
Adaptive Binary Artificial Bee Colony Algorithm

Rafet Durguta, Mehmet Emin Aydinb

aKarabuk University, Dept. of Computer Engineering, Karabuk, Turkey
rafetdurgut@karabuk.edu.tr

bUWE Bristol, Dept. of Computer Science and Creative Technologies, Bristol, UK
mehmet.aydin@uwe.ac.uk

Abstract

Metaheuristics and swarm intelligence algorithms are bio-inspired algorithms, which have long

standing track record of success in problem solving. Due to the nature and the complexity of

the problems, problem solving approaches may not achieve the same success level in every type

of problems. Artificial bee colony (ABC) algorithm is a swarm intelligence algorithm and has

originally been developed to solve numerical optimisation problems. It has a sound track record in

numerical problems, but has not yet been tested sufficiently for combinatorial and binary problems.

This paper proposes an adaptive hybrid approach to devise ABC algorithms with multiple and

complementary binary operators for higher efficiency in solving binary problems. Three prominent

operator selection schemes have been comparatively investigated for the best configuration in this

regard. The proposed approach has been applied to uncapacitated facility location problems, a

renown NP-Hard combinatorial problem type modelled with 0-1 programming, and successfully

solved the well-known benchmarks outperforming state-of-art algorithms.

Keywords: Artificial Bee Colony, 0-1 Programming, Adaptive Operator Selection, Uncapacitated

facility location problems

1. Introduction

Optimisation remains one of the prominent engineering problems, which influences many other

fields in engineering research including real-world problem solving. It is well known that optimisa-

tion requires never-ending attention from researchers due to its crucial role in handling many other

∗Corresponding author
Email address: rafetdurgut@karabuk.edu.tr (Rafet Durgut)

Preprint submitted to Applied Soft Computing January 15, 2021

engineering problems. This includes efforts for both functional and combinatorial optimisation. A

large literature on engineering optimisation is produced on research results, which drives attentions5

on a trade-off between computational complexity and the quality of solutions that put decision-

makers in a dilemma in this regard. ”Metaheuristics” is known as a mature sub-field of research

in optimisation, which offers a number of search and problem solving frameworks to implement

for each problem type. The literature is full of many successful metaheuristic implementations [1]

across the whole horizon of problem solving field including transport [2], finance and economy [3],10

health-care systems [4], and many engineering problems [5].

Metaheuristic approaches, which are developed inspiring of natural processes and intelligence,

can be viewed in two categories with respect to the number of solutions considered while operating;

(i) population-based, e.g. evolutionary computation and swarm intelligence, and (ii) individual-

based approaches, e.g. simulated annealing, tabu search etc. Particularly, swarm intelligence15

algorithms recently become very popular due to their flexibility in implementation and ability to

model collective intelligence and behaviours, which can become very efficient in search and problem

solving. The most renown swarm intelligence algorithms are ant colony optimisation [6], particle

swarm optimisation [7], and artificial bee colony (ABC) [8] algorithms. Metaheuristics and swarm

intelligence approaches are very adaptive in implementation for various discrete and combinatorial20

problems with minor revisions across domains minimising the reality of no-free lunch theorem [9].

More useful details can be captured from these articles; [10, 11, 12].

ABC algorithms are relatively recently developed swarm intelligence algorithms inspired by nat-

ural collective behaviours of bee colonies in searching for food sources. They have been implemented

for solving a number of real-world problems alongside theoretical performance benchmarking prob-25

lems. Success has been proven for a number of functional optimisation in continuous space by

various works [8]. Due to performance and efficiency issues, hybrid approaches have also been

studied for combinatorial and functional domains [13]. A number of studies attempted for solving

combinatorial optimisation problems across manufacturing to economy and finance with ABC vari-

ants [14] [15] [16]. It is well-known that many combinatorial problems have been mathematically30

modelled in binary form for higher efficiency purposes. Binary approach, a.k.a. 0-1 programming

in operations research, has been used for solving a number of combinatorial optimisation problems

such as quadratic assignment [14], knapsack [17] and set-covering [18] problems.

Similar to other metaheuristic and swarm intelligence approaches, ABC algorithms use neigh-

2

bourhood functions, which are also called operators, to move from one state of the problem to35

another, e.g. the next state. However, the performance of the ABC variant remains very much de-

pendent on the boundaries and limitations of neighbourhood functions. Hybridisation has mainly

been introduced to avoid the negative impacts of these boundaries (limitations). A typical hy-

bridisation is to use multiple neighbourhood functions, algorithms[19, 20], or operators subject to

an interchanging scheme to minimise the impact of the such limitations, which impose a selection40

rule to opt one operator from the set of existing ones. A random selection scheme is introduced

by [13] and [21] for these purposes. Few operator selection schemes based on multi-armed bandit

approaches have been studied for the purpose of opting genetic operators in genetic programming

domain [22]. These prioritisation schemes can be named as probability matching (PM), adaptive

pursuit (AP) or upper confidence bound (UCB) methods [23]. These schemes work based on credit45

assignment procedures, which are awarding processes for successful operators to make them more

prominent/preferable over the alternatives in the prospective cases. The success of an operator can

be identified with either improvement in the fitness values or a binary process represents the state

of success; success/fail (1/0) [24]. To the best of the authors’ knowledge, there is not any study

attempted a hybrid ABC algorithm to solve binary problems use adaptive approaches.50

The main idea of this paper is to create an adaptive scheme for organising multiple neighbour-

hood functions to work adaptively within the framework of ABC algorithm. This scheme aims to

help create an adaptive and hybrid ABC algorithm to solve binary problems. It is important to

note that the keyword of ”neighbourhood function” is used interchangeable with ”operator” in the

rest of this paper. The adaptive scheme, called adaptive operator selection, devises an approach to55

arrange when and how each alternative operator is to take up the role of producing new solution

within the stages/phases of ABC algorithm [25]. Interchangeably use of different operators is ex-

pected to fertilise the search process as each operator uses different breeding rule, which can rescue

search from local optima whenever it sticks in. It is not trivial to arrange rescue operators to offer

a way out of local optima driven by other operators, where there should be a measure based on60

capabilities for each operator to indicate if it offers better action for given search circumstances.

The measure for capabilities can be designed based on success and failure history of each operator.

This requires studying credit assignment and update process using the success and failure data

[26, 27] in order to make operator selection process smart and the main algorithm efficient.

In this paper, an adaptive operator selection procedure is investigated, and finally suggested, to65

3

ensemble in ABC algorithm for solving one of combinatorial optimisation problems, uncapacitated

facility location problem, which is modelled with binary programming. The performance is studied

with well-known benchmark problems from OR Library [28].

2. Related Works

Binary ABC has been implemented for solving binary, 0-1 programming, problems. The studies70

carried out for solving binary problems with ABC variants propose use of different schemes to

improve the performance and efficiency on various levels. The success of all variants of ABC is

bounded with the limitations of ensembled neighbourhood structures and operators similar to all

other metaheuristics. One way to break through the corresponding limitations to enhance the

performance further is either to design new and more capable functions, which will also impose its75

own limitations, or to exploit multiple neighbourhood functions to work in a bespoke order [29],

which is aimed in this study. This may also be called as a hybrid adaptive approach since it brings

different distinctive procedures together to work in collaboration.

There are not many studies have been undertaken to solve binary problems using ABC. Table

1 tabulates the most relevant ABC studies for solving binary problems indicating strength and80

weaknesses. Few approaches such as [30], [31] and [15] are developed to adapt original ABC, which

works in continuous domain, for solving binary problems using converter functions, while more works

propose binary versions of ABC for solving binary problems more efficiently [32] [33] [34] [35]. The

majority of the studies included in Table 1 use either single binary operators or original ABC scheme

with a converting functions. Few of them such as [36], [37] and [38] exploit multiple operators with85

either non-adaptive selection schemes or sole adaptive schemes. These leaves a substantial deficit in

research that more adaptive approaches are to be thoroughly investigated with respect to efficiency

in prioritisation and credit assignment to contributing operators in prioritisation process.

It can clearly be observed from the right-most column of Table 1, titled ”Area to improve”,

that binary ABC algorithms have not been comprehensively studied to reveal if adaptive selection90

schemes would help improve efficiency and performance of binary ABC algorithms in problem

solving adaptively selecting operators from the set of existing alternative operators. In this paper,

a comprehensive study has been conducted to clarify if the adaptive selection schemes would help

improve the algorithmic performance and which of the schemes would assist to perform better. The

winning scheme has been identified via an extensive experimentation and suggested ultimately.95

4

Table 1: Summary of related works
Article Year Domain Contribution Area to improve

[30] 2005 Continues
The first ABC algorithm; works in
continues domain only.

Requires additional operations for
binary or discrete domains

[32] 2012 Binary
Uses another optimisation model to
convert the problem to binary space;
works for rather smaller size problems.

slower approximation for larger
problems, may stuck in local
minima.

[33] 2013 Binary
Uses logic gates to convert the problem
to binary space.

Does not use neighbourhood
information and approximates
slowly

[36] 2014 Continuous

Uses multi-operator ABC using 3
different operators selecting operators
either randomly or based on success
count.

Credit assignment process has not
been considered.

[39] 2015 Binary
Uses additional operations to convert
continues problem to binary space

the performance in continues
domain and the characteristics of
conversion operators bind its success
in binary space. approximation is
slower.

[31] 2015 Continuous

An adaptive approach is proposed,
based on success counter and roulette
wheel processes, to work with 5
operators in the continuous domain.

Alternative selection operators and
credit assignment procedures are
not considered.

[15, 40] 2015 Binary
Genetic operators are used to covert to
binary space

Local minima is very likely

[37] 2015 Continuous
Uses 3 operators to generate 3
alternative solutions per update cycle.

Credit assignment or success-based
approach is not considered.
Approximates slowly

[41] 2018 Binary
Uses comparative approaches in
conversion to binary space.

Performance is bound by it success
in continuous domain.
Approximates slowly.

[38] 2019 Continues

Uses Probability Matching to select
operators adaptively among 5 operators
used with ABC and developed to solve
continuous problems

Neither alternative detailed analysis
nor other adaptive mechanisms
considered.

[35] 2020 Binary
Extends the idea suggested in [33] with
considering multiple revisions in the
solutions

Single operator is used. The
performance is bound by the
characteristics of the operator

3. Artificial Bee Colony

The artificial bee colony (ABC) algorithm is one of recently developed swarm intelligence ap-

proaches inspired by food search behaviors of the honey bee swarms. The original algorithm has

been developed by Karaboğa [30], which imitates the collective behaviour of honey bees within

their hives. The algorithm implies use of two types of bees within the hive; employed and onlooker100

bees. These social insects fulfil collective behaviour in three different phases as modeled into this

approach, where first phase imposes each employed bee to improve its own food source, while the

second phase involves each onlooker bee to look for improving the quality of its own food source.

In the final phase, an exploration is initiated for new food sources by onlooker bees, subsequently

transformed into scout bees, if non-adequate improvement is achieved. Further investigations and105

enhancements for functional optimisation problems are reported in [13].

The conceptualisation of the ABC algorithm translates the natural processes and activities

5

into algorithmic components and functionalities, where ”food source” is translated into a ”feasible

solution” denoted with xi, while ”nectar amount” is recognised as the fitness of a solution denoted

by F (xi) as given in Eq. 1.110

F (xi) =


1

1+f(xi)
f(xi) ≥ 0

1 + |f(xi)| otherwise

(1)

The probability of a particular food source to be selected through the process of ABC algorithm

is calculated with Eq. 2, while a neighbouring solution such as xn = xi + vi generated using Eq. 3

p(xi) =
F (xi)∑N
j=1 F (xj)

(2)

vi = xi + φi(xi − xn) (3)

where xi,xn,vi in the equations refer to the current solution, neighbor solution and candidate

solution, respectively. φi is a randomly generated number in the scale of [−1, 1]. i = 1, 2. . . , N

indicates the index of the food source, where N indicates the number of food sources. On the other115

hand, the scout bees can be generated using Eq. 4 when no improvement is realised by onlooker

bees.

xi,j = LBj + rand(0, 1)× (UBj − LBj) (4)

where, xi,j is the jth decision variable as the member of xi solution vector; j = 1, 2, .., D is the

index, D is the total number of decision variables, LB and UB are the upper and lower boundary

values defined for the decision variable.120

3.1. Binary Artificial Bee Colony

Swarm intelligence algorithms have been originally developed for either discrete or continuous

problems, and then implemented for the problems from other type; ant colony optimisation (ACO)

was originally developed for combinatorial problems, e.g. traveller salesman problem, while particle

swarm optimisation (PSO) and artificial bee colony (ABC) algorithms were developed for continuous125

problems. In order to implement a search algorithm for a problem type that was not originally

6

developed for, additional conversion procedures are embedded into the algorithms, which applies

to ABC, too. Two approaches are mainly devised for implementing ABC to solve combinatorial

problems. The commonly used approach is to keep the continuous variables in use with an operation

to map the variable in use to a binary vector and vice versa. Here, ψ : [−a, a]D → [0, 1]D is employed130

for mapping [41], where ψ, a and D are the mapping function, the boundary of the range of the

variable, and the dimension of the the variable vector, respectively. This conversion strategy looks

very inline with the idea of phenotype-genotype concepts in evolutionary computation. The other

approach imposes use of binarification functions such as zi = round(|yi (mod 2)|) mod 2, where zi

and yi are the ith element of binary vector and real vector, respectively [31].135

Eq. 5 is commonly used to initialise the population of solutions by many binary problem solving

algorithms.

xi,d =

0, if rand < 0.5

1, otherwise

(5)

Ozturk et al. [40] use genetic operators including crossover and swap operators as neighbourhood

functions. Santana et al. [34] proposes cloning n ≥ 1 dimensions from the selected solution, xi,j ,

and its neighbour solution, xk,j , and applying other well-engineered operations to compose a new

solution while Kashan et al. [32] suggests use of dissimilarity index in between a neighbour solution

and the selected solution as a measure to produce a new solution. On the other hand, logical140

operators have been used in generating new binary vectors to be new solution by the authors of [42]

and [33]. The former work suggests use of vi,j = xi,j⊗ (φi,j� (xi,j⊕xk,j)) and the latter study uses

vi,j = xi,j ⊗ (ϕi,j(xi,j ⊗ xk,j)) to update each dimension of the new solution, vi,j , where ⊗, � and

⊕ respectively represent XOR, AND and OR logical operators, φi,j ∈ [0, 1] valued randomly, ϕi.j

is logical NOT operator that inverts the bit values with 50% probability. Durgut [35] proposes an145

iterative procedure to run the rule proposed by [33] dynamically for more dimensions than a single

one. The estimation of ϕi,j is pragmatically conducted considering the neighbouring solution.

As explained above, ABC has been proposed for continuous problems, hence, modifications are

required to implement it for binary optimisation problems. More details for the following three

methods presented so as to use them later.150

7

3.1.1. binABC Algorithm

binABC algorithm has been proposed by Kiran et al. [33] using binABC operator with which

the new solutions can be generated with Eq. 6 that replaces Eq. 3 in original ABC. binABC imposes

use of XOR logical operator to generate new binary solutions from a selected solution, xi,j , and one

of its neighbours, xk,j . It is important to note that the variables provided in Eq. 3 are in vector

form while are in scalar form in Eq. 6. The parameter of ϕ is used as logical NOT operator with

which the output of the parenthesis is inverted with 50% probability.

vi,j = xi,j ⊗ ϕ(xi,j ⊗ xk,j) (6)

XOR operator is applied to current,xi,j , and neighbor, xk,j , solutions, then the output value is

negated if ϕi,j < 0.5, kept as is, otherwise. Afterwards, XOR is re-applied to the current solution,

xi,j and the output value filtered out with ϕi,j for the final output value, vi,j .

3.1.2. disABC Algorithm155

disABC is proposed by Kashan et al. [32] which calculates a similarity measure by Eq. 7

in which the similarity of the bits in two compared solutions plays the key role. A dissimilarity

measure, which names the algorithm, is subsequently determined for the operator to generate the

new solution with for neighbour solution generation. The approach imposes use of Eq. 5 to initialise

the solutions replacing Eq. 4 as used in original ABC, then to calculate Jaccard’s similarity constant160

with Eq. 8 between a chosen solution and one of its neighbour solutions for evolutionary iterations.

sim(xi,xk) =
M11

M01 +M10 +M11
(7)

dissim(xi,xk) = 1− sim(xi,xk) (8)

where M11 is the number of 1 bits in both xi and xk at the same positions, while M01 and M10 are

determined, accordingly. Eq. 9 declares the dissimilarity of the selected solution with the solution

to be generated, vi is an approximate dissimilarity between the selected solution, xi and one of its

neighbour solutions, xk, normalised with φ, which is optimally calculated using the minimisation165

model presented in Eq. 10. Once the model solved to optimum the new solution to-be, vi, is

8

generated with a new update equation, vi = xi + φ× dissim(xi,xk) , replacing Eq. 3.

dissim(vi,xi) ≈ φ× dissim(xi,xk) (9)

min |dissim(vi,xi) − φ× dissim(xi,xk)| (10)

Subject to:

M11 +M01 = n1

M10 ≤ n0

{M10,M11,M01} ≥ 0 and ∈ Z

where φ is a random positive value, n1 and n0 represent the number of bits with a value of 1 and

0 in the current solution, xi. The aim in here is to solve the model to identify the best φ value to

normalise dissim(xi,xk) measure. Detailed information and examples can be found in [32].170

3.1.3. Improved binABC (ibinABC)

This algorithm is an improved version of binABC, which originally updates a single dimension,

one among D, of decision variable per operation, while various other swarm intelligence algorithms

propose updating multiple variables within the complete vector of decision variables. Obviously,

there is a trade-off between exploration and exploitation balance to handle while attempting the175

updates.

ibinABC attempts to balance exploration and exploitation with an exponentially calculated

rate, dt as in Eq.11 inspired by the idea of updating multiple dimensions per operation in [34]. dt

number of dimensions will be updated at iteration t.

dt = rand(0, α) + e−(t
tmax

)×0.1×D + 1 (11)

where, the α is randomly determined perturbation number, D is the problem dimension, number180

of decision variables, and t and tmax indicate the current and maximum number of iterations,

respectively. We note that change in multiple dimensions increases the exploration but reduces

exploitation. In order to balance that dt is set to decrease with growing t so that the exploration

becomes higher in earlier iterations while exploitation gets stronger in later iterations.

9

On the other hand, ibinABC imposes a dynamic normalisation factor, ϕ, in contrary to the

one proposed by Kiran et al. [33] as in Eq.6. The operator in Eq.6 is revised in the way that

ϕ dynamically takes values for each iteration instead of the original setup, ϕ = 0.5. In fact, this

pre-fixed threshold potentially weakens the exploitation, especially in later stages, as it involves

more random process. Eq.12 proposes a new way to determine ϕ. This rule allocates 0 to ϕ if the

new solution is worse, a calculated value in the range of [0,1] otherwise, as updated depending on

the iteration, t.

ϕ =

ϕmax − (ϕmax−ϕmin

tmax
)× t F (xk) < F (xi)

0 otherwise

(12)

where ϕmax and ϕmin represent the upper and lower limits of the defined range, respectively [35].185

3.2. Adaptive Operator Selection

ABC algorithm has been implemented in various variants for wide rage of applications. The

majority of the implementations have been developed with either single neighbourhood function or

hybrid with some kind of local search. Dugenci and Aydin [21, 13] have introduced a hybrid form

to randomly select operators among alternatives. However, it does not offer an adaptive and merit-190

based scheme. Adaptive operator selection is a merit-based scheme that imposes to exploit different

operators interchangeably whenever applies whilst the search ongoing. This has been successfully

applied to individual-based search approaches, particularly systematically implemented in variable

neighbourhood search algorithms [43]. This has recently been implemented for population-based

metaheuristics, too [44]. Wu et al. [29] overview the up-to-date literature for population based195

metaheuristics and ensemble algorithms with this respect. Fialho et al. [45, 46, 27] have exper-

imentally studied the impact of average, extreme and immediate/instant credit/awards upon the

performance of genetic algorithms, while Chent et al. [38] have implemented an approach used with

ABC for solving continuous problems combining three search strategies borrowed from differential

evaluation (DE) studies using probability matching (PM) method.200

Wang et al. [36] proposed a framework to orchestrate three ABC variants in which a selected

rule is kept re-used as long as it produces success, another rule is randomly pulled up from the preset

rule base. Gao et al.[37] have implemented an ABC for continuous problems using three search

strategies in which the operators are selected with roulette-wheel that determines the probabilities

based on success rates, while Kıran et al. [39] have increased the number of strategies to five205

10

using the best producing one adaptively with their ABC variant. Finally, Xue et al [22] suggest

a self-adaptive structure to use among three search strategies, which are benefited of global best

solution. To the best knowledge of the authors, any adaptive approach to select operators has not

been applied to binary ABC algorithms so far.

4. Proposed Methodology210

This section details the proposed methods and corresponding material sources including the

set of benchmarking uncapacitated facility location problems. The main focus goes on how the

neighbourhood functions, the operators, are integrated into binary ABC in an adaptive way, which

requires a selection scheme. The adaptive operator selection (AOS) procedure and credit assignment

rule for the selected operators are introduced accordingly. Furthermore, introduction in uncapaci-215

tated facility location problem follows, accordingly. Apparently, AOS involves with two interacting

components; (i) operator selection - how operators are selected from the pool of operators based on

the credit level, (ii) credit assignment - how to assign/update credit to each operator employed.

4.1. Operator Selection Schemes

Operator selection is the process of choosing an operator from the pool of operators using220

the credit level of each, where the pool of operators is devised and integrated in the main search

algorithm. The selection is conducted with a particular rule, which can be bespoke from a very

random rule to a complex heuristic procedure. It is paramount to indicate that the main concern

in search algorithms is the balance set up between exploration and exploitation, where exploration

is to look for a solution rather randomly (blindly), while exploitation is the way to search with the225

guidance gained/provided within the algorithm. This concern might be called as the dilemma of

exploration versus exploitation (EvE). The success of an operator selection rule relies significantly

on how it addresses the dilemma of EvE. Among heuristic rules, probability matching (PM), adaptive

pursuit (AP) and multi-armed bandit based methods [25] are chosen to work with in this study. PM

and AP heuristic rules use roulette-wheel mechanism to determine the probabilities. PM determines230

the probabilities as in Eq. 13.

pi,t = pmin + (1−Kpmin)
qi,t∑K
j=1 qj,t

, i = 1, 2..K (13)

11

where K is the number of operators in the pool, pmin ∈ [0, 1] represents the minimum probability

of being selected, and qi,t is the credit level/value of operation i at time t. Both PM and AP use

pmin to set a base probability for each operator, which would help address the dilemma of EvE

with allocating a minimum chance to every operators to be selected. PM imposes to calculate235

the probabilities of being selected per operation, while AP uses the strategy of ”winner takes all”

approach that credits more to promising options. AP calculates the probabilities with Eq. 14.

pi,t+1 =

pi,t + β(pmax − pi,t), if i = it∗

pi,t + β(pmin − pi,t), otherwise

(14)

where it∗ = arg maxi=1,..,K{qi} and β ∈ [0, 1] denotes learning coefficient, while pi,0 = 1/K as the

initial probability value. PM is experienced to take longer time to approximate a balanced EvE

policy while AP offers the winner-takes-all normalised with learning coefficient, β. More discussions240

can be found in [27].

The operator selection rules based on multi-armed-bandit (MAB) approach are considered as

friendly to EvE dilemma in which exploitation phase is supported/empowered with opting highly

prioritised operators while weaker operators are given opportunity with supporting exploration

phase. UCB method is one of most commonly used MAB approach, which determines the operator245

to select with Eq. 15.

opt = arg max
i=1,..,K

{qi,t + C ×

√
2 log

∑K
j=1 nj,t

ni,t
} (15)

where opt represents the selected operator, C works as a scaling factor, n is number of times the

operator selected while qi,t and ni,t on the right-hand-side of equation help control EvE dilemma,

respectively.

4.2. Credit Assignment Mechanisms250

Credit assignment is the process of evaluating the success level of a chosen operation that is

exploited once selected. Each selected operator per iteration is evaluated following the delivery of

operation with respect to the level of success; if it achieves a full success, partial success or a failure.

A reward value is decided and assigned to the selected operator in order to update its credibility for

the next runs. The reward, in another word credit, is determined based on either immediate results255

12

(instant), or as the average of a pre-set window of the time, where the average is recalculated after

delivery of each operation considering last W number of iterations, i.e. run of an operation. The

level of success per run of operations can be estimated based on either (i) the value of objective

function, denoted as O.V., or (ii) the success value, denoted as S.V. so forth. In the case of instant

reward/credit using objective function, the reward will be as in Eq. 16.260

ri,t = f(vi)− f(xi) (16)

where ri,t is the reward estimation for operation i at time t, f(vi) is the calculated objective

value after applying the chosen operator, and f(xi) is the known objective value of the current

solution, xi. Reward calculation with immediate results. i.e. instant case, can cause degeneration

or disruption in the later stages [45]. For instance, it is not so difficult to improve a very rough

solution, particularly at very early stages of the search while can be very difficult in the later sages,265

therefore, the quantity calculated for reward should not be the same. One idea to overcome this

issue is to normalise the difference between f(vi) and f(xi) with the factor of the rate between

attained objective value and the global best value as in Eq. 17.

ri,t =
f(vi)

gbestt
(f(vi)− f(xi)) (17)

The credit assignment is conducted following the estimation of reward, ri,t. The type of reward

to be used in the credit assignment using the following update function, Eq. 18, can be (i) instant270

reward, (ii) average reward, or (iii) extreme reward, where both of (ii) and (iii) are estimated within

a sliding window of the time, with the size of W , in which the average is considered as the mean

and the best reward is considered as extreme. The credit assignment is fulfilled using the update

rule given in Eq. 18.

qi,t+1 = (1− α)qi,t + αri,t, i = 1, 2..K (18)

where qi,t+1 and qi,t are the updated and current credit levels for operation i in time t + 1 and t,275

while K is the number of operators in the pool and α ∈ [0, 1] is the adaptation factor. Meanwhile,

MAB uses the average reward as the credit update, which is calculated up-to-date or the average

of sliding time window.

13

4.3. Adaptive Binary Artificial Bee Colony (ABABC)

The binary ABC algorithms furnished with adaptive selection operators mean to be called280

adaptive binary artificial bee colony (ABABC) algorithms. The main idea of ABABC is sketched

in Figure 1, which centers around the candidate generation process supplied by the population of

the solutions and the pool of operators, denoted with O. The pool can be defined as a set of binary

operators; O = {Opi|i = 1..|O|} = {binABC, disABC, ibinABC}, which allows the selection of

an operator, Opi, from the pool, O, using one of the operator selection schemes explained above,285

i.e. one of PM, AP or UCB. A new candidate solution, vj , is generated with an operator selected

from the pool, Opi ∈ O, based on the information cloned from a selected solution, xj , and one of

its neighbours, xk. Once the generated solution, vj , is found better performing than the selected

solution, xj , i.e. f(vj) is better than f(xj), a reward, ri,t, is estimated and fed into credit assignment

rule to update the chosen operator’s credit level, qi,t.290

Figure 1: General overview of adaptive operator selection process with support of population and pool of operators

The proposed approach is algorithmised in pseudo code as provided in Algorithm 1. Each

solution, i.e. bee, takes part the population, i.e. the complete bee colony, is generated using Eq. 5

and evaluated with Eq. 1. Then, an operator for each bee is selected from the pool, where all

operators are equally credited, initially, here at initialisation phase, but, are updated based on their

success in due course.295

The next phase of the algorithm runs with employee bees, following the initialisation, in which

each employee bee updates the colony with a particular food source running its own allocated

operator to update on the solution with corresponding fitness value calculated accordingly. The

generated candidate solution replaces the original one if the new solution is better, it is discarded

otherwise. The corresponding counts are updated, accordingly. Then, the onlooker bees come to300

effect, where the probabilities of food sources are estimated, operators are assigned to the bees

and then the same procedure as employee bees is executed. This phase creates an alternative

14

improvement opportunity in parallel to employee bee phase. The update phase follows these two to

revise the credit levels and apply memorisation for updating the best solution so far, accordingly.

The following phase, last of stage of an iteration, is to check the age of non-improving bees and305

to replace with randomly generated new bees, i.e. scout bees, if corresponding non-improving bees

are out-aged, to age each bee otherwise. The algorithm keeps iterating until the pre-set stopping

criterion is met.

4.4. Uncapacitated Facility Location Problem

UFLP has been studied with metaheuristics including simulated annealing [47, 48, 49], tabu310

search [50] and genetic algorithms [51, 48]. The benchmarking problem instances released by OR

Library [28] are very popular to test the algorithmic performances of metaheuristic approaches. The

problem mathematically is defied to be a minimisation problem in which the best facility locations

are chosen among many alternatives so that the overall cost including capital expenditure, i.e. setup

cost, and operational expenditure, i.e. shipment cost, is minimised subject to the set of constraints.315

Let m and n be the number of alternative facility locations and the number of customers,

respectively. c = {ci,j |i = 1..m, j = 1..n} denotes shipment cost between facility location, e.g.

warehouse, i and delivery point, e.g. customer, j and f = {fi|i = 1..m} denotes setup cost for

facility location i. The problem requires to work out with two binary decision variables; xi is

identify if location i is to take part of the set of facilities to open, and yi,j is to decide if location320

i it to serve customer j, where xi will value of 1 if the location is to open, 0 otherwise. Similarly,

yi,j is to be 1 if location i serves customer j, 0 otherwise. The details of mathematical model is

provided in Eq: 19 and 20. The UFLP model has turned to be a pure 0-1 programming model, while

there exists another version of UFLP, which implements a mixed integer linear programming model

considering shipment decision variable, yi,j here, as a non-binary integer variable, as in references325

of [47],[48], [49] and [51].

min f =

m∑
i=1

n∑
j=1

ci,jyi,j +

n∑
i=1

fixi (19)

15

Algorithm 1 The pseudo code of the adaptive binary artificial bee colony

1: Initialization phase:
2: Set algorithm parameters
3: Create initial population
4: Evaluate population
5: while Termination criteria is not met do
6: Employed bee phase:
7: Select operators and assign to bees
8: Increment operator counter
9: for i=1 to N do

10: Select neighbor, apply operator and obtain candidate solution (vi)
11: if f(vi) is better than f(xi) then
12: Replace vi with xi
13: Get reward and add to rop,t
14: Increment reward counter
15: Reset trial counter
16: else
17: Increment trial counter
18: end if
19: end for
20: Onlooker bee phase:
21: Calculate probabilities for food sources
22: Select operators and assign to bees
23: Increment operator counter, t=0
24: for i=1 to N do
25: Determine current solution according to probability
26: Select neighbor food source
27: Apply operator and obtain candidate solution (vi)
28: if f(vc) is better than f(xc) then
29: Replace vc with xc
30: Get reward and add to rop,t
31: Increment reward counter
32: Reset trial counter
33: else
34: Increment trial counter
35: end if
36: end for
37: Update Phase:
38: Credit assignment
39: Memorization
40: Scout bee phase:
41: if Limit is exceed for any bee then
42: Create random solution for the first exceeding bee and evaluate it
43: end if
44: end while

16

Subject to:

n∑
i=1

yi,j = 1, j = 1, 2, ...,m

yi,j ≥ xi, i = 1, 2, ..., n j = 1, 2, ...,m

yi,j , xi ∈ {0, 1}

(20)

ABABC has been implemented to solve UFLP in a very straightforward way since the problem

is modelled as a 0-1 programming problem and ABABC is a binary problem solving algorithm.

Each solution, i.e. bee, is created in a pair of binary elements; x1×n is a vector of n binary values330

to represent the facility locations if each is open or not and ym×n is a matrix of binary values to

identify the relationship between customers and open facilities. Here, x1×n has to include n̄ ≤ n

number of 1 bits to keep facilities open while each row of ym×n has to include only one 1 bit per

open facility for satisfying the constraints in the model. The objective function given by Eq.19 is

used to calculate the fitness values, F (x,y), using Eq.1.335

The performance of the variants of the algorithms considered in this study has been evaluated

using the commonly used benchmark problems taken from OR-Library [28] as tabulated in Table 2.

Table 2: OR-Library UFLP dataset

Problem name Problem size Optimal cost value
Cap71 16, 50 932615.75
Cap72 16, 50 977799.40
Cap73 16, 50 1010641.45
Cap74 16, 50 1034976.98
Cap101 25, 50 796648.44
Cap102 25, 50 854704.20
Cap103 25, 50 893782.11
Cap104 25, 50 928941.75
Cap131 50, 50 793439.56
Cap132 50, 50 851495.33
Cap133 50, 50 893076.71
Cap134 50, 50 928941.75
CapA 100, 1000 17156454.48
CapB 100, 1000 12979071.58
CapC 100, 1000 11505594.33

5. Experimental Results

UFLP has been chosen for testing the performance of ABABC, which is the algorithm proposed

in this paper. Parameter setting and fine-tuning is to be reported first, and then the produced340

17

results are evaluated in comparison with the state-of-art works. The proposed approaches are

implemented and developed using C programming language to run each experiment applying 8e5

number of operations in order for a fair comparison.

5.1. Parameter Tuning

Table 3 presents ABABC results for CapC with a configuration of instant reward, PM and AP345

selection approaches. Given these circumstances, the best bespoke values are are investigated for

N , pmin, and α parameters, where the best results are obtained with pmin = 0.2 that increases the

randomness level, which pushes PM and AP rules towards lower performance.

Table 4 presents the results produced with a reward calculation based on objective function

and using the same parametric configurations adopted for the experimental results tabulated in350

Table 3. The new results seem clearly improved, particularly, with 0.05 and 0.1 values of pmin that

help improve, significantly. This means that the selection process allocates lower rate to exploration

and higher rate to exploitation so as to smartly switch in between whenever needed. Withstanding

these circumstances, the best results are observed with parametric setting of N = 80, α = 0.9 and

pmin = 0.1 for PM, and N = 40, α = 0.7 and pmin = 0.05 for AP. The rest of experimentation will355

be conducted under the light-shed of these parametric settings that found best productive.

It is observed in Table 3 and 4 that better results for PM and AP obtained with objective

function-based reward calculations, herewith O.V. to denote so forth. The best parametric setting

fine-tuned as N = 40, α = 0.7 and 0.9, pmin = 0.05 and 0.1. The next set of experimentation inves-

tigate the best window size, W from the alternative value set of {5, 10, 20, 50}, for sliding window360

approach to produce average and extreme rewards. All the experiments have been conducted using

CapC benchmark as indicated before. The experimental results for window size are tabulated in

Table 5, where the best results are obtained with W = 50 and average reward approach for PM,

and W = 50 and extreme reward approach for AP. It is also observed that the sliding window

approach works better for PM and AP selection methods.365

Another prioritisation/selection approach is known as UCB, as a multi-bandit armed approach,

which requires a parametric setting study for C via testing through CapC benchmark. The reward

type chosen for these experiments is not average or extreme, but instant reward. The results are

tabulated in Table 6, where the performance results with lower C values are not good with success

rate-based reward estimation, herewith S.V. denotes so forth, but get better with growing values370

18

Table 3: Parametric exploration for N , α and pmin with success rate reward function

Parameters Probability Matching Adaptive Pursuit
N α pmin Mean Std.Dev Hit Mean Std.Dev Hit

20

0.3
0.05 11563334.96 43042.61 0 11539816.34 29538.38 0
0.1 11516440.94 15791.23 8 11515503.20 13560.41 9
0.2 11508039.92 2748.16 13 11511834.49 8698.81 8

0.5
0.05 11548768.93 31881.39 2 11540272.29 29191.67 1
0.1 11517703.10 14500.48 4 11516888.26 13344.06 5
0.2 11511247.64 7877.58 12 11509561.29 7396.88 14

0.7
0.05 11564366.42 40831.55 1 11532992.27 25800.14 3
0.1 11516321.28 14242.15 10 11514113.24 12789.67 8
0.2 11510440.33 7079.94 7 11508592.28 5373.11 13

0.9
0.05 11549317.87 41532.51 0 11527449.16 22089.79 3
0.1 11516378.08 11139.72 4 11513261.58 11052.49 9
0.2 11508625.41 4394.45 14 11509131.50 6462.54 15

40

0.3
0.05 11599617.86 60970.06 0 11564559.39 39911.57 0
0.1 11540460.14 31035.28 2 11533374.36 29771.53 1
0.2 11513135.80 9822.15 5 11511703.93 9046.67 10

0.5
0.05 11580583.92 42876.96 0 11556058.60 38951.08 0
0.1 11537540.81 19361.95 2 11519918.75 14872.14 5
0.2 11514226.67 10082.87 5 11513673.74 11054.35 6

0.7
0.05 11594740.41 63220.02 1 11555309.88 41856.81 1
0.1 11541724.52 27172.95 1 11524611.84 21670.23 4
0.2 11510031.92 5126.22 6 11513671.55 10247.55 7

0.9
0.05 11591382.36 65415.94 0 11537780.05 33631.49 6
0.1 11537540.49 30949.45 0 11525922.70 15165.57 0
0.2 11512992.70 7813.90 5 11510149.51 6927.57 9

80

0.3
0.05 11626170.36 62320.24 0 11589859.20 51211.10 0
0.1 11558109.06 34198.76 0 11541427.82 34023.35 0
0.2 11530108.86 16013.07 2 11529462.85 17072.21 1

0.5
0.05 11604198.02 49800.73 0 11586844.34 46164.99 0
0.1 11561410.95 34675.64 0 11549366.36 34967.73 1
0.2 11528999.51 14250.57 0 11536128.84 24507.11 3

0.7
0.05 11595266.19 59125.39 0 11553105.36 52644.25 7
0.1 11561325.80 39041.08 0 11545000.57 27891.08 0
0.2 11522240.74 14103.06 2 11529383.14 18270.58 0

0.9
0.05 11605819.39 49001.41 0 11551884.84 50713.27 10
0.1 11564947.39 45338.69 0 11540146.27 26467.60 1
0.2 11527534.12 18367.37 1 11526508.05 23730.50 1

19

Table 4: Parametric exploration for N , α and pmin with objective function-based reward function

Parameters Probability Matching Adaptive Pursuit
N α pmin Mean Std.Dev Hit Mean Std.Dev Hit

20

0.3
0.05 11507101.26 1877.16 18 11507352.42 1911.60 16
0.1 11507032.30 3916.43 23 11507785.76 3930.13 17
0.2 11508903.05 5680.00 13 11506975.68 1846.49 19

0.5
0.05 11507660.19 3938.22 18 11508900.05 6319.50 15
0.1 11507534.61 3942.15 19 11507352.42 1911.60 16
0.2 11507226.84 1898.76 17 11508341.12 5420.71 15

0.7
0.05 11507101.26 1877.16 18 11508341.12 5420.71 15
0.1 11506850.11 1806.30 20 11507477.99 1915.87 15
0.2 11506975.68 1846.49 19 11507101.26 1877.16 18

0.9
0.05 11506724.53 1755.92 21 11506975.68 1846.49 19
0.1 11507713.23 5486.12 20 11506724.53 1755.92 21
0.2 11507101.26 1877.16 18 11507226.84 1898.76 17

40

0.3
0.05 11506598.95 1694.46 22 11506975.68 1846.49 19
0.1 11507101.26 1877.16 18 11507226.84 1898.76 17
0.2 11507477.99 1915.87 15 11507226.84 1898.76 17

0.5
0.05 11506473.37 1620.64 23 11506724.53 1755.92 21
0.1 11506724.53 1755.92 21 11507352.42 1911.60 16
0.2 11507035.30 2770.62 21 11507226.84 1898.76 17

0.7
0.05 11506598.95 1694.46 22 11506347.79 1532.69 24
0.1 11506724.53 1755.92 21 11506975.68 1846.49 19
0.2 11506724.53 1755.92 21 11506850.11 1806.30 20

0.9
0.05 11506598.95 1694.46 22 11506981.14 4281.62 24
0.1 11506724.53 1755.92 21 11506850.11 1806.30 20
0.2 11507332.72 2492.66 18 11507226.84 1898.76 17

80

0.3
0.05 11506598.95 1694.46 22 11507352.42 1911.60 16
0.1 11507477.99 1915.87 15 11507785.76 3930.13 17
0.2 11507854.73 1877.16 12 11508918.97 2393.96 6

0.5
0.05 11506473.37 1620.64 23 11507609.03 4309.28 19
0.1 11506850.11 1806.30 20 11508193.49 4670.88 15
0.2 11509462.00 6862.49 12 11511277.22 7985.92 9

0.7
0.05 11507766.07 4245.31 19 11506850.11 1806.30 20
0.1 11507477.99 1915.87 15 11508416.66 2639.62 10
0.2 11508613.65 4153.73 11 11507603.57 1911.60 14

0.9
0.05 11506850.11 1806.30 20 11507101.26 1877.16 18
0.1 11506222.22 1428.00 25 11506850.11 1806.30 20
0.2 11508165.50 2718.47 12 11509959.39 6423.93 9

Table 5: Parametric exploration for α, pmin, Credit Type and W objective function-based reward function

Parameters Probability Matching Adaptive Pursuit
α pmin W Credit Type Mean Std.Dev Hit Mean Std.Dev Hit
0.7 0.05 5 Average 11506975.68 1846.49 19 11506598.95 1694.46 22
0.7 0.05 5 Extreme 11506473.37 1620.64 23 11506850.11 1806.30 20
0.7 0.05 10 Average 11506473.37 1620.64 23 11507583.87 2494.71 16
0.7 0.05 10 Extreme 11506975.68 1846.49 19 11506850.11 1806.30 20
0.7 0.05 20 Average 11506473.37 1620.64 23 11506975.68 1846.49 19
0.7 0.05 20 Extreme 11506473.37 1620.64 23 11506222.22 1428.00 25
0.7 0.05 50 Average 11506347.79 1532.69 24 11506704.83 2369.98 23
0.7 0.05 50 Extreme 11506724.53 1755.92 21 11506473.37 1620.64 23
0.9 0.1 5 Average 11506850.11 1806.30 20 11506598.95 1694.46 22
0.9 0.1 5 Extreme 11506598.95 1694.46 22 11506975.68 1846.49 19
0.9 0.1 10 Average 11506724.53 1755.92 21 11507101.26 1877.16 18
0.9 0.1 10 Extreme 11506598.95 1694.46 22 11506347.79 1532.69 24
0.9 0.1 20 Average 11506347.79 1532.69 24 11506473.37 1620.64 23
0.9 0.1 20 Extreme 11506724.53 1755.92 21 11506724.53 1755.92 21
0.9 0.1 50 Average 11506598.95 1694.46 22 11506347.79 1532.69 24
0.9 0.1 50 Extreme 11506473.37 1620.64 23 11506096.64 1302.54 26

20

Table 6: Experimental results to fine tune C value

N=20 N=40 N=80
C Reward Mean Std.Dev Hit Mean Std.Dev Hit Mean Std.Dev Hit

1
O.V. 11508036.92 3901.37 15 11519031.55 25267.30 5 11543820.67 32453.10 1
S.V. 11755508.65 110385.59 0 11727526.10 90952.56 0 11687905.10 78007.98 0

5
O.V. 11509451.62 5356.29 8 11516964.65 13163.72 8 11545538.87 33066.04 0
S.V. 11649598.60 86777.80 0 11626647.30 74737.50 0 11628728.41 76735.98 0

10
O.V. 11508111.34 4262.94 15 11518637.12 19395.98 7 11532917.15 28054.63 1
S.V. 11527454.20 23421.45 1 11548081.70 38257.48 0 11568191.98 48084.45 0

50
O.V. 11508291.08 2682.38 11 11514943.97 11606.26 6 11546459.68 36176.19 1
S.V. 11507207.14 2481.79 19 11509782.90 7463.99 11 11518209.76 13918.82 2

100
O.V. 11510248.95 8250.18 9 11515405.37 9881.23 3 11544436.99 30132.55 1
S.V. 11508827.52 7399.66 18 11508377.26 3488.81 14 11517062.91 15906.45 2

500
O.V. 11510630.99 8815.61 14 11514309.60 10452.94 5 11533447.50 25786.90 4
S.V. 11508466.70 5398.47 14 11508823.74 5553.91 13 11511801.59 8196.15 6

Table 7: Window size, W , fine-tuning with average and extreme rewarding approaches using UCB

N W Reward Base Average Reward Extreme Reward

20

5
O.V. 11507603.6 1911.61 14 11507101.3 1877.16 18
S.V. 11509402.4 6180.39 11 11507478.0 1915.87 15

10
O.V. 11507974.0 3439.93 16 11508215.5 5439.86 16
S.V. 11507101.3 1877.16 18 11506724.5 1755.92 21

20
O.V. 11508142.8 4201.35 16 11507478.0 1915.87 15
S.V. 11507911.3 3917.90 16 11506724.5 1755.92 21

50
O.V. 11508717.9 5344.58 12 11507729.1 1898.76 13
S.V. 11507894.6 4464.75 17 11507815.3 2946.54 16

40

5
O.V. 11508878.0 5673.84 14 11507352.4 1911.61 16
S.V. 11508990.4 4027.59 8 11507980.3 1846.49 11

10
O.V. 11507709.5 2485.91 15 11510070.9 8569.16 17
S.V. 11508953.1 7374.82 17 11510882.1 8718.45 12

20
O.V. 11510804.9 9907.43 16 11506724.5 1755.92 21
S.V. 11508039.9 2748.16 13 11507854.7 1877.16 12

50
O.V. 11507664.0 5889.56 21 11508483.9 9583.01 20
S.V. 11507942.3 4703.58 17 11507226.8 1898.76 17

80

5
O.V. 11508268.4 4178.79 15 11512719.4 11470.36 10
S.V. 11512874.4 10390.86 4 11515062.1 12602.81 7

10
O.V. 11510465.7 10109.25 14 11510437.8 19495.87 19
S.V. 11514648.8 11936.96 5 11511488.0 7340.76 5

20
O.V. 11506473.4 1620.64 23 11516425.4 26900.04 17
S.V. 11512716.0 9313.44 7 11517605.8 12654.65 7

50
O.V. 11506347.8 1532.69 24 11521711.1 33922.83 18
S.V. 11518448.7 12364.40 1 11511859.4 8516.39 9

of C. It is observed that the best result obtained with S.V is C = 500, while is C = 10 with O.V.

The best value for N is observed as 20 in these circumstances. The rest of experimentation will

consider the best parameter set found so far.

Table 7 summarises the experimental results for UCB approach with average and extreme reward

approaches using sliding window, where the window size, W , is looked for the best choice among375

the options of {5, 10, 20, 50}. The best choices are observed as W = 50 and N = 20 for both average

and extreme rewarding cases, while the performance declines with growing population size.

The experimental results so far (Table 3 - 7) help derive the best configuration for parametric

settings as in Table 8, which have been applied to all benchmark functions taken from OR-library

21

Table 8: Best Configurations

Parameters PM AP UCB
Reward O.V. O.V. O.V.
α 0.9 0.9 -
pmin 0.1 0.1 -
N 80 40 80
C - - 50
Credit Type Instant Extreme Average
W - 50 50

as tabulated in Table 9.380

Figure 2 shows the plots of the results produced with adaptive binary ABC, averaged over

30 repetitions, for CapC benchmark problem using the best configuration identified for PM with

Instant reward adaptively selecting one of three operators; disABC, binABC and ibinABC. The

figures included plot different aspects; (a) plots the credit levels against the number of iterations

in normal scale and (b) in log scale, while (c) presents operator usage over the iteration numbers385

in % and (d) plots the success of chosen operators in %. It can be observed that disABC produces

much better results in first 100 iteration, but, then consumes its gained credit very quickly for the

remaining stages until iteration 800, then starts raising credit and turns to be competitive once

again, competing with ibinABC. This can be seen clearly in Figure 2 (a), (b) and (c). On the other

hand, binABC performs moderately, keeps being competitive, but, the performance declines towards390

the end. This can be viewed from Figure 2(d) that the performance rises in the earlier iterations,

but starts gradually declining after 200 iterations. This might be due to that binABC produces

less improvable solutions, which may reduce the diversity within the operating neighbourhood.

Figure 2(d) also tells us that binABC gains high credit while its success rate is not proportionally

high. The graphs in all 4 plots in Figure 2(d) suggest that PM helps select the operations on merit395

base driving through quality of solutions.

The dynamic behaviour of operators selected with AP approach is experimented with CapC

benchmark. The best found configuration, as reported in Table 8, has been considered and the

experiments have been repeated 30 times. The results are plotted in Figure 3 to reveal the be-

haviours (a) in normal scale credit, (b) log-scale credit, (c) operators’ usage, and (d) the success400

of selected operators. AP approach is found to serve better with extreme rewarding as suggested

in previous experimentation. disABC is observed to produce better in earlier until 200 iterations,

then it under-performs until 1400 iterations, while binABC competes with ibinABC until 400 itera-

tions, then lessens effectivity. As suggested by all plots in Figure 3, disABC and ibinABC perform

22

Figure 2: Dynamic behaviours of BABC algorithms equipped with PM solving CapC benchmark problem

(a) Credit values (b) Credit values in log scale

(c) Operator selection (d) Success of selected operators

comparatively while binABC under-performs.405

UCB approach with the best configuration to select operators is examined with experimental

results collected for CapC benchmark, where each is repeated 30 times, and plotted in Figure 4,

accordingly; the plots show (a) credit in normal scale, (b) log-scale credit, (c) operators’ usage, and

(d) the success of selected operators. It can be seen through plots, between 100 - 300 iterations,

how impactful UCB can be on the balance between exploration and exploitation from the figures,410

especially, Figure 4(c). disABC performs better in the last 300 iterations, where it achieves 15%

usage rate. binABC behaves in the same way as with the other two approaches with comparatively

not performing well, but remains competitive with ibinABC in the race.

All three figures (Figure 2, 3, 4) help derive the characteristics of the operators. disABC

23

Figure 3: Dynamic behaviours of operators selected with AP solving CapC benchmark problem

(a) Credit in normal scale (b) Credit in log-scale

(c) Operator usage (d) Success of selected operators

24

Figure 4: ABABC algorithms perform with UCB approach to solve CapC benchmark

(a) Credit in normal scale (b) Credit in log-scale

(c) Operators’ usage (d) Success of selected operators

performs well in early stages, but, does not keep up in the later stages, while binABC helps improve415

the solution quality earlier, but steadily turns to be unproductive later, but ibinABC keeps better

performance across the entire search process demonstrating with competitive results. PM and AP

behave very similar, while operator change by AP seems sudden and sharper. UCB seems fueling

competition among the operators initially, which falls in exploration phase, while promoting more

promising operators in middle and later stages.420

Table 9 presents the results of adaptive binary ABC algorithms equipped with either of operator

selection schemes - PM, AP, or UCB - solving UFLP benchmark problems taken from OR-Library.

Three configurations have been tested and tabulated, where the performance of each configuration

is measured with three metrics; Gap, the difference between the optimum and the mean of replicates

25

Table 9: Comparative results with Binary ABC adopting different prioritisation approaches

ABABC-PM ABABC-AP ABABC-UCB
Instance Gap Std. Dev. Hit Gap Std. Dev. Hit Gap Std. Dev. Hit
Cap71 0.00 0.00 30 0.00 0.00 30 0.00 0.00 30
Cap72 0.00 0.00 30 0.00 0.00 30 0.00 0.00 30
Cap73 0.00 0.00 30 0.00 0.00 30 0.00 0.00 30
Cap74 0.00 0.00 30 0.00 0.00 30 0.00 0.00 30
Cap101 0.00 0.00 30 0.00 0.00 30 0.00 0.00 30
Cap102 0.00 0.00 30 0.00 0.00 30 0.00 0.00 30
Cap103 0.00 0.00 30 0.00 0.00 30 0.00 0.00 30
Cap104 0.00 0.00 30 0.00 0.00 30 0.00 0.00 30
Cap131 0.00 0.00 30 0.00 0.00 30 0.00 0.00 30
Cap132 0.00 0.00 30 0.00 0.00 30 0.00 0.00 30
Cap133 0.00 0.00 30 0.00 0.00 30 0.00 0.00 30
Cap134 0.00 0.00 30 0.00 0.00 30 0.00 0.00 30
CapA 0.00 0.00 30 0.00 0.00 30 0.00 0.00 30
CapB 0.00 0.00 30 0.00 0.00 30 0.00 0.00 30
CapC 0.005 1428.00 25 0.004 1302.54 26 0.006 1532.69 24

in %, standard deviation denoted with Std. Dev, and Hit, the number of times optimum value is425

achieved. The first 14 of the benchmarks have been solved optimally by all three configurations

in all 30 replications while the performances for CapC benchmark vary due to the difficulty of the

benchmark, which has been used for all previous parameter fine-tuning purposes. CapC benchmark

is the only problem instance helps differentiate the achievements of different configurations. As seen

in Table 9, the ABABC versions with PM, AP and UCB solve the problem, CapC, optimally 25,430

26 and 24 times out of 30, respectively. Apparently, the results are slightly different over Gap and

Hit measures, but more distinctive in Std.Dev, where AP scheme seems doing better than other

two. This may help conclude that configuration of ABABC with AP and Extreme rewarding is

suggested to be adopted over the others.

5.2. Performance Evaluation435

This section includes performance evaluations in comparison to relevant state-of-art literature.

The comparisons include the results of ABABC-AP variant, found best performing in the previous

sections, binABC [31], disABC [52] and ibinABC [35]. In order to keep the comparison fair, all

algorithms have been run for the same number of functional evaluations and runtime. Apparently,

the best performing algorithm is ABABC-AP, which solves all benchmarks optimum except CapC,440

which is solved to optimum 26/30 as indicated in Table 10 while the runner up algorithm is ibinABC,

which solves 13 benchmarks to optimum, but other two do much worse in solving to optimum.

Table 11 provides performance results of a number of state-of-art non-ABC literature extracted

from [53] for details. The extracted results are produced by the authors of [53] using Single point

26

Table 10: Comparative results between ABABC other Binary ABC variants

binABC disABC ibinABC ABABC-AP
Instance Gap Std Gap Std Gap Std Gap Std. Dev.
Cap71 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Cap72 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Cap73 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Cap74 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Cap101 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Cap102 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Cap103 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Cap104 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Cap131 0.00 0.00 0.62 2337.64 0.00 0.00 0.00 0.00
Cap132 0.00 0.00 0.095 813.37 0.00 0.00 0.00 0.00
Cap133 1.22 200.24 0.031 359.03 0.00 0.00 0.00 0.00
Cap134 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
CapA 2.96 236833.50 0.152 74782.61 0.00 0.00 0.00 0.00
CapB 2.51 9143.13 3.303 109738.50 0.07 23762.93 0.00 0.00
CapC 2.58 82312.70 4.697 95778.78 0.062 11326.015 0.004 1302.54

crossover genetic algorithm, denoted with GA-SP (not clear taken from which reference), binary445

PSO, denoted as BPSO [54], binary artificial algae algorithm, denoted as binAAA [55] and XOR-

based Jaya Algorithm, denoted as JayaX [53]. The results in Table 11 suggest that ABABC-AP,

which is the best of this study, outperforms all others with solving 14 benchmarks to optimum, and

CapC with the highest hits. The runner up algorithm, JayaX solves 12 benchmarks to optimum. It

is clear that the most distinctive performances can be gained with solving CapA, CapB and CapC,450

where CapC is the most challenging one. It is noted that the ABABC variants without AP scheme,

binABC, disABC and ibinABC, were under-performing in comparison to both binAAA and JayaX.

This clearly demonstrates the contribution of adaptive mechanisms embedded in ABABC variants.

27

T
a
b

le
1
1
:

C
o
m

p
a
ri

so
n

w
it

h
st

a
te

-o
f-

a
rt

G
A

-S
P

B
P

S
O

b
in

A
A

A
J
a
y
a
X

A
B

A
B

C
-A

P
In

st
a
n
c
e

G
a
p

S
td

.
D

e
v
.

H
it

G
a
p

S
td

.
D

e
v
.

H
it

G
a
p

S
td

.
D

e
v
.

H
it

G
a
p

S
td

.
D

e
v
.

H
it

G
a
p

S
td

.
D

e
v
.

H
it

C
a
p
7
1

0
.0

0
0

0
.0

0
0

3
0

0
.0

0
0

0
.0

0
0

3
0

0
.0

0
0

0
.0

0
0

3
0

0
.0

0
0

0
.0

0
0

3
0

0
.0

0
0

0
.0

0
0

3
0

C
a
p
7
2

0
.0

0
0

0
.0

0
0

3
0

0
.0

0
0

0
.0

0
0

3
0

0
.0

0
0

0
.0

0
0

3
0

0
.0

0
0

0
.0

0
0

3
0

0
.0

0
0

0
.0

0
0

3
0

C
a
p
7
3

0
.0

6
7

8
9
9
.6

5
0

1
9

0
.0

2
4

6
3
4
.6

2
5

2
6

0
.0

0
0

0
.0

0
0

3
0

0
.0

0
0

0
.0

0
0

3
0

0
.0

0
0

0
.0

0
0

3
0

C
a
p
7
4

0
.0

0
0

0
.0

0
0

3
0

0
.0

0
9

5
0
0
.2

7
2

2
9

0
.0

0
0

0
.0

0
0

3
0

0
.0

0
0

0
.0

0
0

3
0

0
.0

0
0

0
.0

0
0

3
0

C
a
p
1
0
1

0
.0

6
8

4
2
1
.6

5
5

1
1

0
.0

4
3

4
2
8
.6

5
8

1
8

0
.0

0
0

0
.0

0
0

3
0

0
.0

0
0

0
.0

0
0

3
0

0
.0

0
0

0
.0

0
0

3
0

C
a
p
1
0
2

0
.0

0
0

0
.0

0
0

3
0

0
.0

1
0

3
2
1
.5

8
8

2
8

0
.0

0
0

0
.0

0
0

3
0

0
.0

0
0

0
.0

0
0

3
0

0
.0

0
0

0
.0

0
0

3
0

C
a
p
1
0
3

0
.0

6
4

5
0
5
.0

3
6

6
0
.0

4
9

5
2
1
.2

3
7

1
4

0
.0

0
0

0
.0

0
0

3
0

0
.0

0
0

0
.0

0
0

3
0

0
.0

0
0

0
.0

0
0

3
0

C
a
p
1
0
4

0
.0

0
0

0
.0

0
0

3
0

0
.0

4
1

1
4
3
2
.2

3
9

2
8

0
.0

0
0

0
.0

0
0

3
0

0
.0

0
0

0
.0

0
0

3
0

0
.0

0
0

0
.0

0
0

3
0

C
a
p
1
3
1

0
.0

6
8

7
2
0
.8

7
7

1
6

0
.1

7
1

1
5
0
5
.7

4
9

1
0

0
.0

0
0

0
.0

0
0

3
0

0
.0

0
0

0
.0

0
0

3
0

0
.0

0
0

0
.0

0
0

3
0

C
a
p
1
3
2

0
.0

0
0

0
.0

0
0

3
0

0
.0

5
8

1
0
5
5
.2

3
8

2
1

0
.0

0
0

0
.0

0
0

3
0

0
.0

0
0

0
.0

0
0

3
0

0
.0

0
0

0
.0

0
0

3
0

C
a
p
1
3
3

0
.0

9
1

6
8
5
.0

7
6

1
0

0
.0

8
3

6
9
0
.1

9
2

1
0

0
.0

0
0

0
.0

0
0

3
0

0
.0

0
0

0
.0

0
0

3
0

0
.0

0
0

0
.0

0
0

3
0

C
a
p
1
3
4

0
.0

0
0

0
.0

0
0

3
0

0
.1

9
5

2
5
9
4
.2

1
1

1
8

0
.0

0
0

0
.0

0
0

3
0

0
.0

0
0

0
.0

0
0

3
0

0
.0

0
0

0
.0

0
0

3
0

C
a
p
A

0
.0

4
6

2
2
4
5
1
.2

0
6

2
4

1
.6

9
1

3
1
9
8
5
5
.4

3
1

8
0
.0

0
0

0
.0

0
0

3
0

0
.0

0
0

0
.0

0
0

3
0

0
.0

0
0

0
.0

0
0

3
0

C
a
p
B

0
.5

8
4

6
6
6
5
8
.6

4
9

9
1
.4

0
3

1
3
5
3
2
6
.7

2
8

5
0
.2

4
8

3
9
2
2
4
.7

4
4

1
5

0
.0

7
9

2
7
0
3
3
.0

2
0

2
6

0
.0

0
0

0
.0

0
0

3
0

C
a
p
C

0
.7

0
5

5
1
8
4
8
.2

8
0

2
1
.6

2
2

1
1
5
1
5
6
.4

4
4

1
0
.2

9
5

2
9
7
6
6
.3

1
1

1
0
.0

2
2

5
4
5
5
.9

4
0

1
7

0
.0

0
4

1
3
0
2
.5

3
9

2
6

28

The experimental results presented in Table 10 and 11 demonstrate outperforming performance

of the adaptive binary ABC algorithm in comparison to the recent state-of-art binary approaches455

including ABC variants. Although the results are self-declaring the significant performance, a

statistical test is always the most secure way out to make sure the results lead to significant and

sound conclusions. The results have been considered for comparisons with the performance of

the state-of-art approaches using Wilcoxon signed-ranked test, which is a commonly used non-

parametric statistical test approach. The tests have been conducted to see if the null-hypothesis,460

H0, of ”there is no significant difference in between the results” with confidence level of 95%. The

functionalities of MATLAB 2017b has been used to calculate the test results over 30 repeats of each

experimental setup.

The test results are tabulated in Table 12 showing the statistical test results for UFLP bench-

mark problem instances on the row and binary swarm intelligence algorithms in the column. The465

test results per algorithm indicate (i) probability, p-value, and (ii) wining hypothesis, H. It is ob-

served that many of the comparisons confirm the H0 with p-value, p = 1.0 meaning that adaptive

binary ABC performs similar to the state-of-art approaches in solving the benchmark problems. It

can also be observed in Table 11 in which results fall at the same level of performance. This is not

surprising since all algorithms can solve these benchmark problems very easily. The main challenge470

comes through the benchmark problems labelled as CapB and CapC with which the performance

of the algorithms can significantly differ. It clearly shows that the test results for the majority of

CapB and all of CapC instances indicate ”rejection of null hypothesis” with H = 1 and various p

values that confirm the difference in performance levels as shown in Table 11. This concludes that

adaptive binary ABC’s performance significantly differs in solving the most difficult benchmarks,475

where it solves not only all easy and moderately difficult benchmarks to optimum similar to its

rivals but also the most difficult benchmarks, i.e. CapB and CapC, to optimum. The difference in

performance is found statistically different and significantly better than the others.

6. Conclusion

This paper presents a study that investigates the viability of devising ABC algorithms with480

multiple operators selected adaptively for solving binary problems. Adaptive selection schemes have

been researched and tested in various configurations and the best performing scheme working with

binary ABC is sought to solve uncapacitated facility location problem instances. Three adaptive

29

Table 12: The results of the Wilcoxon signed-rank test of the proposed method with the state-of-art
Benchmark AAA JayaX BPSO GA-SP ibinABC disABC binABC

p-value H p-value H p-value H p-value H p-value H p-value H p-value H
Cap71 1 0 1 0 1 0 1 0 1 0 1 0 1 0
Cap72 1 0 1 0 1 0 1 0 1 0 1 0 1 0
Cap73 1 0 1 0 1.E-01 0 1.E-03 1 1 0 1 0 1 0
Cap74 1 0 1 0 3.E-06 1 4.E-08 1 1 0 1 0 1 0
Cap101 1 0 1 0 2.E-01 0 4.E-04 1 1 0 1 0 1 0
Cap102 1 0 1 0 5.E-01 0 1 0 1 0 1 0 1 0
Cap103 1 0 1 0 1.E-06 1 1.E-06 1 1 0 1 0 1 0
Cap104 1 0 1 0 5.E-01 0 1 0 1 0 1 0 1 0
Cap131 1 0 1 0 1.E-06 1 1.E-06 1 1 0 2.E-06 1 1 0
Cap132 1 0 1 0 1.E+00 0 4.E-08 1 1 0 4.E-06 1 1 0
Cap133 1 0 1 0 2.E-06 1 1.E-06 1 1 0 1.E-06 1 1.E-07 1
Cap134 1 0 1 0 5.E-04 1 1 0 1 0 1 0 1 0
CapA 1 0 1 0 5.E-05 1 1.E-01 0 1 0 3.E-01 0 6.E-06 1
CapB 6.E-05 1 2.E-07 1 2.E-06 1 2.E-06 1 3.E-02 0 2.E-05 1 1.E-05 1
CapC 4.E-06 1 8.E-01 0 2.E-06 1 2.E-06 1 2.E-03 1 4.E-06 1 2.E-06 1

selection schemes, namely probability matching (PM), adaptive pursuit (AP) and upper confidence

bound (UCB), have been tested and are found very competitive in performance. All three schemes485

are implemented with three recently developed binary operators, binABC, disABC and ibinABC,

and tested accordingly. A number of variants of binary ABC algorithm were configured with a

number of parameters required by each of three operator selection schemes and have been tested

with UFLP benchmarks. The configuration tests reveal that AP is the best performing scheme

and extreme rewarding remains preferable, subject to given circumstances. Hence, it is concluded490

that a binary ABC equipped with the three operators adaptively exploited using AP scheme and

Extreme rewarding approach outperforms all competing algorithms. In addition, all three non-

adaptive variants of binary ABC, binABC, disABC and ibinABC, perform much worse than the

adaptive variants. The configured new binary ABC is named adaptive binary ABC (ABABC) and

comparatively evaluated against the most relevant state-of-art approaches in the literature, where495

ABABC significantly outperforms all rivals/alternatives with an achievement of solving 14 out of

15 benchmark problems to optimum, and solving 26 of 30 replicates of CapC to optimum. The

significance of this performance has been statistically tested and found significant in 95% confidence

level, is the sound highest achievement so far.

In the next step of this research, machine learning algorithms would be used to replace adaptive500

selection schemes for improved efficiency. This is expected to impose smarter operator selection

schemes, which can be used as smartly guided adaptive search algorithms in which the operators,

and even the policies, i.e. selection schemes, can be smartly chosen among alternatives so as to

prevent the search from local optima with reduced complexity.

30

References505

[1] J. Del Ser, E. Osaba, D. Molina, X.-S. Yang, S. Salcedo-Sanz, D. Camacho, S. Das, P. N.

Suganthan, C. A. C. Coello, F. Herrera, Bio-inspired computation: Where we stand and

what’s next, Swarm and Evolutionary Computation 48 (2019) 220–250.

[2] S. Sadeghi-Moghaddam, M. Hajiaghaei-Keshteli, M. Mahmoodjanloo, New approaches in meta-

heuristics to solve the fixed charge transportation problem in a fuzzy environment, Neural510

Computing and Applications 31 (1) (2019) 477–497.

[3] A. E. Drake, R. E. Marks, Genetic algorithms in economics and finance: Forecasting stock

market prices and foreign exchange—a review, in: Genetic algorithms and genetic programming

in computational finance, Springer, Boston, MA, 2002, pp. 29–54.

[4] G. Hiermann, M. Prandtstetter, A. Rendl, J. Puchinger, G. R. Raidl, Metaheuristics for solving515

a multimodal home-healthcare scheduling problem, Central European Journal of Operations

Research 23 (1) (2015) 89–113.

[5] X.-S. Yang, Engineering optimization: an introduction with metaheuristic applications, John

Wiley & Sons, Hoboken, New Jersey, 2010.

[6] M. Dorigo, M. Birattari, T. Stutzle, Ant colony optimization, IEEE computational intelligence520

magazine 1 (4) (2006) 28–39.

[7] J. Kennedy, R. Eberhart, Particle swarm optimization, in: Proceedings of ICNN’95-

International Conference on Neural Networks, Vol. 4, IEEE, 1995, pp. 1942–1948.

[8] D. Karaboga, B. Basturk, A powerful and efficient algorithm for numerical function opti-

mization: artificial bee colony (abc) algorithm, Journal of global optimization 39 (3) (2007)525

459–471.

[9] D. H. Wolpert, W. G. Macready, No free lunch theorems for optimization, IEEE transactions

on evolutionary computation 1 (1) (1997) 67–82.

[10] Y. Zhang, S. Wang, G. Ji, A comprehensive survey on particle swarm optimization algorithm

and its applications, Mathematical Problems in Engineering 2015 (2015) 931256.530

31

[11] S. Das, P. N. Suganthan, Differential evolution: A survey of the state-of-the-art, IEEE trans-

actions on evolutionary computation 15 (1) (2010) 4–31.

[12] D. Karaboga, B. Gorkemli, C. Ozturk, N. Karaboga, A comprehensive survey: artificial bee

colony (abc) algorithm and applications, Artificial Intelligence Review 42 (1) (2014) 21–57.

[13] M. Düğenci, M. E. Aydin, A honeybees-inspired heuristic algorithm for numerical optimisation,535

Neural Computing and Applications 32 (16) (2020) 12311–12325.

[14] E. L. Lawler, The quadratic assignment problem, Management science 9 (4) (1963) 586–599.

[15] C. Ozturk, E. Hancer, D. Karaboga, Dynamic clustering with improved binary artificial bee

colony algorithm, Applied Soft Computing 28 (2015) 69–80.

[16] P. Espahbodi, Identification of problem banks and binary choice models, Journal of Banking540

& Finance 15 (1) (1991) 53–71.

[17] S. Sahni, Approximate algorithms for the 0/1 knapsack problem, Journal of the ACM (JACM)

22 (1) (1975) 115–124.

[18] V. Chvatal, A greedy heuristic for the set-covering problem, Mathematics of operations research

4 (3) (1979) 233–235.545

[19] M. Tuba, N. Bacanin, Artificial bee colony algorithm hybridized with firefly algorithm for

cardinality constrained mean-variance portfolio selection problem, Applied Mathematics &

Information Sciences 8 (6) (2014) 2831.

[20] A. Kumar, V. Kumar, Hybridized abc-ga optimized fractional order fuzzy pre-compensated

fopid control design for 2-dof robot manipulator, AEU-International Journal of Electronics550

and Communications 79 (2017) 219–233.

[21] M. Düğenci, M. E. Aydin, Diversifying search in bee algorithms for numerical optimisation,

in: International Conference on Computational Collective Intelligence, Springer, 2018, pp.

132–144.

[22] Y. Xue, J. Jiang, B. Zhao, T. Ma, A self-adaptive artificial bee colony algorithm based on555

global best for global optimization, Soft Computing 22 (9) (2018) 2935–2952.

32

[23] S. L. Scott, A modern bayesian look at the multi-armed bandit, Applied Stochastic Models in

Business and Industry 26 (6) (2010) 639–658.

[24] J. Niehaus, W. Banzhaf, Adaption of operator probabilities in genetic programming, in: Eu-

ropean Conference on Genetic Programming, Springer, 2001, pp. 325–336.560

[25] K. Li, A. Fialho, S. Kwong, Q. Zhang, Adaptive operator selection with bandits for a multi-

objective evolutionary algorithm based on decomposition, IEEE Transactions on Evolutionary

Computation 18 (1) (2013) 114–130.

[26] L. Davis, Adapting operator probabilities in genetic algorithms, in: Proceedings of the third

international conference on Genetic algorithms, 1989, pp. 61–69.565

[27] Á. Fialho, L. Da Costa, M. Schoenauer, M. Sebag, Analyzing bandit-based adaptive operator

selection mechanisms, Annals of Mathematics and Artificial Intelligence 60 (1-2) (2010) 25–64.

[28] J. E. Beasley, Or-library: distributing test problems by electronic mail, Journal of the opera-

tional research society 41 (11) (1990) 1069–1072.

[29] G. Wu, R. Mallipeddi, P. N. Suganthan, Ensemble strategies for population-based optimization570

algorithms–a survey, Swarm and evolutionary computation 44 (2019) 695–711.

[30] D. Karaboga, An idea based on honey bee swarm for numerical optimization, Tech. rep.,

Technical report-tr06, Erciyes university, engineering faculty, computer engineering department

(2005).

[31] M. S. Kiran, The continuous artificial bee colony algorithm for binary optimization, Applied575

Soft Computing 33 (2015) 15–23.

[32] M. H. Kashan, N. Nahavandi, A. H. Kashan, Disabc: A new artificial bee colony algorithm for

binary optimization, Applied Soft Computing 12 (1) (2012) 342–352.

[33] M. S. Kiran, M. Gündüz, Xor-based artificial bee colony algorithm for binary optimization,

Turkish Journal of Electrical Engineering & Computer Sciences 21 (Sup. 2) (2013) 2307–2328.580

[34] C. J. Santana Jr, M. Macedo, H. Siqueira, A. Gokhale, C. J. Bastos-Filho, A novel binary

artificial bee colony algorithm, Future Generation Computer Systems 98 (2019) 180–196.

33

[35] R. Durgut, Improved binary artificial bee colony algorithm, Frontiers of Information Technol-

ogy & Electronic Engineering (in press) (2020).

[36] H. Wang, Z. Wu, S. Rahnamayan, H. Sun, Y. Liu, J.-s. Pan, Multi-strategy ensemble artificial585

bee colony algorithm, Information Sciences 279 (2014) 587–603.

[37] W.-f. Gao, L.-l. Huang, S.-y. Liu, F. T. Chan, C. Dai, X. Shan, Artificial bee colony algorithm

with multiple search strategies, Applied Mathematics and Computation 271 (2015) 269–287.

[38] X. Chen, H. Tianfield, K. Li, Self-adaptive differential artificial bee colony algorithm for global

optimization problems, Swarm and Evolutionary Computation 45 (2019) 70–91.590

[39] M. S. Kiran, H. Hakli, M. Gunduz, H. Uguz, Artificial bee colony algorithm with variable

search strategy for continuous optimization, Information Sciences 300 (2015) 140–157.

[40] C. Ozturk, E. Hancer, D. Karaboga, A novel binary artificial bee colony algorithm based on

genetic operators, Information Sciences 297 (2015) 154–170.

[41] Y. He, H. Xie, T.-L. Wong, X. Wang, A novel binary artificial bee colony algorithm for the595

set-union knapsack problem, Future Generation Computer Systems 78 (2018) 77–86.

[42] D. Jia, X. Duan, M. K. Khan, Binary artificial bee colony optimization using bitwise operation,

Computers & Industrial Engineering 76 (2014) 360–365.

[43] M. Sevkli, M. E. Aydin, A variable neighbourhood search algorithm for job shop scheduling

problems, in: European Conference on Evolutionary Computation in Combinatorial Optimiza-600

tion, Springer, 2006, pp. 261–271.

[44] M. E. Aydin, Coordinating metaheuristic agents with swarm intelligence, Journal of Intelligent

Manufacturing 23 (4) (2012) 991–999.

[45] Á. Fialho, L. Da Costa, M. Schoenauer, M. Sebag, Extreme value based adaptive operator

selection, in: International Conference on Parallel Problem Solving from Nature, Springer,605

2008, pp. 175–184.

[46] Á. Fialho, M. Schoenauer, M. Sebag, Toward comparison-based adaptive operator selection,

in: Proceedings of the 12th annual conference on Genetic and evolutionary computation, 2010,

pp. 767–774.

34

[47] M. Aydin, T. Fogarty, A distributed evolutionary simulated annealing algorithm for combina-610

torial optimisation problems, Journal of Heuristics 10 (3) (2004) 269–292.

[48] K. Chan, M. Aydin, T. Fogarty, Main effect fine-tuning of the mutation operator and the

neighbourhood function for uncapacitated facility location problems, Soft Computing 10 (11)

(2006) 1075–1090.

[49] V. Yigit, M. Aydin, O. Turkbey, Solving large-scale uncapacitated facility location problems615

with evolutionary simulated annealing, International Journal of Production Research 44 (22)

(2006) 4773–4791.

[50] F. Glover, S. Hanafi, O. Guemri, I. Crevits, A simple multi-wave algorithm for the uncapaci-

tated facility location problem, Frontiers of Engineering Management 5 (4) (2018) 451–465.

[51] J. Kratica, D. Tošic, V. Filipović, I. Ljubić, Solving the simple plant location problem by620

genetic algorithm, RAIRO - Operations Research 35 (1) (2001) 127–142.

[52] S. Korkmaz, A. Babalik, M. S. Kiran, An artificial algae algorithm for solving binary opti-

mization problems, International Journal of Machine Learning and Cybernetics 9 (7) (2018)

1233–1247.

[53] M. Aslan, M. Gunduz, M. S. Kiran, Jayax: Jaya algorithm with xor operator for binary625

optimization, Applied Soft Computing 82 (2019) 105576.

[54] J. Kennedy, R. C. Eberhart, A discrete binary version of the particle swarm algorithm, in: 1997

IEEE International conference on systems, man, and cybernetics. Computational cybernetics

and simulation, Vol. 5, IEEE, 1997, pp. 4104–4108.

[55] X. Zhang, C. Wu, J. Li, X. Wang, Z. Yang, J.-M. Lee, K.-H. Jung, Binary artificial algae630

algorithm for multidimensional knapsack problems, Applied Soft Computing 43 (2016) 583–

595.

35

	Introduction
	Related Works
	Artificial Bee Colony
	Binary Artificial Bee Colony
	binABC Algorithm
	disABC Algorithm
	Improved binABC (ibinABC)

	Adaptive Operator Selection

	Proposed Methodology
	Operator Selection Schemes
	Credit Assignment Mechanisms
	Adaptive Binary Artificial Bee Colony (ABABC)
	Uncapacitated Facility Location Problem

	Experimental Results
	Parameter Tuning
	Performance Evaluation

	Conclusion

