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Abstract

In the field of mechanism design, the behaviour of compliant shell mechanisms is

commonly characterised via the eigenscrew decomposition of their spatial stiff-

ness matrix. Recent developments have included the design of compliant shell

mechanisms made with anisotropic materials. Conceptually, these compliant

mechanisms are very similar to morphing composite structures that are typi-

cally designed using structural mechanics approaches. Eigenscrew decomposi-

tion could, therefore, provide additional insight to designers. To bridge the gap

between the two communities, we present the equivalence of eigenscrews (eigen-

wrench and eigentwist) and familiar structural concepts such as shear centre and

centre of twist for the special case of a cantilevered beam. It is hoped that this ex-

plicit link will help bridge these disparate fields, and encourage cross-fertilisation

of ideas.

Keywords: compliant mechanisms, morphing composites, eigenscrews, screw

theory, shear centre

1. Introduction

Compliant mechanisms utilise elastic deformations, instead of links and joints,

to achieve a desired response [1]. The behaviour of such mechanisms can be
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non-intuitive, particularly in the case of compliant shell mechanisms, due to

the nonlinear dependence on their design parameters. To aid in characterising5

compliant mechanisms in a more physically intuitive way, the principal compli-

ance axes can be visualised using an eigenscrew decomposition [2, 3]. A library

of standard compliant shell mechanisms has since been characterised in such a

way, and the relative compliance of their principal translational (‘eigenwrench’)

and rotational (‘eigentwist’) axes can be compared throughout the mechanism’s10

deformation [4, 5]. By treating these individual mechanisms as building blocks,

more complex series and parallel mechanisms can be constructed while still

maintaining an intuitive twist-and-wrench design approach [6].

Recent developments using this characterisation technique include compliant

shell mechanisms with anisotropic material properties [7]. Using materials with15

directional stiffness (typical of fibre-reinforced composites) increases the com-

pliant mechanism design space, but also its complexity, making the retention

of design intuition valuable. These anisotropic compliant mechanisms designed

using screw theory have a lot of overlap with the field of morphing compos-

ite structures designed from a structural engineering perspective. Examples of20

such composite structures include shape-changing plates [8, 9, 10], deployable

structures [11, 12, 13, 14, 15, 16], and adaptive aerostructures [17, 18, 19]. As

each field converges toward one another, there is great opportunity to mutually

leverage insights and methods. The aim of this brief is to offer one such oppor-

tunity that has potential to yield mutual benefit to both structural engineers25

and mechanism designers.

Characterising morphing composites’ response via eigenscrew decomposition

is typically unfamiliar to structural engineers. However, eigenscrew decompo-

sition could provide structural engineers additional physical insight into the

responses thereby encouraging new design approaches. Additionally, Stodieck30

et al. have highlighted that related structural engineering terminologies can

have overlapping definitions and are often confused in literature [20]. Using

eigenscrews could provide a clear and consistent characterisation approach.

In this brief we present a derivation that explicitly translates the eigen-
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screw concepts from mechanism theory to structural mechanics for the purposes35

of clarifying and visualising the physical behaviour of a general 3D compliant

structure. For a simple structural example, a thin-walled prismatic cantilevered

tape spring, we demonstrate analytically that the concepts of shear centre and

centre of twist are analogous to the eigenwrench and eigentwist axes, respec-

tively. This insight facilitates the interpretation and application of eigenscrew40

decomposition in the field of structural mechanics.

2. Shear Centre and Centre of Twist

In structural mechanics, the concept of the shear centre, S, is a well-known

property of a prismatic cantilevered beam, derived from the shape of its cross-

section. It is defined as the point through which an applied shear loading will45

not produce a twisting of the beam section; this point need not lie on the beam

cross-section itself. Conversely, the centre of twist, T , is defined as the point

on the cross-section about which the beam will purely rotate under an applied

axial torque (i.e. torsion) [21].

For simple beam theory, the position of S and T are found to be equivalent50

via the Maxwell-Betti reciprocal theory [22, 23, 21]. For a linear-elastic body,

the order in which loads are applied does not affect the resulting deformations

and strain energy. Consider a shear load F and torsional moment Mz applied

to a cantilever beam. The reciprocal theorem shows that the deflection δ at the

force application point (and parallel to load F ) due to a unit applied moment55

Mz is equal to the rotation θz of the cross-section due to a unit applied load F .

If the load is applied at shear centre S, the cross-sectional rotation θz is zero;

conversely, a torsional moment Mz thus results in no deflection δ at the shear

centre, making it the instantaneous centre of twist T . In general S and T need

not be coincident: S is determined only from the cross-section geometry, but T60

also depends on the beam’s boundary conditions. For special cases where the

beam supports minimise the integral of the torsional warping function over the

cross-section these boundary conditions align the two centres [23].
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Historically there has been debate in the literature regarding the definitions

of shear and twist centres, and reviews of these interpretations and the extent65

of their differences can be found in Refs [24, 25]. Nevertheless, for the purpose

of providing an intuitive interpretation for the “eigenscrews” introduced in the

next section, the familiar definitions from simple Euler-Bernoulli beam theory

are sufficient.

3. Eigenscrew Decomposition70

In mechanism theory, the mechanics of a body is often expressed using “screws”.

These are derived from Chasles’ theorem, which states that any rigid body

motion through three-dimensional space can be expressed as a combination of

a translation along and rotation about a common axis (the screw axis) [26].

The kinetics of a body can be expressed by screws of combined forces and75

moments known as “wrenches”, and the kinematics can be expressed by screws

of combined translations and rotations, known as “twists”. Each screw is a 6×1

vector containing information on its position, direction and magnitude.

Lipkin and Patterson introduced a method for characterising the behaviour

of a compliant mechanism with a system of “eigenscrews” [2, 3]. By considering

a single point of interest (POI), typically an end-effector in the case of a robotic

system, a 6× 6 tangential stiffness matrix, Kt, and compliance matrix, Ct, can

be formulated. The tangential stiffness matrix can be decomposed into

Kt =
[
ŵf ŵγ

]kf 0

0 kγ

ŵT
f

ŵT
γ

 , (1)

and the tangential compliance matrix into

Ct =
[
T̂f T̂γ

]af 0

0 aγ

T̂ Tf
T̂ Tγ

 . (2)

This decomposition produces three eigenwrenches, ŵf , that describe three prin-

cipal translational axes, and three eigentwists, T̂γ , that describe three principal80
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rotational axes. The rotational and translational behaviour of the POI are de-

coupled along these eigenscrew axes. The diagonal matrices kf and kγ refer to

their translational and rotational stiffness respectively; the inverses give com-

pliances af and aγ .

Assuming some rigid body connects the POI to the axis in question, applying85

an eigenwrench induces a pure translation of the POI parallel to the eigenwrench

axis. Similarly, applying an eigentwist induces a wrench of pure moment about

the POI parallel to the eigentwist axis. The ŵγ and T̂f terms correspond to

the induced pure moment wrenches and displacement twists, respectively. Note

that eigenscrews (and hence the applied forces or loads) need not necessarily90

pass through or lie on the structure: a rigid body connects these to the POI. For

examples of using this decomposition to characterise compliant mechanisms, see

Refs [4, 27, 7].

4. From Shear Centre to Eigenwrench

The shear centre S and centre of twist T characterise how uncoupled translations95

and rotations can occur in a 2D beam cross-section. Eigenscrews identify the

principal translational and rotational compliance axes for a single point on a

3D elastic body. Conceptually, these concepts capture similar behaviours and

it follows that S and T may be identifiable from an eigenscrew-decomposition.

Centres such as S and T are only valid for simple structural cases (i.e. slender,100

prismatic, isotropic beams). Therefore, if this link can be established for such

a case, then eigenscrews could be used by structural engineers to gain insight

into more general structures such as those that include material anisotropy,

non-prismatic geometries, more complex boundary conditions and geometric

nonlinearities.105

The selected case study is a cantilevered tape spring, which is a prismatic

beam with an open, thin-walled, singly-curved, symmetric cross-section; see

Figure 1. The origin is located at the the centroid C and the xy-axes are aligned

with the principal axes of the cross-section, such that the bending stiffness is
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Figure 1: Cross-section of the tape spring. The origin is located at the centroid C and the
xy-axes are aligned with the principal axes of the cross-section (Ixy = 0). The location of
shear centre S is defined by distance ε from the centroid, and the POI at the cantilever tip
lies at distance χ from the shear centre along the symmetry axis.

given by second moments of area Ixx and Iyy (Ixy = 0). The z-axis is defined

according to the right hand rule. The centroid C is the point on the cross-

section through which axial loading produces pure axial extension of the beam.

The tape spring cross-section is symmetric about the x-axis, and the position

of the shear centre S is given by distance

ε =
2r(sinφ− φ cosφ)

φ− sinφ cosφ
(3)

from the centroid along the symmetry axis [28]. Here, φ is equal to half of the

cross-section enclosed angle and r is the arc radius. The isotropic tape spring

has length L, and is fully fixed (encastre) at the root.

4.1. Compliance Matrix Construction

The POI for the eigenscrew analysis is located at the tip of the cantilever (z = 0),

and chosen to lie at a distance χ from the shear centre, S, along the x-axis; see

Figure 1. The compliance matrix is constructed from first principles of mechan-

ics of materials (assuming Euler-Bernoulli beam theory, and no warping of the

cross-section) by considering the response of the POI when forces and moments

are applied [29]. Terms are defined with the usual notation: second moments
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of area Ixx and Iyy, beam length L, Young’s Modulus E, cross-sectional area

A, shear modulus G and polar moment of inertia, J . Moments are defined

according to the axis they act around, i.e. Mx refers to a moment about the

x-axis. This process has been simplified, at no loss of generality, by choosing

the cross-sectional coordinate system so that Ixy = 0. The compliance matrix

is then, 

δx

δy

δz

θx

θy

θz


=



C11 0 C13 0 C15 0

0 C22 0 C24 0 C26

C31 0 C33 0 C35 0

0 C42 0 C44 0 0

C51 0 C53 0 C55 0

0 C62 0 0 0 C66





Fx

Fy

Fz

Mx

My

Mz


, (4)

where the compliance components

C11 =
L3

3EIyy
, C22 =

L3

3EIxx
, C33 =

EA

L
,

govern deflections δ due to applied forces F , and

C44 =
L

EIxx
, C55 =

L

EIyy
, C66 =

L

GJ
,

describe rotations θ due to applied moments M . Deflections due to any POI

offset from the centroid, C, are given by

C13 = C31 =
(ε− χ)L2

2EIyy
.

The coupling between applied forces and resulting rotations (and conversely,

applied moments and resulting deflections) is given by

C15 = C51 =
L2

2EIyy
, C24 = C42 = − L2

2EIxx
,

C26 = C62 =
χL

GJ
, C35 = C53 =

(ε− χ)L

EIyy
,
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where C62 reflects rotation around the shear centre (i.e. centre of twist) for a110

transverse load not passing through S.

The compliance matrix is inverted to give the stiffness matrix,

K1 K2

K3 K4

 =

C1 C2

C3 C4

−1

(5)

where the four 3×3 quadrants of the stiffness matrix (K1−K4) can be found by

a piece-wise inversion of the quadrants of the compliance matrix (C1−C4) using

the Schur complement for block matrices (also used to invert ABD matrices in

composite plate theory [30]). This results in

K1 = P1 − P2P
−1
4 P3, K2 = P2P

−1
4 ,

K3 = −P4P
−1
3 , K4 = P−1

4 ,

with partial inversions

P1 = C−1
1 , P2 = −C−1

1 C2,

P3 = C2C
−1
1 , P4 = C4 −C2C

−1
1 C2.

Once both the stiffness and compliance matrices are found, the eigenscrew de-

composition can be used to find the positions, orientations and magnitudes of

the eigenwrench and eigentwist axes.

4.2. Eigenscrew Decomposition Results115

The eigenscrew decomposition produces position vectors (relative to the POI)

and orientation vectors for the eigentwist and eigenwrench axes. Recall that a

load applied along an eigenwrench axis will describe a parallel translation of the

POI; similarly, a rotation around eigentwist axes induces a parallel moment at

the POI. Inspecting these positions and orientations shows that there are direct120

links between eigenscrews and the shear centre and centre of twist. Figure 2

shows an isotropic, thin-walled tape spring (POI at the free end centroid) with
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eigenscrews and loci of cross-sectional shear centres plotted to help illustrate

the analytical link.

(a) (b)

Figure 2: Visualisation of eigenscrews (eigenwrenches ŵ1–ŵ3 and eigentwists T̂1–T̂3) and shear
centre loci (dashed magenta line) for the undeformed tape spring. The tape spring is 5 times
as long in the z-direction as it is wide in the y-direction, and has an enclosed angle of 180°

Equations 6–8 show the position vectors rw, orientations f and stiffness

magnitudes kf respectively for the eigenwrenches ŵ1 − ŵ3, with each column

corresponding to a single eigenwrench:

rw =


0 (ε− χ) −χ

0 0 0

−L
2 0 −L

2

 , (6)

f =


1 0 0

0 0 1

0 1 0

 , (7)
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kf =


12EIyy

L3 0 0

0
EIyyL

AIyyE2−L2χ2+2L2χε−L2ε2 0

0 0 12EGIxxJ
GJL3−12EIxxLχ2

 . (8)

Eigenwrench ŵ1 exists at a distance −L/2 from the POI in the z-direction,125

orientated parallel to the x-axis. This means — assuming a rigid body connects

it to the POI — that a force in the x-direction applied halfway down (and in

the centre of) the tape spring will cause a pure translation of the POI in the

x-direction; this can be verified readily from beam theory. Eigenwrench ŵ2

is located at ε − χ from the POI in the x-direction (i.e. at the centroid C),130

orientated parallel to the z-axis. This means that a force applied along this

eigenwrench axis will cause a pure translation of the POI in the z-axis; thereby

demonstrating the definition of the centroid. Finally, eigenwrench ŵ3 exists at

−L/2 from the POI in the z-direction, −χ from the POI along the x-axis (i.e.

at S), and is orientated parallel to the y-axis. Similarly to eigenwrench ŵ1, it135

can be seen here that a force applied along ŵ3 (i.e. through the shear centre,

halfway down the tape spring) will cause pure parallel translation of the POI.

This result directly links the 2D shear centre concept to a 3D eigenwrench.

Equations 9, 10 and 11 show the position vectors rT , orientations γ and

compliance magnitudes aγ respectively for the eigentwists T̂1–T̂3, with each

column corresponding to a single eigentwist:

rT =


0 (ε− χ) −χ

0 0 0

−L
2 −L

2 0

 , (9)

γ =


1 0 0

0 1 0

0 0 1

 , (10)
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aγ =


L

EIxx
0 0

0 L
EIyy

0

0 0 L
GJ

 . (11)

Eigentwist T̂1 exists at a distance −L/2 from the POI in z-direction, orientated

parallel to the x-axis. This eigentwist is co-linear with eigenwrench ŵ1, and140

means that a rotation applied around this axis will cause a pure moment about

the x-axis at the POI. For an isotropic tape spring with a large enclosed angle,

this will have the lowest value of compliance as typically EIxx > EIyy > GJ .

Eigentwist T̂2 is located at −L/2 from the POI in the z-direction, ε−χ from the

POI in the x-axis (i.e. at the centroid C), orientated parallel to the y-axis. A145

rotation about this axis will cause a pure ’tape spring bending’ moment about

the y-axis at the POI. Finally, eigentwist T̂3 exists at −χ from the POI along the

x-direction (i.e. at the shear centre, S), and is orientated parallel to the z-axis.

A rotation around this axis will induce a parallel moment Mz about the z-axis

at the POI; this corresponds to the definition of the centre of twist T . This150

matches the result from the reciprocal theorem to show that T = S. Aligning

the POI with the beam centroid would cause some of the position vector terms

to become zero as χ = ε, and for a doubly-symmetric cross-section (as in the

beam analysed by Ciblak [31]) the shear centre coincides with the centroid, so

that χ = 0.155

For the simple case of a cantilevered beam, we have thus shown that the well-

known structural concepts of shear centre, S, and centre of twist, T , map to an

eigenwrench and eigentwist. This allows structural engineers to interpret the

eigenscrew concepts as ‘generalised shear centres’ and ’axes of twist’ which help

to interpret the structural response for more general compliant shells. Lastly, it160

should be noted that S and T are structural concepts derived from beam cross-

sections, and while the eigenscrews are applicable to more general 3D structures,

they do depend on the location of the applied load.
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5. Material Anisotropy and Non-Prismatic Geometry

For a simple case of a cantilevered beam there exists a direct link between these165

structural and eigenscrew concepts, but as the assumptions of material isotropy

and prismatic geometry are relaxed, the shear and twist centres cease being

applicable. Instead, eigenscrew characterisation can be valuable by providing a

robust framework for gaining insight into the principal translation and rotation

axes and their relative compliance for general 3D structures.170

To illustrate the advantages of eigenscrew characterisation we consider two

case studies: (i) a single-ply composite tape spring where the material axis (i.e.

the fibre direction) is not aligned with any principal geometric axis, and (ii) a

medical scoliosis support brace with non-prismatic geometry and desired com-

pliance axes. Cross-sectional centres would not provide insight into the tape175

spring behaviour due to the symmetry-breaking tape spring deflection caused

by the laminate’s extension-shear coupling terms, and are not applicable to the

non-prismatic geometry of the scoliosis brace. The stiffness and compliance

matrices for both structures are found using a finite element approach, before

being decomposed into eigenscrews [7]. Although eigenscrews describe an in-180

stantaneous response of the structure, the use of finite element analyses allows

this characterisation to be performed at multiple stages throughout a non-linear

deformation.

Figure 3 shows the compliance characterisation for the anisotropic can-

tilevered tape spring, presented in the same manner as in Ref [7]. A follower tip185

moment has been applied to the POI (located at the centre of the free edge) to

cause a large mechanism deflection. Figure 3a shows the initial and deformed

shell geometries, the position of the POI during deformation, as well as the

positions and orientations of eigenwrenches and eigentwists in the undeformed

state. It can be seen that T̂2 and T̂3 are no longer aligned with a geometric190

axis (unlike the isotropic case in Figure 2), and that the mechanism twists as it

deflects. Figures 3b and 3c show the changes in eigenscrew orientations (as seen

from the ‘North’) throughout the deformation. The subplots show half a unit
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(a)

(b) (c)

Figure 3: Compliance characterisation of a shallow tape spring with aspect ratio 5, enclosed
angle 45° and fibre angle θ = 50°. Shown are (a) the initial and final shell geometries,
displacement of the POI, as well as eigenscrews for the undeformed configuration; (b, c)
the change of orientation of eigenscrews throughout the shell deformation; initial and final
orientations are indicated with ◦ and • respectively.
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sphere with the eigenscrew traces (issuing from its centre) plotted on its surface.

It can be seen that as the tape spring deflects and twists, some screws change195

orientation significantly. Information regarding eigenscrew positions and com-

pliance magnitudes has been omitted from Figure 3 for brevity, but can provide

additional insight into the compliant mechanism.

Figure 4: Compliance characterisation of a compliant mechanism for a scoliosis brace based
on designs presented in Ref. [32]. Initial and final shell geometries, displacement of the POI,
and eigenscrews for the undeformed configuration are shown.

Figure 4 shows the eigenscrew characterisation of a compliant shell mecha-

nism for a scoliosis support brace. The scoliosis brace is comprised of two helical200

shells, similar to designs shown in Ref. [32], designed to wrap tightly around the

patient’s torso. The brace provides tailored lateral support to the spine (i.e.

high stiffness) whilst also offering freedom of movement in other directions (i.e.

high compliance) such as forward bending around the T̂3 twist axis. To reflect

forward bending, a follower tip moment has been applied to a POI located at the205

top central point where the two helical segments join (chest), while the other

ends of the helices are fixed (lower back). Here the principal eigenscrews do

not lie on the shell mechanism, but exist at non-trivial positions in the space

within the mechanism. Aligning the location and direction of the T̂3 twist axis

with the natural bending axis of the wearer is important in increasing patient210
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comfort. Identifying and visualising the magnitude and location of the eigen-

screws is instrumental in the design of a medical scoliosis brace mechanism,

as the compliant mechanism must provide support in some directions whilst

allowing movement in others. The ability to capture such distinct directional

responses using the eigenscrew approach complements the insights that can be215

gained using traditional structural analysis.

It is worth noting that in the cases presented herein we have focused on the

behaviour of a single point on the mechanism, and that the eigenscrew frame-

work may be less insightful for mechanisms whose responses are not clearly

defined by a single point, e.g. a morphing wing. If insight is required for the220

global response of the mechanism then multiple decompositions could be com-

puted by considering applied loads at different locations on the mechanism.

6. Conclusions

An analytical link has been shown between the structural mechanics concepts

of shear centre and centre of twist and the mechanism design concepts of eigen-225

wrenches and eigentwists. Eigenscrews are shown to align with shear centre and

centre of twist positions for a simple isotropic cantilevered tape spring. Eigen-

screw characterisations can thus be used to visualise the principal compliance

behaviour of a compliant mechanism in cases where cross-sectional centres have

less applicability (e.g. those with material anisotropy).230

Demonstrating the link between these concepts for the special case aids

the interpretation of eigenscrew characterisations that are more appropriate

for general 3D morphing structures and compliant mechanisms that are well

characterised by considering single points of interest. Furthermore, we hope that

the demonstrated equivalence will encourage structural engineers to consider the235

value of the eigenscrew characterisation used in compliant mechanism design,

and thus help enable cross-fertilisation of ideas between these fields.
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