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Abstract  355 

Background: Evidence for aspirin’s chemopreventative properties on colorectal cancer (CRC) is 356 

substantial, but its mechanism of action is not well-understood. We combined a proteomic approach 357 

with Mendelian randomization (MR) to identify possible new aspirin targets that decrease CRC risk.  358 

Methods: Human colorectal adenoma cells (RG/C2) were treated with aspirin (24 hours) and a stable 359 

isotope labelling with amino acids in cell culture (SILAC) based proteomics approach identified 360 

altered protein expression. Protein quantitative trait loci (pQTLs) from INTERVAL (N=3,301) and 361 

expression QTLs (eQTLs) from the eQTLGen Consortium (N=31,684) were used as genetic proxies for 362 

protein and mRNA expression levels. Two-sample MR of mRNA/protein expression on CRC risk was 363 

performed using eQTL/pQTL data combined with CRC genetic summary data from the Colon Cancer 364 

Family Registry (CCFR), Colorectal Transdisciplinary (CORECT), Genetics and Epidemiology of 365 

Colorectal Cancer (GECCO) consortia and UK Biobank (55,168 cases and 65,160 controls).  366 

Results: Altered expression was detected for 125/5886 proteins. Of these, aspirin decreased MCM6, 367 

RRM2 and ARFIP2 expression and MR analysis showed that a standard deviation increase in 368 

mRNA/protein expression was associated with increased CRC risk (OR:1.08, 95% CI:1.03-1.13, 369 

OR:3.33, 95% CI:2.46-4.50 and OR:1.15, 95% CI:1.02-1.29, respectively).  370 

Conclusion: MCM6 and RRM2 are involved in DNA repair whereby reduced expression may lead to 371 

increased DNA aberrations and ultimately cancer cell death, whereas ARFIP2 is involved in actin 372 

cytoskeletal regulation indicating a possible role in aspirin’s reduction of metastasis.   373 

Impact: Our approach has shown how laboratory experiments and population-based approaches can 374 

combine to identify aspirin-targeted proteins possibly affecting CRC risk.  375 

  376 
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Introduction 377 

Colorectal cancer (CRC) is the fourth most common cancer worldwide (1). Observational studies as 378 

well as randomized controlled trials (RCTs) using aspirin for the prevention of vascular events have 379 

shown that aspirin use is associated with a decrease in CRC incidence and mortality (2–5). This was 380 

primarily thought to be through the acetylation of the cyclooxygenase (COX) enzymes thereby 381 

inhibiting their action (6). These enzymes are involved in the COX/prostaglandin E2(PGE2) signalling 382 

pathway which is frequently upregulated in CRC, driving many of the hallmarks of cancer (7,8). 383 

Evidence for COX-independent mechanisms have also emerged, such as the prevention of NFκB 384 

activation, inhibition of the extracellular-signal-regulated kinase (ERK) signalling pathway, cell cycle 385 

progression inhibition and possible induction of autophagy (7,9). An aspirin derivative that does not 386 

inhibit COX reduced the mean number of aberrant crypt foci (an early lesion in colorectal 387 

carcinogenesis) in a mouse model of CRC more than aspirin itself (10). Furthermore, aspirin was able 388 

to inhibit proliferation and induce apoptosis in COX-2 negative colon cancer cell lines as well as 389 

reducing angiogenesis in 3D assays where COX-inhibitors showed no effect (11–13). Clinically, aspirin 390 

has been shown to reduce tumour recurrence in phosphatidylinositol-4,5-bisphosphate 3-kinase 391 

catalytic subunit alpha (PIK3CA) mutant cancer whereas rofecoxib (a COX-2 selective inhibitor) 392 

showed no effect (14) and has also been shown to improve survival in patients with human 393 

leukocyte antigen (HLA) class I antigen expression, regardless of COX-2 expression (15). There are 394 

now a significant number of studies that indicate the mechanism behind the action of aspirin on CRC 395 

risk is still not fully understood and that multiple mechanisms are involved (16). 396 

In conventional epidemiological studies it is often difficult to determine causality due to limitations 397 

of confounding and reverse causation. While RCTs can overcome these limitations, they are 398 

generally limited to assessing the causal role of health interventions or pharmaceutical agents on 399 

disease outcomes, rather than understanding biological mechanisms. Furthermore, in the context of 400 

cancer, RCTs for cancer primary prevention are not always feasible, as they require long-term follow-401 

up for the cancer to develop. Mendelian randomization (MR) is an epidemiological method which 402 
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applies a similar notion of randomization as in the RCT to evaluate causality. In MR, genetic variants 403 

(most commonly single nucleotide polymorphisms (SNPs)) are used to proxy an exposure of interest 404 

(17). As genetic variants are randomly assorted at conception, an individual’s genetic makeup is 405 

unlikely to be influenced by exposures later on in life, thus reducing the possibility of confounding 406 

and reverse causation (18). These SNPs instrumenting exposure instruments can then be used to test 407 

for association with an outcome of interest.  408 

More recently, the increase in genome-wide association studies for molecular traits has identified 409 

SNPs that are associated with protein and mRNA expression levels, thereby providing protein 410 

quantitative trait loci (pQTLs) and expression quantitative trait loci (eQTLs) (19,20), which may be 411 

used to investigate the causal mechanism of drug targets on disease risk (21).Such methods can 412 

complement laboratory experiments to better understand the mechanism of action of drugs on 413 

cancer growth and progression.   414 

Due to evidence showing that aspirin may prevent adenoma formation (22) and adenomas being the 415 

precursors of most colorectal cancers (23), we focused on a colorectal adenoma cell line (RG/C2) in 416 

this study and identified altered protein expression in relation to aspirin treatment. Findings were 417 

then taken forward into an MR analysis to investigate which proteins targeted by aspirin may be 418 

causally implicated in reducing risk of CRC incidence, thereby providing insight into alternative 419 

mechanisms/pathways for the action of aspirin. 420 

  421 
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Methods 422 

Cell culture experiments 423 

The S/RG/C2 (referred to as RG/C2 henceforth whereby the prefix “S” denotes that they are from a 424 

sporadic tumour) (RRID:CVCL_IQ11) colorectal adenoma cell line was derived in the Colorectal 425 

Tumour Biology group and is described in detail elsewhere (24). These cells express WT full length 426 

APC (25) as well as wild type KRAS and PIK3CA (26) but express mutant TP53 (25–27). RG/C2s were 427 

cultured in Dulbecco’s Modified Eagles Medium (DMEM) (Life Technologies, Paisley, UK) and 428 

supplemented with 20% foetal bovine serum (FBS) (Life Technologies, Paisley, UK), L-glutamine 429 

(2mM) (Life Technologies, Paisley, UK), penicillin (100 units/ml) (Life Technologies, Paisley, UK), 430 

streptomycin (100 ug/ml) (Life Technologies, Paisley, UK) and insulin (0.2 units/ml) (Sigma-Aldrich, 431 

Poole, UK). Cells were mycoplasma tested (Mycoalert Plus mycoplasma detection kit; Lonza Group, 432 

Basal, Switzerland) before generation of proteomic data and experiments were performed within 10 433 

passages. Aspirin (Sigma-Aldrich) was dissolved in fresh growth medium and diluted to form 434 

concentrations of 2mM and 4mM. Concentrations of aspirin between 0.1-2mM are known to be 435 

typical therapeutic ranges in vivo (13). Whilst the 2mM dose is similar to clinically relevant doses of 436 

aspirin, we also treated with 4mM to identify more consistent and apparent effects of the drug.  437 

Generation of proteomic data - SILAC approach 438 

A stable isotope labelling with amino acids in cell culture (SILAC) approach was carried out on RG/C2 439 

cells treated with 0mM, 2mM and 4mM aspirin for 24 hours. Control cells (0mM aspirin) were 440 

cultured with an L-arginine and L-lysine (light labelling), 2mM treated cells were cultured with 2H4-441 

lysine and 13C6-arginine (medium labelling) and 4mM treated cells were cultured with 15N2
13C6-lysine 442 

and 15N4
13C6-arginine (heavy labelling) (Cambridge Isotope Laboratory, Massachusetts, United 443 

States). These methods were based on the SILAC-based mass spectrometry approach by Trinkle-444 

Mulcahy et. al (2008) (28). 445 

Cells were cultured with aspirin and the isotopes for 24 hours before extracting protein lysates. This 446 

experiment was carried out in duplicate. Lysates from the three conditions were pooled in a 1:1:1 447 
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ratio, separated by SDS-PAGE and then subjected to in-gel tryptic digestion.  The resulting peptides 448 

were analysed by liquid chromatography mass spectrometry using an LTQ Orbitrap Velos mass 449 

spectrometer (Thermo Fisher Scientific, Waltham, Massachusetts, USA) and the mass spectral data 450 

analysed using Proteome Discoverer software v1.4 (Thermo). Details of SILAC labelling and 451 

proteomics have been previously published (29) and are mentioned in the Supplementary Methods. 452 

To determine proteins whose expression is altered due to aspirin treatment, we applied a threshold 453 

of a 1.4 fold change between 4mM/control and 2mM/control, as suggested previously (30). Results 454 

were also limited to a variability of <100% and a peptide count of at least 2.  455 

Statistical analyses 456 

Two-sample MR 457 

To assess the effect of protein/mRNA expression of aspirin targets on risk of CRC, we used a two-458 

sample MR approach. Firstly, SNPs were identified to instrument/proxy for protein/mRNA 459 

expression of the proteins shown to be altered in cell culture. SNP associations were then obtained 460 

for CRC risk before two-sample MR was carried out to identify how increases in protein/mRNA 461 

expression (pQTLs/eQTLs) (sample 1) affected risk of CRC (sample 2) using the statistical methods 462 

described below.   463 

Genetic predictors for protein and gene expression 464 

Protein quantitative trait loci (pQTLs) were obtained from the INTERVAL study (19). The original 465 

study is comprised of about 50,000 individuals within a randomised trial conducted to evaluate the 466 

effect of varying intervals between blood donations and how this affects outcomes such as quality of 467 

life (31). Relative protein measurements were taken using SOMAscan assays for 3,622 plasma 468 

proteins in a subset of 3,301 participants, randomly chosen. Genotyping and imputation (using a 469 

combined 1000 Genomes Phase 3-UK10K as the reference panel) of these individuals provided 470 

measures for 10,572,814 variants that passed quality control and were taken forward in a GWAS 471 

analysis to identify pQTLs for the measured proteins (details of quality control are mentioned 472 

elsewhere (19)). pQTLs identified were used to instrument/proxy a standard deviation (SD) change in 473 
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protein expression (19) .To adjust for multiple testing, a Bonferroni correction 474 

(0.05/10,572,814=4.72x10-9) was applied and pQTLs below this P-value threshold were used to proxy 475 

for protein expression in our analysis (32).   476 

In the absence of a relevant pQTL for the protein of interest, an equivalent mRNA expression GWAS 477 

was used instead. Expression quantitative trait loci (eQTLs) were extracted from the eQTLGEN 478 

consortium consisting of 31,684 individuals from 37 datasets, of which 26,886 samples were from 479 

whole blood and 4798 from peripheral blood mononuclear cells (PBMCs). Due to the differing 480 

methods for genotyping between the studies, variants for each transcript ranged between 2,337-481 

31,684 variants (20). For this reason, a Bonferroni correction threshold was adjusted depending on 482 

the number of variants measured for each transcript (0.05/number of variants) (32). eQTLs were 483 

standardized and meta-analysed through a Z-transformation, therefore eQTL effect sizes are 484 

reported as standard deviation (SD) changes (20). 485 

Although cis (within 1 Mb of the gene transcription start sit) associations are more likely to play a 486 

role in regulating gene/protein expression due to their close proximity to the gene start site and 487 

influencing binding affinity of regulatory proteins (33), we used both cis and trans QTLs in this 488 

analysis to instrument/proxy for expression. Once suitable pQTLs/eQTLs were identified, linkage 489 

disequilibiurm (LD) clumping at an R2 of 0.001 was carried out to remove SNPs that are inherited 490 

together and so that only the SNP most strongly associated with the mRNA/protein expression 491 

within a 10,000kb window was used. 492 

Genetic association for colorectal cancer 493 

Genetic association summary statistics for CRC, comprising 55,168 colorectal cancer cases and 494 

65,160 controls, were obtained from the Colon Cancer Family Registry (CCFR), Colorectal 495 

Transdisciplinary (CORECT) and Genetics and Epidemiology of Colorectal Cancer (GECCO) consortia 496 

and UK Biobank (34–36). Quality control procedures have been described elsewhere (34). Ethics 497 

were approved by respective institutional review boards. 498 
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Evaluating the association of mRNA/protein expression on colorectal cancer 499 

Analyses were carried out in R version 3.2.3 using the MR-Base TwoSampleMR R package 500 

(github.com/MRCIEU/TwoSampleMR) (37), which allows the formatting, harmonisation and analysis 501 

of summary statistics. The package reassigns alleles so that the effect allele has a positive association 502 

with the exposure and so represents an increase in protein/mRNA expression. In turn, allele 503 

harmonization ensures that the same allele (that predicts increased expression) is the effect allele in 504 

the outcome dataset as well. In the case of palindromic SNPs (represented by either A/T or G/C on 505 

both the forward and reverse alleles) these were also harmonized where possible based on allele 506 

frequencies. If allele frequencies for the effect allele and the other allele were similar, thus making 507 

harmonization difficult, these SNPs were dropped from the analysis (37).  508 

Separate MR analyses were carried for cis and trans pQTLs as well as cis and trans eQTLs. For 509 

proteins with just one pQTL or eQTL, Wald ratios (SNP-outcome estimate ÷ SNP-exposure estimate) 510 

were calculated to give a causal estimate for risk of CRC per SD increase in mRNA/protein 511 

expression. Where more than one QTL was available as an instrument/proxy for the exposure 512 

(mRNA/protein levels), a weighted mean of the ratio estimates weighted by the inverse variance of 513 

the ratio estimates (inverse-variance weighted (IVW) method) was used (38).  514 

When one genetic variant used to proxy for an exposure is invalid e.g. due to horizontal pleiotropy 515 

(where a genetic variant affects the outcome through an alternative exposure/pathway of interest) 516 

(17), then the estimator from the IVW method becomes biased (39). As a sensitivity analysis, 517 

alternative MR methods were used when more than 2 SNPs were available as instruments for 518 

mRNA/protein expression (MR Egger, simple mode, weighted mode, and weighted median) 519 

(37,40,41). Unlike the IVW method, the MR Egger method is not constrained to pass through an 520 

effect size of 0, thereby allowing the assessment of horizontal pleiotropy through the y intercept. 521 

(39,42). The weighted median approach is useful as it allows a consistent estimate even if 50% of the 522 

SNPs proxying protein/mRNA expression are invalid instruments (41) and the mode estimate also 523 

provides a consistent causal effect estimate even if the majority of the instruments are invalid, as 524 

the estimate depends on the largest number of similar instruments (40).  525 
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Results 526 

Mendelian randomization of gene/protein expression and risk of colorectal cancer identified 527 

in aspirin treated human adenoma cells 528 

In order to investigate the early changes that could reduce cancer risk, we investigated the 529 

proteome of aspirin treated adenoma derived cells to identify new targets of aspirin that may alter 530 

the risk of CRC by combining these proteomic results with an MR analysis. After applying a filtering 531 

threshold based on fold change and variability in expression, we identified 125 proteins whose 532 

expression appeared to be regulated by aspirin treatment (Figure 1) (S1 Table), although 5 were 533 

uncharacterised from mass spectrometry and therefore excluded from the analysis. 534 

 Of the 120 proteins, expression of 28 proteins was measured in the INTERVAL study, of which 12 535 

proteins had pQTLs that were below the Bonferroni significance threshold (0.05/10,572,814 = 4.73 536 

x10-9). From these 12 proteins, cis pQTLs were available for 3 proteins and trans pQTLs for 10 537 

proteins (S2 Table). In the absence of available pQTLs, eQTLs for the transcripts of the identified 538 

proteins were used instead. Of the 108 proteins with no pQTLs available, expression of 89 mRNAs 539 

were measured in the eQTLGen consortium, of which 77 proteins had eQTLs that were below the 540 

Bonferroni significance threshold. From these 77 proteins, cis eQTLs were available for 71 proteins 541 

and trans eQTLs were available for 37 proteins (S3 Table). In total, there were 318 unique SNPs 542 

proxying for protein and mRNA expression, of which outcome summary statistics were available for 543 

305 SNPs to test for association between 99 mRNA/proteins against risk of CRC.  544 

Using the datasets summarised in Table 1, two-sample MR analysis using the Wald ratio or IVW 545 

method was conducted to test the effect of increased mRNA/protein expression on the risk of CRC 546 

incidence using cis and trans pQTLs (S4 Table) as well as cis and trans eQTLs (S5 Table). In total, 99 547 

proteins were tested for association with CRC incidence. To correct for multiple testing, a Bonferroni 548 

adjusted threshold of significance was applied (0.05/99= 5.05x10-4) but we also considered 549 

associations of a nominal significance (P value<0.05) to identify possible pathways and mechanisms 550 

of aspirin’s action. Overall, 1 protein with cis eQTLs and 2 with trans eQTLs were associated with CRC 551 
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incidence at P< 5.05x10-4 and a further 3 proteins with cis eQTLs, 1 with a trans eQTL and 1 552 

instrumented by a trans pQTL were associated with CRC incidence at a P value < 0.05.  553 

Increased mRNA expression of Human Leukocyte Antigen A (HLA-A) and mini chromosome 554 

maintenance 6 (MCM6) instrumented by cis eQTLs were found to be associated with an increased 555 

risk of CRC incidence (OR 1.28, 95% CI:1.04-1.58, P value: 0.02 and OR 1.08, 95% CI: 1.03-1.13, P 556 

value: 9.23x10-4 per SD increase in mRNA expression, respectively). An SD increase in mRNA 557 

expression of fatty acid desaturase 2 (FADS2) and DNA polymerase delta subunit 2 (POLD2) 558 

instrumented by cis eQTLs was associated with a decrease in risk of CRC incidence (OR 0.94, 95% CI: 559 

0.90-0.97, P value: 2.50x10-4 and OR 0.84, 95% CI: 0.75-0.94, P value: 1.17x10-3, respectively) (Figure 560 

2, Table 2). For FADS2 and POLD2, results were consistent using other MR methods (weighted 561 

median, weighted mode and simple mode) and the MR Egger test shows no evidence of pleiotropy 562 

(S6 Table, Supplementary Figure 1). From the cis eQTL analysis, only results for FADS2 survived the 563 

Bonferroni significance threshold.  564 

Proteins instrumented by trans eQTLs include ribonucleoside-diphosphate reductase subunit M2 565 

(RRM2), stathmin-1 (STMN1) and lipin 1 (LPIN1). An increase in RRM2 was estimated to increase the 566 

risk of cancer incidence (OR 3.33, 95% CI: 2.46-4.50, P value: 6.25x10-15 per SD increase in mRNA 567 

expression) whereas an increase in STMN1 and LPIN1 was associated with decreases in the risk of 568 

CRC incidence (OR 0.72, 95% CI: 0.54-0.97, P value: 0.03 and OR 0.40, 95% CI: 0.32-0.50, P value: 569 

5.50x10-16 per SD increase in mRNA expression, respectively). From the trans eQTL analysis, results 570 

for RRM2 and LPIN1 both survived the Bonferroni significance threshold.  571 

For proteins instrumented by pQTLs, ADP ribosylation factor interacting protein 2 (ARFIP2) proxied 572 

using a trans pQTL conferred an increased risk of CRC incidence (OR 1.15, 95% CI: 1.01-1.29, P value: 573 

0.03 per SD increase in protein expression).  574 

Overall, the directions of effects between HLA-A, MCM6, RRM2 and ARFIP2 and CRC risk obtained 575 

from our MR analysis concur with those anticipated given the protective role of aspirin on CRC and 576 

the effect of aspirin treatment on expression of these proteins. Aspirin reduces the protein 577 
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expression of HLA-A, MCM6, RRM2 and ARFIP2 (fold change in protein expression with 4mM aspirin 578 

treatment compared to control: 0.55, 0.65, 0.36 and 0.69, respectively, Table 2) and aspirin intake is 579 

associated with a decreased risk of CRC (2–4). Our MR analysis shows that increased expression of 580 

these proteins is associated with an increased risk of CRC incidence. Taken together, our results 581 

indicate that a possible mechanism through which aspirin decreases the risk of CRC incidence is 582 

through the downregulation of HLA-A, MCM6, RRM2 and ARFIP2. The direction of effect was less 583 

consistent for the other 4 proteins (FADS2, POLD2, STMN1 and LPIN1) showing opposite results to 584 

what we would expect based on the proteomic results (Table 2).  585 

Discussion 586 

Evidence for the use of aspirin in the prevention of CRC is increasing (2–5). However, the mechanism 587 

through which it functions is still not fully understood. By combining both a proteomic-based 588 

approach as well as an MR analysis, our results provide mechanistic insights into how aspirin could 589 

decrease the risk of CRC.  590 

Using a SILAC-based proteomics approach, 120 proteins appear to be regulated at 24 hours by 4mM 591 

and 2mM aspirin treatment. Genetic variants (pQTLs and eQTLs) were identified and used to proxy 592 

for protein and mRNA expression levels of the identified proteins to test for evidence of a causal 593 

effect on CRC incidence. When no pQTL was available for a protein, eQTLs were used instead.  594 

Overall, 4 cis eQTLs, 3 trans eQTLs and 1 trans pQTL were associated with cancer incidence at a P 595 

value < 0.05. Increased expression of HLA-A and MCM6 proxied by cis eQTLs were associated with an 596 

increase in the risk of CRC incidence and an increase in RRM2 and ARFIP2 (proxied by a trans eQTL 597 

and trans pQTL, respectively) also conferred an increased risk. Therefore, suppressing the expression 598 

of these four proteins could decrease the risk of CRC. As the proteomic results showed that aspirin 599 

treatment decreases the expression of these proteins, this could be a potential mechanism by which 600 

aspirin reduces the risk of CRC. However, only results for RRM2 survive the Bonferroni significance 601 

threshold, indicating that further studies are required to verify these results.   602 
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The proteins MCM6 and RRM2 are both involved in repair of DNA damage. MCM6 is part of a 603 

helicase complex involved in unwinding DNA and is involved in repair of double stranded breaks 604 

(DSBs) in homologous recombination through interaction with RAD51. This interaction is required for 605 

chromatin localisation and formation of foci for DNA damage recovery (43). Likewise, RRM2 is part 606 

of a protein complex called ribonucleotide reductase which catalyses the biosynthesis of dNTPs and 607 

is therefore required for DNA replication and damage repair (44).  608 

Cancer cells commonly lose the DNA damage response, which results in the accumulation of 609 

mutations that may be oncogenic (45). Because of this, tumour cells end up relying on a reduced 610 

number of repair pathways and are therefore more sensitive to inhibition of DNA damage repair 611 

pathways when compared to normal cells which have full capability of DNA repair (46). Drugs that 612 

target these other pathways have been shown to selectively kill the cancer cells which is known as 613 

synthetic lethality (47,48). It may be that by reducing the expression of DNA repair proteins, which 614 

combined with DNA damage response proteins that are already mutated during tumour progression, 615 

aspirin can induce cell death in the developing tumour cells reducing the risk of developing cancer.  616 

The MR results for the proteins ARFIP2 and HLA-A also concur with our SILAC proteomic results. 617 

ARFIP2 is a protein previously shown to play a role in membrane ruffling and actin polymerization, 618 

therefore regulating the actin cytoskeleton (49). The remodelling of the actin cytoskeleton is known 619 

to be involved in cancer metastasis (50). This is of particular interest as aspirin reduces the odds of 620 

colorectal adenocarcinoma metastasis by 64% (OR:0.36 (95% CI: 0.18-0.74)) (51) and this may be 621 

through the reduction in ARFIP2 expression. With regards to HLA-A expression and cancer risk, 622 

results from a cohort study showed that aspirin was more chemopreventative in tumours that 623 

expressed HLA  class I antigen (which includes HLA-A, HLA-B and HLA-C) (rate ratio (RR) 0.53, 95% CI: 624 

0.38-0.74) and this association was no longer apparent in tumours that lacked expression of this 625 

protein (15). Our MR analysis showed that an increase in HLA-A was associated with increased CRC 626 

risk, and that aspirin may reduce this risk through a reduction in HLA-A expression, however further 627 

investigation is required before any conclusions can be drawn.  628 
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Our MR analysis results also showed that increased mRNA expression of FADS2, POLD2, LPIN1 and 629 

STMN1 all decreased the risk of CRC, indicating that decreased expression increases the risk of 630 

cancer. Our proteomic results showed that aspirin decreases the expression of these proteins and 631 

aspirin is known to decrease cancer risk. The exact meaning behind the inconsistencies in direction 632 

of effect is unclear but may be related to the dosage used in this study. A randomized trial of aspirin 633 

to prevent adenomas showed that lower doses reduced adenoma risk more than higher doses, 634 

suggesting that lower doses of aspirin may affect mRNA/protein expression differently than higher 635 

doses (52,53). Furthermore, the genetic instruments used to proxy for 1SD in POLD2, LPIN1 and 636 

STMN1 expression explain little of the variance in mRNA expression (0.05, 0.08 and 0.04%, 637 

respectively) indicating that SNPS that explain more of the variance are required before any 638 

conclusions can be made.  639 

Further limitations also exist in our analysis. Firstly, the exact correlation between eQTLs and pQTLs 640 

has not been fully determined. Secondly, it is difficult to interpret results using trans eQTLs and 641 

pQTLs without clear confirmation that these SNPs directly influence the gene/protein expression. It 642 

may be that they indirectly influence expression, for example, trans eQTLs may regulate gene 643 

expression by affecting expression of a nearby cis gene which is in fact a transcription factor that is 644 

regulating the expression of the trans gene (54). Thirdly, both the pQTL and eQTL associations were 645 

carried out using blood plasma, whole blood samples or PBMCs (19,20), therefore these SNPs 646 

estimate changes in gene and protein expression in circulating immune cells or plasma proteins, 647 

respectively .Our SILAC approach identified cellular proteins affected by aspirin treatment, however 648 

the pQTLs used in this analysis proxied levels of plasma proteins. We believe that if the expression of 649 

cellular proteins is affected by aspirin, then this in turn will affect the amount of protein secreted 650 

into the plasma. We acknowledge that pQTLs for cellular proteins in colorectal tissue would be more 651 

appropriate for this analysis, however, studies that have measured cellular pQTLs are small and 652 

involve lymphoblastoid cell lines, rather than primary tissues of interest (55,56). Also, the specificity 653 

of eQTLs/pQTLs for specific tissues is unclear. As found by the Genotype-Tissue Expression (GTEx) 654 

study, cis eQTLs are either shared across tissues or are specific to a small number of tissues (57). 655 
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Therefore, the use of these eQTLs and pQTLs  measured in the blood may not be fully suitable as 656 

proxies for mRNA and protein expression in the epithelium of the colon and rectum.  657 

Furthermore, the units for the eQTLs and pQTLs represent SD changes in expression, making 658 

interpretation of the results difficult. However, we can interpret the direction of effect as well as the 659 

statistical significance of the association (P values) for these analyses. Moreover, pQTLs and eQTLs 660 

could not be identified for 20 of the proteins found to be regulated by aspirin in our proteomic 661 

approach, therefore we could not test the association of their expression with CRC risk. Finally, apart 662 

from the association of FADS2 with CRC incidence, the other associations proxied by cis eQTLs found 663 

by our study are not below the Bonferroni threshold of significance (P value ≤ 4.63x10-4).  664 

MR is commonly used to proxy for a drug’s effect on risk of various outcomes after identification of 665 

its target. Genetic variants that predict lower function of 3-hydroxy-3-methylglutaryl coenzyme A 666 

(HMG-CoA) reductase are commonly used to investigate the effect of lowering LDL cholesterol via 667 

the use of statins on outcomes such as ovarian cancer, Alzheimer’s disease or coronary heart disease 668 

(58–60). These studies involve investigation of a drug’s effect via a known target on an outcome. 669 

However, this approach would be difficult to apply in the case of drugs with pleiotropic targets such 670 

as aspirin. Therefore, in order to identify all possible targets of aspirin, a proteomic approach was 671 

firstly applied and targets that may affect risk of cancer were identified through using MR. To our 672 

knowledge, this is the first study that combines basic science and MR to generate hypotheses of a 673 

drug’s mechanism of action in cancer. 674 

Further experiments need to be conducted to confirm the effect of aspirin on gene and protein 675 

expression and the consequent effect this may have on hypothesised pathways such as DNA repair 676 

before definitive conclusions can be made. However, the potential of this unbiased approach to gain 677 

mechanistic insight is clear, allowing hypothesis driven research will better inform the clinical use of 678 

aspirin for the prevention of CRC. 679 
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Tables  911 

Table 1 – Datasets used in the Mendelian randomization analysis 912 

Exposure/Outcome Trait Consortia N Source Ref 

Exposure  Protein 
levels 

INTERVAL 3,301 Plasma (19) 

Exposure mRNA 
levels 

eQTLGEN 31,684 Whole blood 
(N=28,886) 
and PBMCs 
(N=4,798) 

(20) 

Outcome CRC 
incidence 

GECCO* 55,168 
cases and 
65,160 
controls 

Whole blood (34–36) 

The table shows the exposure and outcome datasets used in the two-sample MR analysis. *GECCO summary data consists 913 
of the Colon Cancer Family Registry (CCFR), Colorectal Transdisciplinary (CORECT) and Genetics and Epidemiology of 914 
Colorectal Cancer (GECCO) consortia and UK Biobank. Abbreviations: CRC, colorectal cancer; PBMC, peripheral blood 915 
mononuclear cell.  916 

 917 
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Table 2- MR results of the 8 proteins associated with CRC incidence 918 

   

 

 
Association of predicted expression with CRC risk 

Fold change of protein expression in 

response to aspirin 

Gene Instrument N SNP 

Variance 

explained R2 

(%) 

Method OR LCI UCI P value 
Effect on 

CRC risk 

2mM vs 

Control 

4mM vs 

Control 

Effect on 

protein 

expression 

FADS2 cis eQTL 6 2.29 IVW 0.94 0.90 0.97 2.5x10-4 ↓ 0.61 0.26 ↓ 

MCM6 
cis eQTL 2 3.85 IVW 1.08 1.03 1.13 9.23x10-4 ↑ 

 

0.59 0.65 ↓ 

POLD2 cis eQTL 3 0.05 IVW 0.84 0.75 0.94 1.73x10-3 ↓ 0.54 0.35 ↓ 

HLA-A cis eQTL 1 5.95 WR 1.28 1.04 1.58 0.02 ↑ 0.55 0.64 ↓ 

LPIN1 trans eQTL 1 0.08 WR 0.40 0.32 0.50 5.50x10-16 ↓ 0.65 0.64 ↓ 

RRM2 trans eQTL 1 0.19 WR 3.33 2.46 4.50 6.52x10-15 ↑ 0.33 0.36 ↓ 

STMN1 trans eQTL 1 0.04 WR 0.72 0.54 0.97 0.03 ↓ 0.47 0.61 ↓ 

ARFIP2 trans pQTL 1 0.09 WR 1.15 1.01 1.29 0.03 ↑ 0.67 0.69 ↓ 

The table shows the inverse-variance weighted (IVW) or Wald ratio (WR) results for the 7 proteins associated with CRC incidence. The results indicate the change in OR of CRC incidence per 919 
unit increase in mRNA or protein expression (z-score or standard deviation, respectively). Results that are consistent with aspirins’ effect on protein expression (i.e. aspirin decreases protein 920 
expression and increasing levels of protein are associated with increased risk of CRC) are in bold font. Abbreviations: N SNP, number of SNPs; OR, odds ratio; LCI, lower confidence interval; 921 
UCI, upper confidence interval; SE, standard error; IVW, inverse-variance weighted; WR, Wald ratio. 922 
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Figure Legends 923 

Figure 1- Flow diagram of SNP selection. 5886 proteins were identified using the SILAC proteomic approach. After applying 924 
a threshold, 125 proteins appear to be regulated by aspirin treatment, of which 5 were uncharacterised proteins and were 925 
therefore excluded from the analysis. In total, 12 proteins and 77 mRNAs had been quantified and had pQTLs/eQTLs below 926 
the Bonferroni significance threshold. Overall, summary statistics for 353 pQTLs and eQTLs were available, of which 927 
summary statistics for 305 of the SNPs was also present in the CCFR, CORECT and GECCO consortia.  928 

Figure 2- Forest plot of mRNA/protein associations with CRC incidence at a P value of <0.05. The upper box presents results 929 
using cis eQTLs, followed by trans eQTLs and finally trans pQTLs. Each dot on the plot represents the change in OR of CRC 930 
incidence per SD increase in mRNA/protein expression and the horizontal lines either side of the dot represent the 95% 931 
confidence intervals. The dotted line represents a null association between expression and cancer incidence. The number 932 
of SNPs used as instruments as well as the OR, the method and P value of association are also reported. Abbreviations: N 933 
SNP, number of SNPs; OR, odds ratio; CI, confidence intervals; IVW, inverse-variance weighted; WR, Wald ratio. 934 
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