 
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TK6 cells may be through modulation of molecular cues that may regulate different cellular 

pathways such as proliferation, apoptosis and autophagy.  

Collectively, these results suggest that CM, FBS and sEVs harbour miRNA but in low 

concentrations. One possible explanation for this low number is that cells harbour RNA 

intercellularly and only release a minute amount of RNA into the extracellular components, which 

may contain different cargos and functions. However, these extracellular components may 

reflect the functionality of the host cell and possess molecular and treatment signatures that are 

capable of inducing substantial biological effects in the bystander cells. In addition, these data 

infer that the majority of the hsa-miR-30d-5p and hsa-miR-16-5p in the CM and sEVs samples are 

free floating in the serum as the depleted medium had the same basic levels of these miRs despite 

the sEVs being removed. The presence of hsa-miR-17-5p in the treated sEVs samples also 

suggests a possible role of this miRNA as a diagnostic biomarker of CIBE during HSCT. Since these 

miRNAs are micro-managers of gene regulation, the biological effects found in the recipient cells 

could be because of the combined effects of hsa-miR-17-5p and other miRNAs on cellular 

pathways such as proliferation, apoptosis and autophagy.  

5.5 Summary 

This chapter has focused on the role of extracellular components and their associated miRNAs in 

CIBE. Stromal cells, HS-5 cells, release EVs into an in vitro model of the BM following exposure to 

drugs used in pre-transplant conditioning. These EVs were heterogeneous in size however when 

the EVs were isolated from these cells by two distinct methods and characterised, the cells were 

between 125 – 250 nm hence the term sEVs. These sEVs were then taken up by the bystander 

TK6 cells by fusing with the membrane of the cells. Once internalised, the sEVs released their 

RNA cargo into the cytoplasm of the bystander cells however this internalization was inhibited 

when the sEVs were pre-incubated with heparin. Further inhibitory studies using GW4869 to 

block the secretion and release of these sEVs led to a slight reduction in CIBE in the bystander 

TK6 cells.  
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In addition, co-culture of the bystander TK6 cells with sEVs led to a reduction in cell numbers and 

accumulation of genotoxic damage however, these were negated upon treatment with heparin. 

Exposure to sEVs also induced an adaptive response to mitoxantrone in these cells and resulted 

in a percentage of cells in the sub-G1 phase thus indicating cell death possibly due to the 

accumulation of the genotoxic effects in these cells. Small RNA molecules, miRNA, were 

successfully isolated from extracellular components such as CM, sEVs and FBS, and quantified. 

There could be several explanations for this difference between cellular and extracellular miRNA 

population, including cell lysis and packaging. This further supports the hypothesis that packaging 

and exporting of extracellular miRNAs is not specific. Two miRNAs, hsa-miR-30d-5p and hsa-miR-

16-5p, were found in the FBS thus suggesting that these miRNA are free floating in the FBS and 

may interfere with the downstream analysis of miRNAs in CM and sEVs. As expected, hsa-miR-

30d-5p was also found in the CM and sEVs samples however hsa-miR-17-5p was only found in 

the treated sEVs samples thus implying that this miRNA may act as a biomarker or ‘alarm signal’ 

to the bystander TK6 cells thereby inducing CIBE. However, when the miRNA expression in cells 

co-cultured with these sEVs was explored, the expression of all miRNAs explored were 

significantly downregulated thus indicating that the sEVs contribute to the reduction in detection 

levels of these miRNAs in TK6 cells.  

Therefore, it is reasonable to speculate that pre-transplant conditioning may induce stromal cells 

to release sEVs that harbour RNA cargo, which may act as microenvironmental cues to 

neighbouring cells in the BM microenvironment thus inducing several molecular and 

physiological changes in the cells. Nevertheless, it could be inferred that the miRNAs not 

packaged into the sEVs or analysed in this study might also play a role, as might other cellular 

components and/or sequestered drugs. Furthermore, the CIBE seen in the bystander cells could 

be a combination of different biological stimuli such as cytokines, proteins and lipids in the CM 

and sEVs hence the need to strengthen and verify the current findings in order to propel this field 

forward. Additionally, there is need to develop a standardized method for isolating EVs from the 

cell culture supernatants to ensure that ‘pure’ vesicles devoid of contaminants are used for 

downstream analysis. There is also need to carefully identify an appropriate method to isolate 

RNA from these extracellular samples.  
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6.0 General Discussion 

Pre-transplant conditioning is a double-edged sword that has improved the efficacy of HSCT and 

thence patient survival rates however, it has been associated with the development of secondary 

and de novo primary malignancies such as TRM and DCL after HSCT (Wiseman, 2011; McNerney 

et al., 2017). Due to the intercellular communication between different cell populations within 

the BM microenvironment that can propagate a mutated clone and/or encourage the 

development of tumour, it is pertinent to understand how pre-transplant conditioning could 

remodel the BM microenvironment during HSCT. Pre-transplant conditioning is directed at 

clearing the BM for the incoming donor cells to ensure normal haematopoietic engraftment after 

HSCT (Carrancio et al., 2011). Therefore, the conditioning regimen is toxic to both blood cells and 

leukaemic cells within the BM microenvironment such that all the cell populations within the BM 

microenvironment are all bathed in pre-transplant chemotherapy and under the influence of 

toxic effects (Spyridonidis et al., 2005). This theory was hypothesized as a mechanism in DCL thus 

suggesting that stromal cells in the tumour microenvironment retain the effects of pre-transplant 

conditioning and then transfer toxic signals in response to the chemotherapy to the incoming 

cells from a donor (Wiseman, 2011; Hongbing and Liu, 2016). Using DCL as the pathological pivot 

of this study, this thesis is aimed at understanding how chemotherapeutic drugs used in pre-

transplant conditioning can induce bystander effects (genotoxic and cytotoxic) in the 

neighbouring cells and the possible roles EVs and miRNAs play in propagating these effects.  

Mammalian cell lines are a very useful source widely used as an experimental model to study and 

understand cellular mechanisms. Advances in cell culture have enhanced our understanding of 

cellular behaviour and responses in vivo (Duval et al., 2017). In vitro research has also provided 

valuable information that has led to a better understanding of the genotypes and phenotypes of 

various diseases including leukaemia (Saunders and Amore, 1992; Bogdanowicz and Lu, 2013; 

Bian et al., 2017). It has been widely reported that the human BM microenviroment can be 

modelled in vitro by MSC-HSC co-culture. However, most studies focus on how intimate 

interactions between MSC and HSC lead to the protection of the haematopoietic compartment 

from the toxic effects of drugs and in doing so, confer resistance to haematological malignancies 
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that may be present (Ede et al., 2018; Usmani et al., 2019; Kouzi et al., 2020). Little research has 

been done on what the malignancy does to the BM or any transfer of drug-induced toxicity as in 

bystander. 

Therefore, it is important to monitor the state of the BM stroma after pre-transplant 

conditioning, as the stroma is a source of pro-leukaemic signals. Although the BM stroma consists 

of different cell populations, mesenchymal stromal cells were chosen as they majorly produce 

cellular signals that protect leukaemia from the effects of anti-cancer treatment thus leading to 

the development of resistance to therapy. These stromal cells represent the stem cells that 

generate the stromal layer and within our laboratory, it has been shown that the HS-5 stromal 

cell line used in this study have the capacity to differentiate into a stromal layer (Saeed Kabra, 

personal communication). In addition, the interaction between these stromal cells and 

haematopoietic cells in the BM microenvironment is crucial to the regulation of haematopoiesis 

(Anthony and Link, 2014; Scadden, 2016). Since these stromal cells play a vital role in the self-

renewal and differentiation of HSC, any compromise or damage to the functionality of the MSC 

stromal layer caused by conditioning regimens is likely to have far-reaching compromise to the 

haematopoietic compartment. 

A literature search showed very limited data about the fate of these stromal cells after 

chemotherapy. The main fate in vivo is that these stromal cells survive and within the patient 

remain of patient origin thereby supporting the notion that they have the capacity to remain and 

transfer toxic signals to the incoming donor cells (Spyridonidis et al., 2005; Bartsch et al., 2009). 

However, these in vivo primary cells come from different patients, which would be difficult to 

obtain and would have inter-individual differences. These patients would have had combination 

therapy, which would make it difficult to determine if certain drugs were more important than 

others. In addition, treated primary cells have limited lifespan so would be limited for testing. 

Using HS-5 cells negated these problems and allowed for better reproducibility as well as ability 

to expose to single drugs at a time.  

Using increasing doses of different chemotherapeutic agents, this study demonstrated that these 

drugs can induce cytotoxicity in the stromal cells however the stromal cells remained viable. 
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These findings are consistent with published reports that MSC are susceptible to chemotherapy-

induced damage in vitro (Oliveira et al., 2014; Nicolay et al., 2016). Depending on the drug 

involved, anti-proliferative effects of the drugs on the stromal cells were either intermittent or 

sustained after 3 days. Although drug-resistant cells are able to survive and proliferate more than 

other cells, it is believed that cells capable of dividing over a long period of time are more likely 

to accumulate mutations leading to further neoplasia (Perumal et al., 2017). The choice of 

chemotherapeutic agents used in this study is based on previous reports that alkylating agents 

and topoisomerase inhibitors are involved in the pathogenesis of TRM (Bhatia, 2013; McNerney 

et al., 2017). Since these drugs have DNA-damaging capabilities, it can be inferred that these 

drugs might also be involved in DCL. In support of this theory, this research demonstrated that 

the clinically relevant doses of these drugs could induce variable bystander effects such as 

increased proliferation, cytotoxicity and genotoxicity. This suggests that the treated stromal cells 

are capable of releasing toxic signals within the BM microenvironment that may be taken up by 

incoming donor cells to exert bystander effects in these donor cells. However, it is noteworthy 

that the dosing used in this study is not reflective of the current status of chemotherapy 

treatment. Chemotherapy is usually fractionated and since the data in this study show that 

chemotherapeutic effects on stromal cells vary depending on the drug and dose given, this needs 

to be taken into consideration. 

Nevertheless, the bystander cells exhibited an overall maintenance of good cell viability in 

contrast to the genotoxic events in the bystander cells. It has been previously suggested that 

presence of genotoxic effects along with a reduction in cell death may lead to the development 

of de novo primary malignancies (Swift and Golsteyn, 2014). This is supported by findings in 

literature that show that although genotoxic exposure causes genomic instability in cells, cells 

still proliferate and resist cell death thus suggesting mitosis entry as a major cellular response to 

damaged DNA (Kubara et al., 2012; Blank et al., 2015). Increased rate of cellular proliferation and 

resistance to cell death are hallmarks of cancer (Perumal et al., 2017). This corresponds to recent 

reports in radiation studies, which revealed that low intensity conditioning regimen correlates 

with an increase in the incidence of DCL (Gonzalez et al., 2018). Therefore, the evidence shown 

here that stromal cells can attempt to detoxify a drug-induced attack, and in doing so send toxic 
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signals to the neighbouring cells suggest that this may lead to the accumulation of genomic 

damage in the bystander cells over time, thus leading to the development of de novo primary 

malignancies. 

Since the drug-treated HS-5 cells were separated from the bystander TK6 cells by a culture insert 

in co-culture, the over-arching theory suggests that soluble factors may play a role in mediating 

CIBE in bystander cells. In support of this theory, this research also demonstrated that exposure 

of the bystander TK6 cells to the CM of drug-treated HS-5 cells was also enough for these 

recipient cells to develop bystander effects. Therefore, it can inferred that CIBE may be as a result 

of drug elution into the CM by HS-5 cells, soluble factors released by HS-5 cells following 

chemotherapy into the extracellular environment or a combination of both. This is further 

supported by the findings that MSC express ATP-binding cassette (ABC) transmembrane pumps, 

multidrug resistance-associated protein (MRP) and breast cancer resistance protein (BCRP) but 

not P-glycoprotein (P-gp), which have been previously suggested as a general mechanism to expel 

anti-cancer drugs (Chen et al., 2014; Bosco et al., 2015; Perez et al., 2019). Several 

chemotherapeutic agents used in pre-transplant conditioning are susceptible to ABC transporter-

mediated efflux such as topoisomerase inhibitors, including etoposide and mitoxantrone, and 

DNA-damaging anthracyclines (Moitra, 2015; Cho and Kim, 2020). This may explain why 

mitoxantrone propagated more genotoxic bystander signals in this study. 

Previously, bystander studies were based on radiation therapy thus RIBE have been well 

described with two categorized mechanisms: induction of soluble factors and gap-junction 

mediated cellular communication (Mothersill and Seymour, 2015; Klammer et al., 2015). 

Therefore, the possible role of soluble factors in CIBE was determined. The soluble factors 

released into the extracellular milieu by treated HS-5 cells could be EVs, nucleic acids including 

miRNAs, metabolites, lipids, cytokines, chemokines, proteins including growth factors and 

hormones. This suggests that there may be a mulfactorial mechanism for the bystander effects 

seen in TK6 cells. The soluble factors and/or eluted drugs may act as extrinsic factors, which upon 

uptake by the bystander cells may lead to alteration in the regulation of bystander cell cycle in 

response to DNA damage. The results in this study revealed that exposure of bystander TK6 cells 
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to EVs isolated from treated HS-5 cells did not cause cell cycle arrest in TK6 cells despite the 

formation of aneuploidy in these cells. Aneuploidy is associated with significant cellular stress 

hence this infers that these EVs contain molecules that have the capacity to induce significant 

stress that may have detrimental effects in the bystander TK6 cells long term. This is supported 

by the findings in this study, which illustrated a reduction in cell numbers along with an 

accumulation of genotoxic events in TK6 cells following exposure to the EVs-derived from drug-

treated HS-5 cells. However, these EVs-derived from drug-treated HS-5 cells also protected TK6 

cells from mitoxantrone-induced genotoxic and cytotoxic effects. Nevertheless, aneuploidy may 

depend on the cell type, cellular microenviroment and immune system of the patient (Ben-David 

and Amon, 2019). This further supports the idea that EVs contain molecules, which may act as 

extrinsic factors that interplay with varied intrinsic factors in the bystander cells to exert these 

CIBE. Thus, this infers that things intrinsic to one person such as DNA repair mechanisms might 

predispose them to getting CIBE. These findings correspond to the fact that not every recipient 

of HSCT develops DCL hence DCL is a unique condition that can develop regardless of the pre-

transplant conditioning. It has also been suggested that pathogenesis of DCL could be a 

multifactorial process involving extrinsic and intrinsic factors (Flynn and Kaufman, 2006).  

Furthermore, the data here also showed that these EVs are taken up by the bystander cells by 

fusion of the membranes of the cell and vesicle and upon uptake, release their contents into the 

bystander cells to elicit biomolecular changes. This further support the notion that soluble factors 

play a vital role in mediating CIBE in bystander. The data suggest that these EVs may be a means 

of intercellular communication within the BM microenvironment whereby the vesicles act as 

messengers that convey toxic signals onto the incoming donor cells. These toxic signals could be 

nucleic acids, proteins or metabolites, which are enclosed within the EVs. The scientific and 

clinical field of EVs have been rapidly expanding over the past 15 years and there is evidence in 

literature that chemotherapeutic agents, nucleic acids and proteins can be loaded or 

incorporated into EVs to elicit therapeutic effects in the bystander cells (Pessina et al., 2013; 

Pascucci et al., 2014; Wu et al., 2020). It has also been shown that EVs especially those derived 

from MSC have therapeutic effects in treating a variety of common and refractory diseases such 

as autoimmune disease, spinal cord injury, diabetes and cardiac repair (Zhang et al., 2012; Wu et 
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al., 2020). Therefore, these EVs may have broad clinical application prospects as diagnostic and 

prognostic markers for CIBE due to their unique physiological and biochemical characteristics. In 

addition, specific and sensitive labelling of EVs with membrane and RNA fluorescent dyes as seen 

in this study may help in real-time tracking and imaging diagnosis of CIBE. Furthermore, inhibitors 

of EV secretion and uptake such as GW4869 and heparin respectively may also be of therapeutic 

value, as both chemicals seem to attenuate the propagation of CIBE signals to the bystander cells 

in this study. Therefore, inorder to develop and optimise EV-based diagnosis and therapy, it is 

critical to timely and dynamically monitor and understand the fate of these EVs and their CIBE 

capabilities in vivo.  

Since molecules can be incorporated into EVs, the miRNA cargo of these EVs was determined. 

miRNAs are capable of inducing epigenetic changes in the cells via the regulation of genes post-

transcription. Results in this study illustrated that miRNAs can extend their biological functions 

to outside of the cell and mediate CIBE thus inferring that these nucleic acids are protected from 

degradation by EVs in the extracellular milieu whilst traveling to the bystander cells. These also 

suggest that the miRNA cargo in the chemotherapy-induced EVs may act as extrinsic factors that 

interplay with varied intrinsic factors in the bystander cells to exert these CIBE. Nevertheless, it 

is important to mention that the miRNAs found in the EVs and CM were in low amounts. In 

addition, the results showed that miRNAs are differentially expressed in the treated HS-5 cells 

and the bystander TK6 cells following co-culture. This is similar to a previous report that 

illustrated that miRNAs are also differentially expressed in irradiated and non-irradiated cells 

(Chaudhury and Omaruddin, 2012). These suggest that the involvement of miRNA modulation in 

CIBE could be responsible for large-scale gene expression in the bystander cells leading to 

induction of non-targeted cellular effects. In support of this data, the predicted genes of these 

miRNAs were found to control different signalling pathways as well as pathways related to cell 

division and survival thus highlighting the importance of the decision between cell survival and 

cell death. Normal functional cell signalling pathway entails a series of biomolecular changes 

involving a group of molecules, which are induced when an extracellular messenger binds to the 

cell surface receptor in order to control a cell function. Normal functional cell signalling is vital to 

the role of MSC in protecting the HSC. Nevertheless, these miRNAs have all been associated with 
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the development and progression of cancer where they could act as tumour suppressors and/or 

oncogenic miRNAs (Fang et al., 2017; Yang et al., 2017; Ruan and Qian, 2019; Iacona and Lutz, 

2019). Therefore, it could be inferred that these miRNAs could act as non-invasive biomarkers 

for early detection of CIBE that may lead to the development of de novo primary malignancies 

inorder to monitor response to treatment and guide prognosis post-HSCT.  

The main aim of HSCT is to reconstitute haematopoiesis in the patient’s BM after removing the 

leukaemic cells with pre-transplant conditioning. As a result, patients are usually given a ‘safe 

period’ of 2-3 days to recover from the effects of pre-transplant conditioning before infusing the 

donor cells. However, the outcome of this study further suggests that CIBE signals from the 

stromal cells may persist within the BM microenvironment in vivo and these treatment-induced 

effects can be seen in the recipient cells after 5 days. Thus, this suggests that the ‘safe period’ 

may not be safe after all and the phenotype and functionality of the donor cells may alter upon 

transplantation due to signals from the microenvironment. This further reiterates that the 

soluble factors released into the extracellular milieu may play a vital role in the propagation of 

CIBE signals to the incoming donor cells. However, it is important to note that inter-individual 

differences in donor might play a role in cellular response to CIBE.  

Cellular response to DNA damage is often via a series of communication signalling  pathways that 

promote both cell survival and cell death. The decision between cell survival and cell death is 

associated with development and progression of cancer. This would infer that the response of 

the bystander cells to the transferred treatment signals from the HS-5 cells could be to either 

repair (as seen in chlorambucil, carmustine and etoposide) or die (as seen in mitoxantrone). 

However, cell viability remained high regardless of the chemotherapeutic agent thus suggesting 

that the development of mutated clones in these cells or their progenies could likely be through 

uncontrolled proliferation. This further suggests that clonal expansion of these cells may lead to 

genomic instability that will be biologically relevant, as the time points used in this study may not 

tell the whole story in vivo. Nevertheless, this outcome illustrates the possible importance of pre-

transplant conditioning in the development of de novo primary malignancies in contrast to a 
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previous report that refuted its importance as donor cells are not exposed to pre-transplant 

conditioning (Danylesko and Shimoni, 2018). 

Summarily, the data presented in this thesis favours the theory that chemotherapeutic agents 

used in pre-transplant conditioning can propagate CIBE to the neighbouring cells. These CIBE 

could be mutagenic or anti-/pro-proliferative effects, which may explain the fate of donor cells 

within a HSCT setting. Although stromal cells may or may not recover from the effects of 

chemotherapy, it appears that chemotherapy causes a long-term disruption in the functionality 

of the BM microenvironment. Therefore, this may cause an alteration in the cargo of these 

chemotherapy-induced EVs released by stromal cells thus inferring that miRNAs enclosed in 

these EVs may play a role in CIBE. However, it is unlikely to be the sole mechanism involved as 

the contents of EVs are heterogeneous and may interact with other signalling molecules like 

cytokines to control multiple cellular pathways in the bystander cells. Additionally, it is possible 

that the mechanisms of CIBE vary depending on the drug involved. This study has also shed some 

light on the ability of stromal cells to extend genotoxic events beyond direct exposure however, 

the signalling pathways involved in non-directed cellular genotoxicity is not well understood 

hence why more complex multicellular or 3D models are likely to be more informative in the 

future. 

6.1 Limitations 

First, this study was limited by the use of an in vitro co-culture system that may not account for 

all the events that occur in vivo in response to chemotherapy. The two cell compartments used 

in this study were not in contact with each other but separated with culture inserts in the in vitro 

co-culture system. Therefore, bystander effects seen in this study may be pronounced if the cells 

were in contact with each other since it has been shown that gap junctions are vital in the 

propagation of RIBE signals. In addition, the use of one BM stromal cell line and lymphoblast cell 

line may not be enough to fully explain or understand CIBE. Instead, a future study may include 

the use of different stromal cell lines as well as primary MSC samples to compare the effects of 

these chemotherapeutic agents on these cells. Primary MSC samples would also help to explore 
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inter-individual differences that may influence CIBE. These may help explain why some 

individuals develop DCL after HSCT whilst others do not. 

Second, current approaches to genotoxicity testing focuses on the measurement of the direct 

exposure of acute doses of toxic agents in vitro however; the development of genotoxic events 

in the bystander cells questions the validity of this approach (OECD, 2012). MN assay used in 

assessing genotoxicity in this study is a subjective assay as it entails visual and manual counting 

of MN thus this may lead to false positive or false negative results. Thus, there is need to develop 

a high thoroughput assay to eliminate these confounding effects. Currently, there is an 

equipment known as Metafer that is available for this however, it could not be purchased due to 

financial constriants. 

Third, chemotherapy-induced EVs can also enhance our understanding of CIBE. The future in 

medical research in terms of prognosis or diagnosis of de novo primary malignancies like DCL 

could rely on EVs. The surface membrane proteins found on sEVs such as CD9, CD63, CD81, ALIX 

and TSG101 could not be identified by western blotting in this study. In addition, the nanosize of 

EVs makes it difficult to label these vesicles. One of the most common available strategies include 

use of lipophilic dyes such as the ones used in this study to label the bystander TK6 cells thus 

suggesting that these dyes are capable of labelling other cellular components, serum and 

proteins thereby generating false positive signals (Takov et al., 2017; Mondal et al., 2019). These 

lipophilic dyes also cause an increase in EV size (Deghani et al., 2019). Therefore, the labelling 

experiments should have been carefully controlled with relevant controls such as staining PBS 

without EVs in order to make the data more robust. Thus, there are still many questions that 

need to be answered in EVs studies ranging from isolation, characterisation to downstream 

analysis of these EVs. Although this study focused on sEVs, EVs are heterogeneous and can 

overlap in terms of cargo thus different EV subtypes may have influenced the results found in 

this study. Overall, this study has laid the foundation for more work to be done in understanding 

the mechanism of CIBE and needs modification. Direct targeting of EVs that act as biomarkers 

may enhance precision medicine and thence overall patient survival. 
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6.2 Future Work 

CIBE may be a complicated process that is probably influenced by multiple signalling molecules 

such as EVs, nucleic acid, proteins, metabolites and cytokines. The secretome of stromal cells 

following chemotherapy should also be investigated for cytokines and other signalling molecules. 

Currently, proteomic analysis of the CM from treated stromal cells by mass spectrometry is 

ongoing within our laboratory to identify the complete complement of proteins that may be 

involved in CIBE (Sultan Al-Malki, personal communication). However, there is also need to 

perform metabolomics to understand the complete set of metabolites that may be released into 

the CM by stromal cells following exposure to drugs as proteomics and microarray analysis may 

not be sufficient to fully understand the role of soluble factors in CIBE. In addition, next 

generation sequencing of the CM from the treated stromal cells should also be performed in 

order to identify nucleic acids that may have been neglected or omitted in this study.  

Furthermore, the contents of the EVs also need to be explored as only miRNA was assessed in 

this study. According to Wu et al., (2020), EVs contain mRNA, DNA, proteins, long noncoding RNA 

(lncRNA) and other short noncoding RNA molecules. Thus, EVs released by stromal cells may 

contain these components and need to be explored. Therefore, next generation sequencing, 

proteomics and metabolomics using EV samples may provide more information to understand 

the contents of the EVs and their possible roles in CIBE. In addition, the miRNAs identified could 

also be knocked down using antagomirs to ascertain if these will ameliorate or enhance CIBE in 

bystander cells. 

Mitoxantrone produced more bystander cytotoxic and genotoxic effects in this study however 

this study could not ascertain if alkylating agents or topoisomerase inhibitors play major roles in 

CIBE as the drugs had different bystander outcomes hence this area of study should be further 

explored. Although the doses of these drugs used in this study are clinically relevant, it is 

noteworthy that different mechanisms are involved in the efficacy of a drug in vivo, which may 

not be possible to reconstruct in vitro. For example, drug safety and efficacy vary amongst 

patients, and are dependent on clinical and molecular factors hence prescribing the optimal dose 
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for a drug for each patient is often a problem for physicians. Therefore, this raises an important 

issue that these bystander effects may be under-measured and under-represented in standard 

in vitro tests where a single cell source is considered. This also raises the question that there may 

be inter-individual differences in the patients that could make them susceptible to the risk of 

CIBE. Therefore, there is need to modify the monocultures used in genotoxicity testing thus 

reconsidering the drug dosage and treatment duration. Hence why more complex multicellular 

or 3D models are likely to provide a better understanding of the risks posed by these toxic agents 

in vivo in the future. 

Furthermore, the in vitro bystander model used in this study needs to be modified with cells 

grown in a hypoxic environment to mimic the hypoxic nature of BM microenvironment (Cheng 

et al., 2018). In addition, collecting and isolating stromal cell samples from leukaemia patients 

should be considered in order to understand the full scope of CIBE signalling pathways in vivo. 

Using patient samples will also help us understand the duration of CIBE and thence ways we can 

modulate pre-transplant conditioning as it has been shown in this study that the safe period of 5 

days after pre-transplant conditioning is not safe after all. Alternatively, hTERT immortalised cell 

lines, which have been shown to possess karyotypic, morphologic and phenotypic similarities 

with primary MSC can also be used as they have the advantage of an extended lifespan (Lee et 

al., 2004). Since the bystander endpoints in this study varied from increased proliferation, 

genotoxicity and cell death, primary MSC from healthy and leukaemia patients, hTERT 

immortalised cell lines and 3D multicellular models could be combined to compare bystander 

endpoints in these cells. This will help ascertain a standard endpoint for CIBE to aid uniformity of 

data and subsequent comparative studies.  

Lastly, there is need to produce standardized techniques that will enable the isolation and 

quantification of pure EVs. In addition, the mechanism by which chemotherapy alters the 

contents of the heterogeneous EV population is not understoodand and should be explored. 

Nevertheless, the overall effects of chemotherapy-induced EVs should be further investigated as 

they may play important roles in tipping the pro- and anti-tumorigenic balance in the BM 

microenvironment.  
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Table 8.1 List of upregulated miRNAs that are in bystander TK6 cells with Ct values more than 34.  

Relative expression levels of the miRNAs with Ct values of more than 34 are shown. Student t-test of the replicate 
normalized miRNA expression values was performed for each miRNA in the control and treatment groups. Red colour 
indicates the candidate miRNA that was chosen as the negative control in this study. Fold change values greater than 
one indicate an upregulation whilst fold regulation represents the negative inverse of the fold change hence the fold 
regulation is equal to the fold change. 

 

 

 

  

Table 8.2 List of some of the genes controlled by the candidate miRNAs as identified by bioinformatics.  

S/N Genes MicroRNA(s) involved 

MiRNA(s) Control 
(Average 
Ct value) 

Treatment 
(Average Ct 
value) 

Fold change  Fold 
Regulation 

95% CI P-value 

hsa-miR-150-5p 35 35 2.03 2.03 0.00001. 10.07  0.396 
hsa-miR-32-5p 35 35 2.03 2.03 0.00001. 10.07  0.396 
hsa-miR-101-3p 34.7 34.88 1.79 1.79 0.00001. 8.67 0.397 
hsa-miR-302b-3p 35 35 2.03 2.03 0.00001. 10.07  0.396 
hsa-miR-376c-3p 35 35 2.03 2.03 0.00001. 10.07  0.396 
hsa-miR-122-5p 35 35 2.03 2.03 0.00001. 10.07  0.396 
hsa-miR-144-3p  35 35 2.03 2.03 0.00001. 10.07  0.396 
hsa-miR-126-3p 35 35 2.03 2.03 0.00001. 10.07  0.396 
hsa-miR-143-3p 35 35 2.03 2.03 0.00001. 10.07  0.396 
hsa-miR-28-5p 35 35 2.03 2.03 0.00001. 10.07  0.396 
hsa-miR-96-5p 35 34.95 2.10 2.10 0.00001. 10.45  0.396 
hsa-miR-223-3p 34.81 35 1.18 1.18 0.00001. 8.81  0.397 
hsa-miR-141-3p 35 35 2.03 2.03 0.00001. 10.07  0.396 
hsa-miR-302a-3p 34.73 35 1.69 1.69 0.00001. 8.34  0.398 
hsa-miR-196b-5p 35 35 2.03 2.03 0.00001. 10.07  0.396 
hsa-miR-302c-3p 35 35 2.03 2.03 0.00001. 10.07  0.396 
hsa-miR-96-5p 35 34.95 2.10 2.10 0.00001. 10.45  0.396 
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1 TP53 hsa-miR-30d-5p, hsa-miR-16-5p 
2 SMAD1 hsa-miR-30d-5p 
3 RUNX2 hsa-miR-30d-5p 
4 SOCS1 hsa-miR-30d-5p 
5 FADD hsa-miR-146a-5p 
6 BRCA1 hsa-miR-146a-5p 
7 IL-8 hsa-miR-146a-5p, hsa-miR-146a-5p 
8 CDKN1A hsa-miR-146a-5p, hsa-miR-20a-5p, hsa-miR-17-5p 
9 EGFR hsa-miR-146a-5p, hsa-miR-16-5p 
10 SMAD4 hsa-miR-146a-5p, hsa-miR-17-5p, hsa-miR-20a-5p 
11 ICAM-1 hsa-miR-146a-5p, hsa-miR-17-5p, hsa-miR-20a-5p 
12 SMAD2 hsa-miR-146a-5p 
13 PTGS2 hsa-miR-146a-5p, hsa-miR-16-5p 
14 RAC1 hsa-miR-146a-5p 
15 CCNE1 hsa-miR-16-5p 
16 PTEN hsa-miR-20a-5p, hsa-miR-17-5p 
17 TIMP3 hsa-miR-17-5p 
18 MYB hsa-miR-16-5p, hsa-miR-200C-3p 
19 HIF1A hsa-miR-20a-5p, hsa-miR-17-5p 
20 TCEAL1 hsa-miR-20a-5p, hsa-miR-17-5p  
21 CCND1 hsa-miR-20a-5p, hsa-miR-16-5p, hsa-miR-17-5p 
22 E2F1 hsa-miR-20-5p, hsa-miR-17-5p 
23 BMPR2 hsa-miR-20-5p, hsa-miR-17-5p 
24 TGFBR2 hsa-miR-20-5p, hsa-miR-17-5p 
25 MAP3K12 hsa-miR-20-5p, hsa-miR-17-5p 
26 BCL2 hsa-miR-20-5p, hsa-miR-17-5p, hsa-miR-16-5p, hsa-miR-200c-3p 
27 MEF2D hsa-miR-20-5p, hsa-miR-17-5p 
28 APP hsa-miR-20-5p, hsa-miR-17-5p 
29 RUNX1 hsa-miR-20-5p, hsa-miR-17-5p 
30 VEGFA hsa-miR-20-5p, hsa-miR-17-5p, hsa-miR-16-5p, hsa-miR-200c-3p 
31 MYC hsa-miR-20-5p, hsa-miR-17-5p 
32 CCND2 hsa-miR-20-5p, hsa-miR-17-5p 
33 E2F3 hsa-miR-20-5p, hsa-miR-17-5p 
34 MAPK9 hsa-miR-20-5p, hsa-miR-17-5p 
35 RB1 hsa-miR-20-5p, hsa-miR-17-5p 
36 RBL1 hsa-miR-20-5p, hsa-miR-17-5p 
37 RBL2 hsa-miR-20-5p, hsa-miR-17-5p 
38 WEE1 hsa-miR-20-5p, hsa-miR-17-5p, hsa-miR-16-5p 
39 PURA hsa-miR-20-5p, hsa-miR-17-5p 
40 SIRP-α hsa-miR-20-5p, hsa-miR-17-5p 
41 UBE2 hsa-miR-20-5p, hsa-miR-17-5p 
42 STAT3 hsa-miR-20-5p, hsa-miR-17-5p 
43 LIMK1 hsa-miR-20-5p, hsa-miR-17-5p 
44 ITGB8 hsa-miR-20-5p, hsa-miR-17-5p 
45 TP531NP1 hsa-miR-20-5p, hsa-miR-17-5p 
46 ETV1 hsa-miR-20-5p, hsa-miR-17-5p 
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47 EPAS1 hsa-miR-20-5p, hsa-miR-17-5p 
48 FBX031 hsa-miR-20-5p, hsa-miR-17-5p 
49 DNMT1 hsa-miR-20-5p, hsa-miR-17-5p 
50 SOX6 hsa-miR-16-5p 
51 KRAS hsa-miR-16-5p, hsa-miR-200c-3p 
52 SELE hsa-miR-17-5p 
53 HBP1 hsa-miR-17-5p 
54 CASP3 hsa-miR-30d-5p 
55 BCL9 hsa-miR-30d-5p 
56 NOTCH1 hsa-miR-30d-5p, hsa-miR-200c-3p 
57 ATG9 hsa-miR-16-5p 
58 ATG5 hsa-miR-30d-5p 
59 BECN1 hsa-miR-30d-5p 
60 ATG2B hsa-miR-30d-5p 
61 ATG12 hsa-miR-30d-5p 
62 BNP3L hsa-miR-30d-5p 
63 GNAI2 hsa-miR-30d-5p 
64 EZH2 hsa-miR-30d-5p 
65 GPRR78 hsa-miR-30d-5p 
66 CXCR4 hsa-miR-146a-5p 
67 TLR2 hsa-miR-146a-5p 
68 BRCA2 hsa-miR-146a-5p 
69 NFKB1 hsa-miR-146a-5p 
70 STAT1 hsa-miR-146a-5p 
71 CDKN3 hsa-miR-146a-5p 
72 CCNA2 hsa-miR-146a-5p 
73 IRAK1 hsa-miR-146a-5p 
74 FAS hsa-miR-146a-5p 
75 TLR4 hsa-miR-146a-5p 
76 CD40LG hsa-miR-146a-5p 
77 NUMB hsa-miR-146a-5p 
78 MTOR hsa-miR-200c-3p 
79 AKT3 hsa-miR-200c-3p 
80 NOTCH2 hsa-miR-200c-3p 
81 RAF1 hsa-miR-200c-3p 
82 IGF1R hsa-miR-200c-3p 
83 FGFR1 hsa-miR-200c-3p 
84 DNMT3A hsa-miR-200c-3p 
85 DNMT3B hsa-miR-200c-3p 
86 CCNE2 hsa-miR-200c-3p 
87 GATA4 hsa-miR-200c-3p 
88 KIT hsa-miR-17-5p 
89 TSG101 hsa-miR-17-5p 
90 MAP2K3 hsa-miR-17-5p 
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Figure 8.1 Transmission elecron micrographs of the control (PBS only). The electron micrographs show that there is no vesicle within PBS, which was used as 

the suspension buffer for the vesicles. Scale bar, 500 nm. 
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Figure 8.2 HS-5 cells release large extracellular vesicles following exposure to chemotherapy. Large vesicles were also observed following exposure of stromal 

cells to treatment with drugs. Scale bar, 2 µm. 
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Figure 8.3 GW4869 does not have an effect on chemotherapy-induced bystander effect. A. Cell viability of bystander TK6 cells exposed to HS-5 cells that were 

pre-treated with drugs in the presence or absence of 10 µM GW4869. B. Micronuclei formed in the bystander TK6 cells exposed to HS-5 that were pre-treated 

with drugs in the presence or absence of 10 µM GW4869. 
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Figure 8.4 Normalisation of small nuclear RNAs. The Ct values of small nuclear RNAs used as normalisers in microarray of bystander TK6 cells’ RNA were put 

through three normalization software tools (GeNorm, NormFinder and BestKeeper) to identify the candidate normalisers for the validation of miRNA expression 

in this study. A normalisation miRNA candidate has to fulfil two criteria: it has be stably expressed in the cells of interest and it has to have an expression level 

above background. 
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Figure 8.5 Linear amplification plots and melt curves from microarray of bystander TK6 cells’ RNA. The amplicons from RNA isolated from bystander TK6 cells 

exposed to untreated HS-5 cells (A) and treated HS-5 cells (C) are shown. These linearly amplified RNA samples indicate that abundant amplicons were generated. 

These linear amplicons also reveal a single peak following melt curve analysis thus idnicating sinle amplicons were geneated in both untreated (B) and treated 

(D) samples. 
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Figure 8.6 The effect of medium conditioned by HS-5 cells exposed to drugs and GW4869 on bystander TK6 cells. 

HS-5 cells were pre-exposed to GW4869 (5 µm) prior to exposure to chemotherapy for 24 hours. Medium 

conditioned by these treated HS-5 cells were used to co-culture the bystander TK6 cells for 24 hours. Data show that 

the conditioned medium had an effect on the cell numbers of the bystander cells. 
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Figure 8.7 Chemotherapy causes genomic instability in bystander TK6 cells. The data show the cell cycle of untreated bystander cells (negative) and bystander 

cells treated with mitoxantrone (positive control). The sets of cells had undergone atleast one cell cycle however aneuploidy was observed in the cells treated 

with drugs. Aneuploidy is physiologically associated with cellular stress as well as chromosome instability thus favouring cancer initiation and progression. 
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Figure 8.8 sEVs derived from drug-treated stromal cells induce aneuploidy in bystander TK6 cells. sEVs derived from untreated and treated HS-5 cells were 

cultured with bystander TK6 cells for 24 hours. Aneuploidy was found in the cells co-cultured with treated sEVs but not in the cells co-cultured with untreated 

sEVs. 
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Figure 8.9 Heparin ameliorates aneuploid effect of sEVs in bystander TK6 cells. Pre-treatment of cells with heparin inhibited the development of unbalanced 

chromosome content (aneuploidy) in the bystander cells.   
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Figure 8.10 Pre-expsoure of bystander TK6 cells to sEVs does not protect them from chemotherapy-induced aneuploidy. Chromosomal instability were found 

in the cells following exposure to chemotherapy despite pre-treatment with untreated and/or treated sEVs. However, more aneuploid cells were found in cells 

pre-treated with untreated sEVs. 
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Table 8.3 BSA Standard Preparation for Bradford Assay 

 
Table 8.4 BSA Standard Preparation for Bicinchoninic Acid Assay 

 

Vial Volume of diluent Volume and source of BSA Final BSA Concentration 

A 2370 µl 30 µl of BSA stock 25 µg/ml 

B 4950 µl 50 µl of stock 20 µg/ml 

C 3970 µl 30 µl of stock 15 µg/ml 

D 2500 µl 2500 µl of vial B solution 10 µg/ml 

E 2000 µl 2000 µl of vial D solution 5 µg/ml 

F 1500 µl 1500 µl of vial E dilution 2.5 µg/ml 

G 5000 µl                  0 0 µg/ml = PBS Blank 

Vial Volume of diluent Volume and source of BSA Final BSA Concentration 

A 700 µl 100 µl of BSA stock 250 µg/ml 

B 400 µl 400 µl of vial A solution 125 µg/ml 

C 450 µl 300 µl of vial B solution 50 µg/ml 

D 400 µl 400 µl of vial C solution 25 µg/ml 

E 400 µl 100 µl of vial D solution 5 µg/ml 

F 400 µl                  0 0 µg/ml = PBS Blank 


