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ABSTRACT 

The objective of this study was to identify the pattern of cytotoxicity testing of the 
human cell line ECV304 using three techniques of an ensemble learning algorithm 
(bagging, boosting and stacking). The study of cell morphology of ECV304 cell line 
was conducted using impedimetric measurement. Three types of toxins were applied 
to the ECV304 cell line namely 1 mM hydrogen peroxide (H2O2), 5% dimethyl 

sulfoxide (DMSO) and 10 µg Saponin. The measurement was conducted using 
electrodes and lock-in amplifier to detect impedance changes during cytotoxicity 
testing within a frequency range 200 and 830 kHz. The results were analysed, 
processed and extracted using Detrended Fluctuation Analysis (DFA) to obtain 
characteristics and features of the cells when exposed to the each of the toxins. Three 
ensemble algorithms applied showed slightly different results on the performance for 
classifying the data set from the feature extraction that was performed. However, 
the results show that the cell reaction to the toxins could be classified. 
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1. Introduction 

 
The results of measurements or experiments in biological and medical research 
generally produce complex data sets, both in terms of size and dimensions (Zitnik 
et al. 2019). In addition, the resulting data sets experience a bias and error from 
the measurement process as well as from the nature of the biological entity being 
studied (Kihm et al. 2018; William et al. 2019). This problem raises new opportunities 
for data processing using an algorithmic approach rather than the usual statistical 
methods (Wang 2006; Zhao et al. 2019). The algorithm must provide information on 
the differences, categories and treatments associated with the measurement data sets. 

Machine learning is part of Artificial Intelligence (AI) which has the ability to 
learn automatically by analysing data and improve their learning from experience 
to perform certain tasks without being explicitly programmed (Bishop 2006). This 
learning process utilise a special algorithm known as the machine learning algorithm. 
Machine learning algorithms create a model based on the data provided and make 
predictions or decision based on that model. A good classification model is able to 
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separate data based on its class. The ability of machine learning to create a model 
from data and to separate different patterns into groups makes this technique of 
common use by biological researchers (Sommer and Gerlich 2013). Machine learning 
is commonly used in classification (Vlahou et al. 2003). In the classification process, 
the user provides a training data set collected from the experiment as an input with 
predefined classes or labels associated with each type of data in the set. This training 
data set is used by the machine learning algorithm to determine the pattern of the 
data. Once the pattern or model is defined then the test data can be applied for 
prediction. This type of machine learning is well known as supervised machine learning. 
A considerable amount of literature has been published on the use of machine learning 
to analyse biological and medical data, such as for classifying red blood cells (Aliyu 
et al. 2018; Tiwari et al. 2018; Nassar et al. 2019), antibiotic (Yang et al. 2019), cell 
images  (Meng  et  al.  2018;  Forslöw  2018;  Oei  et  al.  2019;  Iqbal  et  al.  2019;  Gu  et  al. 
2019), cells (Chen and Chefd’hotel 2014; Xia et al. 2018; Singh et al. 2018; Lam et al. 
2019; Ozaki et al. 2019), and it has been used widely in drug discovery (Liu et al. 
2019; Yin et al. 2019; Ekins et al. 2019), study of cancer (Rachman and Rustam 2016; 
Rubin et al. 2019) and study of disease (Pan et al. 2018). 

Moreover, new techniques and algorithms have been developed to improve the 
results of machine learning. One of these techniques is ensemble classification. 
Ensemble classification combines several classifiers to provide better prediction of the 
overall performance compared to a single classifier. Three techniques of ensemble 
classification are bagging (Breiman 1996), boosting (Schapire 1990) and stacking 
(Wolpert 1992). Ensemble classification has been used in the study of cancer by 
researchers (Hijazi et al. 2012; Tarek et al. 2016; Cong et al. 2017) to yield improved 
performance in terms of the output variables of machine learning, such as increased 
accuracy and reduced errors. However, there are many feature selection methods and 
the classifier can be used in ensemble learning and it is not possible to use all of them 
to get ensemble learning results or prediction since the group of classifiers have to be 
chosen (Park and Cho 2003; Hijazi and Chan 2013). 

The morphology of cells change depending on the type of toxin applied. To see 
the different types of changes from the given toxins, feature extraction and machine 
learning algorithm are required to classify the data based on the type of toxin. Feature 
extraction is a process used to reduce the dimensions of large raw data set, so that it 
can be managed and processed to reduce the computing process without reducing the 
characteristics of the raw data. In this study, three techniques of ensemble learning 
(bagging, boosting and stacking) were applied to the results of cytotoxicity test on cell 

line ECV304 using various toxins, i.e hydrogen peroxide (H2O2), dymethil sulfoxide 
(DMSO) and Saponin. ECV304 cell line was chosen since ECV304 cell line exhibits 
many endothelial features given the dearth of suitable endothelial cell lines, make  
it an attractive in vitro model for endothelial (Suda et al. 2001). Meanwhile, the 
toxins were selected as they were readily available, they are not highly hazardous 
and they have well defined effects on cells. The toxins and their concentration were 
applied dependent on their physical properties and mechanism of toxicity. Applied 
toxins were: H2O2, a powerful oxidizing operator; DMSO, a strong cell separating 
agent; and saponin, an intense layer permeabilizing agent. Both H2O2 and DMSO have 
similar, significant effects on the cells related to both morphology and metabolism of 
cells, whereas saponin forms pores in the cell membrane through which fluid is drawn 
into the cell due to osmotic pressure. The use of this range of toxins allowed assessment 
of the ability of the technique to differentiate between both closely related toxins and 
those which display dissimilar modes of action. Therefore, the aim of this study was to 
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Figure 1. Circuit of the experiment 

 
 

prove that the mechanism of toxicity as when given to ECV304 cells could be classified. 
 

 
2. Materials and methods 

 
2.1. Cells preparation 

ECV304 cells from the European Collection of Cell Cultures were seeded in a 75 cm
2
 

flask in complemented 12 mL M199 media (Gibco) supplemented with 10% foetal calf 
serum and 2 mL L-glutamine at a density of 3x10

5 cells/mL and maintained in a 
humidified incubator at 37oC with 5% CO2. The cells were routinely fed with fresh 
medium every 3 days and monitored daily by microscope to check for confluence,  
at which point the cell monolayer covers 75-80% of the surface of the flask. Once 
confluence was reached, the cell layer was rinsed with Phosphate Buffered Saline (PBS) 
followed by 1 mL of Trypsin-EDTA solution (0.05% porcine trypsin, 0.2 g/L EDTA) 
followed by incubation at 37 oC for approximately 5 minutes to allow the cells to detach 
from the flask surface. The trypsin was deactivated when the cells had detached, by 
the addition of 2 mL of growth medium and the cell density counted by the Trypan 
Blue Exclusion method. The cell suspension was diluted to a density of 3x10

5
 cells/mL 

and 2 mL of cell suspension added to a LAB-TEK chamber and maintained at 37 oC 
and 5% CO2. From the cell suspension, the cells were separate in a 2 mL chamber as a 
control which the cells were not given any toxins. Cytotoxicity testing was performed 
by adding 1 mM H2O2, 5% DMSO or 10 µg Saponin. This experiment was repeated 
20 times for each exposed toxin to obtain classification data and the classification only 
relates to the specific toxins that have been examined. 

 
 

2.2. Instrumentation 

In this study, Impedance spectroscopy (IS) was used. IS is a measurement technique 
for investigating the electrical properties of a material using electrically conducting 
electrodes (Barsoukov and Macdonald 2005). IS has been applied in many biological 
research studies for instance for monitoring cell cycle of Human cervical carcinoma cells 
(HeLa) (Wang  et al. 2010), to perform a cytotoxicity testing on BALB/3T3 A-31-1-  
1 cell line using sodium arsenite, cadmium chloride and cis-platinum (Ceriotti et al. 
2007) and to monitor changes of porcine brain capillary endothelial cells (PBCECs) 
shape during apoptosis (Arndt et al. 2004). The impedance measurements used a lock- 
in amplifier (LIA) (Sengupta et al. 2005) connected to D patterned sensor as depicted 
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in Figure 1. PCB fabrication technique was applied to the D patterned sensor. The D 
patterned sensor composed a copper layer coated with 0.1 µm gold over 5 µm nickel. 
The diameter of each sensor was 22 mm, with 1 mm space between the counter and 
detecting electrodes to correspond to the surface of the cell chamber. A 10 KΩ resistor 
was connected in series with the D patterned sensor to limit the current and to achieve 
a large bandwidth for the RC circuit. The LIA was connected in parallel with the 
sensors. The chamber (Nunc LAB-TEK II Chambered Coverglass, USA) was placed 
on the D sensor such that the cells were not in direct contact with the sensor to avoid 
cross-contamination with the previous experiment and facilitating multiple, sequential 
measurement a single sensor pair. The chamber base is made of borosilicate coverglass 
with thickness 0.13-0.16 mm and the culture area was 4.2 cm

2
. In order to ensure 

that the electric field penetrated the cell culture, a thin coverglass was used. During 
the experiments, the D sensor and the cell chamber were placed in the incubator. A 
2 V square wave signal was used as an input, and the measurement of voltage output 
from the LIA were provided by a real-time PC-Based oscilloscope (PICOscope-Pico 
Technology, UK), which was controlled and monitored from a PC. Data were acquired 
for each data set at 1, 80 and 120 minutes after either  H2O2, DMSO or Saponin    
had been added. The total data set from each experiment comprised of 64 blocks; 
sampled from 200 kHz to 830 kHz with an interval 10 kHz. A broadband approach to 
impedance measurement can be used to investigate multiple cell properties. In a model, 
developed by (Ren and Chui 2018), for a single cell, cell interactions were classified into 
3 frequency bands; 0.1 – 10 KHz, 10 kHz – 1 MHz, 1MHz to 10MHz. The high frequency 
band was associated with changes in the cytoplasm of the cell, while changes in the 
cell membrane were generally associated with mid frequency bands. Lower frequency 
signals did not penetrate the cells. Finally, it was suggested that cell size could be 
associated with all frequency bands in their model, as there is clearly interdependency 
in the changes in size with both changes on cytoplasm and cell membrane. The mid- 
frequency band was selected for this study as it most effectively encompassed the 
morphological changes in the cells. The power of the technique presented here is that 
the whole of the mid-range can be evaluated from the impedance spectra, so both 
specific and broad acting toxins can be identified through the technique. 

 

2.3. Feature extraction 

The measurement result produced 64 values for each toxin. Detrended Fluctuation 
Analysis (DFA) was applied to the output signal to obtain features of the signals. 
Detrended Fluctuation Analysis (DFA) is a statistical technique for scaling long range 
correlations in a time series (Peng et al. 1995). The time series is divided into several 
windows (or scales) with width n as shown in Figure 2. Three scales (6, 12 and 24) were 
applied to the output signals. the average fluctuation F (n) of the signal is computed 
as follows : 

 

 
 

F (n) = 

‚

.
,  1 

 

Σ

k=1 

 
(y(k) − yn(k))2 (1) 

 

Hurst exponent (α) is defined as the slope of data trend in the F(n) graph. The 

average fluctuation (Fn) and Hurst exponent (α) of the output signals were performed 
at 1, 80 and 120 minutes of measurements for each scale as shown in Figure 3 and 

N 
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Figure 2. The DFA method for a width of window (n). Similar method repeats for various width of windows 

 
 

4 (Djawad et al. 2019). There were 20 experiment for each toxin tested. This means 
that 60 experiments for the 3 toxins were conducted. In total, there were 80 samples 
gathered from the experiment including control cells for 20 samples. Each experiment 
provided 1 sample. There were 6 features for each sample were gathered from the 

average fluctuation (Fn) and Hurst exponent (α) of the signals at 1, 80 and 120 
minutes. The class distribution was balanced since each cytotoxicity testing has 20 
samples including control cells as well had 20 samples. 

 
 

2.4. Ensemble machine learning 

Three ensemble techniques were applied for analysing the data; bootstrap aggregating 
(bagging), boosting and stacking. Bagging consists of two processes namely bootstrap 
and aggregation. Bootstrap is a statistical technique for retrieving data by sampling 
using a random process with replacement to generate multiple sets of training data. 
While aggregation is a process of collecting all the results with similar classifier output 
for each bootstrap samples for final combined prediction decision as shown in Figure 
5a. One of the methods using bagging algorithms is Random Forest (RF). Boosting is a 
sequential tree process using information from the previous classifier output. Prediction 
at each stage is based on the output of the previous classifier results. This process 
learns from previous predictions to improvise the final decision as shown in Figure 5b. 
In this study the gradient boosting machine (gbm) method was applied. Stacking is 

an ensemble learning technique that combines several different classifier results (multi 
classifier) using the same initial data set. Each classifier produces an output that will be 
used as data for the meta classifier for the final combined decision, as shown in Figure 
5c. In this study, Logistic regression classifier (LR), Linear Discriminant Analysis 
(LDA), k-nearest Neighbors, (k-NN), Support Vector Machine (SVM), Decision Tree 
and Naive Bayes were used as classifiers and the RF was used as the meta classifier. 

 
2.4.1. Cross-Validation 

Cross-Validation (CV) is a resampling technique used to assess machine learning 
models on a constrained data set. The technique splits the data set into k groups    
or folds. Generally, there are 3 techniques used; k-fold CV, stratified k-fold CV and 
Leave One Out Cross Validation (LOOCV). k-fold CV involves dividing given data 
into a number of k folds where each fold is used as a test set in the end. For instance 
the situation of 4-fold cross validation (k = 4), where the data is divided into 4 folds 
is shown in Figure 6a. In the first round, the first fold is used to test the model and 
the rests are used to train the model. In the next cycle, the second fold is used as a 
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Figure 3. The average fluctuation F(n) of (a) Control cells (b) cells + H2O2 (c) cells + DMSO (d) cells + 
saponin. 
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Figure 4. The Hurst exponent (α) of (a) Control cells (b) cells + H2O2 (c) cells + DMSO (d) cells + saponin. 

 

(a) (b) 

 
(c) 

 

Figure 5. (a) Bagging (b) Boosting (c) Stacking 

 
 

test set while the rest are used to train the model. This procedure is repeated until 
each fold of 4 folds has been used as a test set. The stratified k-fold is a variety of k-
fold that initially shuffles the data set and split it into several folds to ensure that 
each fold is an appropriate representation of the whole data set as shown in Figure 
6b. Figure 6c shows the Leave-one-out cross-validation (LOOCV) procedure. LOOCV 
separates one data point from the training data as test data and leaves the others as 
data to train the model. This is repeated for all combinations for the data provided. 
Therefore stratified-k fold technique was applied on our constrained data set to produce 
multiple data set in order to have preliminary indication the mechanism disruption of 
each exposed toxin. In addition, stratified k-fold CV was applied in this study because 
it produced best accuracy performance. 
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(a) (b) 

 

(c) 

 

Figure 6. Type of cross-validation (a) k-fold (b) Stratified k-fold (c) LOOCV 
 

 

 
Figure 7. Confusion matrix of classification 

 
 

2.4.2. Confusion matrix 

Classification performance can be represented by a confusion matrix. A confusion 
matrix is the prediction table made by a classification model. The columns of the 
matrix are related to the actual of the data, and the rows of the matrix are related to 
the prediction by the model. Figure 7 shows confusion matrix for binary classifier which 
have four possible outcomes. True Positive (TP) is the condition when the prediction 
is positive and it’s true. True  Negative (TN) is the condition when the prediction     
is negative and it’s true. False Positive (FP) is the condition when the prediction is 
positive and it’s false. False Negative (FN) is the condition when the prediction is 
negative and it’s false. 

The performance of classification is defined in three categories. They are recall (Rc), 
precision (Pr), accuracy and it is defined as follows : 
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Rc = 
TP TP 

+ FN 

 

(2) 

 

 
Pr = 

TP 

TP + FP 

 
(3) 

 

 
Accuracy = 

TP + TN 
 

TP + FP + FN + TN 

 
(4) 

 

2.4.3. Receiver Operator Characteristic 

Receiver   Operator   Characteristic   (ROC)   curve   shows    the    plot    between  
the True Positive Rate (TPR=TP/(TP+FN)) and the False Positive Rate 
(FPR=FP/(FP+TN)). Classifiers that provide curves  that  are  closer  to  the  top  
left corner indicate better performance. While classifiers that provide curves closer 
to the 45-degree diagonal line indicate less accurate model performance The curve 
shows the diagnostic ability of binary classifier for each class in data set. Area Under 
Curve (AUC) represents the ability of the model to separate each class. A good model 
has AUC value close to 1 and a poor model has a value close to 0. Macro averaging 
(Prmacro) reduces multiclass predictions to a set of binary predictions by calculating 
average of entire precision (Pr) results. Micro averaging (Prmicro) makes the all data 
set as an aggregate result by calculating all true positive results and divide it by sum 
of true positive results and false positive results and defined as follows: 

 

 
Prmacro = 

Pr1 + Pr2 + ... + Prk 

k 

 
(5) 

 
 

Prmicro =
  TP1 + TP2 + ... + TPk  

(TP1 + TP2 + ... + TPk) + (FP1 + FP2 + ... + FPk) 

 
(6) 

 

In this study, data were divided into two groups; training set (70%) and test set or 
predictor (30%) for each ensemble classification technique. The training set is used for 
making a classification model and test set is used for evaluating the performance of 
the classification model. 

 
 

3. Results and analysis 
 

Before the machine learning algorithm was applied to the data or measurement results, 
the data set was visualised using t-distributed Stochastic Neighbor Embedding (t-SNE) 
(van der Maaten and Hinton 2008). t-SNE is an algorithm to reduce the dimensionality 
of data. The algorithm projects multi-dimensional data into a 2D or 3D representation. 
t-SNE was chosen because it is able to ensure that adjacent points in the high 
dimension, tend to stay close together in the low dimension. Figure 8 shows the t- 

SNE plot consisting of 4 clusters namely control, H2O2, DMSO and Saponin. From 
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Figure 8. Visualisation the data set using t-SNE algorithm 

 
 

the figure, the data for the each of the toxin and the control are clearly separated. 
However, there are a small number of outliers, which are significantly different from 
the main dataset, for each of the categories. This may relate to issues in the experiment 
or particular, complex responses of the cells. A number of data analysis techniques are 
available to remove outliers. 

At the beginning, base learners were chosen based on inducing class to use different 
base level algorithms and one algorithm with various parameters and train each on the 
same data set but the accuracy results were still not as expected (smaller than 0.5), 
therefore the ensemble method was applied to improve the predictive performance by 
decrease variance (bagging), reduce bias (boosting) and improve predictions (stacking). 
Based on the the complementarity combinations of the base learners that have been 
tried, the combination that produces the highest accuracy was selected. 

To build a predictive model of machine learning, the first method used was RF using 
the stratified k-fold CV method. In this study, the stratified 8-fold CV was used to 
estimate the RF model against measured data. Another tuning parameter used was 

mtry with values 2, 4, 8 and 15. This parameter indicates the number of variables 

sampled for splitting at each node. Figure 9 shows the accuracy of the model that was 
created. The accuracy of the model decreases relative to the predictor 3 and increases 
to the predictor 4. 

The confusion matrix of RF using test data is depicted in Figure 10a. The accuracy 
of using test data was 0.625 and Root Mean Squared Error (RMSE) was 0.3819. Figure 
10b shows the ROC of the model performance for all classes using RF. The figure also 
depicts the ROC curve plus the Area Under Curve (AUC) for each class. It revealed 
that performance of the model gave a relatively satisfactory result, demonstrated by 
the fact that the curve that is not close to the diagonal line and AUC values of each 
class are above 0.5. 

By using gbm, the tuning parameters used are interaction depth, shrinkage and 
minobsinnode. The interaction depth is a parameter which indicates the number of 
splits that has to be conducted on a tree, which were 1,5 and 9 in this study. The 
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Figure 9. Model accuracy of RF using various iterations using stratified k-fold CV 

 

(a) (b) 

 
Figure 10.   (a) The row is a prediction, while the actual column or class states the output of RF. (b) ROC       
of the classification using RF 

 
 

minobsinnode is a parameter that tells every decision tree that is formed when to 
stop. The values of the tuning parameter used in this study were shrinkage 0.01, 
0.05 and 0.1 and minobsinnode 3, 5 and 7. In addition, the stratified 8-fold CV was 
also applied as shown in Figure 11. The combination of these parameters produced 
best accuracy approximately 0.65 for minobsinnode 3, shringkage 0.01 and interaction 
depth 1. 

Figure 12a shows a confusion matrix using test data which produces an accuracy 

of 0.625. In addition, Figure 12b shows plots for the ROC curves of the gbm. From 
the ROC curve it can be seen that all AUCs from all classes were above 0.5, which 
indicates that the model performance was relatively good. 

Figure 13 shows the box plot of accuracy for various classifiers and stacking using 
the stratified 10-fold CV. The figure reveals that the average accuracy of stacking 
shows better results compared with the individual classifier used in stacking which 
was 0.615. Figure 14a shows the confusion matrix of stacking using test data set with 
accuracy 0.625. The ROC curve of the stacking model is shown in Figure 14b. All 
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Figure 11. Model accuracy of gbm using different boosting iterations 

 
 

curves are quite far from the diagonal line which shows a good performance, especially 
class 2. The AUC also show a relatively good values (particularly for class 2) showing 
the ability of the model to distinguish between classes. 

In commercial toxicity testing and drug discovery vast numbers of materials are 
tested. The aim is to classify key biological indicators of materials–cell interaction 
with respect to material dose and time, allowing predication of in-vivo adverse 
effects. Traditionally, colorimetric or fluorometric endpoints are used to determine 
cytotoxic effects, but impedance based sensing methods have benefits that they are 
non-invasive and can be performed in real time (Gasser et al. 2020). To be appropriate 
for this application, the output from the impedance sensor system must classify 
toxins/materials according to particular molecular structures within the material or 

 
 

 

(a) (b) 

 
Figure 12.   (a) The row is a prediction, while the actual column or class states the output of gbm. (b) ROC    
of the classification using gbm 
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Figure 13. Model accuracy of stacking from various machine learning algorithms 

 

 

 

 

 

 

 

 

 

 
 

 

(a) (b) 

 
Figure 14.   (a) The row is a prediction, while the actual column or class states the output of stacking  (b)  
ROC of the classification using stacking 
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modes of action (in a similar way to the traditional techniques). Consequently, during 
toxicity testing or drug discovery the impedance response of a new material can be 
compared with a library of impedance data to identify the type of toxic effect (if any) 
the material exhibits. The work presented in this paper presents a new technique that 
potentially could be used to create the library and assess materials relative to this. 
In order to create a comprehensive library suitable to be used for toxicity testing and 
drug discovery, tests, subsequent feature extraction and machine learning, would need 
to be performed on a broad range of cell lines using many toxins. Future work is 
involving expanding the range of toxins including the evaluation of those with very 
specific modes of action on the cell. 

 
 

4. Conclusions 
 

Cytotoxicity tests have been carried out on EC304 cells using 3 types of toxins namely 
H2O2, DMSO and Saponin, using impedance spectroscopy. The impedance data from 
these tests produce a number of features extracted using the Detrended Fluctuation 
Analysis (DFA) method. These features were used as training data for machine learning 
with ensemble techniques. Random Forest (RF), gradient boosting machine (gbm) and 
stacking algorithms were used to classify the results from the 3 types of toxin applied to 
ECV304 cells. Data processing using the ensemble classification demonstrated that the 
algorithm gbm method provided better performance of model results compared to RF 
and stacking in terms of accuracy. These results indicated that impedance spectroscopy 
results from cytotoxicity tests can be classified based on the type of toxin applied   
to the cells. This shows that the feature extraction methodologies performed could 
distinguish morphological changes, which caused differences in impedance spectra of 
the cell culture depending on the type of toxin applied. 

 
 

References 
 

Aliyu HA, Sudirman R, Razak MAA, Wahab  MAA. 2018. Red Blood Cell Classification:  
Deep Learning Architecture Versus Support Vector Machine. In: 2018 2nd International 
Conference on BioSignal Analysis, Processing and Systems (ICBAPS); Jul. p. 142–147. 

Arndt  S,  Seebach  J,  Psathaki  K,  Galla  HJ,   Wegener   J.   2004.   Bioelectrical   
impedance  assay  to  monitor  changes  in  cell  shape  during  apoptosis.  Biosensors   
and Bioelectronics. 19(6):583–594. [accessed 2020-08-13]. Available from: 
http://www.sciencedirect.com/science/article/pii/S0956566303002690. 

Barsoukov E, Macdonald JR. 2005. Impedance Spectroscopy: Theory, Experiment, and 
Applications. John Wiley & Sons. Google-Books-ID: 8hNkOWO DLwC. 

Bishop C. 2006. Pattern  Recognition  and  Machine  Learning.  New  York:  Springer- 
Verlag. Information Science and Statistics; [accessed 2020-05-26]. Available from: 
https://www.springer.com/gp/book/9780387310732. 

Breiman L. 1996. Bagging Predictors. Machine Learning. 24(2):123–140. [accessed 2020-05-21]. 
Available from: https://doi.org/10.1023/A:1018054314350. 

Ceriotti L, Ponti J, Broggi F, Kob A, Drechsler S, Thedinga E, Colpo P, Sabbioni E, Ehret R, 
Rossi F. 2007. Real-time assessment of cytotoxicity by impedance measurement on a 96-well 
plate. Sensors and Actuators B: Chemical. 123(2):769–778. [accessed 2020-08-13]. Available 
from: http://www.sciencedirect.com/science/article/pii/S0925400506007015. 

Chen T, Chefd’hotel C. 2014. Deep Learning Based Automatic Immune Cell Detection for 
Immunohistochemistry Images. In: Wu G, Zhang D, Zhou L, editors. Machine Learning in 

http://www.sciencedirect.com/science/article/pii/S0956566303002690
http://www.springer.com/gp/book/9780387310732
http://www.springer.com/gp/book/9780387310732
http://www.sciencedirect.com/science/article/pii/S0925400506007015


15  

Medical Imaging. Springer International Publishing. p. 17–24. Lecture Notes in Computer 
Science. 

Cong  J,   Wei   B,   He   Y,   Yin   Y,   Zheng   Y.   2017.   A   Selective   Ensemble   
Classification   Method   Combining   Mammography   Images   with    Ultrasound    
Images for Breast Cancer Diagnosis. [accessed 2019-05-19]. Available from: 
https://www.hindawi.com/journals/cmmm/2017/4896386/. 

Djawad YA, Attwood D, Kiely J, Luxton R. 2019. The application of detrended fluctuation 
analysis to assess physical characteristics of the human cell line ECV304 following toxic 
challenges. Sensing and Bio-Sensing Research. 23:100269. [accessed 2020-03-17]. Available 
from: http://www.sciencedirect.com/science/article/pii/S2214180418301260. 

Ekins   S,   Puhl   AC,   Zorn   KM,   Lane   TR,   Russo   DP,    Klein    JJ,    Hickey    AJ,    
Clark AM. 2019. Exploiting machine learning for end-to-end drug discovery and 
development. Nature Materials. 18(5):435. [accessed 2019-07-18]. Available from: 
https://www.nature.com/articles/s41563-019-0338-z. 
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