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Robust Neuro-Optimal Control for a Robot via
Adaptive Dynamic Programming

Linghuan Kong, Wei He, Senior Member, IEEE, Chenguang Yang, Senior Member, IEEE, Changyin Sun

Abstract—We aim at optimization of the tracking control of
a robot to improve the robustness, under the effect of unknown
nonlinear perturbations. First, an auxiliary system is introduced
and an optimal control of the auxiliary system can be seen as an
approximate optimal control of the robot. Then, neural networks
are employed to approximate the solution of the Hamilton-Jacobi-
Isaacs (HJI) equation under the frame of adaptive dynamic
programming (ADP). Next, based on the standard gradient
attenuation algorithm and adaptive critic design, neural networks
are trained depending on the designed updating law with relaxing
the requirement of initial stabilizing control. In light of the
Lyapunov stability theory, all the error signals can be proved to
be uniformly ultimately bounded (UUB). A series of simulation
studies are carried out to show the effectiveness of the proposed
control.

Index Terms—Neural Networks (NNs), Robots, Robust Opti-
mal Control, Adaptive Dynamic Programming (ADP)

I. INTRODUCTION

Robots are intelligent systems, which has the ability to per-
form some dangerous tasks alone for human beings, and play
significant roles in search and rescue, military reconnaissance,
industrial surveillance and medical endoscope [1]–[5]. It is
therefore important to derive full information of the robotic
system and control it better. However, robotic systems are
highly nonlinear and strongly coupled, and these characteris-
tics make accurate robotic models difficult to obtain [6]–[12].
Meanwhile, their motion control is exceedingly challenging
due to the lack of accurate robotic models.

Many control policies including proportion integration dif-
ferentiation (PID) control [13]–[15], decentralized control
[16], neural network (NN) control [17]–[21], adaptive control
[22]–[29], fuzzy control [30]–[32], etc., have been widely used
in control theory and applications. In [33], [34], PID control is
applied on a robotic manipulator such that the tracking error
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is convergent exponentially. Although PID control has simple
structure and strong robustness, if the controlled systems are
highly nonlinear and strongly coupled, selecting appropriate
PID parameters will be exceedingly difficult. Furthermore, as
requirements on speed and accuracy of motion increase, PID
control often cannot satisfy the performance requirement due
to the lack of the adaptive or learning capability of dealing
with dynamic uncertainties in system parameters [35]. NNs
are abstractions and simulations of the basic characteristics of
the human brain [36]–[39], and also are a kind of imitating the
behavior characteristics of animal NNs for distributed parallel
algorithm which is for mathematical model of information
processing [40]–[42], which therefore are widely used to
achieve the identification of the unknown dynamics in control
theory and applications [43]–[46]. NNs are a kind of learning
models [47]. NN control has been proved to have an powerful
ability to model the uncertain dynamics of the controlled
system in real time, which leads to the improvement of system
robustness. In [48], unknown robotic dynamics are online
approximated by NNs such that the boundness of tracking
errors is guaranteed. In [49], NN control is developed for
an uncertain multi-input and multi-output nonlinear systems,
where NNs are utilized to deal with unknown functions. In
[50], based on the learning ability of NNs, an adaptive control
scheme is proposed for a rigid robot such that finite-time
convergence is achieved.

Tracking control is a hot topic in the robot community.
In [51], the control method just cares about the stability and
ignores the analysis on optimal performances. It is therefore
essential to design an optimal tracking control that not only
stabilizes a robotic system, but also minimizes its cost func-
tion, i.e., tracking control of the robot should be achieved
under the optimal performance. ADP firstly proposed by [52]
serves as an effective way to achieve the optimal performance
for the tracking control of nonlinear systems. Under the
frame of ADP, the solution of the optimization problem is
obtained by solving the Hamilton-Jacobi-Bellman (HJB) equa-
tion. However, it is because of the nonlinear characteristics of
HJB equation such that deriving an analytical solution for it
is hardly possible. Traditionally, policy iteration is an efficient
way to obtain an approximate solution of HJB equation [53],
for which initial stabilizing control is necessary. However, in
practical implementation, initial stabilizing control is often
difficult to derive. Then, as the improvement, the adaptive
critic-based learning algorithm is developed in [54] to derive
an approximate solution of HJB equation with the universal
approximate ability of NNs, and an additional stabilizing term
is designed for removing the need of initial stabilizing control.
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Based on the adaptive critic-based idea, [55]–[57] proposes an
approximate optimal control policy for affine systems subject
to the upper bounded disturbance, leading to the result that the
controlled system is stable and achieves optimal performances.

Motivated by the mentioned-above discussions, our paper
aim to solve optimal problems of tracking control for a robot.
In [33]–[35], [48], PID control or NN control is developed for
controlling the robotic systems, however these control algo-
rithms mainly focus on stability without considering optimal
control problems. In the field of robotics, how to optimize the
path-tracking and minimize the design cost is an important
topic. Few literatures of optimal control of robots using ADP
can be found. In [55], [56], unknown nonlinear perturbation is
assumed to be upper bounded and this boundary is asked to be
known in practical implementation. However, the appropriate
boundary is often difficult for a robot to obtain since the
robotic system is highly nonlinear, strongly coupled and un-
known. In this paper, this requirement is relaxed successfully.

Compared with the existing references, the main contribu-
tions of this paper are summarized as follows:

1) Under the frame of ADP, the adaptive critic-based learn-
ing algorithm is proposed to solve optimal control prob-
lems for a class of typical robotic systems.

2) An additional stabilizing term is incorporated into the
updating algorithm of the critic network weight, and it
releases the requirement of initial stabilizing control.

3) In [54]–[56], overall nonlinear perturbation is upper
bounded and this boundary is assumed to be known,
which limits the application scope of the designed al-
gorithm. In this paper, this requirement is relaxed suc-
cessfully.

Notations 1: Let ‖ ∗ ‖ denote the Euclidean norm of ∗. Let
∇∗ , ∂∗

∂x denote the gradient operator with x being a column
vector and ∇∗ being a row vector. Let 0 denote a vector with
appropriate dimensions, and its every element is zero. Let ∗̂
denote the approximation of ∗. Let I ∈ Rn×n denote the
identity matrix with appropriate dimensions. Let ∗ ∈ Rn be a
vector whose every element is defined as ∗i, i = 1, . . . , n.

II. PRELIMINARIES AND PROBLEM FORMULATION
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Fig. 1: Sketch of a two-link robot manipulator.

The parameters in Fig. 1 are defined as follows: q =
[q1, q2]T denotes the position vector in joint space. µ =
[µ1, µ2]T denotes the control input. l1, l2 denote the length
of link 1 and link 2, respectively. m1,m2 denote the mass of

link 1 and link 2, respectively. I1, I2 denote the moment of
inertial of link 1 and link 2 with respect to their own center
of mass, respectively. lc1 and lc2 denote the half of length of
link 1 and link 2, respectively.

By applying the Euler-Lagrange method, a two-link robot
manipulator [44] shown in Fig. 1 is modeled as follows

M(q)q̈ + C(q, q̇)q̇ +G(q) = µ (1)

with

M(q) =

[
p1 + p2 + 2p3 cos q2 p2 + p3 cos q2

p2 + p3 cos q2 p2

]
(2)

C(q, q̇) =

[
−p3q̇2 sin q2 −p3(q̇1 + q̇2) sin q2
p3q̇1 sin q2 0

]
(3)

G(q) =

[
p4g cos q1 + p5g cos(q1 + q2)

p5g cos(q1 + q2)

]
(4)

where p1 = m1l
2
c1+m2l

2
1+I1, p2 = m2l

2
c2+I2, p3 = m2l1lc2,

p4 = m1lc2+m2l1 and p5 = m2lc2. For convenience, M,C,G
are used to denote M(q), C(q, q̇), G(q), respectively.

Given the desired trajectory qd, error z is defined as follows

z = q − qd (5)

and then the first derivative and the second derivative are
calculated as ż = q̇ − q̇d and z̈ = q̈ − q̈d, respectively. Then,
the sliding model surface e is defined by

e = Λz + ż (6)

where Λ ∈ R2×2 denotes the constant gain matrix, which
implies

q̇ = e− Λz + q̇d (7)

Differentiating (6) leads to ė = Λż + z̈. Then, it follows that
ė = Λż + q̈ − q̈d. Therefore, we have

q̈ = ė− Λż + q̈d (8)

By substituting (7) and (8) into (1), error dynamics is rewritten
as

ė =−M−1C(q̇d − Λz + e)−M−1G
− q̈d + Λż +M−1µ (9)

Define x = [z, e]T ∈ R4, and the following augment system
is obtained.

ẋ =

 e− Λz,
−M−1C(q̇d − Λz + e)
−M−1G− q̈d + Λż

+

[
0

M−1

]
µ (10)

It is assumed that mass mi and length li are all known and
called the nominal value such that system matrixes M,C,G
are all known. Consequently, augment system (10) is called
the nominal system. It is worth pointing out that nominal
system (10) is based an assumption that mass of i-th link is
uniformly distributed and mi, li are accurate mass and length
of i-th link, respectively. However, due to the complexity of
the robotic structure and movement, this assumption is not
always satisfied.

Define ∆mi as an unknown perturbation of mass of link i,
and define ∆li as an unknown perturbation of length of link
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i. Then, mi + ∆mi and li + ∆li are accurate mass and length
of link i. Define ∆M,∆C,∆G as the unknown nonlinear
perturbation of M,C and G, respectively. It should be pointed
out that ∆M,∆C,∆G are functions of ∆mi,∆li and will be
specified in simulation. By considering mass perturbation ∆mi

and length perturbation ∆li, augment system (10) is rewritten
as

ẋ =


e− Λz,

−(M + ∆M)−1(C
+∆C)(q̇d − Λz + e)
−(M + ∆M)−1(G
+∆G)− q̈d + Λż

+

[
0

(M + ∆M)−1

]
µ

(11)

Considering (∆M + M)(∆M + M)−1 = I = MM−1 and
then adding and subtracting ∆MM−1 to the right-hand, lead
to

(∆M +M)(∆M +M)−1 = (∆M +M)M−1 −∆MM−1

(12)

Thus, we obtain

(∆M +M)−1 = M−1 − (∆M +M)−1∆MM−1 (13)

Substituting (13) into (11) leads to

ẋ = f(x) + g(x)µ+ d(x) (14)

with nonlinear functions f : R4 → R4, g : R4 → R4×2 and
d : R4 → R4 being specified by

f(x) =

 e− Λz,
−M−1C(q̇d − Λz + e)
−M−1G− q̈d + Λż

 , g(x) =

[
0

M−1

]
,

d̄(x) = −M−1∆C(q̇d − Λz + e) + (∆M +M)−1∆MM−1

× (C + ∆C)(q̇d − Λz + e)−M−1∆G+ (∆M +M)−1

×∆MM−1(G+ ∆G)− (∆M +M)−1∆MM−1µ

Let d(x) = [0, d̄(x)]T . It is assumed that there exists a
certain state xc satisfying f(xc) = 0 and d(xc) = 0. Assume
that ‖g(x)‖ ≤ gc and ‖d(x)‖ ≤ dc with gc and dc being
positive constants. In light of the definition of f(x), g(x)
and d(x), it is found that f(x) and g(x) consist of nominal
system dynamics and thus are known. d(x) consists of both
nominal system dynamics and the corresponding unknown
nonlinear perturbation, and consequently can be considered
as the equivalent unknown nonlinear perturbation.

III. ROBUST OPTIMAL CONTROL USING ADP

A. Robust Optimal Control

An auxiliary system is introduced as

ẋ = f(x) + g(x)µ+ (I − g(x)g+(x))v (15)

where g+(x) denotes the moore-penrose pseudoinverse of
g(x) and v denotes an auxiliary control input. It should be
emphasized that the fist two terms of system (15) are the same
as the first two term of system (14). For auxiliary system (15),
for the sake of tackling the infinite horizon optimal control
problem, optimal control µ and auxiliary optimal control v

should be found to minimize the infinite horizon cost function
given by

J(x(t)) =

∫ ∞
t

(Θ(x(τ)) + U(µ(x(τ)), v(x(τ))))dτ (16)

where Θ(x(τ)) = x(τ)TQx(τ), U(µ(x(τ)), v(x(τ))) =
µ(x(τ))TRµ(x(τ)) + κ2v(x(τ))T v(x(τ)), Q = Q̃ + ρ2I , ρ
and κ are positive numbers, Q̃ ∈ R4×4 and R = R̃T R̃ ∈ R2×2

are symmetric positive definite matrixes. For simplicity, J(x)
denotes J(x(t)) for short. In terms of optimal theory, optimal
control µ and auxiliary optimal control v stabilize auxiliary
system (15), and make cost function (16) finite, i.e., the
feedback control law should be admissible. Define χ1, χ2 as
the sets of admissible controls µ and v, respectively. Then, for
admissible controls ∀µ ∈ χ1 and ∀v ∈ χ2, if cost function
J(x) given in (16) is continuously differentiable, then its
infinitesimal version is the nonlinear Lyapunov equation given
by

Θ(x) + U(µ(x), v(x)) + (∇J(x))
T

(f(x)

+ g(x)µ+ (I − g(x)g+(x))v) = 0 (17)

Then, define the Hamiltonian as

H(x, µ,v,∇J(x)) = Θ(x) + U(µ(x), v(x)) + (∇J(x))
T

× (f(x) + g(x)µ+ (I − g(x)g+(x))v) (18)

The optimal cost function of auxiliary system (15) is defined
as follows

J∗(x) = min
µ∈χ1,v∈χ2

∫ ∞
t

(Θ(x(τ)) + U(µ(x(τ)), v(x(τ))))dτ

(19)

with J∗(0) = 0. In order to obtain a controller that minimizes
the cost function in the worst-case disturbance, it incorporates
the requirement of finding the Nash equilibrium solution
corresponding to HJI equation. In terms of optimal theory,
the following HJI equation is obtained.

0 = min
µ∈χ1,v∈χ2

H(x, u,v,∇J∗(x)) (20)

It is assumed that the minimum on the right-hand side of
(20) exists and is unique. In other words, the control inputs µ
and v should minimize the Hamiltonian (18). Thus, applying
∂H(x,µ,v,∇J∗(x))

∂µ = 0 and ∂H(x,µ,v,∇J∗(x))
∂v = 0 to (18), we

derive the optimal control expressed as

µ = −1

2
R−1gT (x)∇J∗(x) (21)

v = − 1

2κ2
(I − g(x)g+(x))T∇J∗(x) (22)

It should be noted that optimal control µ and auxiliary optimal
control v lead to H(x, µ, v,∇J∗(x)) = 0.

Theorem 1: Optimal control µ given by (21) ensures that
state x in (14) is UUB and eventually converges to the set Ω
defined by

Ω := {x|‖x‖ ≤
√
c

ρ
} (23)
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where c is defined by

sup
v∈χ1
µ∈χ2

(2κ2‖v‖2 + κ2‖d(x)‖2 + ‖R̃g+(x)d(x)‖2) = c (24)

Proof: By noticing optimal cost function (19), we know that
J∗(x) > 0 as x 6= 0 and J∗(x) = 0 if and only if x = 0, which
implies that J∗(x) is a positive Lyapunov function candidate
of nonlinear system (14) with dynamical uncertainty. Consider
(14), the time derivative of J∗(x) is given as

J̇∗(x) = (∇J∗(x))
T

(f(x) + g(x)µ+ d(x)) (25)

We add and subtract (∇J∗(x))
T

(I − g(x)g+(x))v and
(∇J∗(x))

T
g(x)g+(x)d(x) to the right-hand of (25), therefore

the following equation holds

J̇∗(x) =(∇J∗(x))
T

(f(x) + g(x)µ+ (I − g(x)g+(x))v)

− (∇J∗(x))
T

(I − g(x)g+(x))v

+ (∇J∗(x))
T
g(x)g+(x)d(x)

+ (∇J∗(x))
T

(I − g(x)g+(x))d(x) (26)

Substituting (17), (21) and (22) into (26) yields

J̇∗(x) =− xTQx− µTRµ+ κ2‖v‖2

− 2µTRT g+(x)d(x)− 2κ2vT d(x) (27)

In terms of the Young’s inequality, we have
−2µTRT g+(x)d(x) ≤ µT R̃T R̃µ + ‖R̃g+(x)d(x)‖2 and
−2κ2vT d(x) ≤ κ2‖v‖2 + κ2‖d(x)‖2. Substituting the above
inequalities into (27) yields

J̇∗(x) ≤− xT Q̃x+ 2κ2‖v‖2

+ ‖R̃g+(x)d(x)‖2 + κ2‖d(x)‖2 − ρ2‖x‖2 (28)

Assume that the upper bound of 2κ2‖v‖2+‖R̃g+(x)d(x)‖2+
κ2‖d(x)‖2 is c for v ∈ χ1, µ ∈ χ2 with c being a positive
constant. If c < ρ2‖x‖2, i.e. ‖x‖ >

√
c
ρ , we have J̇∗(x) ≤

−xT Q̃x < 0 as x 6= 0, which illustrates that x decreases
and eventually converges to the set Ω := {x|‖x‖ ≤

√
c
ρ }.

Consequently, we can conclude that nonlinear system (14) with
dynamical uncertainty is UUB. This finishes the proof.

Remark 1: According to the mentioned-above proof, we
know that x will go into the set Ω and that the size of the set
Ω is affected by parameters κ and ρ. Hence, the satisfactory
tracking performance can be obtained by adjusting κ and ρ. In
this paper, parameter c is just for analysis and is not required
to be known in practice, which implies that the requirement
of the known upper bound of overall nonlinear perturbation is
released.

Remark 2: According to (21) and (22), we know the opti-
mal control of auxiliary system (15) is obtained by solving HJI
equation. According to Theorem 1, we find that the optimal
control of auxiliary system (15) with cost function (16) can be
considered as a robust optimal control of nonlinear system (14)
with dynamical uncertainty. However, the available solution
of the HJI equation is always difficult or even impossible to
derive [54]. The ADP approach is effective in solving optimal
problems [58]. Then, based on ADP, we will develop an
approximate robust optimal control and give the detailed proof

of system stability.

B. Adaptive Critic Design Based on ADP

It is assumed that optimal cost function J∗(x) is continu-
ously differentiable. In light of the approximation ability of
NNs, the following equality holds

J∗(x) = ωTσ(x) + ε(x) (29)

where ω ∈ Rl denotes the optimal constant weight vector,
σ : R4 → Rl denotes the activation function which is
chosen according to engineering experience, ε(x) denotes the
approximation error, l denotes the node number of the hidden
layer. Then, the derivative of (29) with respect to x yields

∇J∗(x) = (∇σ(x))
T
ω +∇ε(x) (30)

Then, substituting (30) into (21) and (22) yields

µ = −1

2
R−1gT (x)((∇σ(x))

T
ω +∇ε(x)) (31)

v = − 1

2κ2
(I − g(x)g+(x))T ((∇σ(x))

T
ω +∇ε(x)) (32)

Define B = g(x)R−1gT (x),B = (I − g(x)g+(x))(I −
g(x)g+(x))T . Based on (30), HJI equation (20) becomes

H(x, µ, v, ω) = Θ(x) + U(µ(x), v(x)) + ωT∇σ(x)

× (f(x) + g(x)µ+ (I − g(x)g+(x))v) = ec (33)

where

ec =− (∇ε(x))T (f(x) + g(x)µ+ (I − g(x)g+(x))v) (34)

Assume that ec is bounded, i.e., there exists a positive constant
λec such that |ec| ≤ λec holds [59]. Since the optimal weight ω
is unknown, the optimal cost function J∗(x) is approximated
in the following form.

Ĵ∗(x) = ω̂Tσ(x) (35)

The derivative of (35) with respect to x yields

∇Ĵ∗(x) = (∇σ(x))
T
ω̂ (36)

Similarly, the following approximate optimal control is ob-
tained.

µ̂ = −1

2
R−1gT (x)(∇σ(x))

T
ω̂ (37)

v̂ = − 1

2κ2
(I − g(x)g+(x))T (∇σ(x))

T
ω̂ (38)

Similarly, the approximate Hamiltonian Ĥ(x, µ̂, v̂, ω̂) of
Hamiltonian H(x, µ, v, ω) is given by

Ĥ(x, µ̂, v̂, ω̂) = Θ(x) + U(µ, v) + ω̂T∇σ(x)

× (f(x) + g(x)µ̂+ (I − g(x)g+(x))v̂) = eH (39)

Define the approximation error of critic NN weights as ω̃ =
ω − ω̂. By defining eH = Ĥ(x, µ̂, v̂, ω̂) − H(x, µ, v, ω), we
further have

eH = ec + ωT∇σ(x)(f(x)− g(x)µ̃− (I − g(x)g+(x))ṽ)

− ω̃T∇σ(x)(f(x) + g(x)µ̂+ (I − g(x)g+(x))v̂) (40)
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where µ̃ = µ − µ̂ and ṽ = v − v̂. It should be emphasized
that H(x, µ, v, ω) = 0 leads to eH = Ĥ(x, µ̂, v̂, ω̂). Then, to
ensure that eH is upper bounded, we need to minimize the
objective function E = 1

2e
2
H . Thus, an appropriate updating

law ˙̂ω should be designed to make the approximate optimal
weight ω̂ converge to the optimal weight ω. To release the need
of initial stabilizing control, motivated by [60], an additional
stabilizing term is incorporated into the standard steepest
descent algorithm. Hence, the following weight updating law
is obtained.

˙̂ω =− αH
(1 + δT δ)2

(
∂E

∂ω̂

)
+

1

2
αch∇σ(x)(B +

1

κ2
B)∇Js(x)

(41)

where αH is the learning factor of the standard steepest
descent algorithm, αc is the stabilizing term learning rate, and
δ ∈ Rl is given as

δ = ∇σ(x)(f(x) + g(x)µ̂+ (I − g(x)g+(x))v̂) (42)

with (1 + δT δ)2 being utilized for normalization. h is defined
as follows

h =

 1, if (∇Js(x))T (f(x) + g(x)µ̂
+ (I − g(x)g+(x))v̂) ≥ 0

0, others
(43)

where Js(x) is a continuous and differentiable Lyapunov
function candidate such that (∇Js(x))

T
(f(x) + g(x)µ+ (I −

g(x)g+(x))v) = −(∇Js(x))
T
G̃∇Js(x) < 0 with G̃ being a

positive definite matrix [55]. Due to ω̇ = 0, we have ˙̃ω = − ˙̂ω,
and error dynamics of critic networks is calculated as

˙̃ω =
αHδ

(1 + δT δ)2
(Θ(x) + U(µ, v) + δT ω̂)

− 1

2
αch∇σ(x)(B +

1

κ2
B)∇Js(x) (44)

Then define δ1 = δ
(1+δT δ)

, δ2 = 1 + δT δ ≥ 1. (44) becomes

˙̃ω =− αHδ1δT1 ω̃ + αH
δ1
δ2
ec

− 1

2
αch∇σ(x)(B +

1

κ2
B)∇Js(x) (45)

The persistence of excitation (PE) condition is essential to
carry out system identification for adaptive control system.
In the paper, adaptive technique is employed to identify
the weight vector of NNs. Therefore, an assumption on PE
condition is given.

Assumption 1: [61] The signal δ1 is persistently exciting
within the interval [t, t+ T ] with T > 0, i.e.,

σ1Il ≤
∫ t+T

t

δ1(y)δT1 (y)dy ≤ σ2Il (46)

holds for t > 0, where σ1 and σ2 denotes positive constants,
and Il is a l-dimensional identify matrix.

In light of Assumption 1, it is easy to obtain that PE
condition guarantees λmin(δ1δ

T
1 ) > 0, which is exceedingly

important in stability analysis.
The structure diagram of the proposed robust optimal con-

trol is given in Fig. 2.
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Fig. 2: Structure of the proposed robust optimal control.

Remark 3: Traditional adaptive critic design often relies on
the selection of initial stability control. The appropriate initial
stabilizing control is exceedingly difficult to derive in practical
systems. In this paper, the great difference is that an additional
stabilizing term is added for reinforcing the learning process,
releasing the need of initial stabilizing control. The last term
of (41) is an additional stabilizing term defined in order to
reinforce the learning process. According to (43), it is known
that when (∇Js(x))T (f(x)+g(x)µ̂+(I−g(x)g+(x))v̂) ≥ 0,
the system is unstable and auxiliary signal h will be activated
to make the second term of (41) work such that the learning
process can be improved. Hence, initial weight vectors can be
set to zero in our paper.

C. Stability Analysis

In this section, we will provide the detailed proof that weight
approximation error ω̃ and the error state x of the auxiliary
system given by (15) are UUB.

Theorem 2: Auxiliary system (15) with approximate opti-
mal control (37) and (38), the critic network weight updating
law (41), then it is concluded that weight approximation error
ω̃ and error state x of auxiliary system (15) are UUB.

Proof: See the Appendix.
Remark 4: In [62], optimal control was proposed for a class

of affine systems where nonlinear functions are all known and
no unknown disturbances exist. In our paper, with a series
of transformation, the robotic system is transformed into an
affine system with unknown disturbances. Although the design
process is similar to that in [62], there are also some apparent
differences, given as follows: 1) In [62], an affine system
is considered without unknown disturbances. In our paper,
an auxiliary system is introduced, and compared with [62],
additional term (I − g(x)g+(x))v̂ is involved for satisfying
the condition of Theorem 1 and further eliminating the effect
of the unknown disturbances; 2) In [62], the only feedback
optimal control is designed. However, optimal controls µ̂ and
v̂ in our paper are designed simultaneously for ensuring that
the closed-loop system is stable and that disturbances are
attenuate.

According to Theorem 2, it can be obtained that ω̃ is
uniformly ultimately bounded, i.e., ‖ω̃‖ ≤ λω with λω being
a positive constant.

Corollary 1: Approximate optimal control given in (37)
eventually converges to a small neighborhood of optimal
control given in (31).
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Proof: Recall (31) and (37), we know that

µ− µ̂ = −1

2
R−1gT (x)((∇σ(x))T ω̃ +∇ε(x)) (47)

By observing the proof of Theorem 1, it follows that
‖∇ε(x)‖ ≤ λε and ‖∇σ(x)‖ ≤ λ2σ . Assume that ‖gT (x)‖ ≤
λg with λg being a positive constant. Therefore, we further
have

‖µ− µ̂‖ = ‖1

2
R−1gT (x)((σ(x))T ω̃ +∇ε(x))‖

≤ 1

2
λmax(R−1)λg(λ2σλω + λε) , λµ (48)

with λmax(R−1) denoting the maximum eigenvalue of matrix
R−1. This finishes the proof.

IV. SIMULATION STUDIES

In this section, we would use a typical robotic system with
two degrees of freedom to verify the effectiveness of the pro-
posed approximate robust optimal control. For the convenience
of simulation implementation, nonlinear perturbations ∆M ,
∆C and ∆G are given as follows

∆M =

[
∆p1 + ∆p2 + 2∆p3 cos q2 ∆p2 + ∆p3 cos q2

∆p2 + ∆p3 cos q2 ∆p2

]
∆C =

[
−∆p3q̇2 sin q2 −∆p3(q̇1 + q̇2) sin q2
∆p3q̇1 sin q2 0

]
∆G =

[
∆p4g cos q1 + ∆p5g cos(q1 + q2)

∆p5g cos(q1 + q2)

]
where ∆p1 = (m1 + ∆m1)(0.5∆l21 + l1∆l1) + 2∆m1l

2
c1 +

(m2 + ∆m2)(∆l21 + 2l1∆l1) + ∆m2l
2
1, ∆p2 = (m2 +

∆m2)(0.5∆l22 + l2∆l2) + 2∆m2l
2
c2, ∆p3 = m2∆l1(lc2 +

0.5∆l2) + ∆m2(l1 + ∆l1)(lc2 + 0.5∆l2), ∆p4 = 0.5m1∆l2 +
∆m1(lc2 + 0.5∆l2) + m2∆l1 + ∆m2(l1 + ∆l1) and ∆p5 =
0.5∆l2(m2+∆m2)+0.5∆m2l2. It should be noted that ∆M ,
∆C and ∆G are unknown in practical robotic systems. There-
fore, the aim of the simulation is to verify the effectiveness
of the proposed control when there exist unknown dynamical
perturbations ∆M , ∆C and ∆G in the robotic system. The
parameters of nominal system (10) are given in Table 1.

Table 1: Parameters of the robot
Parameter Description Value
m1 Mass of link 1 2.0 kg
m2 Mass of link 2 0.85 kg
l1 Length of link 1 0.35 m
l2 Length of link 2 0.31 m
I1 Inertia of link 1 61.25× 10−3 kgm2

I2 Inertia of link 2 20.42× 10−3 kgm2

Initial values are q(0) = [1.1,−0.1]T rad and q̇(0) =
[0, 0]T rad/s. The reference trajectory qd is set as qd = [π2 +
cos(t)e−0.2t, cos(t)e−0.3t]T rad.

A. The Proposed Approximate Robust Optimal Control

We choose Q̃ = diag[1, 1, 1, 1], R = diag[20, 100], Λ =
diag[9, 9], ρ = 141.4, κ = 0.01. A critic NN is constructed to

approximate the optimal cost function as follows

Ĵ∗(x) = ω̂1x
2
1 + ω̂2x1x2 + ω̂3x1x3 + ω̂4x1x4 + ω̂5x

2
2

+ ω̂6x2x3 + ω̂7x2x4 + ω̂8x
2
3 + ω̂9x3x4 + ω̂10x

2
4 (49)

Note that σ(x) = [x21, x1x2, x1x3, x1x4, x
2
2, x2x3, x2x4, x

2
3

, x3x4, x
2
4]T and ω̂ = [ω̂1, ω̂2, ω̂3, ω̂4, ω̂5, ω̂6, ω̂7, ω̂8, ω̂9, ω̂10]T

are the activation function and the estimated weight vector of
the NN, respectively. To obtain the optimal weight ω, the learn-
ing rate of the NN is chosen as αH = 1.4. To release the need
of initial stabilizing control, the learning rate of the additional
stabilizing term is chosen as αc = 0.1× 10−3. Therefore, the
initial value of the critic NN weight can be set as ω̂1(0) =
ω̂2(0) = ω̂3(0) = ω̂4(0) = ω̂5(0) = ω̂6(0) = ω̂7(0) =
ω̂8(0) = ω̂9(0) = ω̂10(0) = 0. Let Js(x) = 1

2x
2. During the

NN learning process, we bring in an exploration noise N(t) =
sin2(t) cos(t) + sin2(2t) cos(0.1t) + sin2(1.2t) cos(0.5t) +
sin5(t) + sin2(1.12t) + cos(2.4t) sin3(2.4t)) to satisfy the
PE condition. The exploration noise is introduced into
the control input and thus affects the system state. After
a learning stage, the weight of the critic NN converges
to [−1.65 × 10−6,−5.46 × 10−7, 0.0069, 0.0040,−6.342 ×
10−8, 0.0018, 0.0014, 1.0592, 0.4804, 0.3061]T as shown in
Fig. 3, which presents the learning process of the critic NN
during the first 500s. Fig. 4 gives the trajectory of tracking
error z in the learning process of the critic NN.
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Fig. 3: Convergence of the weight vector in the learning
process of the critic NN.
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Fig. 4: Evolution of tracking error z in the learning process
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evolution of tracking error z from 0s to 3s)

To fully illustrate the robustness of the propose control,
three different mass perturbation ∆mi and length perturbation
∆li are considered as follows: case one: ∆m1 = 0.1kg,
∆m2 = 0.1kg, ∆l1 = 0.05m, ∆l2 = 0.05m; case two:
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∆m1 = 0.2kg, ∆m2 = 0.2kg, ∆l1 = 0.1m, ∆l2 = 0.1m;
case three: ∆m1 = 0.45kg, ∆m2 = 0.3kg, ∆l1 = 0.15m,
∆l2 = 0.15m. According to the converged critic NN weight
vector, simulation results are given in Figs. 5-8.

Simulation results of the three cases are given in Figs. 5-
7. Figs. 5(a)-7(a) give the trajectories of q and qd, respec-
tively. From Figs. 5(a)-7(a), it is clear that although there are
unknown perturbations ∆M , ∆C and ∆G, under the action
of the proposed control (37), q can still converge to a small
neighborhood of qd. In Figs. 5(b)-7(b), the trajectories of
error z are presented. From Figs. 5(b)-7(b), error z decreases
rapidly as time approaches zero and converges to a small
neighborhood of zero. In Figs. 5(c)-7(c), approximate optimal
control µ̂ is plotted.
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Fig. 5: Case one: simulation results when ∆m1 = 0.1kg,
∆m2 = 0.1kg, ∆l1 = 0.05m, ∆l2 = 0.05m. (In (b), the
inserted plot is a magnification of tracking error z from 0s to
0.5s)

Performance comparison of the three cases is given in Fig.
8. According to Fig. 8, we know that with different mass
perturbations and length perturbations, tracking error z still
decreases rapidly and converges to a small neighborhood of
zero, which shows that approximate optimal control (37) is
strongly robust. It should be noted that when mass perturbation
and length perturbation are very great, the proposed optimal
control (37) will be invalid. However, mass perturbation and
length perturbation corresponding to nominal system (10) in
practice cannot be very great and must be upper bounded.
Consequently, the proposed approximate optimal control (37)
is valid and reasonable in dealing with optimal problems of
robotic systems.
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Fig. 6: Case two: simulation results when ∆m1 = 0.2kg,
∆m2 = 0.2kg, ∆l1 = 0.1m, ∆l2 = 0.1m. (In (b), the inserted
plot is a magnification of tracking error z from 0s to 0.5s)
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Fig. 7: Case three: simulation results when ∆m1 = 0.45kg,
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Fig. 9: Performance comparison of the proposed optimal
control and PD control of case one. (The inserted plots are a
magnification of tracking error z from 20s to 30s) (a) Tracking
error z1. (b) Tracking error z2

B. Performance Comparison between Approximate Robust
Optimal Control and PD Control

To illustrate the superiority of the proposed control (37),
PD control is performed. PD control is designed as follows

µ = −Kpz −Kdż (50)

where Kp ∈ R2×2 denotes the proportion relation and Kd ∈
R2×2 denotes the differential gain.

For each case, three different gains are set. During PD
control simulation implementation, many different gains are
tried to control the robotic system, finally the three different
gains which can stabilize the robotic system better are chosen
as Kp = Kd = 1, Kp = Kd = 40 and Kp = Kd = 70.
Simulation results are given in Figs. 9-11.

It is known from Figs. 9-11 that under the proposed optimal
control (37), tracking error z decreases more rapidly and
converges to a smaller neighborhood of zero than that under
the action of PD control, when there exist different mass
perturbation and length perturbation. That is because PD
control possess a simple structure and does not have any
built-in capability to handle changes in unknown nonlinear
perturbations ∆M , ∆C and ∆G. However, based on an
appropriate cost function, the proposed optimal control not
only stabilizes the robotic system, but also minimizes the cost
function such that the robotic system can possess a satisfactory
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Fig. 10: Performance comparison of the proposed optimal
control and PD control of case two. (The inserted plots are a
magnification of tracking error z from 20s to 30s) (a) Tracking
error z1. (b) Tracking error z2
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Fig. 11: Performance comparison of the proposed optimal
control and PD control of case three. (The inserted plots are a
magnification of tracking error z from 20s to 30s) (a) Tracking
error z1. (b) Tracking error z2

performance and a strong robustness. Therefore, this type of
control is suitable for accurate position tracking.

V. CONCLUSION

The paper proposed on the NN-based robust optimal control
for a robot with dynamical uncertainty. With the help of an
appropriate cost function, the optimal control of the introduced
auxiliary system is regarded as an approximate robust optimal
control of the robot with dynamical uncertainty. The stability
of the closed-loop system including the auxiliary system and
unknown plants has been proved in details.

It should be emphasized that the proposed optimal control
is based on a two-link robotic manipulator. However, the
proposed method is still effective on a multi-link robotic
manipulator. In practice, nominal mass and nominal length of
robotic links are known, and the weights of the critic NN are
adjusted adaptively and eventually converge to optimal values.
The optimal control with optimal weights is regarded as a
robust optimal control of unknown robotic systems.

In practice, a robot is often subject to input saturation
which can degrade the system performance and even incur
instability. Under the frame of optimal algorithms, such as Q-
learning algorithm [63], data-based control [64] and dynamic
programming [65], how to optimize the system performance
and eliminate the effect of input saturation is an open problem.
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APPENDIX

Proof: The Lyapunov function candidate is chosen as

V =
1

2
ω̃T ω̃ + αcJs(x) (51)

Substituting (45) into the time derivative of (51) yields

V̇ =ω̃T (−αHδ1δT1 ω̃ + αH
δ1
δ2
ec −

1

2
αch∇σ(x)

× (B +
1

κ2
B)∇Js(x)) + αc(∇Js(x))T ẋ (52)

Note that δ1 = δ
(1+δT δ)

and δ2 = 1 + δT δ ≥ 1,
we have αH ω̃

T δ1
δ2
ec ≤ 1

2λmax(δ1δ
T
1 )‖ω̃‖2 + 1

2α
2
Hλ

2
ec . Let

λmax(δ1δ
T
1 ) = kλmin(δ1δ

T
1 ) with k being a positive constant,

and (52) is written as

V̇ =− (αH −
k

2
)λmin(δ1δ

T
1 )‖ω̃‖2 +

1

2
α2
Hλ

2
ec −

1

2
αcω̃

Th∇σ(x)

× (B +
1

κ2
B)∇Js(x) + αc(∇Js(x))T ẋ (53)

with αH > k
2 . Furthermore, it is required to satisfy

λmin(δ1δ
T
1 ) > 0, which has been guaranteed according to PE

condition presented in Assumption 1.
Case one: h = 0. Since (∇Js(x))

T
ẋ < 0, it follows that

−(∇Js(x))
T
ẋ > 0. According to the density property of

real numbers, we know that there exist a positive constant
λs satisfying 0 < λsαc‖∇Js(x)‖ < −αc(∇Js(x))

T
ẋ. Hence,

we further have V̇ ≤ −(αH− k
2 )λmin(δ1δ

T
1 )‖ω̃‖2+ 1

2α
2
Hλ

2
ec−

λsαc‖∇Js(x)‖. Then, if the following inequality hold: ‖ω̃‖ >
αHλec√

(2αH−k)λmin(δ1δT1 )
, A1 or ‖∇Js(x)‖ > α2

Hλ
2
ec

2λsαc
, B1, we

would obtain V̇ < 0.
Case two: h = 1. Note that ẋ∗ = f(x) + g(x)µ + (I −

g(x)g+(x))v, we further have ẋ∗ = f(x)− 1
2B(∇σ(x))Tω−

1
2B∇ε(x) − 1

2B(∇σ(x))Tω − 1
2B∇ε(x). Therefore, we have

ẋ = ẋ∗ + 1
2B(∇σ(x))T ω̃ + 1

2B∇ε(x) + 1
2κ2B(∇σ(x))T ω̃ +

1
2κ2B∇ε(x). Therefore, (53) is rewritten as

V̇ ≤− (αH −
k

2
)λmin(δ1δ

T
1 )‖ω̃‖2 +

1

2
α2
Hλ

2
ec + αc(∇Js(x))T

× (f(x) + g(x)µ+ (I − g+(x)g(x))v)

+
αc
2

(∇Js(x))T (B +
1

κ2
B)∇ε(x) (54)

According to the definition of Js(x), we know that
(∇Js(x))

T
(f(x) + g(x)µ + (I − g(x)g+(x))v) =

−(∇Js(x))
T
G̃∇Js(x) < −λ1‖∇Js(x)‖2, where λ1

is the minimum eigenvalue of matrix G̃. Assume that
‖B + 1

κ2B‖ ≤ λ2M , where λ2M is a positive constant.
In terms of Young’s inequality, it follows that V̇ ≤
−λ2‖ω̃‖2 + 1

2α
2
Hλ

2
ec −λ1‖∇Js(x)‖2 + 1

2αcλελ2M‖∇Js(x)‖,
where λ2 = (αH − k

2 )λmin(δ1δ
T
1 ). Then, if the following

inequality holds: ‖ω̃‖ >

√
α2
Hλ

2
ec

2λ2
+

α2
cλ

2
ελ

2
2M

16λ2λ1
, A2 or
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‖∇Js(x)‖ > −αcλελ2M

4λ1
+

√
α2
cλ

2
ελ

2
2M+8λ1λ2

Hλ
2
ec

4λ1
, B2, we

would obtain V̇ < 0.
In the end, define A = max{A1,A2} and B =

max{B1,B2}. If ‖ω‖ ≥ A or ‖∇Js(x)‖ ≥ B, we can
conclude that V̇ < 0. Consequently, we conclude that ω̃ and
x are UUB. This finished the proof.
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