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Abstract 11 

In this study, stand-alone machine (ML) models (Bayesian regressor (BLR), least square 12 

linear regressor (REG), artificial neural networks (ANN), and logistic regression (LR)), tree-13 

ensemble ML models (boosted decision tree (BDT), random decision forest (RDF) decision 14 

jungle (DJ)) and meta-ensemble ML models (voting (VE) and stacking (SE)) are applied to 15 

predict the strength of different soils improved by part-substitution of OPC with PFA and 16 

GGBS in various combinations and proportions. Multiclass elements of these proposed ML 17 

models are also deployed to provide analysis across multiple cross-validation methods. 18 

Results of regression analysis indicated higher statistical variance of OPC-substituted 19 

predictor variables compared to soils improved by OPC alone when using both stand-alone 20 

and tree-based algorithms. On average, the REG model produced strength predictions with 21 

higher accuracy (RMSE of 0.39 and R2 of 0.86) compared to ANN (RMSE of 0.44 and R2 of 22 

0.82), but with comparatively lower accuracy compared to tree-based models (average RMSE 23 

of 0.33 and R2 of 0.90) and meta-ensemble models (average RMSE of  0.06 and R2 of 0.91). 24 

For ML classification, multiclass neural network algorithm (mANN) produced higher 25 

accuracy (0.78), precision (0.67) and rate of recall (0.67) compared to tree-based models but 26 

fell short to meta-ensemble models (average accuracy of 0.80, precision of 0.70 and recall of 27 

0.71). Diagnostic tests across different validation methods indicated better performance of the 28 

VE model compared to its SE ML counterpart when adopting the train-validation split 29 

technique. Overall, the ensemble methods were more versatile on regression and multiclass 30 

classification problems because they aggregated multiple learners to provide robust 31 

predictions. 32 

 33 
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List of abbreviations List of symbols 

  

ANN  Artificial neural network αm   neural network activities 

ASTM  American system of testing for materials Y  predictor variable 

AUC  Area under curve Yn   normalised UCS influential factor 

BDT  Boosted decision tree. Y0  raw UCS influential factor 

BLR  Bayesian linear regression my   mean of distribution 

BP  Back propagation σy   standard deviation 

CEM I  Cement N  dataset points 

CRISP-DM  CRoss industry standard process data mining nv   size of validation dataset 

CV  Cross validation nt   size of training dataset 

DAG  Directed acyclic graph. Xn  independent variable 

DJ  Decision jungle β0  regression constant 

EML  Extreme machine learning tm  sample target value 

FN  Functional networks εm   additive noise 

FPR  False positive rate w  weight vector 

GA  Genetic algorithm β   Bayesian precision parameter 

GGBS  Ground granulated blast furnace slag. α  hyper-parameter controlling distribution 

K-FCV  k-fold cross validation 𝚺  posterior variance 

KNN  k-Nearest neighbours μ  mean of weights 

LR  Logistic regression wij   weight between two neurons 

MAE  Mean absolute error. yn   neural network output signal 

MARS  Multivariate adaptive regression splines x   activation of nth neuron 

MCCV  Monte Carlo cross validation σ  neural network activation function 

MGP  Multi-genetic programming t   hypothesis test value  

ML  Machine learning SE   standard error 

OPC  Ordinary Portland Cement Xm  mean of actual observations.  

PFA  Pulverised fuel ash SSxx  explained variation. 

PI  Plasticity index    

RDF  Random decision forest    

REG  Linear regression    

RMSE  Root mean square error.    

ROC  Receiver operating characteristic    

SE  Stacking ensemble    

SVM  Support vector machine    

TPR  True positive rate    

TVS  Train-validation split.    

UCS  Unconfined compressive strength    

VE  Voting ensemble    
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1. Introduction 52 

The method of soil stabilisation that involves treatment with pozzolanic binders, continues to 53 

remain one of the most effective and economical means of ground improvement. The 54 

temptation to utilise Ordinary Portland Cement (CEM-I or OPC) as a traditional binder to 55 

stabilise weak soils seems nearly unavoidable in certain projects given their good hydraulic 56 

and binding qualities. However, the negative effects on the environment due to the 57 

continuous production and usage of OPC cannot be over-emphasized [1]. Hence, a complete 58 

replacement or part-substitution of OPC with relatively low-carbon secondary alternatives or 59 

by-products such as ground granulated blast furnace slag (GGBS) and pulverised fuel ash 60 

(PFA) has become inevitable in soil stabilisation [2–10]. 61 

Determination of the mechanical properties of stabilised soils based on some composite 62 

binder mixture parameters is undoubtedly an important first step towards the development of 63 

design mix guidelines for subsequent field application [11–13]. For a stabilised soil with 64 

multiple binder combinations, the challenges of establishing a property such as compressive 65 

strength may involve some time-consuming and laborious laboratory trial batching (soil-66 

binder type quantities and optimum combinations), choice of curing duration, selection and 67 

testing of other related properties which can have the potential of affecting the target variable. 68 

Meanwhile, on the basis of theory, conventional models of forecasting the compressive 69 

strength of stabilised soils consist essentially of relationships that are developed empirically 70 

from statistical methods whereby, linear, and sometimes nonlinear regression techniques are 71 

applied [14,15]. The analytical equations generated through these models tend to determine 72 

unknown coefficients that affect the relationship of other variables and the compressive 73 

strength. These models, though effective in some cases, are riddled with shortcomings such 74 

as those associated with the complexities of the stabilised soil mentioned above. 75 

In recent times, machine learning (ML) techniques have been introduced to compensate for 76 

the limitations of traditional methods of compressive strength prediction of soils [16,17]. 77 

However, the adoption of ML models for performance evaluation of improved ground 78 

properties has been very slow and only reported in few studies as follows: strength, dry 79 

density, moisture content additive content, resilient modulus modelling and prediction using 80 

artificial neural networks (ANN), support vector machines and regression (SVM & R), meta-81 

ensembles (voting, stacking, tiering & bagging), functional networks (FN), multivariate 82 

adaptive regression splines (MARS), Logistic regression (LR), k-nearest neighbours (KNN), 83 

Genetic algorithm (GA), multi-genetic programming (MGP) [16–30]. These authors have 84 

used materials such as cement, lime, fly ash, fibres and geopolymers to strengthen the weak 85 

soils. 86 

It is obvious that the application of  multiple ML algorithms and a critical analysis that 87 

compares the relative performances of each one is not plentiful in literature. Moreover, an 88 

application of ML models to predict the unconfined compressive strength (UCS) of soils 89 

stabilised by partial substitution of OPC with cementitious by-products (PFA and GGBS) has 90 

not been done.  91 

In this study, stand-alone ML models (Bayesian regression, linear regression, artificial neural 92 

networks, and logistic regression), tree-ensemble ML models (boosted decision tree, random 93 

decision forest and decision jungle) and meta-ensemble ML models (voting and stacking) are 94 

applied to investigate and predict the strength properties of five different soils stabilised by 95 

partial replacement of OPC with PFA and GGBS in various combinations and proportions.   96 

Until recently, most ML predictions reported in literature have relied on conventional 97 

statistical metrics such as coefficient of determination and other standard error analyses for 98 

performance assessment [31–39]. However, this study aims to extend the scope of 99 

investigation, evaluation and prediction to include other diagnostic tests to support, confirm 100 
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and validate the commonly used statistical measures. This ensures that adequate sensitivity 101 

analysis of performance is accounted for while also emphasising the effect of weight 102 

variables or features in the prediction process. 103 

Also, the complex combination of binders used in stabilisation of the soils considered in this 104 

study can easily be regarded as a ML classification problem. Hence, the multiclass elements 105 

of the proposed ML models are further deployed to provide analysis by considering multiple 106 

cross-validation methods, an aspect which has not been considered in most previous studies. 107 

The structure and framework of this study are as follows: a statement of the method involving 108 

database construction, development and the experimental procedures adopted for soil 109 

stabilisation is presented section in 2. This shall consist of a series of steps and processes 110 

required for the preparation of collated datasets. Subsequent development and 111 

implementation of the proposed models are given in section 3. Detailed analyses and 112 

discussions of the performance of ML models are carried out in section 4. This section 113 

includes an evaluation of ML regression, classification, and sensitivity analysis of the 114 

prediction problems. In section 5, the significance of this study and recommendations for ML 115 

model deployment are laid out. Following this is the concluding section where the main 116 

points and highlights of the study are given. 117 

 118 

2. Research Method 119 

2.1. Database development and stabilisation procedure  120 

High quality and original experimental data of unconfined compressive strength (UCS) tests 121 

on soils stabilised using OPC and a combination of cementitious by-product materials were 122 

compiled from literature and used to train ML models [14]. Soil-binder-water reactions under 123 

a prescribed or natural curing environment can play a very significant role in the hardening 124 

rate of the stabilised mixed. In this regard, 5 different soil types of varying initial properties 125 

were improved by OPC, a blend of OPC and PFA and OPC-PFA-GGBS. OPC contents of 126 

5%, 10%, 15% and 20% (by weight of dry soil) were applied to stabilise the weak soils. The 127 

OPC-PFA-stabilised soils were first composed of a 50% reduction in the OPC content used. 128 

The OPC was then further reduced to 33.33% and substituted by equal amounts of PFA and 129 

GGBS to produce a stabilised soil of OPC-PFA-GGBS mixes. In all the soil mixtures, the 130 

total proportion of the binder in the stabilised soil remained constant at 5%, 10%, 15% and 131 

20%. The ratio of water-OPC in the stabilised soil mixture was unity. Three series of UCS 132 

tests (ASTM D2166) were carried out following curing at 7, 14, 28 and 56 days to assess 133 

strength developments of the soil with varying initial moisture and plasticity properties. The 134 

first series was performed to study the influence of OPC addition alone on UCS while the 135 

second and third series of tests were carried out to investigate the effect of OPC-PFA and 136 

OPC-PFA-GGBS addition respectively. Compared to the natural soils, there was an 137 

improvement in the UCS of the soils when stabilised by the binders details of which are given 138 

in Abbey et al. [14]. However, in keeping with the main goal of this research, the datasets 139 

will be used to train ML models for UCS prediction. 140 

 141 

2.2.Featurization and hyper-parameter optimisation 142 

Stabilised soil datasets used in the supervised training of ML models in this study did not 143 

contain any missing feature and attributes. Nevertheless, there was need for other forms of 144 

feature engineering to be carried out to enable a reduction in unnecessary redundancy and 145 

improvement of the integrity of data used for training of the ML models. 146 

 147 
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2.2.1. Data normalization  148 

Without any distortion of the differences in the range of values of the UCS dataset, these 149 

values were transformed into a common scale by using the Z-score standardisation method to 150 

ensure outliers were avoided. The Z-score transformation is described mathematically as: 151 

 152 

𝑌𝑛 =  
𝑌0−𝑚𝑦

𝜎𝑦
        (1) 153 

Where Yn and Y0 represent the normalised and raw UCS influential factors respectively, while 154 

my and σy denote corresponding values of the mean and standard deviation, respectively. 155 

 156 

2.2.2. Cross-validation (CV) 157 

For average sized datasets such as those used in this study, it was necessary to apply cross-158 

validation techniques to improve the reliability of the training sets and reduce the chances of 159 

certain coincidental features receiving more importance [40]. Moreover, an overfitted model 160 

is highly undesirable since it lessens the predictive performance on some ‘‘unseen” tested 161 

data [41]. The following cross-validation techniques were used to optimise hyper-parameters: 162 

k-fold cross-validation (k-FCV), Monte Carlo cross-validation (MCCV) and train-validation 163 

split (T-VS) method. 164 

The k-fold cross-validation (k-FCV) technique tends to divide the dataset (N) points into 165 

some k- subsets of equal sizes. The process then treats one of the k-subsets as a training 166 

subset and the remaining as validation subset. This process then repeats k number of times by 167 

excluding one of the k- subsets in each cycle. In this study, 10-fold CV was adopted. 168 

Monte Carlo cross-validation (MCCV) method splits the dataset (N) points into two subsets 169 

by sampling and without replacement of one of the data points. The training is then 170 

performed on the subset that was not replaced and validation on the replaced subset. Even 171 

though there exist a rather unique training set, MCCV tends to avoid the need to run any form 172 

of iterations unlike the k-FCV.  173 

In summary, if we consider both MCCV and k-FCV and then assume N to represent the size 174 

of the dataset, k denoting the number of k-fold subsets, nv the size of validation set, and nt the 175 

size of training set then: 176 

 177 

k-FCV, N = k x nv        (2) 178 

MCCV, N = nt + nv.       (3) 179 

Train-validation split (T-VS) is a simple method of randomised dataset splitting whereby 180 

each of the subsets are used for training and testing purposes, respectively. In this research, 181 

80% of the parent dataset were used to meticulously train the ML models (i.e., selection and 182 

optimisation of hyper-parameters and functions) while the remaining 20% of the dataset were 183 

used to test and assess the prediction performance of the ML models. Previous studies have 184 

recommended that the testing data subset may not be less than 10% nor more than 30% of the 185 

entire data records [32,40]. 186 

 187 

 188 

 189 

 190 
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3. Machine learning models.  191 

3.1. Multiple linear regression (REG) 192 

This is one of the most common mathematical methods employed for supervised ML. The 193 

least square function of REG technique establishes several correlations between one or more 194 

independent or explanatory variables and predictor or dependent variables. Changes in the 195 

predictor variable say, Y are often triggered by the nature of the independent variable X as the 196 

following general equation shows: 197 

 198 

 199 

𝑌𝑛 =  𝛽0 + 𝛽1𝑋1𝑛 + 𝛽2𝑋2𝑛 + ⋯ + 𝛽𝑚𝑋𝑚𝑛 + 𝜖𝑛       (4) 200 

Where Yn = predictor variable; X1n, X2n,…,Xmn = independent variables; β0 = constant; and β1, 201 

β2,…, βm = coefficients of regression; and ε = error term. 202 

3.2. Logistic regressor (LR) 203 

This is a nonlinear model where the deviation or variance of the predictor variable is a 204 

function of its mean. In other words, unlike REG, the value of the predictor variable depends 205 

on the probability that it belongs to a certain class. LR tends to add an exponential function 206 

on top of REG in order to restrain the predictor of response Yn  ϵ [0,1], instead of Yn  ϵ ℜ as in 207 

REG [16]. The LR model for say  ‘y’ distinct predictors could be represented as: 208 

 209 

𝑦 (𝑋) = 𝑃𝑟(𝑌 = 1|𝑋) =  
𝑒𝛽0+𝛽1𝑋1𝑛+𝛽2𝑋2𝑛+⋯+𝛽𝑚𝑋𝑚𝑛+𝜖𝑛

1+ 𝑒𝛽0+𝛽1𝑋1𝑛+𝛽2𝑋2𝑛+⋯+𝛽𝑚𝑋𝑚𝑛+𝜖𝑛
  (5) 210 

Where Pr (Y=1|X) = probability that the response Y = 1 or 0 given X1n, X2n,…,Xmn = 211 

independent variables, X1n, X2n,…,Xmn = independent variables; β0 = constant; and β1, β2,…, 212 

βm = coefficients of regression; and ε = error term. Because of its extreme validity in 213 

classification as well as regression problems, LR unlike its REG counterpart is mostly 214 

preferred as the default first option [40]. 215 

 216 

3.3. Bayesian linear Regressor (BLR) 217 

This is a special case of linear regression whereby the model analysis is undertaken within 218 

the context of a statistical inference of the “Bayes” theorem. This is then used to update the 219 

probability of a given hypothesis as more information or evidence become available. Bayes 220 

theorem describes the probability of an event taking place as a result of having prior 221 

knowledge of certain conditions that might be related to such event. If it is considered that a 222 

target value say, tm, is sampled from an experiment then the relationship between this value 223 

and the predictor variable y(xm;w) can be given as [42]: 224 

 225 

𝑡𝑚 = 𝑦(𝒙𝑚; 𝒘) +  𝜀𝑚       (6) 226 

Where εm = an additive noise (modelled as Gaussian distribution ε ~ 𝒩(0,β-1) with a random 227 

zero-mean variable); w = weight vector; β = precision parameter 228 

 229 
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Hence, following Gaussian distribution: we have the target value tm as: 230 

 231 

𝑝(𝑡𝑚|𝒘, 𝛽) =  𝒩(𝑡𝑚|𝑦(𝒙𝑚; 𝒘), 𝛽−1)     (7) 232 

With the input parameter given as x, the likelihood or probability for the target vector t then: 233 

𝑝(𝑡𝑚|𝒘, 𝛽) = ∏ 𝒩(𝑡𝑚|𝑦(𝒙𝑚; 𝒘), 𝛽−1) = (
𝛽

2𝜋
)

𝑁/2
𝐾
𝑚−1 𝑒𝑥𝑝 {−

𝛽

2
||𝒕 − Φ𝒘||2} (8) 234 

Where x = (x1, x2, x3,…,xN)T; t = (t1 ,t2, t3,…tN)T . 235 

To prevent any model complexity and over-fitting of the maximum likelihood directed 236 

against w, a prior distribution is then defined as follows: 237 

𝑝(𝒘|α) = ∏ 𝒩(𝑤𝑚|0, α−1)  

𝐿

𝑚−1

 238 

Where α = hyper-parameter controlling the distribution of wm, p(wm|α) = 𝒩(wm|0,α-1). 239 

the posterior distribution over w can also be obtained as follows: 240 

 241 

𝑝(𝒘|𝒕, 𝛼, 𝛽) =
𝑝(𝒕|𝒘, 𝛽)𝑝(𝒘|𝛼)

𝑝(𝒕|𝛼,𝛽)
= 𝒩(𝒘|𝝁, 𝜮)             (10) 242 

Where p(t |α, β) = normalising factor; 𝚺 = posterior variance; μ = mean of weights 243 

3.4. Tree-ensembles  244 

Tree-based models or ensemble of decision trees (Fig. 1) are a ML paradigm whereby formal 245 

rules are obtained from detected patterns in the datasets hence, the tree-based models must be 246 

trained in a rigorous manner on the data in order to be able to predict the properties presented 247 

by a query [43]. Depending on the application, differences exist of how the tree-based ML 248 

models are built and for the purposes of his study the random decision forest (RDF), boosted 249 

decision trees (BDT) and decision jungles (DJ) shall be considered. 250 

 251 

(9) 
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 252 

Fig. 1. Structure of a single regression (decision) tree. 253 

 254 

3.4.1. Random decision forest (RDF)  255 

This is a decision ensemble that is created to reduce the instability or fluctuations of single 256 

regression trees. It utilises the “bootstrap aggregation” (bagging) concept to generate various 257 

“bootstrap aggregation” (bagging) concept to generate various similar data records that are 258 

hitherto sampled from the same parent source. Bagging is simply a technique of aggregating 259 

a multiple tree models in a ‘bag’ for data training [37]. One of the disadvantages RDF is that 260 

it tends to fall victim of overfitting due to its small biases and wide variance. 261 

 262 

3.4.2. Boosted decision trees (BDT)  263 

Like RDF, these are an ensemble means of solving the problems of instability and poor 264 

performance of a single regression tree. In general, the idea of “boosting” is a strategy that is 265 

used to improve the performance of weaker learning regression tree algorithms. The step of 266 

boosted model building is often repeated through a set of  iterations. Unlike RDF where all 267 

the trees are of equal importance, the BDT are rather hierarchical, and each tree layer is 268 

created recursively [41]. BDT tend to possess high performance ability especially on 269 

nonlinear datasets. However, one of the disadvantages of BDT is that its interpretability 270 

capacity is low and that makes it difficult to gain sufficient intuition of the patterns learned by 271 

the model. 272 

 273 

 274 

 275 
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3.4.3. Decision jungles (DJ)  276 

These are a somewhat recent extension to RDF. A DJ is composed of an ensemble of rooted 277 

decision directed acyclic graphs (DAGs) as a method to obtain compact and accurate ML 278 

classifiers [44]. By permitting the merging of trees, a decision DAG traditionally has low 279 

memory footprint and are great at generalisation performance. DJs have the advantage that 280 

they are non-parametric ML models that can represent nonlinear decision boundaries. They 281 

are capable of selecting integrated features and performing classifications while also being 282 

very resilient to noisy features. 283 

 284 

3.5. Artificial Neural Network (ANN) 285 

Just like the tree-ensemble ML models, ANN will have to be trained on a dataset to be able to 286 

predict the properties of a presented query. ANN are a family of data-processing ML models 287 

that are basically inspired by the human brain or neural networks whereby the neurons are 288 

interconnected through synapses (Fig. 2a) [45]. This network of neurons receive inputs, 289 

processes them and then make decisions or predictions. The neuron which is the processing 290 

element has the ability of filtering functions to make sure that inputted data to a specific node 291 

does not affect the network. The neuron also has an adaptive learning capability to adjust the 292 

weights that are connected between the nodes. ANN has a basic input layer, a hidden layer, 293 

and an output layer (Fig. 2b). When a processing neuron or element provides an input to 294 

another unit, the output is received as an input by the successive processing unit. This 295 

interconnectedness can be mathematically expressed as: 296 

 297 

𝛼𝑚 = 𝜎(∑ 𝜔𝑖𝑗𝑦𝑗)𝑗 , 𝜎(𝑥) =  
1

1−𝑒−𝑥   (11) 298 

Where αm = ANN activities; wij = weight between two neurons; yn = output signal; x = 299 

activation of nth neuron; σ(x) = activation function facilitating input transformation to output 300 

by multiplication of the inputs from the processing neuron by corresponding weights. 301 

 302 

 303 

 304 

Fig. 2. Neural network architecture (a) human neuron (b) artificial neural network (ANN). 305 
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3.6. Meta-ensembles  306 

Compared to stand-alone and tree-based models stated in the forgoing, meta-ensembles (or 307 

model of models) are used to further improve the accuracy of prediction by combining some 308 

of the above-mentioned models. Both voting and stacking meta-ensembles are proposed for 309 

this study. 310 

 311 

3.6.1. Voting (VE) 312 

When considering a regression problem, VE calculates the average predictions from the 313 

combined models. Meanwhile, for classification problems, predictions for each class label are 314 

added and the label that has a majority vote is predicted [24]. Fig. 3a depicts the VE ML 315 

model whereby the mean inputs are obtained from a combination of several models as the 316 

value of prediction. 317 

 318 

3.6.2. Stacking (SE) 319 

This is an extension of the VE whereby the ML model learns how much  and when to rely on 320 

each model to make generalised multistage predictions. The result of predictions obtained 321 

from say previous combined models (Xm=1~j) serves as input Y of the next stage as further 322 

predictions are being made (Xpred) as shown in Fig. 3b [24,46]. 323 

 324 

 325 

Fig. 3. Structure of meta-ensemble models (a) voting ensemble (b) stacking ensemble. 326 

3.7. ML model pipeline development and implementation  327 

Implementation of the algorithms was carried out on a designer platform which supports 328 

Python programming language (that includes the numpy, scipy and scikit-learn libraries) and 329 

ML pipeline developments. Considering the nature of the dataset used in this research, both 330 

(a) (b) 
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ML regression and classification were conducted to investigate and evaluate the performance 331 

of the algorithms. Important features and parameters used in the ML models and datasets 332 

respectively are given in Table 1 and Table 2. Fig. 4 depicts the flowchart of the methodology 333 

followed in developing the desired ML pipeline and subsequent evaluation of the models in 334 

this study. 335 

 336 

 337 
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 338 

Fig. 4. Machine learning methodology flowchart. 339 
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Table 1 340 

Parameter settings of ML models 341 

 342 

 343 

 344 

 345 

Model Parameter Option/value 

   

REG 
Method of solution Ordinary least squares 

L2 regularization weight 0.001 
   

LR 

Trainer mode Single parameter 

L1 regularization weight 1 

L2 regularization weight 1 
   

BLR Regularization weight 1 
   

RDF 

Resampling method Bagging 

Trainer mode Single parameter 

Number of decision trees 8 

Max. decision tree depth 32 

Number of random splits per node 128 

Min. sample no. per leaf node 1 
   

BDT 

Trainer mode Single parameter 

Max. no of leaves per tree 20 

Training instances to form a tree 10 

Rate of learning 0.2 

Number of trees constructed 100 
   

DJ 

Resampling method Bagging 

Trainer mode Single parameter 

No. of DAGs 8 

DAGs max. depth 32 

DAGs max. width 128 

No. of optimization steps per DAG layer 2048 
   

ANN 

Hidden layer spec. Fully connected 

Number of hidden nodes 100 

Rate of learning 0.005 

Number of learning iterations 100 

Initial learning weight diameter 0.1 

Normaliser min-max 
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Table 2 346 

 Data features and attributes 347 

 348 

3.8. Performance evaluation of ML models 349 

For an examination and evaluation of the precision of prediction and subsequent performance 350 

of the ML models studied in this research, three indicators are considered namely, Mean 351 

Absolute Error (MAE), Root Mean Squared Error (RMSE) and coefficient of determination 352 

(R2). Detailed mathematical formulae of these performance criteria are given in literature 353 

[31,47]. Further assessment of the robustness and integrity of the regression models are 354 

considered by considering their prediction intervals. Prediction interval (Eq. 12) (unlike 355 

confidence interval) defines a range that may have a likelihood of containing the value of a 356 

dependent variable for a single future observation given some specific values of the 357 

independent variables. 358 

 359 

𝑋 = 𝑌 ± 𝑡𝛼𝑆𝐸√1 +
1

𝑛
+

(𝑋−𝑋𝑚)2

𝑆𝑆𝑥𝑥
     (12) 360 

 361 

Where Y = predicted values; t = hypothesis test value based on the percentage confidence; SE 362 

= standard error; n = size of dataset or number of observations; Xm = mean of actual 363 

observations ; SSxx = explained variation. 364 

 365 

Feature Attributes Data type 

Binder combinations 

C  

C-PFA String 

C-GGBS-PFA  

   

Duration 

7  

14 Integer 

28  

56  

   

Soil type 

Soil 1  

Soil 2  

Soil 3 String 

Soil 4  

Soil 5  

   

Binder quantity 

5  

10 Integer 

15  

20  

   

Plasticity Index PI Integer 
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4. Results and discussion 366 

The ML models (stand-alone algorithms – REG, BLR, ANN; tree-based algorithms – BDT 367 

and RDF and the meta-ensemble models, VE and SE) proposed for regression analysis will 368 

be considered first in this section. Subsequently, analyses of classification problems using the 369 

multiclass ML models (LR, ANN, RDF, DJ and the meta-ensembles) will be given. 370 

Fig. 5 compares the statistical variance (from the mean of the target variable) of each 371 

predictor components (OPC, OPC-PFA and OPC-PFA-GGBS) for ML test data sets. 372 

Generally, across the algorithms tested on, higher deviations are experienced by both the 373 

OPC-PFA and OPC-PFA-GGBS predictor variables compared to the soil stabilised by OPC 374 

alone. However, compared to the other models, RDF seems to register the highest possible 375 

variance (about 0.87) followed by BDT (about 0.53) for the soil stabilised using only OPC. 376 

Further examination of the performance of the ML models and an analysis of the independent 377 

variables are given in the following sections. 378 
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 383 

Fig. 5. Statistical variance of predictor components of improved soils (a) BLR (b) REG (c) 384 

RDF (d) BDT (e) ANN 385 

4.1. ML Regression  386 

4.1.1. Quality Assessment of ML regression models 387 

Residual lag plot provides the basis for an evaluation of the quality of the algorithms used to 388 

perform the regression analysis in this research. Furthermore, it does allow for an 389 

examination of any underlying statistical assumptions especially when considering the 390 

independence of features or variables and normality of distribution [48]. In order for any 391 

assumptions to hold true for a given regression model, the residuals will have to be 392 

distributed randomly around zero [49]. For a good model, the residual’s scatter plot will show 393 

a disorderly pattern of the data hence, without indicating any form of trends. In other words, 394 

if there are any forms of trends observed in the data, this will indicate that the residuals are 395 

not entirely independent. 396 

While performing feature engineering as discussed previously, it is important to note that the 397 

data used in the regression modelling were first normalised before being validated (train-398 

validation split method) in order to prevent overfitting and imbalance. From Fig. 6, it is 399 

observed that the models used to perform the regression analysis all seem to indicate some 400 

measure of distribution about zero. However, a closer examination shows that the tree-401 

ensemble and meta-ensembles all appear to exhibit more scatter and rather better randomness 402 

in the positioning of the data compared to the stand-alone models. Also, much better 403 

independence of error terms is exhibited by the tree-based and meta-ensembles. However, in 404 

terms of the features or the dependent variables used for the improvement of the soils, it is 405 

observed across the models that there is little or no difference in the degree of randomness of 406 

the 3 different combinations of the binders used (Fig. 6). 407 
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Fig. 6. Residual lag plots on trained dataset of ML models 1 

4.1.2. Performance forecast 2 

Indicators of the ML models’ predictive performance are presented in Table 3 however, 3 

during the discussions herein, more attention will be given to the RMSE and R2 metrics all of 4 

which are highlighted (bold-face fonts) in Table 3. It is observed that all ML algorithms 5 

provided predictions with some measured degrees of accuracy. The coefficient of 6 

determination ranges from approximately 0.78 to 0.96, the RMSE varies from as low as 0.02 7 

kPa to a high of 0.50 kPa. Interestingly, it could be observed that the REG model gives 8 

predictions of the mixed soil’s UCS with higher accuracy compared to the ANN, but with 9 

broadly lower accuracy compared to the BLR, RDF and BDT. The later outcome may not be 10 

entirely surprising with the REG model given that the data may not have fitted this 11 

algorithm’s underlying assumptions as they would with the BLR and the tree-ensemble 12 

models (RDF and BDT). This behaviour was previously highlighted from the non-normality 13 

of the residual lag plots showing that this model may be incapable of approximating some 14 

unobserved phenomena of the mixed soil materials. It is pertinent to state here that the R2 15 

values obtained using the REG model are quite comparable to those of a previous study 16 

which relied on similar dataset for its prediction [14]. Albeit the R2 values of Table 3 are only 17 

slightly lower because unlike the methodology of prediction adopted in the said previous 18 

study where all the datasets were used in the training of the model, 80% and 20% of the 19 

overall dataset were set aside and used in the training and testing of the REG model 20 

respectively in this research following the train-validation split method. Of particular interest, 21 

is the relatively worst prediction performance exhibited by the ANN model even though 22 

several previous studies have indicated that this algorithm can predict the strength of 23 

stabilised soils with reasonably high accuracy [24,27]. However, the ANN’s inferior 24 

performance could be explained by also leveraging some of the theories advanced in prior 25 

studies [45,50], some of which are relevant to this research. 26 

One major drawback of ANN is that the process of training is performed by relying on a 27 

search and optimisation algorithm (Levenberg-Marquardt or gradient descent) to constantly 28 

update its weights and biases over an error space that includes or that converges to local 29 

minima instead of a more global one, an approach regarded as backpropagation (BP) [32]. 30 

Low performances in strength prediction that is sometimes demonstrated by ANN could be 31 

mitigated by using Extreme ML (EML) algorithms whose training process also involves 32 

single hidden-layer feed-forward mechanism [50]. In other words, ELMs provide even more 33 

simplicity given that stopping criteria and learning rates (as given in Table 1 for ANN) may 34 

not have to be taken into consideration. But ELMs must also be used with caution because 35 

such models could require many more hidden neurons due to the random need to determine 36 

input weights and biases [51,52]. Moreover, excessive number of hidden layers of neurons 37 

(or black-boxes) could lead to overfitting meaning that the complex nature of a stabilised 38 

soil’s mechanical property can be overestimated by feed-forward mechanisms like the ANN 39 

[53]. 40 

In order to rectify or overcome some of the deficiencies mentioned above, the tree-based 41 

ensemble ML algorithms could be used. As depicted in Table 3, these models seem to 42 

produce relatively much better predictions. The RDF has R2 of 0.89  and RMSE values of 43 

0.34 and 0.35 for soil stabilised by OPC alone and OPC substituted by PFA and GGBS 44 

respectively. Hence a slightly low prediction accuracy is given for the stabilised soil using a 45 

combination of OPC and PFA. A further explanation and appreciation of the difference in 46 

class predictions are given in subsequent sections in ML classification. On the other hand, 47 

BDT seems to produce the most superior prediction performance of both the stand-alone and 48 
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tree-ensemble models with the highest R2 of 0.94 and a corresponding RMSE of 0.19 for the 49 

soil stabilised by using OPC alone. Unlike the RDF, the “boosting” strategy aided in an 50 

improved performance of weaker regression tree learner algorithms. Also, it may be 51 

suggested that the RDF performed slightly below the capacity of the BDT because for RDF, 52 

all trees are of equal importance, hence it has the potential of being subjected to overfitting 53 

given its minimum biases and wider variance.  54 

It may not be completely unexpected that the tree-ensemble methods (BDT and RDF) have 55 

provided higher degrees of accuracy and performance compared to the stand-alone models in 56 

terms of the statistical metrics used in their assessment. The superior accuracy obtained from 57 

the tree-based models are mainly attributed to their structure and architecture. The tree-based 58 

ensemble methods are simply an aggregation or composition of single regression trees. This 59 

combination or boosting of trees are needed because low predictions and overfitting could be 60 

down to instability of a single regression tree when used alone [41]. Like the ANN models, 61 

the formal rules needed for training and subsequent predictions by tree-ensembles are learnt 62 

from patterns in the data. However, for the tree-ensembles, a series of tests or training are 63 

required to be performed on the data in order to logically partition them and by so doing, 64 

inconsistent variable features are learnt. To put it differently, the predictor variables are so 65 

repeatedly partitioned such that each successive final partition generates different sets of 66 

output value. Moreover, without having to smoothen or prune so-called “deep” trees, 67 

generalisation errors are thus also reduced, and overfitting mitigated [32]. 68 

It may be possible that lower performance is achieved in tree-ensemble models. In this case, 69 

the ensemble may have learnt from some interference due to the noise that ensues from the 70 

residuals rather than signals that emanate from within the data [41]. This phenomenon is 71 

attributed to a somewhat “greedy” construction process whereby at each step, an aggregation 72 

of single best performing variable and optimal point of split is selected which invariably 73 

means that there may also be a multi-step lookahead which takes into account variable 74 

combinations with even better results. Another drawback which Dreiseitl and Ohno-Machado 75 

[54] appear to agree with may have been the loss of information in the process resulting from 76 

continuous discretisation of variables by the splitting process,  77 

As demonstrated in this research, such weakness could be slightly reduced by creating a 78 

further ensemble of models – meta-ensemble models (or model of models) through VE and 79 

SE techniques. This method was used to aggregate other models (stand-alone and tree-80 

ensembles) with classifiers to enable an optimisation of the overall machine learning 81 

predictive performance. The statistical performance metrics from the meta-ensembles were 82 

obtained by calculating the weighted average of predictions from the combined models. 83 

From Table 3, it is observed that the RMSE of the meta-ensemble models (VE and SE) 84 

fluctuates between approximately 0.04 and 0.09. Hence, compared to the stand-alone and 85 

tree-based models, RMSE values for the meta-ensemble models are about 4-5 folds lower. 86 

The meta-ensemble models (most especially the VE) also seem to have very high accuracy of 87 

prediction as observed from the R2 values with the lowest being 0.80 and the highest, 0.96. 88 

Regarding the coefficient of determination, the meta-ensemble models (though slightly 89 

higher), seem slightly comparable with the algorithms derived from the tree-ensembles.  90 

Comparing both meta-ensemble models, Table 3 indicates that the VE has a slightly better 91 

performance than the SE given the later has higher RMSE and lower R2 values in general. 92 

With better decrease in the component variance of the prediction errors, an aggregation of the 93 

ML algorithms is thus able to improve performance through the voting mechanism. Table 3 94 

also reveals that predictions given for the stabilised soils with OPC substituted by equal 95 

amounts of PFA and GGBS combinations are the worst. 96 
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The improvement observed in the performance of the meta-ensemble ML models stems from 97 

these models’ capacity to incorporate predictions from the stand-alone and tree-ensemble 98 

algorithms meta-heuristically so that the outcome is even more accurate. 99 

 100 

Table 3. 101 

Statistical metrics indicating the performance of ML models utilised in strength prediction. 102 

 103 

 

Model 

 

Binder mix 

Statistical metrics 

R2 RMSE MAE 

- kPa kPa 
 

        
 

OPC 0.94 0.26 0.19 

BDT OPC-PFA 0.90 0.34 0.23 

 
OPC-PFA-GGBS 0.92 0.31 0.22 

 
  

   

 
OPC 0.89 0.34 0.26 

RDF OPC-PFA 0.85 0.41 0.27 

 
OPC-PFA-GGBS 0.89 0.35 0.26 

 
  

   

 
OPC 0.91 0.31 0.27 

BLR OPC-PFA 0.83 0.44 0.35 

 
OPC-PFA-GGBS 0.86 0.40 0.34 

 
  

   

 
OPC 0.91 0.31 0.27 

REG OPC-PFA 0.83 0.44 0.36 

 
OPC-PFA-GGBS 0.85 0.42 0.35 

 
  

   

 
OPC 0.90 0.32 0.27 

ANN OPC-PFA 0.78 0.50 0.42 

 
OPC-PFA-GGBS 0.78 0.50 0.42 

 
  

   

 
OPC 0.89 0.07 0.06 

SE OPC-PFA 0.94 0.05 0.04 

 
OPC-PFA-GGBS 0.79 0.09 0.08 

 
  

   

 
OPC 0.93 0.05 0.04 

VE OPC-PFA 0.93 0.05 0.04 

 
OPC-PFA-GGBS 0.96 0.04 0.03 

 104 

4.1.3. Uncertainty checks 105 

An assessment of each of the best performing regression ML models is established herein by 106 

considering their prediction intervals with 95% confidence. Following a transformation of the 107 

datasets using Eq. 1 to enable uniformity and linearity of prediction, Eq. 12 was further 108 

applied to derive both upper bound and lower bound interval of prediction based on the 2-109 
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tailed t-test (at 2 degrees of freedom). Regardless of the differences in the range of data and 110 

their distribution around the true predictor (the trendline), as indicated in Fig. 7, virtually all 111 

the models (both stand-alone and ensembles) possess the interval that contains the dependent 112 

variable with a confidence level of 95%. This observation mirrors those of the coefficient of 113 

determination whereby the models exhibited relatively high values with the least being about 114 

0.78. Moreover, the narrower ranges of prediction exhibited by the ensemble models (BDT, 115 

RDF, VE and SE) proves further, their superior prediction capabilities.  116 

 117 
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 123 

 124 

Fig. 7. Comparison of UCS strength predictions of the ML algorithms. 125 

4.1.4. Normality of meta-ensembles 126 

A diagnosis of normality of variance for the best performing meta-ensemble models were 127 

considered on the stabilised soils. The normality of assumptions for random error should hold 128 

true if on a histogram of the residuals, a symmetric bell-shaped curve or distribution is 129 

obtained [48]. It is observed from Fig. 8 that the residuals for both VE and SE prediction 130 

considering all the binder combinations appear to peak at zero and with less adjacent 131 

residuals. This phenomenon should indicate better performance; however, it is interesting to 132 

note that the distribution experienced from predictions on the soils stabilised by using only 133 

OPC seem slightly skewed and with lower bin counts compared to the soils stabilised with 134 

the OPC substituted by PFA and GGBS. Reasons for this behaviour cannot be advanced here 135 

except that the predictive features may not have been sufficient, thus making any further 136 

explanations rather inconclusive. 137 
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 138 

 139 

Fig. 8. Residuals and normal distribution plots of performance of meta-ensemble models 140 
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4.2. ML classification  142 

The regression analyses presented in the foregoing were carried out on the data with three 143 

class features of binder combinations serving as dependent variables. Given the nature of 144 

these class features (each predicting the same output, the unconfined compressive strength), 145 

the result could be an arbitrary value. It is then very necessary that a classifier boundary 146 

between classes be determined by a threshold value.  147 

First and foremost, looking at the classification metrics (Table 4) of the multiclass models 148 

employed for prediction of the unconfined compressive strength of the stabilised soils, it is 149 

observed that on average, the meta-ensemble models seem to perform better than some of the 150 

remaining 4 multiclass models. The multiclass logistics regression (mLR) model has the 151 

worst performance with an average accuracy of about 0.61, average precision of 0.42 and 152 

recall average of 0.42 probably due to an assumption of linearity even though there are 153 

instances of multi-collinearity between the dependent and predictor labels. Also, inaccurate 154 

predictions may have been increasing given the inability of mLR to sufficiently learn the 155 

categorical features. Interestingly, among the tree-based and stand-alone models, the 156 

multiclass mANN seems to produce the highest accuracy (0.78), precision (0.67) and recall 157 

(0.67). It should be recalled that when used previously in the regression analysis, the neural 158 

network algorithm gave the least performance which in the case of classification; that is, 159 

within the context of this study, the previously stated setbacks may have been rectified thus 160 

making mANN more suited to the complexities of non-linearity compared to mLR. The tree-161 

ensembles (mRDF and mDJ) seem to have performed well on the multiclass problem due to 162 

their relatively high degree of accuracy in the prediction. Overall, the VE model appears to 163 

outperform all the other models given it possesses the highest classification metrics presented 164 

in Table 4. Further discussions of the meta-ensembles are provided below. 165 

 166 

Table 4. 167 

Classification metrics of multiclass ML models 168 

 169 

4.2.1. Sensitivity and multiclass prediction capability of the best algorithms 170 

In order to assess the performance of the best meta-ensemble models, both the 171 

Receiver Operating Characteristic (ROC) and Lift curves were applied for some diagnostic 172 

tests of sensitivity and prediction capacity respectively. The best models are compared across 173 

some validation techniques applied to the normalised data before training by adopting 10-174 

fold, Monte Carlo and Train-validation split cross-validation methods. This was done to 175 

provide an unbiased evaluation and estimate of the algorithm’s’ calibration and 176 

discrimination during the classification process. 177 

Multiclass ML models Average accuracy Average precision Average recall 

mRDF 0.72 0.58 0.58 

mDJ 0.67 0.50 0.5 

mLR 0.61 0.42 0.42 

mANN 0.78 0.67 0.67 

VE 0.88 0.79 0.83 

SE 0.72 0.60 0.58 
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4.2.2. Receiver operating characteristic (ROC) 178 

Within the context of analysis in this section, sensitivity or recall may be regarded as a 179 

measure of how well the best prediction models can identify the true positives belonging to 180 

either of the three independent class variables. Receiver operating characteristics (ROC) 181 

curve is one of the most important probability evaluation metrics for assessing the best 182 

performing classification model by indicating the relationship between true positive rate 183 

(TPR) and false positive rate (FPR) during the course of any change in the decision threshold. 184 

Along with AUC (Area under the curve) which is a measure of separability, the ROC 185 

indicates how much an algorithm is able to distinguish between classes. The higher the AUC, 186 

the better the performance of a given model. For the ROC curve, an excellent or perfect 187 

classification is indicated by a point on the upper left corner with coordinates of 0 and 1 on 188 

the TPR vs FPR graph (Fig. 9). That is also to say that this represents 100% sensitivity or 189 

recall (no false negatives). A rather random act of guessing would produce a point along the 190 

blue diagonal line (i.e., line of no-discrimination) that runs from the origin (0,0) to the top 191 

right corners irrespective of the negative and positive base rates). This will indicate the worst 192 

possible situation. That will mean the AUC is approximately 0.5 and that the model possesses 193 

no discrimination capacity to distinguish between negative and positive classes. 194 

 195 

Fig. 9 Receiver operating curve (ROC) 196 

Table 5 shows the AUC for the meta-ensemble models across three hyper-parameter tunning 197 

techniques. It is observed that the meta-ensemble models have an AUC value above 0.5. This 198 

means that the meta-ensemble models at the least, do have a discrimination ability to 199 

distinguish between negative and positive classes. The corresponding ROC curves (Fig. 10) 200 

confirms this characteristic even though not exactly perfect or an ideal situation. Stated in 201 

another way, it could be concluded that the nature of overlap has minimised any type 1 or 202 

type 2 error. Across the VE ML model, adopting the train-validation split technique appears 203 

to produce the best performance compared to SE. However, using the k-fold cross-validation 204 

technique seems to give the worst performance for the VE ML model. On average, it could be 205 

concluded from Table 5 that the Monte Carlo cross-validation method provides a middle 206 

ground for hyper-parameter tunning between the other two techniques. 207 

 208 

 209 

 210 

 211 

 212 
 213 
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Table 5 214 

Comparison of Area under curve (AUC) values for different cross-validation methods 215 

 216 

 217 

Fig. 10. Receiver operating curve of meta-ensemble models 218 

4.2.3. Lift curve 219 

Since this study deals with more than a binary (two-class) classification problem, further 220 

proves of how a better model could perform when compared to a random model is provided 221 

by the lift curve. This relative performance stems from the theory that a random model is 222 

likely to make an incorrect prediction of a multiclass classification problem compared to a 223 

better model with higher fractions of the sampled data. Hence, given a random model, the lift 224 

curve is a visual representation of the ratio of cumulative gains to the cumulative gains for 225 

that random model. The corresponding baseline lift curve is the horizontal or percentile axis. 226 

The greater the area between the baseline and the lift curve, the better the model. Fig. 11 227 

represents the lift curve of the stabilised soils using the meta-ensemble models for predictive 228 

classifications following the application of k-fold, Monte Carlo and train-validation split 229 

cross-validations. Again, it is observed here that the overall area of the curves rising from the 230 

baseline indicates VE is the best performing model. Also, when comparing the performance 231 

of the hyper-parameter tunning techniques, it could be observed that train-validation split 232 

method provides the best validation. It is interesting to note how the k-fold method compares 233 

to its Monte Carlo counterpart given that both do possess almost the same trend and area 234 

under the lift curve rising from the percentile baseline. 235 

 236 

 237 

 238 

 239 

 240 

Meta-ensemble models Cross-validation methods 

 k-fold Monte Carlo Train-validation split 

VE 0.79 0.86 0.91 

SE 0.81 0.83 0.67 
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 241 

Fig. 11. A comparison of baseline lift performance of meta-ensemble models. 242 

 243 

5. Significance of study, recommendations, and deployment of ML models 244 

Computers with better processing speeds, higher computation power, and larger storage are 245 

some of the factors that characterise what is now termed the “age of information” or the “age 246 

of data”. Accordingly, researchers, data scientists, developers, and engineers have been 247 

working assiduously to study and develop tools, algorithms, techniques, frameworks, and 248 

methodologies to build intelligent systems and models that can predict events, perform 249 

complex analyses, automate tasks, detect anomalies, ensure autonomous or self-healing 250 

failures, and even understand as well as respond to human inputs. Hence, data-driven 251 

decision making by leveraging machine learning paradigms is quite beneficial in modern 252 

times for the following reasons [55] : 253 

• Insufficient human knowledge and expertise in a domain (e.g., simulating navigations 254 

in unknown or uncharted territories or even spatial planets). 255 

• The rapid flux in system behaviour over time (e.g., availability of organisational  256 

infrastructure, network connectivity, etc). 257 

• The inability for humans to formally explain or translate a well-known domain 258 

expertise into computational tasks (e.g., speech recognition, transformation, cognitive 259 

tasks,  scene recognition, etc). 260 

• Addressing domain specific challenges at scale with large volumes of data 261 

characterised by lots of complex conditions and constraints. 262 

 263 

The present study has successfully built upon while also enhancing the evolving concepts and 264 

ideas of artificial intelligence and ML most especially those reported in recent research 265 

within the realms of soil stabilisation and geotechnical engineering in general. Only but a few 266 

of the properties or features known to influence the unconfined compressive strength of 267 

stabilised soils have been considered herein. Hence, it is recommended that for even better 268 

and effective data-driven decision, an evaluation of various other factors (e.g., compaction 269 

condition, polymers, wastes, mineralogy, soil-water chemistry, soil structure, fabric, etc) and 270 

environmental constraints (temperature, groundwater movement, drainage, and other climatic 271 

conditions) which could potentially affect soil strength should be taken into account in the 272 

future based on the techniques and framework already proposed in this research.  273 
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Furthermore, it is pertinent to state that the methods and techniques of evaluation adopted in 274 

this study represent a significant aspect of the end-to-end data mining lifecycle as suggested 275 

by a typical CRISP-DM model which is depicted in Fig. 12. The CRISP-DM model is an 276 

abbreviation for CRoss Industry Standard Process for Data Mining. CRISP-DM indicates the 277 

necessary processes, steps, and workflows for implementing any project right from 278 

formalising business requirements up to and including testing and deployment of a solution to 279 

transform data into valuable insights. This model does serve as a pointer to the tremendous 280 

amount of interest and investments in the Data Science discipline across industries, 281 

enterprises, companies, and domains. It also reinforces the earlier stated proposition that 282 

intelligent ML systems and data-driven organisations are becoming a reality with the 283 

advancements in tools and techniques only aiding in their further expansion. Hence, within 284 

the context of this study, it is suggested that for a practical application of the concepts 285 

developed, the ‘Deployment’ phase will ensure that the insights proposed are seamlessly 286 

transferred to production in a real-life setting. Accordingly, the models and their predictions 287 

as well as the background coding derived from this research can be deployed as saved files on 288 

an organisation’s server, hardware or software resource and the proposed best meta-ensemble 289 

models reloaded while predictions are offered for new data samples on both the studied 290 

regression and classification problems. This can be applied either during preliminary stages 291 

of a geotechnical site investigation or the design and construction phases to predict and assess  292 

the strength performance of a stabilised soil. 293 

 294 

Fig. 12. Data mining lifecycle of the CRISP-DM model [55]. 295 

 296 

 297 



30 

 

 

6. Conclusions   298 

In this study, an analysis of ML algorithms applied to regression and multiclass classification 299 

problems of soil improvement was carried out. The summary of strength prediction of soil 300 

stabilised by OPC and part-substitution of OPC with equal amounts and combinations of PFA 301 

and GGBS using stand-alone, tree-based and meta-ensemble ML algorithms are as follows: 302 

• Using the stand-alone (REG, BLR, ANN) and tree-ensemble models (RDF and BDT), 303 

higher statistical variance are experienced by both the OPC-PFA and OPC-PFA-304 

GGBS predictor variables compared to the soil stabilised by OPC alone. However, 305 

RDF appears to register the highest possible variance (about 0.82) followed by BDT 306 

(about 0.53) for the soil improved using only OPC.  307 

• Quality assessment of the ML algorithms indicated that the tree-based and meta-308 

ensembles (VE and SE) produced much better independence of error terms. However, 309 

in terms of the features or the dependent variables used, it was observed across the 310 

models that there was relatively little difference in the degree of randomness about the 311 

zero axis of the residuals plot of 3 different combinations of the binders. 312 

• With regards an analysis of regression, on average, REG model produced predictions 313 

of the mixed soil’s UCS with higher accuracy (RMSE of 0.39 and R2 of 0.86) 314 

compared to the ANN (RMSE of 0.44 and R2 of 0.82), but with comparatively lower 315 

accuracy compared to the tree-based models (average RMSE of 0.33 and R2 of 0.90) 316 

and meta-ensemble models (average RMSE of  0.06 and R2 of 0.91). 317 

• For ML multiclass classification, multiclass neural network algorithm (mANN) gave 318 

the highest accuracy (0.78), precision (0.67) and recall (0.67) compared to tree-based 319 

and the remaining stand-alone models while only falling short to the meta-ensemble 320 

models (average accuracy of 0.80, precision of 0.70 and recall of 0.71). 321 

• Sensitivity analysis from the receiver operating curve (ROC) and lift curves carried 322 

out across different validation techniques showed further prove of better performance 323 

of the meta-ensemble (VE) ML model compared to its SE ML counterpart when 324 

adopting the train-validation split technique as against the k-fold and Monte Carlo 325 

cross-validation methods. 326 

 327 

 328 
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