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ABSTRACT 

The size effects in centre-notched quasi-isotropic carbon/epoxy laminates under 

compression were investigated. The in-plane dimensions of the baseline specimen were 

scaled up by a factor of up to 14. The centre-notched specimens were compared to 

open-hole specimens of the same dimensions. It was found that compressive strength of 

the small centre-notched specimen is similar to that of the open-hole specimen. 

However, as the in-plane dimensions increase, the centre notches are weaker than the 

open holes, and start to follow a Linear Elastic Fracture Mechanics (LEFM) scaling 

line. These trends were well captured by a Composite Compressive Strength Modeller 

(CCSM) using the fracture energy measured in the current study. Fibre micro-buckling 

was confirmed to be the dominant failure mechanism under compression. The failure 

mechanisms under compression were also compared against those under tension. 

Matrix splitting under compression was observed through X-ray Computed 

Tomography but was less extensive than under tensile loading. 
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1. INTRODUCTION 

Compressive strength of composite materials is of primary importance for 

designers. Budiansky and Fleck [1] considered compression as a critical case which 

needs to be understood. They reported that the typical failure mechanism for an 
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unnotched unidirectional composite specimen under compression is by plastic kinking 

(local fibre micro-buckling). The kinking mechanism is sensitive to fibre misalignment 

which can occur during manufacturing, resulting in plastic shear deformation in the 

matrix when applying compressive loads. Wisnom [2] reviewed compression tests to 

investigate the variation in strength as the size of the unnotched specimen increases. The 

effects of manufacturing were highlighted. It was concluded that the scaling effect of 

compressive strength in composites is significant.  

The reduction in the compressive strength due to the introduction of notches 

makes this a key driver when designing composite structures. Stress concentrations can 

arise from cut-outs, bolted joints or impact damage which can have detrimental effects 

on composite structures. There has been extensive research within this field to 

understand how scaling effects influence the compressive failure of open-hole 

composites. Bažant et al. [3] investigated unidirectional notched carbon–PEEK 

composites, failing by propagation of a kink band with fibre micro-buckling. They 

demonstrated that the strength scaling line for large notched specimens with a long kink 

band approaches an asymptote of slope −1/2 (characteristic of Linear Elastic Fracture 

Mechanics, LEFM) on the bi-logarithmic plot of the nominal strength vs. the 

characteristic size. Lee and Soutis [4] studied the failure mechanism of an open-hole 

quasi-isotropic specimen under compression while also investigating the size effects. 

They concluded that the failure was dominated by the presence of the hole, driving 

delamination and fibre micro-buckling along the plane of fracture in the vicinity of the 

hole. Wisnom et al. [5] summarized the strength scaling for sub-laminate scaled and 

ply-level scaled open-hole specimens under both tension and compression, 

demonstrating strong size effects under both loading conditions. Erçin et al. [6] also 
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studied the effects of size on open-hole specimens under both tension and compression. 

They reported that the open-hole compressive strengths decrease faster than the open-

hole tensile strengths with the same diameters ranging from 3 to 7 mm for a [90/45/0/-

45]3s laminate. When comparing open-hole tension and compression test results, the 

open-hole tensile strengths were 66-91% higher than the open-hole compressive 

strengths with a greater difference for the largest specimens. Although no damage was 

observed prior to the peak load in the open-hole compression tests using Aramis Digital 

Image Correlation (DIC) system, sub-critical failure mechanisms were expected to have 

caused the size effect. The authors also applied Finite Fracture Mechanics models that 

have proven to be able to capture both the open-hole and centre-notched tensile and 

compressive failure [6]. However, the details of the sub-critical failure mechanisms 

under compression were not discussed. Few studies were found on compressive strength 

scaling for centre-notched quasi-isotropic laminates in the literature. Although Tan et al. 

[7] conducted experiments on relatively small quasi-isotropic specimens both with a 

sharp centre notch and an open hole under compression, no centre-notched or open-hole 

specimens of other sizes were tested. Furthermore, few studies compared the centre-

notched failure under compression against the behaviour under tension.  

Soutis et al. [8] developed a theoretical model to predict the notched strength of 

open-hole specimens and the critical micro-buckling length  at failure. This model was 

derived from models [9, 10] originally developed for metals under tension, which were 

then modified for composites under compression. The micro-buckled region was 

modelled as a crack, over which the normal traction acting on the crack flanks was 

assumed to decrease linearly with the crack normal displacement. The correlation of the 

predicted open-hole results from the model and experimental results was very strong. 
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This method has been integrated into a Composite Compressive Strength Modeller 

(CCSM) [11]. Other progressive damage modelling tools have been introduced to 

predict the strengths and failure patterns in open-hole specimens. For example, Su et al. 

[12] developed a progressive damage model for open-hole composite laminates under 

compression. They did not explicitly model the fibre micro-buckling, which was 

represented by a linear softening law instead. Under compression, instability and local 

buckling were problems that led to convergence issues. This was mitigated using a 

zigzagging softening curve developed by Ridha et al. [13], which always maintains a 

positive tangent modulus in the stress–strain curve. Pinho et al. [14] developed a 

smeared crack model, in which the total energy dissipated was proportional to the 

micro-buckling length propagation. The strain energy dissipated during the micro-

buckling was mesh-independent as per the cohesive law embedded in this model. 

Ortega et al. [15] adopted an inverse approach to characterize the trans-laminar cohesive 

laws under both tensile and compressive loads. They compared different stacking 

sequences and materials, and highlighted the stress blunting effect of the blocked plies 

in the loading direction. They did not explicitly model the fibre micro-buckling either 

but derived a cohesive law to represent the micro-buckling process under compressive 

loads.  

The present paper presents the scaling effect in centre-notched quasi-isotropic 

laminates under compressive loads. This was achieved by testing centre-notched 

specimens scaled in-plane by a factor of up to 14, with a constant notch-to-width ratio 

and laminate thickness. The Composite Compressive Strength Modeller (CCSM) [11] 

using the fracture energy measured in the current study has been used to predict the 

scaling effects with satisfactory accuracy. Some further examinations were made to 
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explain the development of the micro-buckling lengths, in which tests were interrupted 

at about 95% of the average failure load, and then X-ray Computed Tomography (CT 

scan) was conducted to analyse the internal damage prior to ultimate failure. For the 

first time centre-notched compression test results were compared to open-hole 

compression test results with the same material and specimen dimensions over a range 

of sizes. To form a full comparison, some very small and large open-hole specimens 

were also conducted in addition to the previous open-hole results from Lee and Soutis 

[4]. The failure mechanisms and scaling in both the open-hole and centre-notched 

compression tests were also compared with those in previous tension tests [16]. 

2. EXPERIMENTAL SETUP 

2.1 Specimen configurations 

The schematic of all centre-notched specimen used is shown in Figure 1, where 

W, L and C represents the specimen width, length and notch length respectively. The in-

plane dimensions of the smaller specimens (C = 3.2, 6.35, 12.7 and 20 mm) are scaled 

as per Figure 1a. The Scale 8 specimens (C = 25.4 mm) were tested with reduced 

gripping area as shown in Figure 1b because of the limited width of the grips on the test 

machine. There is an even larger set of Scale 14 specimens (C = 45 mm) tested with no 

gripping sections as shown in Figure 1c because they were end loaded on the edges. 

Table 1 summarizes the specimen dimensions of all different scales. 

The material used for all experiments was Hexcel’s HexPly© IM7/8552 

carbon/epoxy pre-preg with a nominal ply thickness of 0.125 mm. Experiments were 

conducted on a quasi-isotropic stacking sequence of [45/90/-45/0]4s. The laminate 

thickness of 4 mm was constant for all tests, and the measured thicknesses were very 

close.  
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The through-the-thickness centre notches were cut by using a Computer 

Numerical Controlled (CNC) machine. The notch tip radius was 0.5 mm, driving the 

notch width to be 1.0 mm to avoid crack closure under compressive loading, but still 

inducing high stress concentration factors at the tips. This was similar to that in Tan et 

al. [7] in which a notch radius of 0.35 mm was used. The notch radius was held constant 

for all specimens.  

Open-hole specimens were also tested to compare to the centre notches. The 

smaller holes (3.2 and 6.4 mm [4]) were cut using carbide drill bits. The previous [4] 

(12.7 and 25.4 mm) and the current (20 and 45 mm) larger holes were cut using 

diamond coated hollow drill bits. The hole diameters were kept the same as the centre-

notch lengths, while the other specimen dimensions were also identical.  

2.2 Test configurations 

An Instron hydraulically driven machine was used for the experiments. The 

loading rate during the experiments was scaled as the in-plane dimensions increased, 

starting at 0.125 mm/min for the baseline specimen, and scaled up with the gauge 

length. The specimens in Figure 1a and b were directly gripped in the test machine as 

illustrated in Figure 2a and 2b. However, the largest Scale 14 specimens (Figure 1c) 

were tested differently because they were too wide for the steel jaws of the test machine. 

Therefore the specimens were tested in a Compression after Impact (CAI) jig [17] and 

end loaded by a pair of steel half rods which are flattened where they touch the 

specimen and connected to the test machine (Figure 2c). Due to the increased gauge 

length, the stress at which the specimen buckles decreases. Anti-buckling guides were 

therefore introduced in the larger Scale 6, Scale 8 (Figure 2b) and Scale 14 tests (Figure 

2c) but were found not necessary in smaller baseline, Scale 2, Scale 4 tests (Figure 2a).  
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For the Scale 8 specimens, steel anti-buckling guides were applied at either side 

of the specimen, gently clamping the specimen gauge section in the loading direction 

using two knife edges on each side. Two G clamps were also used to limit the horizontal 

movement of the jig, ensuring that it remained still during the experiments. The 

hydraulic grips were then applied on both the upper and lower gripping sections of the 

specimen. This jig proved to be successful, as no buckling was observed during testing. 

A typical load vs. crosshead displacement curve from a Scale 8 compression test is 

illustrated in Figure 3a. The grips on the Instron machine were limited to 100 mm 

width, but the Scale 8 specimen has a width of 127 mm. As the gripping width is 

smaller than the specimen width and the specimens slightly protruded at the sides of the 

gripping region, the load at the grips was applied over a smaller width as shown in 

Figure 1b. The resulting stress distribution was checked in a linear elastic FE analysis to 

ensure even loading condition across the specimen width at the notch location. Another 

single Scale 6 experiment was also conducted to further validate the Scale 8 

experimental results. These will be explained later.  

The largest Scale 14 tests were even more challenging. Because the specimen 

width (225 mm) is much wider than the width of the grips (100 mm), the specimens 

(Figure 1c) were not directly gripped in the test machine but loaded at the top and 

bottom edges in a CAI jig. Two chamfered semi-cylindrical rods were assembled into a 

pair of anti-buckling guides, and the upper one was driven by a steel plate which was 

clamped onto the test machine as shown in Figure 2c. Initially, this configuration was 

found to be problematic because global buckling still occurred at the notch. A further 

improvement was made by covering the specimens with two 3-mm thick Aluminium 

plates to reinforce the specimen surfaces and stop global buckling. Friction introduced 
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by the Aluminium plates is considered to be negligible because the clamping force at 

the bolts is small. This was proven to be effective for the centre notches with trans-

laminar fracture starting from the notch tips visible on both specimen surfaces. 

However, this did not work for the open holes, which showed trans-laminar fracture 

starting from the hole edge on one specimen surface and delamination from other, 

which indicates global buckling. As a result, the Scale 14 open-hole results were 

discarded. 

Interrupted tests were conducted at around 95% of the average failure load 

measured for the baseline (C = 3.2 mm), Scale 2 (C = 6.4 mm), Scale 4 (C = 12.7 mm) 

and Scale 8 (C = 25.4 mm) centre-notched specimens. The specimens for CT scans 

were soaked in zinc iodine X-ray penetrant solution for 2 days before CT scans were 

done using a Nikon XTH225ST CT scanner, with a 3 μm focal spot size and 225 kV, 

225 W microfocus X-ray source. The largest Scale 14 specimens were not scanned 

because of the limited number of specimens and the fact that CT scanning would not 

yield sufficient resolution for the largest specimens. 

2.3 Simple FEA to verify Scale 8 specimens 

Four-noded shell elements with isotropic homogenized properties were used to 

represent a quarter of the Scale 8 centre-notched specimen, taking advantage of the 

symmetric in-plane geometry and loading condition. Symmetry boundary conditions 

were used at the two mid-planes of the full-scale model, and a unit compressive stress 

was applied to the boundary of the specimen gauge section in the loading direction. The 

gripping section of the specimen was also modelled where all degrees of freedom were 

constrained except for the translation along the loading direction. The size of the mesh 

at the notch tip was 0.5 mm with an aspect ratio of 1. The stress at the notch tip was 
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bound to be mesh-dependent since the sharp crack produces a stress singularity, so only 

used here for comparison purposes. The first case examined was a unit compressive 

stress applied over the full width. The second case examined was for narrow grips, 

where the same load was applied to a narrower 100 mm width section in the middle of 

the specimen. The stress distribution across the specimen half width is similar in both 

cases in terms of the stress concentration factor (elemental stress over the applied unit 

stress) as shown in Figure 4, with a difference of less than 3.5%. This confirmed that 

narrow grips do not significantly affect the stress distribution at the notch tips.  

3. TEST RESULTS 

3.1 Results summary 

Table 2 presents the test results obtained for the notched specimens under 

compression for different specimen sizes. The strength values were taken as the gross-

section stress from the load vs. displacement graph at ultimate failure. The 

displacements were measured at the crosshead. The load vs. crosshead displacement 

curves of the specimens of different sizes have a similar shape. There are no load drops 

until sudden failure as shown in Figure 3a. The response is initially fairly linear until 

ultimate failure. Some non-linear response was found in the smallest baseline specimens 

due to slippage at the grips and the largest Scale 14 specimens due to compliance in the 

fixture. The ultimate failure observed for all centre-notched specimens was catastrophic, 

with a similar fracture morphology parallel to the centre notch across the width as 

shown in Figure 3b. The photograph of the smallest failed baseline specimen is used to 

give the best image quality around the notch across the width. Scale 14 open-hole 

specimens buckled before ultimate failure, so the results are not comparable in Table 2. 
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3.2 Extra test to verify Scale 8 results 

Another single Scale 6 centre-notched experiment was also conducted to further 

validate the Scale 8 centre-notched experimental results. Keeping the notch-to-width 

ratio of 0.2 consistent with the other experiments, a centre notch length of C = 20 mm 

was cut for a 100 mm wide specimen which is the maximum for the grips on the Instron 

test machine. The single test result was found to follow the trend obtained with the other 

experimental results as shown in Figure 5. This indicated that narrow grips do not have 

a significantly effect. 

3.3 Observed scaling effect 

There is a strong scaling effect for the centre-notched strengths as shown in 

Figure 5 and the results listed in Table 2. The compressive strengths decrease with 

increasing specimen dimensions. The open-hole strengths follow a similar scaling trend 

at the smaller sizes but start to deviate from the Scale 8 results. However, it is less 

conclusive due to the absence of the largest Scale 14 result because of buckling. 

4. DEVELOPMENT OF MICRO-BUCKLING 

The development of micro-buckling in the baseline, Scale 2, Scale 4 and Scale 8 

specimens was examined by conducting CT scans of one specimen interrupted at 95% 

of the average failure load for each case. The purpose is to examine the damage state at 

the notch tip just before ultimate failure. Detailed information about fibre micro-

buckling at the notch tip is the key to understanding notched compression failure. 

4.1 Baseline specimen (C = 3.2 mm) 

CT scan images of the baseline specimen from the interrupted tests at about 95% 

of the average failure load are shown in Figure 6. At the outboard single 0° plies 

through the thickness of the baseline specimen, fibre micro-buckling is observed at the 
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edge of the notch. The fibre micro-buckling does not appear in the central 0° plies 

where two plies are blocked together as seen in Figure 6d. This is because of the long 0° 

splitting (Figure 6d) at the specimen mid-plane which can blunt the stress concentration 

and delay the initiation of the micro-buckling. A small amount of splitting was also 

visible in nearly all ±45° plies through the specimen thickness as shown in Figure 6a 

and 6b, but there was no obvious fibre micro-buckling in these plies. In the typical 

outboard 0° plies, shown in Figure 6c, fibre micro-buckling grows at a kink angle β of 

38° in this case. No splits were observed in the outboard single 0° plies. There is hardly 

any visible damage under compression in the 90° plies.   

4.2 Scale 2 specimen (C = 6.4 mm) 

In Figure 7, CT scans of the typical plies for the Scale 2 specimen from the 

interrupted tests at 95% of the average failure load are shown. Fibre micro-buckling is 

only observed at one edge of the notch in the central double 0° ply, as seen in Figure 7d, 

compared to both sides in the baseline specimen. This is consistent with the 

observations in Lee and Soutis [4] for the open-hole specimen of the same size from an 

interrupted test at 98% of the average failure load. This could be because of matrix 

splitting being present on one side of the notch in the central double 0° ply block, which 

can delay the onset of micro-buckling initiation on that side. Splitting was also visible in 

nearly all ±45° plies through the specimen thickness as shown in Figure 7a and 7b, with 

no fibre micro-buckling. In the typical outboard 0° plies, shown in Figure 7c, fibre 

micro-buckling grows at a kink angle β of 31° in this specimen. There were no splits in 

the single 0° plies. The fibre micro-buckling length in the outboard single 0° plies is 

smaller when compared to that in the central double 0° ply block. There is again hardly 

any visible damage under compression in the 90° plies.   
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4.3 Scale 4 specimen (C = 12.7 mm) 

The main difference between the Scale 2 and Scale 4 specimens is that the fibre 

micro-buckling is observed on both sides of the central double 0° ply with the presence 

of 0° splitting as shown in Figure 8d. This fibre micro-buckled region is at a kink angle 

β of 31°. There are also some delaminations present in the outboard 0° plies near the 

specimen surfaces. The length of the fibre micro-buckled region is longer than that in 

the baseline specimen. The splitting in the ±45° plies is similar to that in the baseline 

specimen. Again, there is hardly any visible damage under compression in the 90° plies.   

4.4 Scale 8 specimen (C = 25.4 mm) 

The Scale 8 fibre micro-buckling length at the central double 0° plies is larger 

compared to the Scale 4 specimen, as shown in Figure 9d. The fibre micro-buckled 

region is at a kink angle of β of 24° in this case. Delaminations are present again in 

some outboard 0° plies near the specimen surfaces. The splitting in the ±45° plies is 

similar to the other three sizes analysed. No obvious damage was observed in the 90° 

plies under compression.   

4.5 Comparison of fibre micro-buckling lengths 

The fibre micro-buckling lengths from the tests interrupted at about 95% average 

failure loads were measured. The maximum absolute length in the 0° plies and on both 

sides of the centre notch was taken to estimate the critical micro-buckling length at 

ultimate failure. In Reference [5] micro-buckling length was measured from the X-ray 

scan images taken at 98% of the average failure load. Since the damage in the different 

plies through the specimen thickness overlaps in the 2D X-ray images, the fibre micro-

buckling length reported is presumably the maximum value which is the same as in the 

current study. The maximum values for the fibre micro-buckling lengths are 1.6 mm, 
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2.2 mm, 2.6 mm and 2.8 mm for baseline, Scale2, Scale 4 and Scale 8 specimens 

respectively. The measured micro-buckling lengths seem to be approaching a plateau, 

which indicates that Linear Eleatic Fracture Mechanics (LEFM) should apply to the 

scaling of very large centre-notched strengths.  

5. RESULTS ANALYSIS 

5.1 Linear Elastic Fracture Mechanics (LEFM) 
 

In the current study, a trans-laminar fracture toughness KC = 43.9 MPa·m0.5 can 

be calculated from the largest Scale 14 centre-notched compression tests according to 

Equation 1[10].  

 𝐾𝐶 = 𝜎𝑛𝑓(𝜆)√
𝜋𝐶

2
 (1) 

where ơn is the average nominal gross-section strength, from the largest Scale 14 

compression tests, ơn_Scale14 = 161 MPa,  and C =  45 mm is the crack length, 𝑓(𝜆) =

√sec⁡(𝜋𝜆) is a geometric parameter to account for the effect of finite width and 𝜆 =

𝐶/2𝑊 is the equivalent half notch-to-width ratio and W is the specimen width. 

The compressive strengths for different notch lengths calculated according to Equation 

1 are plotted against the experimental results as shown in Figure 10. The predicted 

centre-notched strengths correlate reasonably well with the large test results (Scale 4, 

Scale 8 and Scale 14). This supports the applicability of LEFM for large centre-notch 

specimens.  

5.2 Composite Compressive Strength Modeller (CCSM) 

Sutcliffe et al. [11] developed a Composite Compressive Strength Modeller 

(CCSM) which is a software design tool for deformation analysis and failure prediction 

of composite materials. Its compressive failure prediction tool for open hole composite 
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plates is developed from Soutis et al. [8], which assumes a crack-like micro-buckling 

mechanism grows from the edge of the hole. Over the micro-buckling zone, a bridging 

law exists which assumes that the traction reduces linearly in proportion to the crack 

closure from the unnotched compressive strength to zero, and the area under the traction 

vs. closure line is the fracture energy [8]. Furthermore, a number of bridging analyses 

have been carried out based on Sutcliffe and Fleck [18] for different types of commonly 

used notched specimens e.g. centre-notched and open-hole specimens, and for a range 

of crack and ligament sizes. Results are expressed as a function of 𝑎/𝑟𝑝 and 𝑏/𝑟𝑝, where 

𝑎 and 𝑏 are crack length and ligament length respectively; and 𝑟𝑝 is a bridging scale, 

and σu is the unnotched strength given as: 

 𝑟𝑝 =
𝐾𝐶
2

𝜎𝑢2
 (2) 

CCSM utilises the look-up tables [18] to interpret the notched strength and micro-

buckling length of centre notched specimens. The look-up tables consist of contour or 

surface plots of the independent variables (including critical micro-buckle length, 

remote stress and stress intensity factor at failure). As such, the effect of large-scale 

bridging can be summarised onto one graph. It should be noted that the look-up tables 

used for strength predictions are valid only when the specimen and crack length fit 

within certain geometry constraints. The stress intensity factor caused by the remote 

stress Kr and critical micro-buckling length lC must be within the limits. Once outside 

the limits, an extrapolation technique needs to be used which relies on some asymptotic 

functions. The limit relevant to the current study quoted from the user’s manual for 

CCSM [11] is: 

𝑎/𝑟𝑝 ≫ 1 and 𝑏/𝑟𝑝 ≫ 1  (3) 
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Centre-notch: 𝐾𝑟 → 𝐾𝐶, 𝑙𝐶 → 0.75𝑟𝑝, 𝜎𝑛 = 𝐾𝑟/(𝑓(𝜆)√𝜋𝑎) 

Open-hole: 𝑙𝐶 → 0 (unstable), 𝜎𝑛 =⁡𝜎𝑢/𝐾𝑡  

(Kt is the stress concentration factor) 

The main input parameters for the CCSM analysis are listed in Table 3. The trans-

laminar fracture toughness KC = 43.9 MPa·m0.5 is taken from the largest Scale 14 

centre-notched tests. The unnotched strength σu = 675 MPa is from [5]. The notched 

strengths predicted by CCSM are also shown in Figure 10. The predicted notched 

strengths agree reasonably well with all the experimental results except for the second 

largest Scale 8 notches which are underestimated. For larger sizes, the CCSM results 

also predict that the centre-notched results approach an LEFM scaling line, which is 

consistent with the experimental observations. Another output from the CCSM analysis 

for the centre-notched cases is the critical micro-buckling length at unstable 

compressive failure. The predicted critical micro-buckling lengths for centre notches are 

compared against the measured maximum values from CT scans at about 95% of the 

average failure loads in Figure 11. The correlation is reasonable, particularly at the large 

scales. This adds to the credibility of the CCSM predictions. The discrepancies in 

micro-buckling lengths may be partially attributed to the difference in load levels 

between the predicted critical micro-buckling lengths at failure (100%) and the 

measured values from CT scans at 95 % of the average failure loads. A small increment 

of applied load could lead to a large increment of micro-buckling length as implied in 

[8]. The predicted critical micro-buckling lengths for open holes are also shown in 

Figure 11. 

The CCSM prediction tool [11] for notched composite plates has proven to be 

effective in predicting scaling of open-hole and centre-notched strengths. The fracture 
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toughness of KC = 43.9 MPa·m0.5 was directly calculated from the current largest Scale 

14 centre-notched test. This is believed to be more accurate than taking it as the product 

of the unnotched strength and the half micro-buckling width as in the analytical model 

proposed in [8], which yields KC = 40.8 MPa·m0.5 (27 kJ/m2 [5]) for the same material 

and stacking sequence. If KC = 40.8 MPa·m0.5 was taken as the fracture toughness, the 

predictions would be conservative for larger notched specimens. 

5.3 Comparison with open-hole results 

Figure 10 demonstrates how the centre-notched results differ from open holes. 

From the baseline to the Scale 4 specimens, there is no significant difference 

between the open-hole and centre-notched strengths. The failure mechanism is also 

similar, which is fibre micro-buckling in the 0° plies. Consequently, the difference in 

notched strengths between the centre notch and the open hole is small. CCSM predicts 

that the open holes are only slightly stronger than the centre notches from the baseline 

to the Scale 8 specimens. 

For the second largest Scale 8 specimens, there is a significant difference between 

the specimens with centre notches and open holes, in which the latter are stronger. 

According to the CCSM predicted notched strengths in Figure 10, the open-hole results 

approach a different scaling line from the centre-notched results. The CCSM predicted 

critical micro-buckling lengths also start to differ significantly at Scale 8 between open 

holes and centre notches as shown in Figure 11. For the large open holes, the critical 

fibre micro-buckling length does not grow with the hole radius but actually drops, as 

shown in Figure 11, leaving the critical fibre micro-buckling relatively much smaller 

than the hole radius. The strengths therefore are expected to tend towards being 

controlled by the unnotched strength of the laminate divided by the stress concentration 
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factor of 3.13 [19] (asymptote value of 216 MPa). However, this could not be verified 

due to global buckling issues with the largest open-hole specimens. This will be 

explained later. For the large centre notches, the CCSM predicted critical micro-

buckling lengths grow with the notch lengths as shown in Figure 11, and are 

approaching a constant value that is still relatively small compared to the largest notch 

length of 45 mm. Therefore the centre-notched strengths tend to follow LEFM.  

The largest Scale 14 open-hole results are not shown in Figure 10. This is because 

the results were influenced by premature buckling at the hole. This was found 

unavoidable with the existing experimental set-up. In contrast, the largest Scale 14 

centre-notched tests were successful and validate the LEFM strength scaling based on 

the trend from the largest Scale 14 centre-notched results, as shown in Figure 10. 

5.4 Stacking sequence effects 

It is also interesting to consider stacking sequence effects, including the effect of 

ply thickness on notched compressive strength. For example, Lee and Soutis [4] studied 

the open-hole compressive strength scaling of dispersed-ply [45/90/-45/0]4s and 

blocked-ply [454/904/-454/04]s IM7/8552 carbon/epoxy laminates. They showed that 

both sets of quasi-isotropic laminates gave a reduction of open-hole compressive 

strength with increasing in-plane dimensions, with more strength reduction in the 

blocked-ply [454/904/-454/04]s laminates. The smaller specimens with blocked plies were 

found to be stronger than those with dispersed plies, though strengths were similar for 

the larger specimens. This was attributed to the stress redistribution due to 0° splitting 

around the hole in the blocked-ply laminates. Paul et al. [20] compared the centre-

notched compressive strength between the dispersed-ply [45/90/-45/0]4s and [90/45/0/-

45]4s IM7/8552 carbon/epoxy laminates, and found that both quasi-isotropic laminates 
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have the same notched compressive strength. The dominant failure mechanism was the 

same fibre micro-buckling, with little influence of 0° splitting with dispersed plies. 

These results suggest that the stacking sequence effect is not very significant unless 

plies are blocked. 

5.5 Comparison with tensile test results 

The failure mechanisms for centre-notched specimens are different under tension 

and compression. Under tension the key failure mechanism is local fibre breakage in the 

0° plies forming a distinctive damage process zone with delamination and matrix 

splitting as shown in Figure 12 [16]. For small sizes, it was found that the centre-

notched specimens are stronger in tension than the open-hole specimens. This is 

because of the presence of 0° splits which blunt the stress concentrations. There is a 

cross-over at a large notch length under tension between C = 25.4 and 50.8 mm when 

the damage process zone ahead of the large centre notch approaches a constant value, so 

its stress blunting effect is relatively small. Under compression, failure is dominated by 

fibre micro-buckling in the 0° plies. For small sizes, the centre notches have a similar 

strength compared with the open holes. A strength cross-over between the centre-

notched and open-hole strengths can hardly be observed, because splitting is much less 

important in compression than tension. There is no splitting present in the outboard 

single 0° plies under compression compared with significant splits under tension as 

shown in Figure 12, resulting in much less stress blunting in the small centre notches in 

compression. The damage process zone under compression mainly consists of micro-

buckling in the 0° plies. The micro-buckling length reaches 2.8 mm at Scale 8 which is 

comparable to the damage zone size of 2.3 mm under tension. However, it should be 

noted that the definition of damage process zone under tension is different from that 
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under compression. In both tension and compression the centre-notched strengths are 

asymptotic to a fracture mechanics scaling line, approaching it at similar specimen 

sizes. Based on the largest notched test results in each case, the measured fracture 

toughness value of KC = 43.9 MPa·m0.5 (GC = 31.3 kJ/m2) under compression is much 

lower than the value of KC = 75.6 MPa·m0.5 (GC = 92.8 kJ/m2) under tension [16].  

6. CONCLUSIONS 

The scaling effect of notched compressive strength in quasi-isotropic laminates 

was studied. The dominant failure mechanism under compression for both centre 

notches and open holes is fibre micro-buckling in the 0° plies initiating from the notch. 

CT scan images interrupted at about 95% of the average failure loads reveal that the 

fibre micro-buckling length is not a constant value but increases with notch length. The 

fibre micro-buckling does not grow parallel to the notch in the 0° plies, but at a kink 

angle β which is typically between 24° and 42° in the current quasi-isotropic laminate. 

The notched compressive strength was found to decrease as the in-plane 

dimensions of the specimen increase, approaching a line consistent with LEFM scaling 

at the largest size. The centre-notched strength scaling was also compared to the open-

hole strength scaling under compression. For smaller specimens, there was little 

difference in compressive strength between the centre-notched and open-hole specimen. 

However, as the notch length (hole diameter) increases to 25.4 mm the difference in 

strength significantly increases.  

The CCSM analysis considering both fracture and strength properties effectively 

captures the strength scaling for the centre-notched and open-hole specimens. Based on 

the compressive strength value of 675 MPa [5] from the literature and the fracture 

toughness value of 43.9 MPa·m0.5 measured from the largest Scale 14 tests for the 
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current IM7/8552 quasi-isotropic laminates, the CCSM predicted notched strengths and 

micro-buckling lengths agree reasonably well with almost all the experimental results. 

Comparison was made between the centre-notched compressive and tensile failure 

mechanisms. Unlike fibre micro-buckling in the 0° plies for compression, the dominant 

failure mechanism for tension is the development of a damage process zone that 

consists of local fibre breakage in the 0° plies, splitting and delamination. Under 

compression, hardly any 0° splitting was observed except in the central double 0° plies 

at the initial notch tip, so it is less significant. In contrast, extensive multiple long splits 

were seen in all 0° plies under tension, playing a key role, and explaining the higher 

tensile strength for small centre notches compared to holes in tension, which was not 

observed in compression.  
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a) Fully gripped specimen geometry (C = 3.2, 6.4, 12.7 and 20 mm) 

 

b) Partially gripped specimen geometry (C = 25.4 mm) 

 

c) End loaded specimen geometry (C = 45 mm) 

Figure 1. Schematics of the scaled specimens tested. 

 

  



24 
 

  

a) Fully gripped small specimens 

(C = 3.2, 6.4 and 12.7 mm) 

b) Gripped specimens with anti-buckling guides 

(C = 20 and 25.4 mm) 

 

c) Largest end loaded specimen with anti-buckling guides (C = 45 mm) 

Figure 2. Compression test configurations. 
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(a) A typical Scale 8 centre-notched result  

(C = 25.4 mm) 

(b)  A typical failed baseline specimen 

(C = 3.2 mm) 

Figure 3. Typical load vs. crosshead displacement curve and fracture morphology.  

 

 

Figure 4. Stress distribution along specimen width in the simple Scale 8 centre-notched 

FE model (C = 25.4 mm). 
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Figure 5. Verification of the Scale 8 (C = 25.4 mm) centre-notch experimental results.  

 
 

  
a) Typical 45° ply b) Typical -45° ply 

 

 
c) Typical outboard 0° ply d) Double central 0° ply 

Figure 6. CT Scans for the baseline centre-notched specimen (C = 3.2 mm) at about 

95% the average failure load. 
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a) Typical 45° ply b) Typical -45° ply 

  

c) Typical outboard 0° ply d) Double central 0° ply 

Figure 7. CT Scans for the Scale 2 centre-notched specimen (C = 6.4 mm) at 95% of 

average failure load. 

 
 

  
a) Typical 45° ply b) Typical -45° ply 

  
c) Typical outboard 0° ply d) Double central 0° ply 

Figure 8. CT Scans for the Scale 4 centre-notched specimen (C = 12.7 mm) at 95% of 

average failure load. 
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a) Typical 45° ply b) Typical -45° ply 

  
c) Typical outboard 0° ply d) Double central 0° ply 

Figure 9. CT Scans for the Scale 8 centre-notched specimen (C = 25.4 mm) at 95% of 

average failure load.  

 

 

Figure 10. Scaling of notched compressive strengths. 
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Figure 11. Comparison of micro-buckling lengths. 

 
 
 
 
 

  

a) Tension [16] b) Compression 

Figure 12. CT scans of outboard single 0° ply for Scale 2 specimens (C = 6.4 mm) 

under two different loading conditions at 95% of average failure load. 
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Table 1. Dimensions of the centre-notched specimens tested. 

Specimens Number of 

Specimens 

Notch 

Length, C 

(mm) 

Gauge 

Width, W 

(mm) 

Gauge 

Length, L 

(mm) 

Gripping 

Area 

(mm2) 

Baseline 5 3.2 15.9 15.9 50×15.9 

Scale 2 5 6.4 31.8 31.8 50×31.8 

Scale 4 5 12.7 63.5 63.5 50×63.5 

Scale 6 1 20.0 100 100 100×100 

Scale 8 3 25.4 127.0 127.0 100×100 

Scale 14 3 45.0 225 225 - 

 

Table 2. Experimental results (MPa) (C.V. %). 

 Baseline Scale 2 Scale 4 Scale 8 Scale 14 

Notch length 

(mm) 

3.2 6.4 12.7 25.4 45 

Centre notch 400 (4.8) 358 (3.7) 280 (3.1) 235 (0.4) 161 (3.0) 

Open hole  379 (2.6)  351 (2.9)[4] 300 (3.6)[4] 285 (2.2)[4] 198 (4.3)a 

a Scale 14 open-hole results influenced by global buckling 
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Table 3. Input parameters for CCSM analysis for IM7/8552 laminates. 

E11 (GPa) E22 (GPa) G12 (GPa) υ12 QI σu (MPa) QI KC (MPa·m0.5) 

 161 11.4 5.17 0.320 675 [5] 43.9 a 

a Kc measured from the largest Scale 14 centre-notched tests 

 

 


