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Abstract.  
 
Isotropic triangulation of NURBS surfaces provides high quality triangular meshes, where 
all triangles are equilateral. This isotropy increases representation quality and analysis 
accuracy. We introduce a new algorithm to generate quasi-isotropic triangulation on 
NURBS surfaces at once, with no prior meshing. The procedure consists of one front made 
of vertexes that advances in a divergence manner avoiding front collision. Vertexes are 
calculated by intersecting arcs whose radius is estimated by trapezoidal rule integration of 
directional derivatives. The parameter space is discretized in partitions such that the error 
of trapezoidal rule is controlled efficiently. A new space, called pattern space, is used to 
infer the direction of the arcs’ intersection. Derivatives, whose analytical computation is 
expensive, are estimated by NURBS surface fitting procedures, which increases the speed 
of the process. The resultant algorithm is robust and efficient. The mesh achieved 
possesses most of the triangles equilateral and with high uniformity of sizes. The 
performance is evaluated by measuring angles, vertex valences and size uniformity in 
different numerical examples. 
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1. INTRODUCTION 
Non-uniform rational B-spline (NURBS) for curves and surfaces are 
ubiquitous in computer aided design (CAD) representation. In addition, 
NURBS became part of analysis due to the so-called Isogeometric Analysis 
(IGA) [1,2]. 
Surface representation in CAD environment is made of elements whose 
vertexes lie on the surface. This discretization into elements is called 
meshing or tessellation and represents an open problem still evolving [3]. 
Tessellation made of triangles, called triangulation, is widely used due to its 
facility of capturing any shape. Triangulation quality may be characterized 
by two parameters: angles of triangles corners and vertexes valences 
(number of triangles attached to each vertex), both measuring distortion of 
the triangles. 
One triangulation is isotropic when it matches the two isotropy conditions: 
all its angles equal to 60 degrees and all valences are six. This situation 
only happens for a hypothetic triangulation with no boundaries, i.e. infinite 
mesh. We state that one bounded (non-infinite) triangulation is quasi-
isotropic if only the triangles that are influenced by the contours do not 
match the isotropy conditions. The rest of the triangles, that are away from 
the boundaries form an isotropic mesh. 
This work presents a new algorithm for computing quasi-isotropic 
triangulation on a given set of NURBS surfaces with no preliminary mesh. 
It provides high quality mesh regardless of the surface shape or 
parametrization. 
 
1.1. Triangulation of parametric surfaces  
There are three types of triangulation techniques: direct, parametric and 
hybrid triangulations [4]. 
Direct approaches compute the vertexes of triangles on the surface physical 
space. The three main methods within this type are the Delaunay 
triangulation [5,6], the advancing front technique [7,8,9,6] and the octree 
division [10,11]. Collision of two different fronts is susceptible of 
appearing in advancing front methods, which generates conflicts for the 
computation of new triangle vertexes. 
Parametric approaches compute the triangulation in the parametric domain 
[12,13,14]. These methods lack uniformity for the resultant triangles for the 
case when the parametrization is not uniform. 
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Hybrid approaches, which is a mix of the two previous methods, cover 
most of the publications within the last two decades. For example, in 
[15,16], surfaces are tessellated by primary coarse triangulation in the 
parameter space and then the quality is increased by the use of  Delaunay 
methods. In [17], sequential triangulation was developed to reduce the 
memory usage of the CPU. An initial mesh was generated by Delaunay 
triangulation and then extra vertexes were added where curvature is more 
pronounced in the physical space. In [18] three different linear 
parametrization techniques for refining one initial triangulation were 
presented. The algorithm shown in [19] triangulated surfaces, minimizing 
the number of triangles and at the same time controlling the error from 
triangular discretization of the surface. The initial mesh assumed the edges 
were already discretized. The resulting tessellation has vertexes density 
which is a function of surface’s curvature. In [20] an automatic 
triangulation was presented; it starts from a preliminary coarse triangulation 
that is refined and improved in two stages. 
1.2. Isotropic meshes 
The ideal isotropic mesh is defined with vertex valences equal to six and all 
angles equal to 60 degrees. One mesh may be approached closer to an 
isotropic mesh by four local operations used iteratively: edge collapsing, 
edge splitting, edge flipping and vertex relocation. 
Surazhsky et al. [21] developed an isotropic remeshing technique to be 
applied to an initial mesh in three stages: generation of vertexes, initial 
vertex partition and modification based on a density function to achieve 
isotropy. The error diffusion algorithm was used for initial geometry 
sampling and then that mesh was modified in order to approximate it closer 
to an isotropic arrangement [22]. Yang and Choi [23] introduced an 
efficient algorithm for the computation of restricted Voronoi diagrams 
(RVD) repeatedly so that it could come closer to isotropic triangulation. 
Isotropic meshes do not apply only to triangulation, but also to other type of 
meshes such as the ones with quads or hexahedral elements, see for 
example [24,25]. 
1.3. Proposed method 
In the mentioned triangulation techniques, a preliminary coarse mesh is 
first created and then modified to enhance the isotropy. Our method 
achieves quasi-isotropic mesh at once with no previous triangulation 
required. It estimates the physical coordinates of vertexes by using 
integration of paths in the parameter space. In the previous work of Tsai et 
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al. [26] a similar technique was used, but the difference with this current 
work is that the path can have any orientation rather than being restrained 
over to orthogonal parameter directions 𝜉𝜉 or 𝜂𝜂. The process consists of an 
advancing front method but, however, avoiding the colliding fronts since 
the front shape is always divergent in the physical space. 
1.4. Article structure 
Section 2 introduces the theoretical background. Section 3 gives a general 
idea of the triangulation process and defines some concepts that are used in 
the rest of the work. Section 4 explains the discretization of NURBS 
curves, that will be used for construction of the surface edges. That 
procedure is the one-dimensional version of the surface triangulation. 
Triangulation of surfaces involves more steps than the discretization of 
curves and it is split into two main sections: section 5 explains the vertexes 
calculation and section 6 details the triangulation itself. Examples are 
provided in section 7 and, finally, section 8 presents conclusions and 
potential future work. 

2. THEORETICAL FORMULATION 
2.1. NURBS 
A NURBS entity (curve or surface) is defined in both the parameter and 
physical spaces. The number of dimensions for the parameter and physical 
spaces are 𝑐𝑐 and 𝑑𝑑 respectively, with 𝑐𝑐 < 𝑑𝑑. For curves 𝑐𝑐 = 1 and for 
surfaces 𝑐𝑐 = 2. In this work we assume 𝑑𝑑 = 3. Figure 1 shows one 
NURBS surface example. 

 
Figure 1. NURBS surface parameter (a) and physical (b) spaces. 
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NURBS entities are the evolution of Bézier entities [27,28] that are formed 
by linear combination of Bernštein polynomials [29](Bernšteın, 1912). 
NURBS entities have a set of control points whose coordinates in the 
physical space are defined by P and weights defined by w. Each control 
point has attached one NURBS basis function. Parametrization is given by 
knot vectors, with one knot vector per each parameter direction. The knot 
vector is a sequence of numbers 𝜩𝜩 =  �𝜉𝜉1  𝜉𝜉2   ⋯  𝜉𝜉𝑎𝑎  ⋯  𝜉𝜉𝑛𝑛+𝑝𝑝+1� with 𝜉𝜉𝑖𝑖  ≤
 𝜉𝜉𝑖𝑖+1. The components of 𝜩𝜩, called knots, are located in the parameter 
space. Stretches between knots are called knot spans. This work assumes 
knot values from 0 to 1 and open knot vectors, i.e. the first and last p+1 
knots are repeated. The number of knots is equal to p+n+1, where p is de 
degree of the NURBS functions and n is the number of control points in the 
parameter direction. Table 1 shows the nomenclature used for curves and 
surfaces. 
Table 1. NURBS nomenclature. 

 Curve Surface 
Direction 1 Direction 2 

Parameter coordinates 𝜉𝜉 𝜉𝜉 𝜂𝜂 

B-spline basis function 𝑁𝑁𝑖𝑖 𝑁𝑁𝑖𝑖 𝑀𝑀𝑗𝑗 

NURBS basis function 𝑅𝑅𝑖𝑖  𝑅𝑅𝑖𝑖,𝑗𝑗 
Number of control 
points 𝑛𝑛 𝑛𝑛 𝑚𝑚 

Degree 𝑝𝑝 𝑝𝑝 𝑞𝑞 

Knot vector 𝜩𝜩 𝜩𝜩 𝛨𝛨 

Physical space 𝑪𝑪 𝑺𝑺 

Parameter space 𝑪𝑪� 𝑺𝑺� 

A NURBS entity is generated by mapping ℝ𝑐𝑐 → ℝ𝑑𝑑 as detailed in 
equations (1) and (2) for curves and surfaces respectively, where R are the 
NURBS basis functions. 

𝑪𝑪(𝜉𝜉) = �𝑅𝑅𝑖𝑖
𝑝𝑝(𝜉𝜉)𝑷𝑷𝑖𝑖

𝑛𝑛

𝑖𝑖=1

 (1) 

𝑺𝑺(𝜉𝜉, 𝜂𝜂) = ��𝑅𝑅𝑖𝑖,𝑗𝑗
𝑝𝑝,𝑞𝑞(𝜉𝜉, 𝜂𝜂)𝑷𝑷𝑖𝑖,𝑗𝑗

𝑚𝑚

𝑗𝑗=1

𝑛𝑛

𝑖𝑖=1

 (2) 

The NURBS basis functions are calculated as in (3) and (4). 
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𝑅𝑅𝑖𝑖
𝑝𝑝(𝜉𝜉) =

𝑁𝑁𝑖𝑖,𝑝𝑝(𝜉𝜉) 𝑤𝑤𝑖𝑖
∑ 𝑁𝑁𝚤̂𝚤,𝑝𝑝(𝜉𝜉) 𝑤𝑤𝚤̂𝚤
𝑛𝑛
𝚤̂𝚤=1

 (3) 

𝑅𝑅𝑖𝑖,𝑗𝑗
𝑝𝑝,𝑞𝑞(𝜉𝜉, 𝜂𝜂) =

𝑁𝑁𝑖𝑖,𝑝𝑝(𝜉𝜉) 𝑀𝑀𝑗𝑗,𝑞𝑞(𝜂𝜂) 𝑤𝑤𝑖𝑖 ,𝑗𝑗
∑ ∑ 𝑁𝑁𝚤̂𝚤,𝑝𝑝(𝜉𝜉) 𝑀𝑀𝚥̂𝚥,𝑞𝑞(𝜂𝜂)  𝑤𝑤𝚤̂𝚤,𝚥̂𝚥𝑚𝑚

𝚥̂𝚥=1
𝑛𝑛
𝚤̂𝚤=1

 (4) 

B-spline functions N can be calculated with the Cox-De Boor iterative 
equations (5) and (6) [30,31]. Figure 1 (a) also includes the B-spline 
functions in both directions. 

For zero degree (𝑝𝑝 = 0): 

𝑁𝑁𝑖𝑖,0(𝜉𝜉) = �1 if 𝜉𝜉𝑖𝑖 ≤  𝜉𝜉 <  𝜉𝜉𝑖𝑖+1
0            otherwise

 (5) 

For degrees 1 and higher (𝑝𝑝 > 0): 

𝑁𝑁𝑖𝑖,𝑝𝑝 =
𝜉𝜉 − 𝜉𝜉𝑖𝑖
𝜉𝜉𝑖𝑖+𝑝𝑝 − 𝜉𝜉𝑖𝑖

 𝑁𝑁𝑖𝑖,𝑝𝑝−1(𝜉𝜉) +
𝜉𝜉𝑖𝑖+𝑝𝑝+1 − 𝜉𝜉
𝜉𝜉𝑖𝑖+𝑝𝑝+1 − 𝜉𝜉𝑖𝑖+1

 𝑁𝑁𝑖𝑖+1,𝑝𝑝−1(𝜉𝜉) (6) 

2.2. Length of paths on NURBS 
The physical path’s length for a NURBS curve between parameter 
coordinates 𝜉𝜉𝑎𝑎 and 𝜉𝜉𝑏𝑏, corresponding to physical coordinates 𝒙𝒙𝑎𝑎 and 𝒙𝒙𝑏𝑏, is 
given by the integral detailed in equation (7). 

𝐿𝐿𝑎𝑎𝑎𝑎 = � �𝑪𝑪,𝜉𝜉 �
𝜉𝜉𝑏𝑏

𝜉𝜉𝑎𝑎
 𝑑𝑑𝑑𝑑 (7) 

Where �𝑪𝑪,𝜉𝜉 � is the norm of the curve derivative w.r.t. parameter 
coordinate 𝜉𝜉. See Figure 2 for clarity. 

 
Figure 2. Curve path between 𝑎𝑎 and 𝑏𝑏 in parameter (a) and physical (b) spaces. Derivative 

at 𝑖𝑖th point (c). 

The physical length of a path on a NURBS surface between parameter 
coordinates 𝛏𝛏𝑎𝑎 to 𝛏𝛏𝑏𝑏, that forms a 𝜃𝜃 angle w.r.t. the horizontal direction and 
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corresponds to physical coordinates 𝒙𝒙𝑎𝑎 and 𝒙𝒙𝑏𝑏, is given by the integral of 
the 𝜃𝜃-directional derivative norm along the path as follows: 

𝐿𝐿𝑎𝑎𝑎𝑎 = � ‖𝑺𝑺,𝜆𝜆 ‖
𝝃𝝃𝑏𝑏

𝝃𝝃𝑎𝑎
 𝑑𝑑𝑑𝑑 (8) 

Where 𝑑𝑑𝜆𝜆 represents an infinitesimal increment in the parameter domain 
with orientation 𝜃𝜃, and 𝑺𝑺,𝜆𝜆 is the 𝜃𝜃 - directional derivative, i.e. 𝑺𝑺,𝜆𝜆 =
 (𝑆𝑆𝑆𝑆,𝜆𝜆 , 𝑆𝑆𝑆𝑆,𝜆𝜆 𝑆𝑆𝑆𝑆,𝜆𝜆 )𝑇𝑇 that is computed as per equation (9). 

𝑺𝑺,𝜆𝜆 = 𝑺𝑺,𝜉𝜉 𝑐𝑐𝑐𝑐𝑐𝑐 𝜃𝜃 + 𝑺𝑺,𝜂𝜂 𝑠𝑠𝑠𝑠𝑠𝑠 𝜃𝜃 (9) 

The distance 𝐿𝐿𝑎𝑎𝑎𝑎 lies onto the surface (physical space) but the shortest 
distance between 𝒙𝒙𝑎𝑎 and 𝒙𝒙𝑏𝑏 might be less (see Figure 3 (b)). 
 

 
Figure 3. Surface path between 𝑎𝑎 and 𝑏𝑏 in parameter (a) and physical (b) spaces. 

Directional derivative at 𝑖𝑖th point (c). 

We can generalize equations (7) and (8) by calling 𝑯𝑯 to the NURBS entity 
and 𝜇𝜇 to the parameter (ξ, 𝛏𝛏 or 𝜆𝜆). Then these two expressions may be 
written as in equation (10), with ℎ = �𝑯𝑯,𝜇𝜇 �. 

𝐿𝐿𝑎𝑎𝑎𝑎 = � ℎ
𝜇𝜇𝑏𝑏

𝜇𝜇𝑎𝑎
 𝑑𝑑𝑑𝑑 (10) 

2.3. Trapezoidal rule for path lengths 
The estimation of the path’s length by the trapezoidal rule is expressed as: 

𝐿𝐿𝑎𝑎𝑎𝑎 ≈  
1
2

(ℎ𝑏𝑏 + ℎ𝑎𝑎  ) Δ𝜇𝜇  (11) 

Under appropriate smoothness assumptions, there exists some point 𝛼𝛼 in 
the integration interval such that the error is bounded, as expressed in 
equation (12) [32], where Δ𝜇𝜇 = (𝜇𝜇𝑏𝑏 − 𝜇𝜇𝑎𝑎) . Since the location 𝛼𝛼 is 
unknown, in this work we will evaluate the error at the initial and final 
locations for the following interval: 
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𝐸𝐸 ≤  
−1
12

  �𝑯𝑯,𝜇𝜇𝛼𝛼 �
′′  (Δ𝜇𝜇)3   (12) 

The calculation of the derivatives �𝑪𝑪,𝜉𝜉 �
′′

 and ‖𝑺𝑺,𝜆𝜆 ‖′′ is detailed in 
Appendix A. The error is expressed as percentage of the path’s length: 

𝐸𝐸𝐸𝐸 ≤  100
𝐸𝐸
𝐿𝐿

   (13) 

where 𝐸𝐸 is the absolute value of the error, computed as in equation (12) and 
𝐿𝐿 is the estimated physical length of the path as in equation (11). 
2.4. Path Parameter Increment corresponding to a physical length 

(PPI) 

Let 𝐿𝐿𝑎𝑎𝑎𝑎 be the length of a path that lies in the physical space of a NURBS 
entity whose end points are a and b. Let c be a third point along the path 
trajectory, either between the end points or beyond b (see Figure 4). The 
Path Parameter Increment procedure (PPI) presented in this section finds 
the parameter coordinate b (𝜇𝜇𝑏𝑏), assuming that the physical coordinates of 
the three points and the parameter coordinates of a and c (𝜇𝜇𝑎𝑎 and 𝜇𝜇𝑐𝑐) are 
known. 

The trapezoidal rule between a and b is written as in equation (11) with Δ𝜇𝜇 
and ℎ𝑏𝑏 being unknowns in this case. To compute Δ𝜇𝜇 we use the third point 
c, whose derivative norm ℎ𝑐𝑐 lies on the line ℎ-𝛥𝛥𝜇𝜇, as shown in Figure 4 
(c). Equation (14) is used, where it was assumed that 𝛥𝛥𝛥𝛥 = 0 coincides 
with the ℎ𝑎𝑎 location: 

ℎ(𝛥𝛥𝜇𝜇) = �
ℎ𝑐𝑐 − ℎ𝑎𝑎

𝜇𝜇𝑐𝑐 − 𝜇𝜇𝑎𝑎
� 𝛥𝛥𝜇𝜇 + ℎ𝑎𝑎 (14) 

 
Figure 4. Path with points a, b and c in physical (a) and parameter (b) spaces. Line in the 

ℎ-𝛥𝛥𝜇𝜇 plane (c). 
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Substituting ℎ𝑏𝑏 in equation (11) with the right-hand side of equation (14), 
we arrive to the quadratic equation for 𝛥𝛥𝜇𝜇, equation (15), where 𝑚𝑚 =
�ℎ

𝑐𝑐−ℎ𝑎𝑎

𝜇𝜇𝑐𝑐−𝜇𝜇𝑎𝑎
�. Among the two possible roots, the non-negative and within, or 

closest to, the interval (𝜇𝜇𝑎𝑎,𝜇𝜇𝑐𝑐) corresponds to the searched increment Δ𝜇𝜇∗. 
𝛥𝛥𝜇𝜇2 𝑚𝑚 + 𝛥𝛥𝜇𝜇 2ℎ𝑎𝑎 − 2𝐿𝐿𝑎𝑎𝑎𝑎 = 0 (15) 

Then, the coordinate 𝜇𝜇𝑏𝑏 is given by: 
𝜇𝜇𝑏𝑏 = 𝜇𝜇𝑎𝑎 + Δ𝜇𝜇∗ (16) 

2.5. Orientation of a surface tangent vector in the parameter space 

Let 𝒗𝒗𝑘𝑘 be a tangent vector to a surface at point 𝑘𝑘 in the physical space, the 
calculation of its orientation in the surface parameter space (𝜃𝜃) will be 
presented in this section. 𝒗𝒗𝑘𝑘 is a linear combination of main derivatives as 
shown in equation (17) (see Figure 5). Coefficients 𝑐𝑐 and 𝑠𝑠 are shortcuts to 
“𝒞𝒞𝒞𝒞𝒞𝒞𝒞𝒞𝒞𝒞” and “𝒞𝒞𝒞𝒞𝒞𝒞𝒞𝒞𝒞𝒞”, respectively, with 𝒞𝒞 being an unknown constant. 

𝑐𝑐 𝑺𝑺,𝜉𝜉
𝑘𝑘+ 𝑠𝑠 𝑺𝑺,𝜂𝜂𝑘𝑘 = 𝒗𝒗𝑘𝑘   (17) 

 
Figure 5. Vector 𝒗𝒗𝑘𝑘 in in physical space and its orientation in the parameter space. 

To compute the orientation 𝜃𝜃, the derivatives 𝑺𝑺,𝜉𝜉
𝑘𝑘 and 𝑺𝑺,𝜂𝜂𝑘𝑘 are firstly 

calculated, then 𝑐𝑐 and 𝑠𝑠 are obtained from the system of equations (17). 
Finally, 𝜃𝜃 is calculated as in the following equation: 

𝜃𝜃 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 �
𝑠𝑠
𝑐𝑐
�  (18) 
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3. PRELIMINARIES 

3.1. Pattern space 

In this work we introduce a new 2D space, named pattern space (S′), as a 
set of vertexes lying on a number of concentric regular hexagons separated 
by the distance 𝑅𝑅𝑜𝑜 = 𝑅𝑅 𝑠𝑠𝑠𝑠𝑠𝑠60. Vertexes are equally spaced at 𝑅𝑅. Due to the 
regular hexagonal arrangement, these vertexes form an isotropic 
triangulation in this space, see Figure 6. 

The centre of the hexagons is located at origin (0,0). Hexagon one is the 
smallest with six vertexes and the rest of the hexagons grow concentrically 
with 12, 18, etc vertexes. Vertexes are numbered: the central is the first and 
the numbering increases for each hexagon that is generated. Inside one 
hexagon, numbers start at the right-hand side corner and move counter-
clockwise (Figure 6 shows some vertex numbers). Considering this 
additional new space for the hexagons (pattern space), three spaces are now 
involved for each surface: pattern, parameter and physical spaces. 

 
Figure 6. Pattern space with five contours (dashed lines). Dots represent vertexes. 

3.2. A whole view: the QIT algorithm 
The Quasi-Isotropic initial Triangulation (QIT) algorithm purpose is to 
mesh a set of contiguous NURBS surfaces, each of them bounded by four 
edge curves, with conformal triangulations between contiguous surfaces 
and with a high degree of isotropy. 
The strategy is to obtain the image of the pattern space vertexes onto the 
surface physical space, which leads naturally to a quasi-isotropic mesh 
given the pattern space arrangement indicated in section 3.1. The target 
distance between vertexes is called 𝑅𝑅 and is introduced by the user. 
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Figure 7 details the flowchart for the process that is briefed in this section. 
The algorithm provides the vertexes coordinates and their relationship in 
the triangulation (the connectivity matrix). The inputs required for the QIT 
algorithm are: 

- Target triangles edge distance (𝑅𝑅): this is the distance that ideally all 
the triangles edges should have in the physical surface. 

- Threshold distance in the physical space from the surface edges to 
discriminate surface vertexes. 

- Tolerance for the error, in percentage, when computing path lengths 
(recall section 2.3). 

- NURBS original data of the surfaces. 

 
Figure 7. QIT algorithm flowchart. Related sections of the paper are in curved brackets. 

Edges between two adjacent surfaces produce duplicated curves, one per 
surface. In order to compute the vertexes in both curves with the same 
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coordinates and achieve conformity between them, they must be considered 
as a single curve instead (see Figure 8). All curves are extracted and those 
duplicated are merged into one. Their vertexes are obtained according to 
the 𝑅𝑅 distance, these are called edge vertexes. Section 4 delivers more 
details of this process. 

 
Figure 8. Extraction of surfaces and curves and their relationship. 

Each surface is triangulated separately: the surface vertexes are calculated, 
the corresponding edge vertexes are added and all vertexes are triangulated. 
Surface vertexes calculation is outlined in Figure 9. The surface parameter 
space is discretized in a mesh called dS-mesh (section 5.1). The first vertex 
is set at mid location and the rest of the vertexes are calculated in a 2D 
hexagonal wave propagation manner. Propagation stops at the hexagon 
with no vertexes computed (see sections 5.4 and 5.5). This procedure links 
vertexes in pattern space with their image in the physical space using the 
parameter space in between (see sections 5.2 and 5.3). 

 
Figure 9. Computation of surface vertexes. 

The advancing front algorithm is divergent in the physical space, therefore 
it is also in the parameter space (we assume the Jacobian of the NURBS 
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mapping to be strictly positive). That divergence is necessary because it 
avoids front collisions. 
Previous to triangulation, surface vertexes outside the parameter limits are 
removed as well as those that are too close to the limits, since they would 
generate highly distorted triangles (see section 6.2). The remaining vertexes 
are called valid. Delaunay triangulation is carried out in the pattern space 
considering both, edge and valid surface vertexes (see section 6.3). Finally, 
the triangles at the edges of the surface might be improved by edge 
flipping, as shown in section 6.4. The triangulation process is illustrated in 
Figure 10. 

 
Figure 10 Triangulation in the pattern space (a), image in the physical space (b) and 

improvement of edges (c). 

3.3. Conventions and definitions 
Coordinates in the pattern, parameter and physical spaces are expressed as 
𝒓𝒓 = (𝑟𝑟, 𝑠𝑠), 𝝃𝝃 = (𝜉𝜉, 𝜂𝜂) and 𝒙𝒙 = (𝑥𝑥,𝑦𝑦, 𝑧𝑧), respectively. Coordinates at a 
specific point 𝑎𝑎 are written with 𝑎𝑎 as superscript, e.g. 𝒓𝒓𝑎𝑎. The expression 
vertex calculation refers to the calculation of the vertex coordinates. 
The definitions listed below are used within the next sections. Figure 11 
provides some examples of them for clarity. 

- Path: straight line between two points in the parameter space, that 
has an image in the surface space, which is not straight in general. 

- 𝜃𝜃 orientation: angle between a path and the horizontal axis in the 
parameter space. 

- 𝜆𝜆: surface parameter coordinate with orientation 𝜃𝜃. 
- Path length: length of a path in the physical space (in general it is 

not the shortest). 
- Edge vertex: vertex computed on edge curves. 
- Surface vertex: vertex computed on the surface. 
- Main derivatives: surface derivatives w.r.t. parameter directions 𝜉𝜉 

and 𝜂𝜂. 
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Figure 11 Basic definitions used in the algorithm in pattern, parameter and physical 

spaces. 

4. VERTEXES OF EDGE CURVES 
The computation of vertexes for edge curves is explained in this section. 
The first step is a parameter space discretization into a dC-mesh in order to 
control the error of the estimated path lengths. 
4.1. Discretization of the parameter space. The dC-mesh 
The dC-mesh is obtained by iterative division of the parameter space so that 
the error 𝐸𝐸𝑝𝑝 from equation (13) can be reduced for a path length estimation 
below a prescribed tolerance. We refer to the norm of the curve derivative 
�𝑪𝑪,𝜉𝜉 � by ℎ and its second derivative �𝑪𝑪,𝜉𝜉 �′′ by  ℎ′′ (see Appendix A for 
the calculation of ℎ′′). 
Initially, dC-mesh partitions coincide with non-void knot vector spans. 
Then, within each partition, the 𝐸𝐸𝑝𝑝 is computed and, in case it is greater 
than a prescribed tolerance, the element is halved. This iterative process 
ends whenever there is no partition with an error greater than the prescribed 
tolerance. The extremities of the partitions are called nodes. Figure 12 
provides one example. To compute the partitions length and error, ℎ and ℎ’’ 
are calculated for each node (recall equations (11) and (12)). 
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Figure 12. dC-mesh division process with first step detailed. 

The error at some locations might be greater than the tolerance since the 
location 𝛼𝛼, introduced in (12), is the initial or final node of the partition, 
whichever maximizes the error, but there might exist an intermediate value 
that leads to a higher error. In spite of this risk, results are satisfactory (refer 
to section 7). 
4.2. Edge vertexes calculation 
To calculate the edge vertexes, the accumulated physical length up to each 
dC-mesh node, called 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿, is estimated by using the trapezoidal rule from 
equation (11) applied to each partition, see Figure 13. The total estimated 
length of the curve is 𝐿𝐿𝑎𝑎𝑎𝑎𝑎𝑎𝑒𝑒𝑒𝑒𝑒𝑒 and the accumulated length up to the previous 
node is 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝. 

 
Figure 13. Computation of accumulated length to each dC-mesh node. 

The target physical spacing between vertexes is not exactly 𝑅𝑅 but it is re-
calculated to ensure that the resultant vertexes are equally spaced. The 
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updated spacing is called 𝑅𝑅𝑅𝑅 and is obtained as 𝑅𝑅𝑅𝑅 = 𝐿𝐿𝑎𝑎𝑎𝑎𝑎𝑎𝑒𝑒𝑒𝑒𝑒𝑒/𝑁𝑁𝑁𝑁, where 
𝑁𝑁𝑁𝑁 = 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝐿𝐿𝑎𝑎𝑎𝑎𝑎𝑎𝑒𝑒𝑒𝑒𝑒𝑒/𝑅𝑅) is the number of required segments between 
vertexes. 

Accumulated target distances (𝑅𝑅𝑅𝑅) are then sequentially searched. 𝑅𝑅𝑅𝑅 
initially is set equal to 𝑅𝑅𝑅𝑅 and increases by 𝑅𝑅𝑅𝑅 in each step. The search first 
finds which partition of the dC-mesh contains 𝑅𝑅𝑅𝑅, using the accumulated 
physical lengths 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿. Then, it estimates the parameter coordinate 
increment Δ𝜉𝜉 within that partition in order to achieve the distance 𝐿𝐿 =
𝑅𝑅𝑎𝑎 − 𝐿𝐿𝑎𝑎𝑎𝑎𝑎𝑎𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 by using the PPI algorithm from section 2.5. See one 
example in Figure 14. 

 
Figure 14. Example for the calculation of the seventh vertex. 

The edge vertexes in the surface parameter space, required for triangulation 
(see section 6), are computed by using point projection techniques [34]. 

5. SURFACE VERTEXES 

For the calculation of surface vertexes the surface must first be discretized 
into a dS-mesh (section 5.1). Sections 5.2 and 5.3 explain the two main 
algorithms used repeatedly in sections 5.4 and 5.5 for the computation of 
the surface vertexes. 
5.1. Discretization of the parameter space. The dS-mesh 
The dS-mesh is obtained by iterative partition of the parameter space. 
Resultant rectangular partitions must be small enough such that the error in 
equations (12) and (13) for any patch length remains below a prescribed 
tolerance. 
Six representative paths were selected within each partition of the dS-mesh, 
they are the four edges and its two diagonals. The partition error is the 
maximum error amongst these six paths. The second derivative ‖𝑺𝑺,𝜆𝜆

𝛼𝛼 ‖′′, 
selected for error calculation (12), must be the maximum amongst the two 
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end points of the corresponding path. The calculation of these derivatives is 
detailed in Appendix A. Figure 15 shows one example, with the fifth path 
detailed and where ‖𝑺𝑺,𝜆𝜆 ‖′′ is called ℎ’’ for simplicity. 

 
Figure 15. Error measurement in one partition of the dS-mesh. 

Initially, partitions are the non-void knot spans. Error (𝐸𝐸𝑝𝑝) is evaluated for 
each partition, which is divided into four rectangles if such error is greater 
than the tolerance. The division process ends whenever the error is smaller 
than the prescribed tolerance in all partitions. 
Once the partitions are generated, the dS-mesh is extended beyond the 
surface parameter limits with so-called perimeter partitions and corner 
partitions. The main derivatives on these partitions are merely an extension 
of the derivatives at the edge limits. These partitions are semi-infinite, i.e. 
one end coincides with the surface parameter limit and the opposite goes to 
the infinite. This extension will be relevant in section 5.4. The whole 
process is depicted in Figure 16. 
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Figure 16. dS-mesh generation: initial setting, partition and extension with perimeter and 

corner partitions. 

It is possible to find locations where the error is greater than the tolerance 
because the location 𝛼𝛼 introduced in equation (12) lies at the start or at the 
end of the path (recall Figure 15) but there might exist an intermediate 
value that leads to a higher error. In addition, only six orientations for the 
paths are analysed event though there are infinite possibilities. In spite of 
this risk, results are satisfactory (refer to section 7). 
5.2. End Parameter Position of a path given its physical length (EPP) 
This section explains the End Parameter Position procedure (EPP) that 
estimates the end location 𝛏𝛏𝑏𝑏 of a path whose initial point coordinates 𝛏𝛏𝑎𝑎, 
orientation 𝜃𝜃 and physical length are known a priori. The physical length is 
called target length and it is denoted by R, as shown in Figure 17. 

 
Figure 17. Path in parameter (left) and physical (right) spaces. The position 𝛏𝛏𝑏𝑏 is the 

output of the EPP algorithm.  

A semi-infinite line, starting at 𝛏𝛏𝑎𝑎 and with orientation 𝜃𝜃 is defined (see 
Figure 18). The procedure is to move along this line computing at each 
time its intersection with dS-mesh edges and calculating the segment 
physical length by using the trapezoidal rule of equation (11). The 𝜃𝜃-
directional derivatives required for equation (11) can be estimated as shown 
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in Appendix B. When the accumulated length of the segments goes beyond 
the target 𝑅𝑅, the parameter coordinate 𝛏𝛏𝑏𝑏 is searched by PPI within the 
current segment (see section 2.5). Some examples are illustrated in Figure 
19. 

 
Figure 18. Estimation of different path increments to achieve the physical target distance 
𝑅𝑅. Above represents the parameter space, with grey hatching the partition of dS-mesh 

involved. Below it is detailed the path in the physical space. 

One special case happens when the ray passes the surface parameter limits 
and does not intersect any more partition edges. For this situation, the 
second trial point c for PPI cannot be computed from the intersection with 
the dS-mesh. Instead, it is obtained by adding a certain distance along the 𝜃𝜃 
direction. In this work, the diagonal length of the surface parameter space 
(𝑢𝑢𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑) is used for that effect. Figure 19 shows two examples representing 
this particular case. 



 

 

20 

 
Figure 19. Examples of application of the EPP for some particular cases. 

5.3. Intersection of two Arcs in Physical space (AIP) 
In this section a procedure called Arcs Intersection in Physical space (AIP) 
will compute the intersection (point 𝑐𝑐) of two arcs, 𝑎𝑎 and 𝑏𝑏, that lie on the 
physical space of the surface. Let us define one arc, onto the surface 
physical space centred at 𝒙𝒙𝑎𝑎, by its radius (𝑅𝑅), trial angle (𝛽𝛽) and amplitude 
(𝛽𝛽𝑎𝑎𝑎𝑎𝑎𝑎), in this work 𝛽𝛽𝑎𝑎𝑎𝑎𝑎𝑎 = 15 degrees. The trial angle is the orientation 
of the arc bisector and the total arc angle is twice the amplitude (see Figure 
20). 

 
Figure 20. Definition of arc and discretization into three lines. 

To find the intersection, arcs are first discretized in a number of lines (𝑁𝑁𝑁𝑁), 
as shown in Figure 20 at the right. Hence, the number of points to compute 
per arc is 𝑁𝑁𝑁𝑁 + 1 (in this work 𝑁𝑁𝑁𝑁 = 3). Due to this discretization 
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procedure, a number of iterations is required to find the intersection point c. 
The iterative process ends when the difference between two consecutive 
intersections is less than a pre-established tolerance (in this work it is 1.0 
%). After each iteration, the trial angles are re-oriented to the updated 
intersection and the amplitudes are also adjusted accordingly. The rest of 
this sub-section has two parts, one to explain the calculation of the end-
points of the arc lines and another to describe the iterative process. 
Discretization of arcs: 

Let us define 𝜋𝜋𝑎𝑎 as the tangent plane to the surface at location 𝒙𝒙𝑎𝑎, and 𝒑𝒑𝒑𝒑𝑎𝑎 
as the vector projected from vector 𝒙𝒙𝑏𝑏 − 𝒙𝒙𝑎𝑎 onto 𝜋𝜋𝑎𝑎, with all of these 
vectors represented in the physical space (Figure 21). 

 
Figure 21. Tangent plane obtained by cross product of the derivatives to the surface (a). 

Projected vector 𝒑𝒑𝒑𝒑𝑎𝑎 onto the 𝜋𝜋𝑎𝑎 plane (b). Front view of the projection’s procedure at the 
right-bottom (c). 

The trial angle 𝛽𝛽𝑎𝑎 is measured from vector 𝒑𝒑𝒑𝒑𝑎𝑎 as shown in Figure 22. 
The value of 𝛽𝛽𝑎𝑎 for the first iteration is selected in the pattern space by 
using relative positions between pattern coordinates of points 𝒓𝒓𝑎𝑎, 𝒓𝒓𝑏𝑏 and 
𝒓𝒓𝑐𝑐. Their values are typically around -60 and +60 degrees for 𝛽𝛽𝑎𝑎 and 𝛽𝛽𝑏𝑏, 
respectively, except for the first hexagon (see section 5.4). The angles for 
the arc points vary from 𝛽𝛽𝑎𝑎1 = 𝛽𝛽𝑎𝑎 − 𝛽𝛽𝑎𝑎𝑎𝑎𝑎𝑎 to 𝛽𝛽𝑎𝑎4 = 𝛽𝛽𝑎𝑎 + 𝛽𝛽𝑎𝑎𝑎𝑎𝑎𝑎, with 
steps Δ𝛽𝛽 = 2𝛽𝛽𝑎𝑎𝑎𝑎𝑎𝑎 𝑁𝑁𝑁𝑁⁄ , all within the 𝜋𝜋𝑎𝑎 plane. 
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Figure 22. Arc angles in the 𝜋𝜋𝑎𝑎 plane (a) and their counterparts in the parameter space (b). 

Trial angle and angles for points 1 and 4 are also indicated. 

Points for the discretized arcs are computed by the EPP algorithm from 
section 5.2, whose inputs needed are the location 𝝃𝝃𝑎𝑎, the target distance 𝑅𝑅𝑎𝑎 
and the orientation 𝜃𝜃 in parameter space. This angle corresponds to 𝛽𝛽, but 
defined w.r.t. the horizontal axis in the parameter space. The procedure to 
find 𝜃𝜃 from 𝛽𝛽 is depicted in Figure 23 and its steps are explained below: 

- Compute the tangent plane 𝜋𝜋𝑎𝑎 in the physical space. The normal 
vector to the plane is given by 𝒏𝒏𝒂𝒂 = 𝑺𝑺,𝜉𝜉

𝑎𝑎× 𝑺𝑺,𝜂𝜂𝑎𝑎 (for the computation 
of the derivatives see Appendix B). 

- Find 𝒑𝒑𝒑𝒑𝑎𝑎: the projection of 𝒙𝒙𝑏𝑏𝑎𝑎 onto 𝜋𝜋𝑎𝑎 (for arc 𝑏𝑏 use 𝒙𝒙𝑎𝑎𝑏𝑏). 
- Form local base 𝑩𝑩𝑎𝑎 with vectors 𝒏𝒏𝒂𝒂, 𝒑𝒑𝒑𝒑𝑎𝑎 and 𝒘𝒘. Note that 𝒘𝒘 =

𝒏𝒏𝒂𝒂 × 𝒑𝒑𝒑𝒑𝑎𝑎. 
- Compute vector 𝒗𝒗𝑎𝑎 contained in plane 𝜋𝜋𝑎𝑎 that forms 𝛽𝛽 degrees with 

𝒑𝒑𝒑𝒑𝑎𝑎. This step involves computing vector 𝒗𝒗𝑎𝑎′ in the local base 𝑩𝑩𝑎𝑎 
(at 𝛽𝛽 degrees from 𝒑𝒑𝒑𝒑𝑎𝑎) and transforming to the global coordinate 
system to obtain 𝒗𝒗𝑎𝑎. 

- Obtain 𝜃𝜃, which is the orientation of 𝒗𝒗𝑎𝑎 referred to the horizontal 
axis in the parameter space, as described in section 2.5. 
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Figure 23. Calculation of angle 𝜃𝜃 correspondent to the 𝛽𝛽 angle. Computation of the 𝜋𝜋𝑎𝑎 

plane and projected vector 𝒑𝒑𝒑𝒑𝑎𝑎 (a); local base 𝑩𝑩𝑎𝑎 (b); vector with 𝛽𝛽 angle 𝒗𝒗𝑎𝑎 (c); 
corresponding angle 𝜃𝜃 in the parameter space (d). 

The above-mentioned process is applied to the points of the arc for each 
iteration. The arc points obtained are equally spaced in the physical space 
but in the parameter space they can be distorted depending on the 
parametrization procedure used. 
Iterative process: 
Once the a and b arcs are discretized, the intersection of their lines can be 
calculated. The result is then compared against the previous intersection 
and, if it is greater than a threshold (1% in this work), arcs are re-defined 
and discretized again, and the intersection is re-calculated. If the difference 
is less than tolerance, then the process ends and the latest intersection is the 
one assumed valid. 
After each iteration the trial angles are re-oriented to the latest computed 
intersection. The closer the initial trial angles (𝛽𝛽𝑎𝑎 and 𝛽𝛽𝑏𝑏) are to the final 
answer the smaller number of iterations are required. Since their initial 
values are taken from the pattern space, they are very close to the final 
answer and the number of iterations are typically equal or less than three. In 
addition, the pattern space is used to know the side that 𝝃𝝃𝑐𝑐 must hold w.r.t. 
the vector from 𝝃𝝃𝑎𝑎 to 𝝃𝝃𝑏𝑏 (𝝃𝝃𝑏𝑏𝑎𝑎) via the cross product 𝒓𝒓𝑏𝑏𝑎𝑎 × 𝒓𝒓𝑐𝑐𝑎𝑎. If the third 
component of this cross product is positive, then 𝝃𝝃𝑐𝑐 must lie at the left-hand 
side of 𝝃𝝃𝑏𝑏𝑎𝑎, otherwise it must lie at the right-hand side. 

Four cases are possible to happen during the iterative process: 

- Case A: intersection is found and it is in the correct side. If the error 
is greater than the tolerance then the next iteration is prepared: trial 
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angles are reoriented to the updated intersection and arc amplitudes 
are reduced after dividing by 𝑁𝑁𝑁𝑁. See Figure 24.  

- Case B: intersection is found but it is located on the wrong side. The 
angle amplitude is then doubled, see Figure 25. 

 
Figure 24. AIP case A in the parameter space. 

 

 
Figure 25. AIP case B in the parameter space. The pattern space is also shown for the ith 

iteration. 

- Case C: no intersection is found. Both the angle amplitude and the 
number of segments per arc (𝑁𝑁𝑁𝑁) are doubled up for the next 
iteration, see Figure 26. 
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- Case D: the intersection was found previously but it was lost in the 
current iteration. The angle amplitude is then doubled for the next 
iteration.  

For cases B to D, the arc amplitude might need to be increased to raise the 
possibilities of finding the intersection point. 

 
Figure 26. AIP case C in the parameter space. 

5.4. Computation of vertexes 
This section explains how to compute the vertexes of the surfaces based on 
the EPP and AIP algorithms. First, the vertex is arbitrarily placed at the 
centre of the parameter and pattern spaces, i.e. 𝛏𝛏1 = (0.5,0.5) and 𝒓𝒓1 =
(0,0). Second, the vertex is computed by EPP with target distance 𝑅𝑅, 
orientation 𝜃𝜃 = 0 and initial location 𝛏𝛏1. The rest of the first hexagon 
vertexes (𝛏𝛏3 to 𝛏𝛏7) are computed by the algorithm AIP from the previous 
vertex and 𝛏𝛏1, both with radius equal to 𝑅𝑅. Initial trial angles for AIP are 
𝛽𝛽𝑎𝑎 = −60 and 𝛽𝛽𝑏𝑏 = +60. Figure 27 illustrates the fourth vertex 
calculation in the pattern space, showing only the final iteration for clarity. 
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Figure 27. Fourth vertex computation. 

The remaining vertexes are computed alongside the creation of the 
hexagons during their propagating motion  in the form of  a 2D hexagonal 
wave. Within one hexagon, each vertex is computed using two vertexes 
from previous hexagons as centre points for the intersection of the arcs 
(AIP). This pair, called base vertexes, is selected according to the current 
vertex position: side or corner (see Figure 28). The base vertexes for the 
former are the closest of the previous hexagon’s side. The base vertexes for 
the latter are at both sides of the previous corner. If we call a and b to be 
the base vertexes and c to be the current vertex, the inputs required for AIP 
are described in Table 2 for each type of vertex. 

 
Figure 28. Vertex computation for some contours in the pattern and parameter spaces for 

side and corner vertexes. Only the final iteration arcs are depicted here for clarity. 

Table 2. Inputs used for the intersection of arcs (AIP) to find each type of vertex. 
Current vertex location Initial trial angles 𝛽𝛽𝑎𝑎 and 𝛽𝛽𝑏𝑏 radius 

Side -60 and 60 𝑅𝑅 
corner -60 and 60 √3 𝑅𝑅 

Not all the vertexes are computed: one vertex is computed if and only if at 
least one of its base vertexes lies inside the surface parameter limits. This 
rule avoids the computation of most of the vertexes that do not lie in the 
surface, reducing the computational cost considerably. Therefore, the 
unique hexagonal front that propagates from the central point will be cut 
and divided into two or more fronts by the surface boundaries during the 
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propagation process, but its divergence is still a possibility. The 
propagation of contours ends at the hexagon that has all its vertexes non-
computed, i.e. all the base vertexes, from previous hexagons, lie outside the 
surface parameter limits. 
One of the base vertexes might be outside the limits in the parameter 
domain. That vertex involves computations beyond the limits of the surface 
and this is why the perimeter and corner elements of a dS-mesh are 
necessary (recall section 5.1). 
5.5. Recovering of non-computed base vertexes 
The procedure described in section 5.4 might lead to a vertex c with one 
base vertex non-computed. Let us call a and b to the computed and non-
computed base vertexes respectively. If vertex c is to be calculated (we 
assume a inside surface limits) the base vertex b needs to be estimated. 
Two carry out this ‘rescue’ of vertex b we need first to identify its 
neighbours. 
The vertexes that surround the b vertex in its first and second perimeters are 
localized using their relationship in the pattern space (see Figure 29). The 
relevant information required from these neighbour vertexes are their 
references, pattern distances and angles measured from vertex 𝑏𝑏. Two of 
them are then selected, giving priority to the first perimeter and to the pair 
that form 60 or 120 degrees with each other. The calculation of the b vertex 
is done by using AIP and the selected neighbour vertexes. 

 
Figure 29. Pattern space representation of neighbour vertexes of 22 (side vertex) and 32 

(corner vertex). First and second perimeters are indicated in solid line. 
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6. TRIANGULATION 

This section details the surface triangulation. Section 6.1 explains the 
calculation of edge vertexes in the pattern space. Section 6.2 gives the 
criteria to detect non-valid surface vertexes for the triangulation.  Section 
6.3 shows the triangulation itself and section 6.4 details the improvement 
achieved at the edges. 
The surface vertexes computed so far may be classified as follows. Let us 
define 𝛥𝛥𝑥𝑥𝑡𝑡ℎ as a pre-established threshold distance in the physical space, 
which is measured from the surface edges (in this work 𝛥𝛥𝑥𝑥𝑡𝑡ℎ = 𝑅𝑅/3), then: 

- SI-vertex: is a surface vertex which lies inside the parameter limits 
of the surface and is located further away of more than 𝛥𝛥𝑥𝑥𝑡𝑡ℎ from 
the edges of the surface. 

- SE-vertex: is a surface vertex inside the parameter limits of the 
surface and lies within a distance lower than 𝛥𝛥𝑥𝑥𝑡𝑡ℎ when measured 
from the edges of the surface. 

- SO-vertex: is a surface vertex which lies outside of the surface 
parameter limits. 

6.1. Estimation of edge vertexes in the pattern space 
The edge vertexes’ coordinates in the pattern space are part of the final 
triangulation procedure and, furthermore, they form the constraint that 
determines which triangles are inside or outside of the computable domain. 
Since these coordinates are unknown (edge vertexes were computed 
independently, see section 4) they need to be estimated. 
We construct a triangulation with all surface vertexes (SO, SE and SI-
vertexes) in the parameter space. This triangulation allows the mapping 
ℝ2 → ℝ2 from the surface parameter space to the pattern space. The 
parameter coordinates for the edge vertexes lie within this triangular net, 
therefore their pattern coordinates may be calculated by the following 
mapping: 

𝒓𝒓𝑎𝑎 = �𝑁𝑁𝑖𝑖𝒓𝒓𝑖𝑖
3

𝑖𝑖=1

 (19) 

Where shape functions 𝑁𝑁𝑖𝑖 are the area coordinates, as defined in equation 
(20), where 𝐴𝐴𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 is the area of the triangle and 𝐴𝐴𝑖𝑖 are the sub-areas 
attached to each node of the triangle. In Figure 30, one example for the 
computation of the pattern coordinates for vertex 𝑎𝑎 is illustrated. 
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𝑁𝑁𝑖𝑖 =
𝐴𝐴𝑖𝑖

𝐴𝐴𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
 (20) 

 
Figure 30. Triangulation of all vertexes in the parameter space (a) and calculation of the 

pattern coordinates of the edge vertex 𝑎𝑎 (b). 

The triangulation explained in this section is not the final aim chased by the 
QIT procedure but it is a temporary triangulation that permits the estimation 
of the pattern coordinates of edge vertexes with some degree of accuracy. 
6.2. Removal of non-valid surface vertexes 
Only SI-vertexes are considered in the triangulation (valid vertexes). 
Meanwhile SO and SE-vertexes are non-valid. SO-vertexes are detected 
because they are located on the outside of the surface limits. SE-vertexes 
are closer than 𝛥𝛥𝑥𝑥𝑡𝑡ℎ to the edges of the surface. To measure the distance 
from one surface vertex to the edges, the closest pair of edge vertexes needs 
to be found. Then the distance from the vertex to the segment between both 
edge vertexes is computed in the physical space. 
6.3. Delaunay triangulation in the pattern space 
Triangulation is done in the pattern space mainly for two reasons: 
- It will be quasi-isotropic, given the vertexes arrangement of this space. 
- It is a 2D plane space that facilitates the entire process. 
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The resultant triangulation in the physical space will inherit the same 
features of the triangulation on the pattern space since the location of its 
vertexes follows the same scheme. 
Valid surface and edge vertexes obtained in previous steps are used in this 
section for the Delaunay triangulation. Edge vertexes impose constraints to 
the triangulation: they form the perimeter of the domain (see Figure 31). 

 
Figure 31. All vertexes and resultant triangulation with valid vertexes in the pattern space. 

6.4. Edge strip triangles amendment 
Let us call edge triangles strip to triangles that have at least one edge 
vertex. As the pattern coordinates of edge vertexes were already estimated 
(section 6.2) they might not yield the highest quality triangulation in the 
physical space along this strip. 
A localized improvement through the edge triangles strip is needed to 
reduce their distortion. Since not all the triangles are to check but only the 
edge strip ones, the process is computationally cheap. Triangles are selected 
in pairs, forming one quadrilateral, in advancing sequence along the four 
different edges separately. In each quadrilateral, both diagonals are 
measured in the physical space and the shortest diagonal is selected, which 
might coincide with the original or might not (the diagonal is then flipped). 
Quadrilaterals with at least one angle greater than 180º are not checked. 
Figure 32 illustrates one example for demonstration purposes, where only 
one edge strip is detailed for clarity. 
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Figure 32. Edge triangles strip before (a) and after (b) improvement. Quadrilaterals 

advancing at left edge (c).  

7. NUMERICAL EXAMPLES 

The aim of the two examples presented in this section is to demonstrate the 
performance of QIT. Geometry and algorithm input details are listed in 
Appendix D. For both examples, the resultant mesh from the proposed QIT 
algorithm is compared with the equivalent highest quality triangulation 
ideally achievable, that we call BIT (acronym for ‘Bounded Isotropic 
Triangulation’). Details of such triangulation are provided in Appendix C, 
but here we list the most relevant features: 

- All angles are sixty degrees. 

- All triangles have the same area: 𝐴𝐴𝐵𝐵𝐵𝐵𝐵𝐵 = 𝑅𝑅2

4
𝑡𝑡𝑡𝑡𝑡𝑡60. 

- Vertexes valences frequency is the closest possible to the ideal 
case: two vertexes of valence 2, two with valence 4, a few with 
valence 3 and the rest with valence 6. 

To characterize the triangulation performance, we set intervals for angles, 
triangle sizes and valences, and count the number of instances in each 
interval to obtain the frequency, expressed in percentage. The frequencies 
are plotted and compared against the BIT reference solutions. In addition, 
the so-called quality index 𝑄𝑄 described in equation (21), is computed. This 
is a numerical indicator in percentage of how close the triangulation is to 
the BIT reference solution. The ideal value is 100 %.  



 

 

32 

𝑄𝑄 =  25
𝑓𝑓𝑠𝑠𝑎𝑎

100
+ 25

𝑓𝑓𝑛𝑛𝑎𝑎

100
+ 25

𝑓𝑓𝑣𝑣3𝑎𝑎

𝑓𝑓𝑣𝑣3𝑏𝑏
+ 25

𝑓𝑓𝑣𝑣6𝑎𝑎

𝑓𝑓𝑣𝑣6𝑏𝑏
 (21) 

The inputs for equation (21) are frequencies, in percentage, for: 

𝑓𝑓𝑠𝑠𝑎𝑎: triangles of QIT, with sizes in the same interval as BIT size 
(𝐴𝐴𝐵𝐵𝐵𝐵𝐵𝐵); 

𝑓𝑓𝑛𝑛𝑎𝑎: angles of QIT in the same interval of 60 degrees; 

𝑓𝑓𝑣𝑣3𝑎𝑎  and 𝑓𝑓𝑣𝑣3𝑏𝑏 : vertexes with the valence number equal to 3 for both 
QIT and BIT; 

𝑓𝑓𝑣𝑣6𝑎𝑎  and 𝑓𝑓𝑣𝑣6𝑏𝑏 : vertexes with the valence number equal to 6 for both 
QIT and BIT. 

Note that the frequencies for the size and angles for the BIT are 100 %. 
7.1. Single surface with severe distortion in the parameter space  
A single surface with abrupt increments in parameter space is meshed with 
our QIT algorithm. The algorithm was performed for two different sizes: 
𝑅𝑅 = 12 and 𝑅𝑅 = 5. Derivatives were estimated by spline surface fitting, as 
described in Appendix B. In spite of the distortion in the parameter space, 
the resultant triangulations remain mostly isotropic, only some few 
triangles appear to be distorted due to the presence of edges. The quality 
factor 𝑄𝑄 is greater when 𝑅𝑅 = 5 because the number of triangles affected by 
the edges is less than in the other case when R = 12. This indicates that if 
the edges have a small influence on the overall surface’s domain then the 
closer to the BIT reference solution is the QIT triangulation and, therefore, 
it proves that the QIT method brings onto the surface physical space an 
accurate ‘image’ of the pattern space. 
Figure 33 shows the surface in the physical space with the knot spans 
depicted and one triangulation with vertexes equally spaced in the 
parameter space to highlight the distortion in the parametrization. Figure 
34 illustrates the QIT method with both 𝑅𝑅 = 12 and 𝑅𝑅 = 5. Figure 35 
shows the propagation of contours in the parameter space, where the 
divergent nature of the front can be clearly seen, note also some of the 
contours go further off the surface limits. Figures 36 to 38 show the 
frequency plots. 
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Figure 33. Left: surface for triangulation. Right: triangulation with nodes equally spaced 

in the parameter space. 

 
Figure 34. Resultant QIT triangulation. Left: 𝑅𝑅 = 12. Right: 𝑅𝑅 = 5. 

 
Figure 35. Contours propagation in the parameter space, red lines are the surface limits. 

Left: 𝑅𝑅 = 12. Right: 𝑅𝑅 = 5. 
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Figure 36. Frequency plots for triangle sizes. Red represents the QIT while blue represents 

the BIT. Left: 𝑅𝑅 = 12. Right: 𝑅𝑅 = 5. 

 
Figure 37. Frequency plots for angles. Red represents the QIT while blue represents the 

BIT. Left: 𝑅𝑅 = 12. Right: 𝑅𝑅 = 5. 

 
Figure 38. Frequency plots for valences. Red represents the QIT while blue represents the 

BIT. Left: 𝑅𝑅 = 12. Right: 𝑅𝑅 = 5. 
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The quality index (Q) is computed below for both cases. Note how the 
quality raises from 62 to 80 % when the target distance decreases from 12 
to 5, i.e. if a finer mesh is used then it gets closer to the ideal BIT. 

𝑄𝑄 =  25
41

100
+ 25

55
100

+ 25
24
33

+ 25
51
65

= 62 % 

𝑄𝑄 =  25
78

100
+ 25

80
100

+ 25
12
18

+ 25
75
81

= 80 % 

To illustrate the influence of the tolerance in the computational cost, Figure 
39 is used. It includes the plot for the relative computational time (tr) for 
edge vertex tolerances of 0.25, 0.50, 1.0, 2.0 and 4.0 % (vertical axis on the 
right-hand side of the plot). The surface vertex tolerances are 4 times larger, 
e.g. 2.0 % for the tolerance for edge vertexes, the tolerance for surface 
vertexes is 8.0 %. The triangle size used was 𝑅𝑅 = 12. That relative 
computational time is referred to the tolerance of 1.0 % for edges. It also 
includes the quality index (Q), which is plotted in the vertical axis on the 
left-hand side of the plot. It can be clearly seen that it decreases as the 
tolerance becomes larger, as expected. 

 
Figure 39. Relative computational time (tr) and quality index (Q) versus tolerances. 

The quality improvement with the tolerance restriction can also be seen in 
Figure 40, where the resultant meshes are depicted for tolerances of 4.0 
and 0.25 %. 
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Figure 40. Triangulation for tolerances of 4.0 % (left) and 0.25 % (right). 

7.2. Three contiguous surfaces 
This example shows how three contiguous surfaces are conformal 
triangulated using the QIT algorithm, i.e. their shared edges have the same 
curve discretization. The target distance used was 𝑅𝑅 = 5. Figure 41 gives 
the surfaces in the physical space with knot spans and control points (left) 
and the computed edge vertexes (right). Figure 42 shows the final result 
after triangulation (left), where the general isotropy and uniformity of the 
triangulation can be clearly observed. On the right side of that figure, the 
edge shared by contiguous surfaces is detailed, where conformal meshes 
can be observed. Finally, Figure 43 provides the frequency plots showing 
again the tendency of the QIT algorithm to achieve mesh isotropy close to 
the perfect solution delivered by BIT. The quality index for this case is 73 
%, as calculated below. 

𝑄𝑄 =  25
54

100
+ 25

77
100

+ 25
9

13
+ 25

80
86

= 73 % 
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Figure 41. Left: surfaces for triangulation. Right: edge vertexes resultant from the QIT 

algorithm. 

 
Figure 42. Left: resultant mesh from the QIT algorithm. Right: detail for the merging of 

the mesh for different surfaces. 
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Figure 43. Frequencies of sizes, angles and valences. Red represents our QIT and blue BIT 

8. CONCLUSIONS AND FUTURE WORK 
A new procedure for triangulating NURBS surfaces is presented in this 
work. It provides a quasi-isotropic triangular mesh at once, with no 
preliminary tessellation, based on a divergent advancing front technique 
that avoids front collisions. Each new vertex position is calculated using 
trapezoidal numerical integration, which provides simplicity and therefore 
efficiency. The error committed in this approximation is controlled by 
previous discretization of the parameter space. When there is more than one 
surface involved, their meshes are conformal at the shared curve because 
vertexes of such curve are computed once and applied for both surfaces. 
Derivatives are required repeatedly for this algorithm. In order to improve 
the efficiency, alternatives to the analytical calculation of these derivatives 
are proposed in Appendix B.  
The examples proposed demonstrated that the method delivers high quality 
triangulations that tend to be isotropic, regardless of the shape or 
parametrization used. Potential extensions or improvements of the method 
are listed below: 

- This procedure applies to non-trimmed surfaces. Application to 
trimmed surfaces is still pending. 

- Triangulations obtained by the algorithm presented here might be 
the initial stage for further refinements at certain zones such as high 
curvature areas or where analysis results (e.g. strains) are expected 
to present sudden variations. 
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10. APPENDIXES 
Appendix A: Derivatives of a function that is as norm of first derivative of 

another function 

Let 𝑓𝑓(𝑢𝑢) be a function defined as the norm of first derivative of another 
function 𝒈𝒈(𝑢𝑢):ℝ1 → ℝ𝑑𝑑. For the sake of clarity we remove the free 
variable from the notation, then 𝑓𝑓(𝑢𝑢) is expressed as 𝑓𝑓, 𝒈𝒈(𝑢𝑢) as 𝒈𝒈 and so 
on. 

𝒈𝒈 = 𝑔𝑔𝑖𝑖    ∀ 𝑖𝑖 = 1 𝑡𝑡𝑡𝑡 𝑑𝑑 (A.1) 

𝑓𝑓 = ‖𝒈𝒈′‖ = ��𝑔𝑔𝑖𝑖′2
𝑑𝑑

𝑖𝑖=1

�

1/2

 (A.2) 

First derivative of 𝑓𝑓 is computed by simple differentiation of (A.2), that 
yields (A.3). 

𝑓𝑓′ =
∑ (𝑔𝑔𝑖𝑖′ 𝑔𝑔𝑖𝑖′′)𝑑𝑑
𝑖𝑖=1

𝑓𝑓
 (A.3) 

Applying differentiation again to (A.3) we obtain the second derivative of 
𝑓𝑓, written in (A.4). 

𝑓𝑓′′ =
∑ (𝑔𝑔𝑖𝑖′′𝑔𝑔𝑖𝑖′′ + 𝑔𝑔𝑖𝑖′ 𝑔𝑔𝑖𝑖′′′)𝑑𝑑
𝑖𝑖=1  𝑓𝑓 − ∑ (𝑔𝑔𝑖𝑖′ 𝑔𝑔𝑖𝑖′′)𝑑𝑑

𝑖𝑖=1  𝑓𝑓′
𝑓𝑓2

 (A.4) 

For NURBS surfaces 𝑺𝑺(𝜉𝜉, 𝜂𝜂) the directional derivatives are functions of 
main derivatives (𝑺𝑺,𝜉𝜉 and 𝑺𝑺,𝜆𝜆) and are not trivial. First directional derivative 
𝑔𝑔𝑖𝑖′ = 𝑺𝑺,𝜆𝜆 is (A.5). 

𝑺𝑺,𝜆𝜆 = 𝑺𝑺,𝜉𝜉 𝑐𝑐𝑐𝑐𝑐𝑐 𝜃𝜃 + 𝑺𝑺,𝜂𝜂 𝑠𝑠𝑠𝑠𝑠𝑠 𝜃𝜃 (A.5) 

Second 𝑔𝑔𝑖𝑖′′ = 𝑺𝑺,𝜆𝜆𝜆𝜆 and third 𝑔𝑔𝑖𝑖′′′ = 𝑺𝑺,𝜆𝜆𝜆𝜆𝜆𝜆 directional derivatives are 
explained here. Let 𝒗𝒗 be a vector with orientation 𝜃𝜃 and ‖𝒗𝒗‖ = 1, i.e. 𝑣𝑣1 =
cos 𝜃𝜃 and 𝑣𝑣2 = sin𝜃𝜃. Let 𝑆𝑆(𝛏𝛏) be a function such that 𝒈𝒈(𝑢𝑢):ℝ2 → ℝ1 with 
𝛏𝛏 = (𝜉𝜉, 𝜂𝜂)𝑇𝑇. Derivatives w.r.t. 𝜉𝜉 and 𝜂𝜂 at location 𝛏𝛏0 may be calculated as 
expressions (A.6) and (A.7). 

𝑆𝑆,𝜉𝜉 = lim
ℎ→0

𝑆𝑆(𝛏𝛏0 + (ℎ, 0)) − 𝑆𝑆(𝛏𝛏0)
ℎ

= lim
ℎ→0

𝑆𝑆(𝜉𝜉0 + ℎ, 𝜂𝜂0) − 𝑆𝑆(𝜉𝜉0, 𝜂𝜂0)
ℎ

 (A.6) 
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𝑆𝑆,𝜂𝜂 = lim
ℎ→0

𝑆𝑆(𝛏𝛏0 + (0, ℎ)) − 𝑆𝑆(𝛏𝛏0)
ℎ

= lim
ℎ→0

𝑆𝑆(𝜉𝜉0, 𝜂𝜂0 + ℎ) − 𝑆𝑆(𝜉𝜉0, 𝜂𝜂0)
ℎ

 (A.7) 

Directional first derivative of 𝑆𝑆 with 𝜃𝜃 orientation at location 𝛏𝛏0 is given by 
equation (A.8), which is equivalent to (A.9). 

𝑆𝑆,𝑣𝑣 = lim
ℎ→0

𝑆𝑆(𝛏𝛏0 + ℎ𝒗𝒗) − 𝑆𝑆(𝛏𝛏0)
ℎ

= lim
ℎ→0

𝑆𝑆(𝜉𝜉0 + ℎ𝑣𝑣1, 𝜂𝜂0 + ℎ𝑣𝑣2) − 𝑆𝑆(𝜉𝜉0, 𝜂𝜂0)
ℎ

 (A.8) 

𝑆𝑆,𝑣𝑣 = 𝛁𝛁𝑺𝑺 · 𝒗𝒗 = �
𝑆𝑆,𝜉𝜉
𝑆𝑆,𝜂𝜂
�
𝑇𝑇

�
𝑣𝑣1
𝑣𝑣2� 

(A.9) 

Directional second derivative is obtained as follows: 

𝑆𝑆,𝑣𝑣𝑣𝑣 = lim
ℎ→0

�lim
ℎ→0

𝑆𝑆(𝛏𝛏0 + ℎ𝒗𝒗 + ℎ𝒗𝒗) − 𝑆𝑆(𝛏𝛏0 + ℎ𝒗𝒗)
ℎ � − �lim

ℎ→0

𝑆𝑆(𝛏𝛏0 + ℎ𝒗𝒗) − 𝑆𝑆(𝛏𝛏0)
ℎ �

ℎ
 (A.10) 

𝑆𝑆,𝑣𝑣𝑣𝑣 = lim
ℎ→0

𝑆𝑆(𝛏𝛏0 + 2ℎ𝒗𝒗) − 2𝑆𝑆(𝛏𝛏0 + ℎ𝒗𝒗) + 𝑆𝑆(𝛏𝛏0)
ℎ2

 (A.11) 

Developing equation (A.11) and grouping terms we arrive to the bilinear 
form (A.12), which is equivalent to (A.13). 

𝑆𝑆,𝑣𝑣𝑣𝑣 = 𝒗𝒗𝑇𝑇 𝑯𝑯 𝒗𝒗 = {𝑣𝑣1 𝑣𝑣2} �
𝑆𝑆,𝜉𝜉𝜉𝜉 𝑆𝑆,𝜉𝜉𝜉𝜉
𝑆𝑆,𝜉𝜉𝜉𝜉 𝑆𝑆,𝜂𝜂𝜂𝜂

� �
𝑣𝑣1
𝑣𝑣2� (A.12) 

𝑆𝑆,𝑣𝑣𝑣𝑣 = 𝑣𝑣𝑖𝑖𝑣𝑣𝑗𝑗   𝑆𝑆,𝑖𝑖𝑖𝑖   ∀ 𝑖𝑖, 𝑗𝑗 = 1,2 (A.13) 

In (A.13), sub-index of 𝑆𝑆,𝑖𝑖𝑖𝑖 indicates derivatives w.r.t. 𝜉𝜉 (sub-index =1) or 
𝜂𝜂 (sub-index=2). Same procedure for third directional derivative yields 
equation (A.14): 

𝑆𝑆,𝑣𝑣𝑣𝑣𝑣𝑣 = lim
ℎ→0

𝑆𝑆(𝛏𝛏0 + 3ℎ𝒗𝒗) − 3𝑆𝑆(𝛏𝛏0 + 2ℎ𝒗𝒗) + 3𝑆𝑆(𝛏𝛏0 + ℎ𝒗𝒗) + 𝑆𝑆(𝛏𝛏0)
ℎ3

 (A.14) 

Developing (A.14) and grouping terms, the third directional derivative can 
be expressed as (B.15). 

𝑆𝑆,𝑣𝑣𝑣𝑣𝑣𝑣 = 𝑣𝑣𝑖𝑖𝑣𝑣𝑗𝑗𝑣𝑣𝑘𝑘   𝑆𝑆,𝑖𝑖𝑖𝑖𝑖𝑖   ∀ 𝑖𝑖, 𝑗𝑗 = 1,2 (A.15) 

Where sub-index of 𝑆𝑆,𝑖𝑖𝑖𝑖𝑖𝑖 indicates derivatives w.r.t. 𝜉𝜉 (sub-index =1) or 𝜂𝜂 
(sub-index=2). 
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So far, third directional derivatives expression (A.9), (A.13) and (A.15) are 
deducted for functions 𝑆𝑆:ℝ2 → ℝ1. Application for function 𝑺𝑺:ℝ2 → ℝ𝑑𝑑 is 
direct. Each of the 𝑑𝑑 components of the directional derivative can be 
calculated separately by equations (A.9), (A.13) and (A.15). For example 
for 𝑑𝑑 = 3 (𝒙𝒙 = 𝑥𝑥,𝑦𝑦, 𝑧𝑧) third directional derivative has three components as 
per equation (A.16). 

𝑆𝑆𝑥𝑥,𝑣𝑣𝑣𝑣𝑣𝑣 = 𝑣𝑣𝑖𝑖𝑣𝑣𝑗𝑗𝑣𝑣𝑘𝑘   𝑆𝑆𝑥𝑥,𝑖𝑖𝑖𝑖𝑖𝑖   ∀ 𝑖𝑖, 𝑗𝑗 = 1,2 

𝑆𝑆𝑦𝑦,𝑣𝑣𝑣𝑣𝑣𝑣 = 𝑣𝑣𝑖𝑖𝑣𝑣𝑗𝑗𝑣𝑣𝑘𝑘   𝑆𝑆𝑦𝑦,𝑖𝑖𝑖𝑖𝑖𝑖   ∀ 𝑖𝑖, 𝑗𝑗 = 1,2 

𝑆𝑆𝑧𝑧,𝑣𝑣𝑣𝑣𝑣𝑣 = 𝑣𝑣𝑖𝑖𝑣𝑣𝑗𝑗𝑣𝑣𝑘𝑘   𝑆𝑆𝑧𝑧,𝑖𝑖𝑖𝑖𝑖𝑖   ∀ 𝑖𝑖, 𝑗𝑗 = 1,2 

(A.16) 

Appendix B: Surface derivatives estimation 

Analytical calculation of NURBS derivatives is computationally expensive. 
To increase the algorithm speed we propose two alternatives. In both cases 
analytical derivatives are calculated previously at certain locations (sample 
points) and then a surface is fitted to them. The first presented method fits 
spline surfaces to those sample points. The second method uses the dS-
mesh nodes as sample points to linearly interpolate between them. We 
recall that 𝜃𝜃-directional derivative is computed as per equation (B.1).  

𝑺𝑺,𝜆𝜆 = 𝑺𝑺,𝜉𝜉 𝑐𝑐𝑐𝑐𝑐𝑐 𝜃𝜃 +  𝑺𝑺,𝜂𝜂 𝑠𝑠𝑠𝑠𝑠𝑠 𝜃𝜃 (B.1) 

B.1 Derivatives computed from fitted B-spline surfaces 
B.1.1 Basic definitions 

Let 𝑭𝑭(𝜉𝜉, 𝜂𝜂):ℝ2 → ℝ6 be a function that store the NURBS surface 𝑺𝑺(𝜉𝜉, 𝜂𝜂) 
derivatives fields, i.e. 𝑆𝑆𝑗𝑗 ,𝛽𝛽 with 𝑗𝑗 = 1,2,3 that corresponds to 𝑥𝑥,𝑦𝑦, 𝑧𝑧 
components; and 𝛽𝛽 = 1,2 for derivatives w.r.t. 𝜉𝜉 and 𝜂𝜂. The domain of 𝑭𝑭 is 
the parameter space of 𝑺𝑺. The 𝑖𝑖th component of 𝑭𝑭 corresponds to 𝑗𝑗𝑗𝑗𝑗𝑗. 
Figure B.1 shows two examples. 
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Figure B.1. Derivatives fields of NURBS surface showing the first and last derivatives 
components. 

We define in each knot span of 𝑺𝑺 a set of six spline surfaces to approximate 
the six components of 𝑭𝑭. Spline1 surface 𝑻𝑻𝑖𝑖𝑘𝑘:ℝ2 → ℝ3 is to be fitted to the 
(𝛽𝛽𝛽𝛽𝛽𝛽)th derivative component within the 𝑘𝑘th knot span of 𝑺𝑺. We will refer 
to each of those sets of six spline surfaces as k-set. 

𝑻𝑻𝑖𝑖𝑘𝑘 has the parameter space S�𝑘𝑘 with components (𝑢𝑢, 𝑣𝑣) and maps onto ℝ3, 
with two first components, called plan coordinates, equal to (𝑢𝑢, 𝑣𝑣) and the 
third component, called height (𝜁𝜁), with the 𝐹𝐹𝒊𝒊 derivative estimation, (see 
Figure B.2). 

                                                
1 We refer to B-spline as spline for brevity. 
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Figure B.2. k-set for the seventh span of the NURBS surface (first and last components are 
shown). 

Features of each k-set are listed below: 

- Parameter space domain coincides with the correspondent 𝑺𝑺 knot 
span domain: S�𝑘𝑘 = (𝜉𝜉𝑘𝑘1, 𝜉𝜉𝑘𝑘2) ⊗ (𝜂𝜂𝑘𝑘1, 𝜂𝜂𝑘𝑘2), where 𝜉𝜉𝑘𝑘1, 𝜉𝜉𝑘𝑘2, 𝜂𝜂𝑘𝑘1 
and 𝜂𝜂𝑘𝑘2 are the kth knot span limits. 

- Control points plan coordinates coincide with their parameter 
coordinates (𝑢𝑢, 𝑣𝑣), therefore one parameter location for 𝑻𝑻𝑖𝑖𝑘𝑘 
coincides with its physical plan coordinates and with the parameter 
coordinates of 𝑺𝑺. 

- Control points are equally spaced on plan in each direction, i.e. plan 
coordinates form a regular net on S�𝑘𝑘. 

- The six splines of the k-set share the same plan coordinates, hence 
they share parametrization. 

- The six splines of the k-set share basis functions, i.e. they use the 
same knot spans, degrees and number of control points. 

- Control points heights are to be fitted to the correspondent 
derivatives field, e.g. 𝑻𝑻3𝑘𝑘 fits to  𝐹𝐹3 = 𝑆𝑆1,3 = 𝑆𝑆𝑧𝑧,𝜉𝜉. 

There is one k-set defined separately for each knot span of 𝑺𝑺 in order to 
guarantee that those splines are fitted to a smooth field avoiding any 
potential 𝐶𝐶0 transition between knot spans. The fitted splines in this work 
are quadratic. Previously to fit 𝑻𝑻𝑖𝑖𝑘𝑘 splines to derivatives fields 𝑆𝑆𝑗𝑗,𝛽𝛽, we 
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need to define the number of control points in each direction, which is 
driven by the error estimation as shown in section B.2.2. 

B.1.2 Number of control points 

Explanations in this section are given for one k-set and one derivative field 
𝐹𝐹𝑖𝑖. Sub-index on 𝐹𝐹 is removed for clarity. The number of control points is 
driven by the estimation of error. Absolute error is given by equation (B.2), 
that is deducted in section B.2.5.  

𝐸𝐸 ≤ �
1
3!
�𝐹𝐹𝜶𝜶,𝜉𝜉𝜉𝜉𝜉𝜉  ∆𝜉𝜉𝑟𝑟

3 + 3𝐹𝐹𝜶𝜶,𝜉𝜉𝜉𝜉𝜉𝜉 ∆𝜉𝜉𝑟𝑟
2∆𝜂𝜂𝑟𝑟 + 3𝐹𝐹𝜶𝜶,𝜂𝜂𝜂𝜂𝜂𝜂 ∆𝜂𝜂𝑟𝑟2∆𝜉𝜉𝑟𝑟+𝐹𝐹𝜶𝜶,𝜂𝜂𝜂𝜂𝜂𝜂 ∆𝜂𝜂𝑟𝑟3�  � (B.2) 

Where ∆𝜉𝜉𝑟𝑟 and ∆𝜂𝜂𝑟𝑟 are the representative increments (see section B.2.5, 
equation B.28) and derivatives are at location 𝜶𝜶 = (𝜉𝜉𝛼𝛼, 𝜂𝜂𝛼𝛼) that belongs to 
the knot span sub-domain S�𝑘𝑘 and maximises the error. Relative error in 
percentage is obtained as equation (B.3), being 𝐹𝐹� the root mean square over 
the whole knot span (B.4) that might be estimated by Gauss quadrature.  

𝐸𝐸𝑟𝑟 =  100 𝐸𝐸 𝐹𝐹�⁄    (B.3) 

𝐹𝐹� = �
1

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴S�𝑘𝑘
� 𝐹𝐹 𝑑𝑑S�𝑘𝑘
S�𝑘𝑘

  (B.4) 

𝐸𝐸𝑟𝑟 in the derivative estimation is to be equal or less than the prescribed 
tolerance. This condition will determinate the number of control points for 
the k-set following next steps: 

- Initial number of control points corresponds to 𝑻𝑻𝑖𝑖𝑘𝑘 spline with a 
single knot span, since 𝑻𝑻𝑖𝑖𝑘𝑘 is quadratic, initial number of control 
points is three in each direction. Therefore initial representative plan 
increments are Δ𝜉𝜉0𝑟𝑟 = 0.72 (𝜉𝜉𝑘𝑘2 − 𝜉𝜉𝑘𝑘1)/2 and Δ𝜂𝜂0𝑟𝑟 =
0.72 (𝜂𝜂𝑘𝑘2 − 𝜂𝜂𝑘𝑘1)/2, where 𝜉𝜉𝑘𝑘1, 𝜉𝜉𝑘𝑘2, 𝜂𝜂𝑘𝑘1 and 𝜂𝜂𝑘𝑘2 are the knot span 
limits. 

- Third derivatives are needed, but 𝜶𝜶 location is unknown, then we 
calculate exact derivatives values 𝐹𝐹,𝜉𝜉𝜉𝜉𝜉𝜉 ,𝐹𝐹,𝜉𝜉𝜉𝜉𝜉𝜉 ,𝐹𝐹,𝜂𝜂𝜂𝜂𝜂𝜂 and 𝐹𝐹,𝜂𝜂𝜂𝜂𝜂𝜂 at 
locations of a net of 𝑠𝑠 × 𝑠𝑠 equally spaced (in this work 𝑠𝑠 = 3). 

- 𝐸𝐸𝑟𝑟 is computed with equations (B.2), (B.3) and (B.4) for each of 
these 𝑠𝑠 × 𝑠𝑠 points using the initial representative increments 
Δ𝜉𝜉0𝑟𝑟and Δ𝜂𝜂0𝑟𝑟. We consider only the highest value among the 𝑠𝑠 × 𝑠𝑠 
errors. 
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- The ratio 𝑑𝑑 = 𝐸𝐸𝑟𝑟 /𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 is calculated. 
- To reduce our error by a 𝑑𝑑 factor, we can only reduce the 

representative increments as shown in equation (B.5). 

𝐸𝐸 𝑑𝑑⁄ ≤ �
1
3! �

𝐹𝐹𝜶𝜶,𝜉𝜉𝜉𝜉𝜉𝜉  𝛥𝛥𝜉𝜉𝑟𝑟
3 𝑑𝑑⁄ + 3𝐹𝐹𝜶𝜶,𝜉𝜉𝜉𝜉𝜉𝜉 𝛥𝛥𝜉𝜉𝑟𝑟

2𝛥𝛥𝜂𝜂𝑟𝑟 𝑑𝑑⁄ + 3𝐹𝐹𝜶𝜶,𝜂𝜂𝜂𝜂𝜂𝜂 𝛥𝛥𝜂𝜂𝑟𝑟
2𝛥𝛥𝜉𝜉𝑟𝑟 𝑑𝑑⁄ +𝐹𝐹𝜶𝜶,𝜂𝜂𝜂𝜂𝜂𝜂 𝛥𝛥𝜂𝜂𝑟𝑟

3 𝑑𝑑⁄ �  � (B.5) 

- We use first and last summands of (B.5) to estimate updated 
increments in each direction to reduce the error below tolerance, as 
shown in equations (B.6) and (B.7).  

Δ𝜉𝜉𝑟𝑟 =   �
Δ𝜉𝜉𝑟𝑟0

3

𝑑𝑑
�
1/3

=
0.72 (𝜉𝜉𝑘𝑘2 − 𝜉𝜉𝑘𝑘1)/2

𝑑𝑑1/3   (B.6) 

Δ𝜂𝜂𝑟𝑟 =   �
Δ𝜂𝜂𝑟𝑟0

3

𝑑𝑑
�
1/3

=
0.72 (𝜂𝜂𝑘𝑘2 − 𝜂𝜂𝑘𝑘1)/2

𝑑𝑑1/3   (B.7) 

- With these representative increments (𝛥𝛥𝜉𝜉𝑟𝑟, 𝛥𝛥𝜂𝜂𝑟𝑟) the actual 
increments (𝛥𝛥𝛥𝛥, 𝛥𝛥𝛥𝛥) are obtained dividing by 0.72 and then the 
number of control points in each direction is calculated as (B.8) and 
(B.9). 

𝑛𝑛 = 𝑚𝑚𝑚𝑚𝑚𝑚 �3, 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 �
(𝜉𝜉𝑘𝑘2 − 𝜉𝜉𝑘𝑘1)
𝛥𝛥𝜉𝜉𝑟𝑟/0.72

� �  (B.8) 

𝑚𝑚 = 𝑚𝑚𝑚𝑚𝑚𝑚 �3, 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 �
(𝜂𝜂𝑘𝑘2 − 𝜂𝜂𝑘𝑘1)
𝛥𝛥𝜂𝜂𝑟𝑟/0.72

� �  (B.9) 

The number of control points 𝑛𝑛 and 𝑚𝑚 are shared by the six splines of the k-
set. 
B.1.3 Surface fitting 
Once the number of control points is obtained all the splines features of the 
k-set are already defined with the exception of control points heights (𝜁𝜁). 
These coordinates are obtained by surface fitting techniques. Matrix 𝐀𝐀 
(B.10) is computed only once for the k-set, since basis functions are shared 
by the six splines. Computation of matrix 𝐀𝐀 needs parameter coordinates of 
control points. As stated before, these parameter coordinates coincide with 
their plan coordinates: 𝑢𝑢, 𝑣𝑣. 
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𝐀𝐀 = �
𝑁𝑁1(𝑢𝑢1)𝑀𝑀1(𝑣𝑣1) … 𝑁𝑁1(𝑢𝑢1)𝑀𝑀𝑚𝑚(𝑣𝑣𝑚𝑚)

⋮ ⋮
𝑁𝑁𝑛𝑛(𝑢𝑢𝑛𝑛)𝑀𝑀1(𝑣𝑣1) … 𝑁𝑁𝑛𝑛(𝑢𝑢𝑛𝑛)𝑀𝑀𝑚𝑚(𝑣𝑣𝑚𝑚)

� (B.10) 

To compute heights of each of the six splines control points, we use 
equations (B.11) and (B.12), where 𝑎𝑎 may be substituted by 𝑥𝑥, 𝑦𝑦 or 𝑧𝑧, and 
the exact values at control points: 𝐹𝐹𝑥𝑥 ,𝜉𝜉11   ,𝐹𝐹𝑥𝑥,𝜉𝜉12 , … ,𝐹𝐹𝑧𝑧 ,𝜂𝜂𝑛𝑛𝑛𝑛, are needed. 
These exact values are computed analytically prior to this operation. 

�
𝜁𝜁111
⋮

𝜁𝜁1𝑛𝑛𝑛𝑛
� = 𝐀𝐀−1 �

𝐹𝐹𝑎𝑎,𝜉𝜉11

⋮
𝐹𝐹𝑎𝑎,𝜉𝜉𝑛𝑛𝑛𝑛

� (B.11) 

�
𝜁𝜁611
⋮

𝜁𝜁6𝑛𝑛𝑛𝑛
� = 𝑨𝑨−1 �

𝐹𝐹𝑎𝑎,𝜂𝜂11

⋮
𝐹𝐹𝑎𝑎,𝜂𝜂𝑛𝑛𝑛𝑛

� (B.12) 

Once the height of control points are calculated, we achieve all the features 
of the six splines of 𝑻𝑻𝑖𝑖𝑘𝑘 that approximates the components of 𝑺𝑺,𝜉𝜉 and 𝑺𝑺,𝜂𝜂 
with error equal or less than the tolerance. In addition, the input parameter 
coordinates for 𝑺𝑺 and for 𝑻𝑻𝑖𝑖𝑘𝑘 are the same: (𝜉𝜉, 𝜂𝜂) = (𝑢𝑢, 𝑣𝑣). 

B.1.4 Estimation of directional derivatives using fitted splines 

The norm of 𝜃𝜃-directional derivative can be estimated at location 𝛏𝛏𝑎𝑎 using 
the fitted spline surfaces 𝑻𝑻𝑖𝑖𝑘𝑘. Firstly the surface 𝑺𝑺 knot span where 𝛏𝛏𝑎𝑎 lies 
is identified in order to select the corresponding k-set. Then the six 
components of both derivatives are calculated entering in each spline 
surface with the same 𝛏𝛏𝑎𝑎 coordinates. Note that basis functions are to be 
calculated only once, as the six splines share them. Estimation of 
derivatives vectors 𝑺𝑺,𝜉𝜉 and 𝑺𝑺,𝜂𝜂 are assembled and 𝜃𝜃-directional derivative is 
computed as equation (B.1). 
B.1.5 Error in approximation with spline surface 

This section demonstrates that the error when fitting a bi-quadratic spline 
surface to a function 𝐹𝐹(𝜉𝜉, 𝜂𝜂) within the rectangular domain (𝜉𝜉1, 𝜉𝜉2) ⊗
(𝜂𝜂1, 𝜂𝜂2) is calculated as expression (B.13). 

𝐸𝐸 ≤ �
1
3!
�𝐹𝐹𝜶𝜶,𝜉𝜉𝜉𝜉𝜉𝜉  ∆𝜉𝜉𝑟𝑟

3 + 3𝐹𝐹𝜶𝜶,𝜉𝜉𝜉𝜉𝜉𝜉 ∆𝜉𝜉𝑟𝑟
2∆𝜂𝜂𝑟𝑟 + 3𝐹𝐹𝜶𝜶,𝜂𝜂𝜂𝜂𝜂𝜂 ∆𝜂𝜂𝑟𝑟2∆𝜉𝜉𝑟𝑟 + 𝐹𝐹𝜶𝜶,𝜂𝜂𝜂𝜂𝜂𝜂 ∆𝜂𝜂𝑟𝑟3�  � (B.13) 



 

 

47 

Where 𝜶𝜶 = (𝜉𝜉𝛼𝛼, 𝜂𝜂𝛼𝛼) is an unknown location in (𝜉𝜉1, 𝜉𝜉2) ⊗ (𝜂𝜂1, 𝜂𝜂2) whose 
derivatives 𝐹𝐹𝜶𝜶,𝜉𝜉𝜉𝜉𝜉𝜉 ,𝐹𝐹𝜶𝜶,𝜉𝜉𝜉𝜉𝜉𝜉 ,𝐹𝐹𝜶𝜶,𝜂𝜂𝜂𝜂𝜂𝜂 and 𝐹𝐹𝜶𝜶,𝜂𝜂𝜂𝜂𝜂𝜂 lead to the maximum error, 
and 𝛥𝛥𝛥𝛥𝑟𝑟 = 0.72 𝛥𝛥𝛥𝛥 and 𝛥𝛥𝛥𝛥𝑟𝑟 = 0.72 𝛥𝛥𝛥𝛥 are the representative increments, 
being 𝛥𝛥𝛥𝛥 and 𝛥𝛥𝛥𝛥 the increments in 𝜉𝜉 and 𝜂𝜂 directions between a regular 
spaced set of control points. 𝐹𝐹 values at parameter coordinates 
corresponding to control points must be analytically calculated. 

We start with the error of a 𝑝𝑝-degree polynomial interpolation to a function 
𝑓𝑓(𝜉𝜉):ℝ1 → ℝ1 using a set of 𝑝𝑝 + 1 points. That interpolation can be 
expressed in Newton’s polynomials form (B.14). 

𝑞𝑞(𝜉𝜉) =  𝑓𝑓(𝜉𝜉0) + 𝑓𝑓[𝜉𝜉1, 𝜉𝜉0](𝜉𝜉 − 𝜉𝜉0) + 𝑓𝑓[𝜉𝜉2, 𝜉𝜉1, 𝜉𝜉0](𝜉𝜉 − 𝜉𝜉1)(𝜉𝜉 − 𝜉𝜉0) + ⋯
+ 𝑓𝑓�𝜉𝜉𝑝𝑝,⋯ , 𝜉𝜉0��𝜉𝜉 − 𝜉𝜉𝑝𝑝�⋯ (𝜉𝜉 − 𝜉𝜉0)  (B.14) 

Where 𝑓𝑓 is known at locations 𝜉𝜉0, 𝜉𝜉1, … , 𝜉𝜉𝑝𝑝 and the finite difference are 
obtained as (B.15), being the first one (B.20). 

𝑓𝑓�𝜉𝜉𝑝𝑝, 𝜉𝜉𝑝𝑝−1,⋯ , 𝜉𝜉1, 𝜉𝜉0� =
𝑓𝑓�𝜉𝜉𝑝𝑝, 𝜉𝜉𝑝𝑝−1,⋯ , 𝜉𝜉1� − 𝑓𝑓�𝜉𝜉𝑝𝑝−1,⋯ , 𝜉𝜉1, 𝜉𝜉0�

𝜉𝜉𝑛𝑛 − 𝜉𝜉0
  (B.15) 

𝑓𝑓[𝜉𝜉1, 𝜉𝜉0] =
𝑓𝑓(𝜉𝜉1) − 𝑓𝑓(𝜉𝜉0)

𝜉𝜉1 − 𝜉𝜉0
 (B.16) 

Equation (B.14) has the same structure as Taylor’s polynomial and the error 
committed in this interpolation has a similar expression to Taylor’s error 
[33], which is expressed in its Lagrange form as (B.17). 

𝐸𝐸𝑝𝑝 ≤
1

(𝑝𝑝 + 1)!
 𝑓𝑓(𝑝𝑝+1)(𝜉𝜉𝛼𝛼)� (𝜉𝜉 − 𝜉𝜉𝑖𝑖)

𝑝𝑝

𝑖𝑖=0
  (B.17) 

Where 𝜉𝜉𝛼𝛼 is an unknown location within �𝜉𝜉0, 𝜉𝜉𝑝𝑝� whose 𝑝𝑝 + 1 derivative 
maximises the error, and 𝜉𝜉 is the location where we want to estimate 𝑓𝑓 
value using the polynomial interpolation. 

For the particular case of 𝑝𝑝 = 2, the error is expressed as (B.18). 

𝐸𝐸2 ≤
1
3!

 𝑓𝑓(3)(𝜉𝜉𝛼𝛼)(𝜉𝜉 − 𝜉𝜉0)(𝜉𝜉 − 𝜉𝜉1)(𝜉𝜉 − 𝜉𝜉2)  (B.18) 

The error when using spline instead a polynomial has similar expression as 
demonstrated further on. Let 𝐶𝐶(𝜉𝜉) be a 2-degree spline defined within 
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certain knot span. Since degree is 2, the number of basis functions 
influential on that span are three, which we call 𝑁𝑁1(𝜉𝜉), 𝑁𝑁2(𝜉𝜉) and 𝑁𝑁3(𝜉𝜉). 
Then any 𝐶𝐶(𝜉𝜉)  value is calculated as (B.19), where 𝑧𝑧𝑖𝑖 are the control 
points coordinates. 

𝐶𝐶(𝜉𝜉) = 𝑁𝑁1(𝜉𝜉) 𝑧𝑧1 + 𝑁𝑁2(𝜉𝜉) 𝑧𝑧2 + 𝑁𝑁3(𝜉𝜉) 𝑧𝑧3 (B.19) 

Recall that each basis function is a 2-degree polynomial within the span 
[34], hence each basic function approximates to a function 𝑓𝑓𝑖𝑖(𝜉𝜉), i.e. 
𝑁𝑁𝑖𝑖(𝜉𝜉) ≈ 𝑓𝑓𝑖𝑖(𝜉𝜉), so that their linear combination with control points 
coordinates 𝑧𝑧𝑖𝑖 result the function 𝑓𝑓(𝜉𝜉) as shown in equation (B.20). 

𝑓𝑓(𝜉𝜉) = 𝑓𝑓1(𝜉𝜉) 𝑧𝑧1 + 𝑓𝑓2(𝜉𝜉) 𝑧𝑧2 + 𝑓𝑓3(𝜉𝜉) 𝑧𝑧3 (B.20) 

Therefore the error committed within each basis function 𝑁𝑁𝑖𝑖 has the same 
expression than the Newton’s polynomial approximation (B.21). 

𝐸𝐸2𝑖𝑖 ≤
1
3!
𝑓𝑓𝑖𝑖
𝛼𝛼 ,𝜉𝜉𝜉𝜉𝜉𝜉 (𝜉𝜉 − 𝜉𝜉0)(𝜉𝜉 − 𝜉𝜉1)(𝜉𝜉 − 𝜉𝜉2) (B.21) 

Where 𝑓𝑓𝑖𝑖
𝛼𝛼 ,𝜉𝜉𝜉𝜉𝜉𝜉 indicates third derivative of 𝑓𝑓𝑖𝑖 at 𝜉𝜉𝛼𝛼, being 𝜉𝜉𝛼𝛼 an unknown 

location within (𝜉𝜉0, 𝜉𝜉2) whose 𝑓𝑓𝑖𝑖
𝛼𝛼 ,𝜉𝜉𝜉𝜉𝜉𝜉 maximises the error, 𝜉𝜉 is the location 

where we want to estimate 𝑓𝑓 value using the spline and 𝜉𝜉0, 𝜉𝜉1 and 𝜉𝜉2 are the 
parameter coordinates of control points. The error when using 𝐶𝐶 is 
therefore the linear combination of the three errors as expressed in equation 
(B.22). 

𝐸𝐸2𝐶𝐶 ≤
1
3!
�𝑓𝑓1

𝛼𝛼 ,𝜉𝜉𝜉𝜉𝜉𝜉   𝑧𝑧1 +  𝑓𝑓2
𝛼𝛼 ,𝜉𝜉𝜉𝜉𝜉𝜉   𝑧𝑧2 + 𝑓𝑓3

𝛼𝛼 ,𝜉𝜉𝜉𝜉𝜉𝜉   𝑧𝑧3�  (𝜉𝜉 − 𝜉𝜉0)(𝜉𝜉 − 𝜉𝜉1)(𝜉𝜉 − 𝜉𝜉2) (B.22) 

In (B.26) the expression within left brackets is the third derivative of 𝑓𝑓, 
hence that equation can be expressed as (B.23). 

𝐸𝐸2𝐶𝐶 ≤
1
3!
𝑓𝑓𝛼𝛼 ,𝜉𝜉𝜉𝜉𝜉𝜉 (𝜉𝜉 − 𝜉𝜉0)(𝜉𝜉 − 𝜉𝜉1)(𝜉𝜉 − 𝜉𝜉2)    (B.23) 

Note that (B.23) has the same structure as equation (B.18). To generalize 
(B.23) for any location within the knot span, and assuming control points 
with parameter coordinates equally spaced 𝛥𝛥𝛥𝛥, we locate a representative 𝜉𝜉 
at mid point of one of the intervals and calculate the representative interval 
𝛥𝛥𝜉𝜉𝑟𝑟 as equation (B.24). Figure B.3 illustrates the location of this 
representative 𝜉𝜉 coordinate. 
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𝛥𝛥𝜉𝜉𝑟𝑟 =   �
1
2
𝛥𝛥𝛥𝛥 

1
2
𝛥𝛥𝛥𝛥 

3
2
𝛥𝛥𝛥𝛥�

1/3

≈ 0.72 𝛥𝛥𝛥𝛥 (B.24) 

 
Figure B.3 Location of representative coordinate 𝜉𝜉. 

Using the representative increment 𝛥𝛥𝜉𝜉𝑟𝑟 equation (B.23) might be expressed 
as (B.25). Which establishes the estimated maximum error for any location 
for a 2-degree spline curve fitting to a set of equally spaced points. 

𝐸𝐸2𝐶𝐶 ≤
1
3!
𝑓𝑓𝛼𝛼 ,𝜉𝜉𝜉𝜉𝜉𝜉 𝛥𝛥𝜉𝜉𝑟𝑟

3    (B.25) 

Extension to spline surface 𝑇𝑇(𝜉𝜉, 𝜂𝜂) that approximates to a scalar function 
𝐹𝐹(𝜉𝜉, 𝜂𝜂) involves chain rule for derivatives calculation. Here we show 
directly the error result for the sake of brevity. Equation (B.26) shows error 
for 𝑝𝑝-degree and equation (B.27) is particularized for 2-degree case with 
representative increments. The fitted surface 𝑇𝑇(𝜉𝜉, 𝜂𝜂) is to have a 
rectangular domain shared with 𝐹𝐹(𝜉𝜉, 𝜂𝜂) defined as (𝜉𝜉1, 𝜉𝜉2) ⊗ (𝜂𝜂1, 𝜂𝜂2). 

𝐸𝐸𝑝𝑝𝑆𝑆 ≤ � �𝑝𝑝𝑚𝑚�
𝜕𝜕𝑝𝑝+1

𝜕𝜕𝜕𝜕𝑚𝑚𝜕𝜕𝜕𝜕𝑝𝑝+1−𝑚𝑚
𝐹𝐹(𝜉𝜉𝛼𝛼 ,𝜂𝜂𝛼𝛼)� (𝜉𝜉 − 𝜉𝜉𝑖𝑖)

𝑚𝑚

𝑖𝑖=0
 � �𝜂𝜂 − 𝜂𝜂𝑗𝑗�

𝑝𝑝+1−𝑚𝑚

𝑗𝑗=0

𝑝𝑝+1

𝑚𝑚=0

   (B.26) 

𝐸𝐸2𝑆𝑆 ≤ �
1
3!
�𝐹𝐹𝜶𝜶,𝜉𝜉𝜉𝜉𝜉𝜉  𝛥𝛥𝜉𝜉𝑟𝑟

3
+ 3𝐹𝐹𝜶𝜶,𝜉𝜉𝜉𝜉𝜉𝜉 𝛥𝛥𝜉𝜉𝑟𝑟

2
𝛥𝛥𝜂𝜂𝑟𝑟 + 3𝐹𝐹𝜶𝜶,𝜂𝜂𝜂𝜂𝜂𝜂 𝛥𝛥𝜂𝜂𝑟𝑟

2
𝛥𝛥𝜉𝜉𝑟𝑟

+ 𝐹𝐹𝜶𝜶,𝜂𝜂𝜂𝜂𝜂𝜂 𝛥𝛥𝜂𝜂𝑟𝑟
3
�  � (B.27) 

In (B.27) 𝛥𝛥𝛥𝛥𝑟𝑟 and 𝛥𝛥𝛥𝛥𝑟𝑟 are the representative increments, calculated as 
(B.24). The derivatives of 𝐹𝐹 are at one location 𝜶𝜶 = (𝜉𝜉𝛼𝛼, 𝜂𝜂𝛼𝛼) within the 
domain (𝜉𝜉1, 𝜉𝜉2) ⊗ (𝜂𝜂1, 𝜂𝜂2) such hat the computed error is maximum. 

In our case in particular, functions to approximate is 𝐹𝐹𝑖𝑖 = 𝑆𝑆𝑗𝑗 ,𝛽𝛽. Sub-indexes 
values are 𝑗𝑗 = 1,2,3 for 𝑥𝑥, 𝑦𝑦 and 𝑧𝑧; and 𝛽𝛽 = 1,2 for 𝜉𝜉 and 𝜂𝜂. Some 
examples of expressions for derivatives required in equation (B.27) are 
provided below: 
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𝐹𝐹1,𝜉𝜉𝜉𝜉𝜉𝜉 = 𝑆𝑆𝑥𝑥 ,𝜉𝜉𝜉𝜉𝜉𝜉𝜉𝜉     

𝐹𝐹1,𝜉𝜉𝜉𝜉𝜉𝜉 = 𝑆𝑆𝑥𝑥 ,𝜉𝜉𝜉𝜉𝜉𝜉𝜉𝜉     

𝐹𝐹4,𝜂𝜂𝜂𝜂𝜂𝜂 = 𝑆𝑆𝑥𝑥 ,𝜂𝜂𝜂𝜂𝜂𝜂𝜂𝜂     

𝐹𝐹6,𝜂𝜂𝜂𝜂𝜂𝜂 = 𝑆𝑆𝑧𝑧 ,𝜂𝜂𝜂𝜂𝜂𝜂𝜂𝜂     

B.2 Directional derivatives computed from the dS-mesh 

The norm of 𝜃𝜃-directional derivative can be estimated at certain location 𝛏𝛏𝑎𝑎 
from the dS-mesh by linear interpolation by following next three steps. 
Firstly partition of dS-mesh where 𝛏𝛏𝑎𝑎 lies is identified, secondly the main 
derivatives (𝑺𝑺,𝜉𝜉 and 𝑺𝑺,𝜂𝜂) of that element nodes are extracted (they are 
analytically calculated previously) and the 𝜃𝜃-directional derivative is 
computed at each node as per equation (B.1). Third, the norm of 𝜃𝜃-
directional derivative at 𝛏𝛏𝑎𝑎 is estimated by bi-linear interpolation of norms 
from the element nodes, as equation (B.28). 

�𝑺𝑺,𝜆𝜆
𝛏𝛏𝑎𝑎 � ≈  �𝑁𝑁𝑘𝑘(𝛏𝛏𝑎𝑎) �𝑺𝑺,𝜆𝜆𝑘𝑘 � 

4

𝑘𝑘=1

 (B.28) 

Where 𝑁𝑁𝑘𝑘(𝛏𝛏𝑎𝑎) and 𝑺𝑺,𝜆𝜆
𝑘𝑘 are the value of the 𝑘𝑘𝑡𝑡ℎ basis function at position 𝛏𝛏𝑎𝑎 

and the derivative value at 𝑘𝑘𝑡𝑡ℎ node respectively. 

The dS-mesh is non-conformal, therefore if the location 𝛏𝛏𝑎𝑎 lies at the edge 
between two elements, only the smallest one, more accurate, is considered. 
This procedure leads to a high speed directional derivative estimation. 
However recall that dS-mesh was refined to control error for physical 
length computation, equation (B.29), and not for derivatives itself. The 
error of the derivative linear interpolation is calculated as (B.30). 

𝐸𝐸 ≤  
−1
12

  ‖𝑺𝑺,𝜆𝜆𝛼𝛼 ‖′′  ‖𝝃𝝃𝑏𝑏 − 𝝃𝝃𝑎𝑎‖3 (B.29) 

𝐸𝐸𝑑𝑑 ≤  
1
2

  ‖𝑺𝑺,𝜆𝜆𝛼𝛼 ‖′′  ‖𝝃𝝃𝑏𝑏 − 𝝃𝝃𝑎𝑎‖ (B.30) 

The relationship between both errors is: 

𝐸𝐸𝑑𝑑
𝐸𝐸
≤  

3
‖𝝃𝝃𝑏𝑏 − 𝝃𝝃𝑎𝑎‖2

   (B.31) 
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It is clear that the estimated error for derivatives interpolation is greater 
than error for path length trapezoidal rule (we assume ‖𝝃𝝃𝑏𝑏 − 𝝃𝝃𝑎𝑎‖ < 1). 
Since dS-mesh is generated to control error (B.29) and not (B.30), the error 
or this estimation of derivatives is not fully controlled. Therefore this 
method, that is faster than the splines fitting (section B.1) can be used only 
if the accuracy is not critical in the triangulation process. 
Appendix C: Bounded isotropic triangulation 

This appendix defines the bounded isotropic triangulation (BIT) and 
explains how to obtain a BIT and its characterization parameters (angles, 
triangles sizes and valences) corresponding to any triangulation (AT). BIT is 
the ideal isotropic triangulation version of AT and therefore the highest 
quality triangulation ideally achievable. 

C.1 Bounded isotropic triangulation (BIT) 

BIT is a portion of unbounded isotropic triangulation. The latter extends to 
infinite, i.e. presents no boundary edges, all angles are sixty degrees, all 
nodes valences are six and all triangles are the same size (Figure C.1 (a)). 
The former is bounded by four edges forming a rhomboid (Figure C.1 (b)), 
therefore not all valences are six, however sizes and angles are preserved as 
ideal isotropic. Parameters that characterize the BIT are the number of rows 
and columns, designated as 𝑟𝑟𝑏𝑏 and 𝑐𝑐𝑏𝑏. Figure C.1 provides one example. 

 
Figure C.1. Ideal isotropic triangulation (a) and extraction of 6 x 5 BIT (b). 

The number of triangles (𝑡𝑡𝑏𝑏) and number contour segments (𝑠𝑠𝑏𝑏) of BIT are 
computed from 𝑟𝑟𝑏𝑏 and 𝑐𝑐𝑏𝑏 as shown in equations (C.1) and (C.2). 
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𝑡𝑡𝑏𝑏 = 2 𝑟𝑟𝑏𝑏  𝑐𝑐𝑏𝑏 (C.1) 

𝑠𝑠𝑏𝑏 = 2 (𝑟𝑟𝑏𝑏 + 𝑐𝑐𝑏𝑏) (C.2) 

As mention, BIT has all angles equal to sixty degrees and all triangles are 
the same size, but not all vertexes valences are six. Vertexes valences are 
calculated as per Table C.1. 

Table C.1 Frequency (number of instances) of vertexes valences. 
Valence Frequency 
1 2 
2 2 
3 2((𝑐𝑐𝑏𝑏 − 1) + (𝑟𝑟𝑏𝑏 − 1)) 
4 0 
5 0 
6 (𝑐𝑐𝑏𝑏 − 1) × (𝑟𝑟𝑏𝑏 − 1) 

C.2 Computation of BIT correspondent to any triangulation (AT) 

Given AT mesh we can find its correspondent BIT using equations (C.1) 
and (C.2). By manipulation of them we arrive to expressions (C.3). 

𝑟𝑟𝑏𝑏 =
𝑠𝑠𝑎𝑎
4

+ �𝑠𝑠𝑎𝑎
2

16
−
𝑡𝑡𝑎𝑎
2

 

𝑠𝑠𝑏𝑏 =
𝑠𝑠𝑎𝑎
4
− �𝑠𝑠𝑎𝑎

2

16
−
𝑡𝑡𝑎𝑎
2

 

(C.3) 

In equations (C.3) we input the AT number of triangles and edge segments 
(𝑡𝑡𝑎𝑎 and 𝑠𝑠𝑎𝑎) and obtain its correspondent BIT number of rows and columns 
(𝑟𝑟𝑏𝑏 and 𝑐𝑐𝑏𝑏) and afterwards the BIT vertexes valences frequency as per 
Table C.1. Figure C.2 provides one example of the BIT associated to AT. 
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Figure C.2. Computation of BIT (right) for a given AT (left). Contour segments of AT are 
numbered. 

BIT is the closest version of AT to an ideal isotropic triangulation, then the 
closest the parameters (angles, sizes and valences) of AT are to its BIT the 
higher quality presents the former. 
Appendix D: Data for numerical examples 
D.1 Example 7.1: single surface 

Table D.1. QIT inputs. 

𝑅𝑅 Threshold 
distance to edge 

Tolerance for 
curves (%) 

Tolerance for 
surfaces (%) 

Tolerance for 
derivatives (%) 

12 and 6 4 and 2 1.0 4.0 15.0 

Table D.2. Surface NURBS features. 
No. control points 𝑛𝑛 = 6    𝑚𝑚 = 5 
Degrees 𝑝𝑝 =  2    𝑞𝑞 = 2 

Knot vectors 𝛯𝛯 = {000 0.25 0.50 0.75 111} 
𝛨𝛨 = {000 0.50 0.50 111} 

Table D.3. Control points coordinates and weights. 
 1 2 3 4 5 

1 0, 0, -90, 1 0, 0, 0, 0.707 0, 30, 0, 1 0, 60, 0, 0.707 0, 60, -30, 1 
2 30, 0, -15, 1 30, 15, 0, 1 30, 30, 0, 1 30, 45, 0, 1 30, 60, -15, 1 
3 95, 0, 0, 1 95, 15, 0, 1 95, 30, 0, 1 95, 45, 0, 1 95, 60, 0, 1 
4 150, 0, 0, 6 137.5, 15, 0, 1 125, 30, 0, 1 112.5, 45, 0, 1 100, 60, 0, 1 
5 150, 65, 0, 1 137.5, 65, 0, 1 125, 65, 0, 1 112.5, 65, 0, 1 100, 65, 0, 1 
6 150, 100, 0, 1 137.5, 100, 0, 1 125, 100, 0, 1 112.5, 100, 0, 1 100, 100, 0, 1 
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D.2 Example 7.2: three contiguous surfaces 

Table D.4. QIT inputs. 

𝑅𝑅 Threshold 
distance to edge 

Tolerance for 
curves (%) 

Tolerance for 
surfaces (%) 

Tolerance for 
derivatives (%) 

5 1.67 1.0 4.0 15.0 

- Bottom surface: 

Table D.5. Surface NURBS features. 
No. control points 𝑛𝑛 = 3    𝑚𝑚 = 5 
Degrees 𝑝𝑝 =  2    𝑞𝑞 = 2 

Knot vectors 𝛯𝛯 = {000  111} 
𝛨𝛨 = {000 0.50 0.50 111} 

Table D.6. Control points coordinates and weights. 
 1 2 3 4 5 

1 108, 40, 0, 1 108, -28, 0, 0.707 40, -28, 0, 1 -28,-28, 0, 0.707 -28, 40, 0, 1 
2 80, 40, 75, 1 80, 0, 75, 0.707 40, 0, 75, 1 0, 0, 75, 0.707 0, 40, 75, 1 
3 80, 40, 150, 1 80, 0, 150, 0.707 40, 0, 150, 1 0, 0, 150, 0.707 0, 40, 150, 1 

- Mid surface: 

Table D.7. Surface NURBS features. 
No. control points 𝑛𝑛 = 5    𝑚𝑚 = 2 
Degrees 𝑝𝑝 =  2    𝑞𝑞 = 1 

Knot vectors 𝛯𝛯 = {000 0.50 0.50 111} 
𝛨𝛨 = {00  11} 

Table D.8. Control points coordinates and weights. 
 1 2 

1 0, 40, 150, 1 20, 40, 150, 1 
2 0, 0, 150, 0.707 20, 20, 150, 0.707 
3 40, 0, 150, 1 40, 20, 150, 1 
4 80, 0, 150, 0.707 60, 20, 150, 0.707 
5 80, 40, 150, 1 60, 40, 150, 1 

- Top surface: 

Table D.9. Surface NURBS features. 
No. control points 𝑛𝑛 = 3    𝑚𝑚 = 5 
Degrees 𝑝𝑝 =  2    𝑞𝑞 = 2 

Knot vectors 𝛯𝛯 = {000  111} 
𝛨𝛨 = {000 0.50 0.50 111} 

Table D.10. Control points coordinates and weights. 
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 1 2 3 4 5 

1 60, 40, 150, 1 60, 20, 150, 
0.707 40, 20, 150, 1 20, 20, 150, 0.707 20, 40, 150, 

1 

2 60, 40, 210, 
0.707 

60, 20, 230, 
0.50 

40, 20, 230, 
0.707 20, 20, 230, 0.707 20, 40, 210, 

1 

3 60, 100, 210, 1 60, 100, 230, 
0.707 40, 100, 230, 1 20, 100, 230, 

0.707 
20, 100, 
210, 1 
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