

Quasi-isotropic initial triangulation of NURBS surfaces

D. H. Adán1, R. Cardoso2
1 Daniel Herrero Adán (corresponding autor)
 daniel2.herreroadan@live.uwe.ac.uk
Department of Engineering Design and Mathematics. University of the West of England
Bristol.
Frenchay Campus, Coldharbour Lane, Bristol, BS16 1QY, United Kingdom
+44 (0) 7780020820

2 Rui Cardoso
Rui.cardoso@brunel.ac.uk
Department of Mechanical and Aerospace Engineering. Brunel University London.
Kingston Lane, Uxbridge, Middlesex, UB8 3PH, United Kingdom
+44 (0) 1895268427

Abstract.

Isotropic triangulation of NURBS surfaces provides high quality triangular meshes, where
all triangles are equilateral. This isotropy increases representation quality and analysis
accuracy. We introduce a new algorithm to generate quasi-isotropic triangulation on
NURBS surfaces at once, with no prior meshing. The procedure consists of one front made
of vertexes that advances in a divergence manner avoiding front collision. Vertexes are
calculated by intersecting arcs whose radius is estimated by trapezoidal rule integration of
directional derivatives. The parameter space is discretized in partitions such that the error
of trapezoidal rule is controlled efficiently. A new space, called pattern space, is used to
infer the direction of the arcs’ intersection. Derivatives, whose analytical computation is
expensive, are estimated by NURBS surface fitting procedures, which increases the speed
of the process. The resultant algorithm is robust and efficient. The mesh achieved
possesses most of the triangles equilateral and with high uniformity of sizes. The
performance is evaluated by measuring angles, vertex valences and size uniformity in
different numerical examples.

Keywords. NURBS, isotropic triangulation, initial mesh, pattern space, outside limits
vertexes.

Number of words: Paper: 7800

 Appendixes: 3400

 Total: 11200

mailto:daniel2.herreroadan@live.uwe.ac.uk
mailto:Rui.cardoso@brunel.ac.uk

2

1. INTRODUCTION
Non-uniform rational B-spline (NURBS) for curves and surfaces are
ubiquitous in computer aided design (CAD) representation. In addition,
NURBS became part of analysis due to the so-called Isogeometric Analysis
(IGA) [1,2].
Surface representation in CAD environment is made of elements whose
vertexes lie on the surface. This discretization into elements is called
meshing or tessellation and represents an open problem still evolving [3].
Tessellation made of triangles, called triangulation, is widely used due to its
facility of capturing any shape. Triangulation quality may be characterized
by two parameters: angles of triangles corners and vertexes valences
(number of triangles attached to each vertex), both measuring distortion of
the triangles.
One triangulation is isotropic when it matches the two isotropy conditions:
all its angles equal to 60 degrees and all valences are six. This situation
only happens for a hypothetic triangulation with no boundaries, i.e. infinite
mesh. We state that one bounded (non-infinite) triangulation is quasi-
isotropic if only the triangles that are influenced by the contours do not
match the isotropy conditions. The rest of the triangles, that are away from
the boundaries form an isotropic mesh.
This work presents a new algorithm for computing quasi-isotropic
triangulation on a given set of NURBS surfaces with no preliminary mesh.
It provides high quality mesh regardless of the surface shape or
parametrization.

1.1. Triangulation of parametric surfaces
There are three types of triangulation techniques: direct, parametric and
hybrid triangulations [4].
Direct approaches compute the vertexes of triangles on the surface physical
space. The three main methods within this type are the Delaunay
triangulation [5,6], the advancing front technique [7,8,9,6] and the octree
division [10,11]. Collision of two different fronts is susceptible of
appearing in advancing front methods, which generates conflicts for the
computation of new triangle vertexes.
Parametric approaches compute the triangulation in the parametric domain
[12,13,14]. These methods lack uniformity for the resultant triangles for the
case when the parametrization is not uniform.

3

Hybrid approaches, which is a mix of the two previous methods, cover
most of the publications within the last two decades. For example, in
[15,16], surfaces are tessellated by primary coarse triangulation in the
parameter space and then the quality is increased by the use of Delaunay
methods. In [17], sequential triangulation was developed to reduce the
memory usage of the CPU. An initial mesh was generated by Delaunay
triangulation and then extra vertexes were added where curvature is more
pronounced in the physical space. In [18] three different linear
parametrization techniques for refining one initial triangulation were
presented. The algorithm shown in [19] triangulated surfaces, minimizing
the number of triangles and at the same time controlling the error from
triangular discretization of the surface. The initial mesh assumed the edges
were already discretized. The resulting tessellation has vertexes density
which is a function of surface’s curvature. In [20] an automatic
triangulation was presented; it starts from a preliminary coarse triangulation
that is refined and improved in two stages.
1.2. Isotropic meshes
The ideal isotropic mesh is defined with vertex valences equal to six and all
angles equal to 60 degrees. One mesh may be approached closer to an
isotropic mesh by four local operations used iteratively: edge collapsing,
edge splitting, edge flipping and vertex relocation.
Surazhsky et al. [21] developed an isotropic remeshing technique to be
applied to an initial mesh in three stages: generation of vertexes, initial
vertex partition and modification based on a density function to achieve
isotropy. The error diffusion algorithm was used for initial geometry
sampling and then that mesh was modified in order to approximate it closer
to an isotropic arrangement [22]. Yang and Choi [23] introduced an
efficient algorithm for the computation of restricted Voronoi diagrams
(RVD) repeatedly so that it could come closer to isotropic triangulation.
Isotropic meshes do not apply only to triangulation, but also to other type of
meshes such as the ones with quads or hexahedral elements, see for
example [24,25].
1.3. Proposed method
In the mentioned triangulation techniques, a preliminary coarse mesh is
first created and then modified to enhance the isotropy. Our method
achieves quasi-isotropic mesh at once with no previous triangulation
required. It estimates the physical coordinates of vertexes by using
integration of paths in the parameter space. In the previous work of Tsai et

4

al. [26] a similar technique was used, but the difference with this current
work is that the path can have any orientation rather than being restrained
over to orthogonal parameter directions 𝜉𝜉 or 𝜂𝜂. The process consists of an
advancing front method but, however, avoiding the colliding fronts since
the front shape is always divergent in the physical space.
1.4. Article structure
Section 2 introduces the theoretical background. Section 3 gives a general
idea of the triangulation process and defines some concepts that are used in
the rest of the work. Section 4 explains the discretization of NURBS
curves, that will be used for construction of the surface edges. That
procedure is the one-dimensional version of the surface triangulation.
Triangulation of surfaces involves more steps than the discretization of
curves and it is split into two main sections: section 5 explains the vertexes
calculation and section 6 details the triangulation itself. Examples are
provided in section 7 and, finally, section 8 presents conclusions and
potential future work.

2. THEORETICAL FORMULATION
2.1. NURBS
A NURBS entity (curve or surface) is defined in both the parameter and
physical spaces. The number of dimensions for the parameter and physical
spaces are 𝑐𝑐 and 𝑑𝑑 respectively, with 𝑐𝑐 < 𝑑𝑑. For curves 𝑐𝑐 = 1 and for
surfaces 𝑐𝑐 = 2. In this work we assume 𝑑𝑑 = 3. Figure 1 shows one
NURBS surface example.

Figure 1. NURBS surface parameter (a) and physical (b) spaces.

5

NURBS entities are the evolution of Bézier entities [27,28] that are formed
by linear combination of Bernštein polynomials [29](Bernšteın, 1912).
NURBS entities have a set of control points whose coordinates in the
physical space are defined by P and weights defined by w. Each control
point has attached one NURBS basis function. Parametrization is given by
knot vectors, with one knot vector per each parameter direction. The knot
vector is a sequence of numbers 𝜩𝜩 = �𝜉𝜉1 𝜉𝜉2 ⋯ 𝜉𝜉𝑎𝑎 ⋯ 𝜉𝜉𝑛𝑛+𝑝𝑝+1� with 𝜉𝜉𝑖𝑖 ≤
 𝜉𝜉𝑖𝑖+1. The components of 𝜩𝜩, called knots, are located in the parameter
space. Stretches between knots are called knot spans. This work assumes
knot values from 0 to 1 and open knot vectors, i.e. the first and last p+1
knots are repeated. The number of knots is equal to p+n+1, where p is de
degree of the NURBS functions and n is the number of control points in the
parameter direction. Table 1 shows the nomenclature used for curves and
surfaces.
Table 1. NURBS nomenclature.

 Curve Surface
Direction 1 Direction 2

Parameter coordinates 𝜉𝜉 𝜉𝜉 𝜂𝜂

B-spline basis function 𝑁𝑁𝑖𝑖 𝑁𝑁𝑖𝑖 𝑀𝑀𝑗𝑗

NURBS basis function 𝑅𝑅𝑖𝑖 𝑅𝑅𝑖𝑖,𝑗𝑗
Number of control
points 𝑛𝑛 𝑛𝑛 𝑚𝑚

Degree 𝑝𝑝 𝑝𝑝 𝑞𝑞

Knot vector 𝜩𝜩 𝜩𝜩 𝛨𝛨

Physical space 𝑪𝑪 𝑺𝑺

Parameter space 𝑪𝑪� 𝑺𝑺�

A NURBS entity is generated by mapping ℝ𝑐𝑐 → ℝ𝑑𝑑 as detailed in
equations (1) and (2) for curves and surfaces respectively, where R are the
NURBS basis functions.

𝑪𝑪(𝜉𝜉) = �𝑅𝑅𝑖𝑖
𝑝𝑝(𝜉𝜉)𝑷𝑷𝑖𝑖

𝑛𝑛

𝑖𝑖=1

 (1)

𝑺𝑺(𝜉𝜉, 𝜂𝜂) = ��𝑅𝑅𝑖𝑖,𝑗𝑗
𝑝𝑝,𝑞𝑞(𝜉𝜉, 𝜂𝜂)𝑷𝑷𝑖𝑖,𝑗𝑗

𝑚𝑚

𝑗𝑗=1

𝑛𝑛

𝑖𝑖=1

 (2)

The NURBS basis functions are calculated as in (3) and (4).

6

𝑅𝑅𝑖𝑖
𝑝𝑝(𝜉𝜉) =

𝑁𝑁𝑖𝑖,𝑝𝑝(𝜉𝜉) 𝑤𝑤𝑖𝑖
∑ 𝑁𝑁𝚤̂𝚤,𝑝𝑝(𝜉𝜉) 𝑤𝑤𝚤̂𝚤
𝑛𝑛
𝚤̂𝚤=1

 (3)

𝑅𝑅𝑖𝑖,𝑗𝑗
𝑝𝑝,𝑞𝑞(𝜉𝜉, 𝜂𝜂) =

𝑁𝑁𝑖𝑖,𝑝𝑝(𝜉𝜉) 𝑀𝑀𝑗𝑗,𝑞𝑞(𝜂𝜂) 𝑤𝑤𝑖𝑖 ,𝑗𝑗
∑ ∑ 𝑁𝑁𝚤̂𝚤,𝑝𝑝(𝜉𝜉) 𝑀𝑀𝚥̂𝚥,𝑞𝑞(𝜂𝜂) 𝑤𝑤𝚤̂𝚤,𝚥̂𝚥𝑚𝑚

𝚥̂𝚥=1
𝑛𝑛
𝚤̂𝚤=1

 (4)

B-spline functions N can be calculated with the Cox-De Boor iterative
equations (5) and (6) [30,31]. Figure 1 (a) also includes the B-spline
functions in both directions.

For zero degree (𝑝𝑝 = 0):

𝑁𝑁𝑖𝑖,0(𝜉𝜉) = �1 if 𝜉𝜉𝑖𝑖 ≤ 𝜉𝜉 < 𝜉𝜉𝑖𝑖+1
0 otherwise

 (5)

For degrees 1 and higher (𝑝𝑝 > 0):

𝑁𝑁𝑖𝑖,𝑝𝑝 =
𝜉𝜉 − 𝜉𝜉𝑖𝑖
𝜉𝜉𝑖𝑖+𝑝𝑝 − 𝜉𝜉𝑖𝑖

 𝑁𝑁𝑖𝑖,𝑝𝑝−1(𝜉𝜉) +
𝜉𝜉𝑖𝑖+𝑝𝑝+1 − 𝜉𝜉
𝜉𝜉𝑖𝑖+𝑝𝑝+1 − 𝜉𝜉𝑖𝑖+1

 𝑁𝑁𝑖𝑖+1,𝑝𝑝−1(𝜉𝜉) (6)

2.2. Length of paths on NURBS
The physical path’s length for a NURBS curve between parameter
coordinates 𝜉𝜉𝑎𝑎 and 𝜉𝜉𝑏𝑏, corresponding to physical coordinates 𝒙𝒙𝑎𝑎 and 𝒙𝒙𝑏𝑏, is
given by the integral detailed in equation (7).

𝐿𝐿𝑎𝑎𝑎𝑎 = � �𝑪𝑪,𝜉𝜉 �
𝜉𝜉𝑏𝑏

𝜉𝜉𝑎𝑎
 𝑑𝑑𝑑𝑑 (7)

Where �𝑪𝑪,𝜉𝜉 � is the norm of the curve derivative w.r.t. parameter
coordinate 𝜉𝜉. See Figure 2 for clarity.

Figure 2. Curve path between 𝑎𝑎 and 𝑏𝑏 in parameter (a) and physical (b) spaces. Derivative

at 𝑖𝑖th point (c).

The physical length of a path on a NURBS surface between parameter
coordinates 𝛏𝛏𝑎𝑎 to 𝛏𝛏𝑏𝑏, that forms a 𝜃𝜃 angle w.r.t. the horizontal direction and

7

corresponds to physical coordinates 𝒙𝒙𝑎𝑎 and 𝒙𝒙𝑏𝑏, is given by the integral of
the 𝜃𝜃-directional derivative norm along the path as follows:

𝐿𝐿𝑎𝑎𝑎𝑎 = � ‖𝑺𝑺,𝜆𝜆 ‖
𝝃𝝃𝑏𝑏

𝝃𝝃𝑎𝑎
 𝑑𝑑𝑑𝑑 (8)

Where 𝑑𝑑𝜆𝜆 represents an infinitesimal increment in the parameter domain
with orientation 𝜃𝜃, and 𝑺𝑺,𝜆𝜆 is the 𝜃𝜃 - directional derivative, i.e. 𝑺𝑺,𝜆𝜆 =
 (𝑆𝑆𝑆𝑆,𝜆𝜆 , 𝑆𝑆𝑆𝑆,𝜆𝜆 𝑆𝑆𝑆𝑆,𝜆𝜆)𝑇𝑇 that is computed as per equation (9).

𝑺𝑺,𝜆𝜆 = 𝑺𝑺,𝜉𝜉 𝑐𝑐𝑐𝑐𝑐𝑐 𝜃𝜃 + 𝑺𝑺,𝜂𝜂 𝑠𝑠𝑠𝑠𝑠𝑠 𝜃𝜃 (9)

The distance 𝐿𝐿𝑎𝑎𝑎𝑎 lies onto the surface (physical space) but the shortest
distance between 𝒙𝒙𝑎𝑎 and 𝒙𝒙𝑏𝑏 might be less (see Figure 3 (b)).

Figure 3. Surface path between 𝑎𝑎 and 𝑏𝑏 in parameter (a) and physical (b) spaces.

Directional derivative at 𝑖𝑖th point (c).

We can generalize equations (7) and (8) by calling 𝑯𝑯 to the NURBS entity
and 𝜇𝜇 to the parameter (ξ, 𝛏𝛏 or 𝜆𝜆). Then these two expressions may be
written as in equation (10), with ℎ = �𝑯𝑯,𝜇𝜇 �.

𝐿𝐿𝑎𝑎𝑎𝑎 = � ℎ
𝜇𝜇𝑏𝑏

𝜇𝜇𝑎𝑎
 𝑑𝑑𝑑𝑑 (10)

2.3. Trapezoidal rule for path lengths
The estimation of the path’s length by the trapezoidal rule is expressed as:

𝐿𝐿𝑎𝑎𝑎𝑎 ≈
1
2

(ℎ𝑏𝑏 + ℎ𝑎𝑎) Δ𝜇𝜇 (11)

Under appropriate smoothness assumptions, there exists some point 𝛼𝛼 in
the integration interval such that the error is bounded, as expressed in
equation (12) [32], where Δ𝜇𝜇 = (𝜇𝜇𝑏𝑏 − 𝜇𝜇𝑎𝑎) . Since the location 𝛼𝛼 is
unknown, in this work we will evaluate the error at the initial and final
locations for the following interval:

8

𝐸𝐸 ≤
−1
12

 �𝑯𝑯,𝜇𝜇𝛼𝛼 �
′′ (Δ𝜇𝜇)3 (12)

The calculation of the derivatives �𝑪𝑪,𝜉𝜉 �
′′

 and ‖𝑺𝑺,𝜆𝜆 ‖′′ is detailed in
Appendix A. The error is expressed as percentage of the path’s length:

𝐸𝐸𝐸𝐸 ≤ 100
𝐸𝐸
𝐿𝐿

 (13)

where 𝐸𝐸 is the absolute value of the error, computed as in equation (12) and
𝐿𝐿 is the estimated physical length of the path as in equation (11).
2.4. Path Parameter Increment corresponding to a physical length

(PPI)

Let 𝐿𝐿𝑎𝑎𝑎𝑎 be the length of a path that lies in the physical space of a NURBS
entity whose end points are a and b. Let c be a third point along the path
trajectory, either between the end points or beyond b (see Figure 4). The
Path Parameter Increment procedure (PPI) presented in this section finds
the parameter coordinate b (𝜇𝜇𝑏𝑏), assuming that the physical coordinates of
the three points and the parameter coordinates of a and c (𝜇𝜇𝑎𝑎 and 𝜇𝜇𝑐𝑐) are
known.

The trapezoidal rule between a and b is written as in equation (11) with Δ𝜇𝜇
and ℎ𝑏𝑏 being unknowns in this case. To compute Δ𝜇𝜇 we use the third point
c, whose derivative norm ℎ𝑐𝑐 lies on the line ℎ-𝛥𝛥𝜇𝜇, as shown in Figure 4
(c). Equation (14) is used, where it was assumed that 𝛥𝛥𝛥𝛥 = 0 coincides
with the ℎ𝑎𝑎 location:

ℎ(𝛥𝛥𝜇𝜇) = �
ℎ𝑐𝑐 − ℎ𝑎𝑎

𝜇𝜇𝑐𝑐 − 𝜇𝜇𝑎𝑎
� 𝛥𝛥𝜇𝜇 + ℎ𝑎𝑎 (14)

Figure 4. Path with points a, b and c in physical (a) and parameter (b) spaces. Line in the

ℎ-𝛥𝛥𝜇𝜇 plane (c).

9

Substituting ℎ𝑏𝑏 in equation (11) with the right-hand side of equation (14),
we arrive to the quadratic equation for 𝛥𝛥𝜇𝜇, equation (15), where 𝑚𝑚 =
�ℎ

𝑐𝑐−ℎ𝑎𝑎

𝜇𝜇𝑐𝑐−𝜇𝜇𝑎𝑎
�. Among the two possible roots, the non-negative and within, or

closest to, the interval (𝜇𝜇𝑎𝑎,𝜇𝜇𝑐𝑐) corresponds to the searched increment Δ𝜇𝜇∗.
𝛥𝛥𝜇𝜇2 𝑚𝑚 + 𝛥𝛥𝜇𝜇 2ℎ𝑎𝑎 − 2𝐿𝐿𝑎𝑎𝑎𝑎 = 0 (15)

Then, the coordinate 𝜇𝜇𝑏𝑏 is given by:
𝜇𝜇𝑏𝑏 = 𝜇𝜇𝑎𝑎 + Δ𝜇𝜇∗ (16)

2.5. Orientation of a surface tangent vector in the parameter space

Let 𝒗𝒗𝑘𝑘 be a tangent vector to a surface at point 𝑘𝑘 in the physical space, the
calculation of its orientation in the surface parameter space (𝜃𝜃) will be
presented in this section. 𝒗𝒗𝑘𝑘 is a linear combination of main derivatives as
shown in equation (17) (see Figure 5). Coefficients 𝑐𝑐 and 𝑠𝑠 are shortcuts to
“𝒞𝒞𝒞𝒞𝒞𝒞𝒞𝒞𝒞𝒞” and “𝒞𝒞𝒞𝒞𝒞𝒞𝒞𝒞𝒞𝒞”, respectively, with 𝒞𝒞 being an unknown constant.

𝑐𝑐 𝑺𝑺,𝜉𝜉
𝑘𝑘+ 𝑠𝑠 𝑺𝑺,𝜂𝜂𝑘𝑘 = 𝒗𝒗𝑘𝑘 (17)

Figure 5. Vector 𝒗𝒗𝑘𝑘 in in physical space and its orientation in the parameter space.

To compute the orientation 𝜃𝜃, the derivatives 𝑺𝑺,𝜉𝜉
𝑘𝑘 and 𝑺𝑺,𝜂𝜂𝑘𝑘 are firstly

calculated, then 𝑐𝑐 and 𝑠𝑠 are obtained from the system of equations (17).
Finally, 𝜃𝜃 is calculated as in the following equation:

𝜃𝜃 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 �
𝑠𝑠
𝑐𝑐
� (18)

10

3. PRELIMINARIES

3.1. Pattern space

In this work we introduce a new 2D space, named pattern space (S′), as a
set of vertexes lying on a number of concentric regular hexagons separated
by the distance 𝑅𝑅𝑜𝑜 = 𝑅𝑅 𝑠𝑠𝑠𝑠𝑠𝑠60. Vertexes are equally spaced at 𝑅𝑅. Due to the
regular hexagonal arrangement, these vertexes form an isotropic
triangulation in this space, see Figure 6.

The centre of the hexagons is located at origin (0,0). Hexagon one is the
smallest with six vertexes and the rest of the hexagons grow concentrically
with 12, 18, etc vertexes. Vertexes are numbered: the central is the first and
the numbering increases for each hexagon that is generated. Inside one
hexagon, numbers start at the right-hand side corner and move counter-
clockwise (Figure 6 shows some vertex numbers). Considering this
additional new space for the hexagons (pattern space), three spaces are now
involved for each surface: pattern, parameter and physical spaces.

Figure 6. Pattern space with five contours (dashed lines). Dots represent vertexes.

3.2. A whole view: the QIT algorithm
The Quasi-Isotropic initial Triangulation (QIT) algorithm purpose is to
mesh a set of contiguous NURBS surfaces, each of them bounded by four
edge curves, with conformal triangulations between contiguous surfaces
and with a high degree of isotropy.
The strategy is to obtain the image of the pattern space vertexes onto the
surface physical space, which leads naturally to a quasi-isotropic mesh
given the pattern space arrangement indicated in section 3.1. The target
distance between vertexes is called 𝑅𝑅 and is introduced by the user.

11

Figure 7 details the flowchart for the process that is briefed in this section.
The algorithm provides the vertexes coordinates and their relationship in
the triangulation (the connectivity matrix). The inputs required for the QIT
algorithm are:

- Target triangles edge distance (𝑅𝑅): this is the distance that ideally all
the triangles edges should have in the physical surface.

- Threshold distance in the physical space from the surface edges to
discriminate surface vertexes.

- Tolerance for the error, in percentage, when computing path lengths
(recall section 2.3).

- NURBS original data of the surfaces.

Figure 7. QIT algorithm flowchart. Related sections of the paper are in curved brackets.

Edges between two adjacent surfaces produce duplicated curves, one per
surface. In order to compute the vertexes in both curves with the same

12

coordinates and achieve conformity between them, they must be considered
as a single curve instead (see Figure 8). All curves are extracted and those
duplicated are merged into one. Their vertexes are obtained according to
the 𝑅𝑅 distance, these are called edge vertexes. Section 4 delivers more
details of this process.

Figure 8. Extraction of surfaces and curves and their relationship.

Each surface is triangulated separately: the surface vertexes are calculated,
the corresponding edge vertexes are added and all vertexes are triangulated.
Surface vertexes calculation is outlined in Figure 9. The surface parameter
space is discretized in a mesh called dS-mesh (section 5.1). The first vertex
is set at mid location and the rest of the vertexes are calculated in a 2D
hexagonal wave propagation manner. Propagation stops at the hexagon
with no vertexes computed (see sections 5.4 and 5.5). This procedure links
vertexes in pattern space with their image in the physical space using the
parameter space in between (see sections 5.2 and 5.3).

Figure 9. Computation of surface vertexes.

The advancing front algorithm is divergent in the physical space, therefore
it is also in the parameter space (we assume the Jacobian of the NURBS

13

mapping to be strictly positive). That divergence is necessary because it
avoids front collisions.
Previous to triangulation, surface vertexes outside the parameter limits are
removed as well as those that are too close to the limits, since they would
generate highly distorted triangles (see section 6.2). The remaining vertexes
are called valid. Delaunay triangulation is carried out in the pattern space
considering both, edge and valid surface vertexes (see section 6.3). Finally,
the triangles at the edges of the surface might be improved by edge
flipping, as shown in section 6.4. The triangulation process is illustrated in
Figure 10.

Figure 10 Triangulation in the pattern space (a), image in the physical space (b) and

improvement of edges (c).

3.3. Conventions and definitions
Coordinates in the pattern, parameter and physical spaces are expressed as
𝒓𝒓 = (𝑟𝑟, 𝑠𝑠), 𝝃𝝃 = (𝜉𝜉, 𝜂𝜂) and 𝒙𝒙 = (𝑥𝑥,𝑦𝑦, 𝑧𝑧), respectively. Coordinates at a
specific point 𝑎𝑎 are written with 𝑎𝑎 as superscript, e.g. 𝒓𝒓𝑎𝑎. The expression
vertex calculation refers to the calculation of the vertex coordinates.
The definitions listed below are used within the next sections. Figure 11
provides some examples of them for clarity.

- Path: straight line between two points in the parameter space, that
has an image in the surface space, which is not straight in general.

- 𝜃𝜃 orientation: angle between a path and the horizontal axis in the
parameter space.

- 𝜆𝜆: surface parameter coordinate with orientation 𝜃𝜃.
- Path length: length of a path in the physical space (in general it is

not the shortest).
- Edge vertex: vertex computed on edge curves.
- Surface vertex: vertex computed on the surface.
- Main derivatives: surface derivatives w.r.t. parameter directions 𝜉𝜉

and 𝜂𝜂.

14

Figure 11 Basic definitions used in the algorithm in pattern, parameter and physical

spaces.

4. VERTEXES OF EDGE CURVES
The computation of vertexes for edge curves is explained in this section.
The first step is a parameter space discretization into a dC-mesh in order to
control the error of the estimated path lengths.
4.1. Discretization of the parameter space. The dC-mesh
The dC-mesh is obtained by iterative division of the parameter space so that
the error 𝐸𝐸𝑝𝑝 from equation (13) can be reduced for a path length estimation
below a prescribed tolerance. We refer to the norm of the curve derivative
�𝑪𝑪,𝜉𝜉 � by ℎ and its second derivative �𝑪𝑪,𝜉𝜉 �′′ by ℎ′′ (see Appendix A for
the calculation of ℎ′′).
Initially, dC-mesh partitions coincide with non-void knot vector spans.
Then, within each partition, the 𝐸𝐸𝑝𝑝 is computed and, in case it is greater
than a prescribed tolerance, the element is halved. This iterative process
ends whenever there is no partition with an error greater than the prescribed
tolerance. The extremities of the partitions are called nodes. Figure 12
provides one example. To compute the partitions length and error, ℎ and ℎ’’
are calculated for each node (recall equations (11) and (12)).

15

Figure 12. dC-mesh division process with first step detailed.

The error at some locations might be greater than the tolerance since the
location 𝛼𝛼, introduced in (12), is the initial or final node of the partition,
whichever maximizes the error, but there might exist an intermediate value
that leads to a higher error. In spite of this risk, results are satisfactory (refer
to section 7).
4.2. Edge vertexes calculation
To calculate the edge vertexes, the accumulated physical length up to each
dC-mesh node, called 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿, is estimated by using the trapezoidal rule from
equation (11) applied to each partition, see Figure 13. The total estimated
length of the curve is 𝐿𝐿𝑎𝑎𝑎𝑎𝑎𝑎𝑒𝑒𝑒𝑒𝑒𝑒 and the accumulated length up to the previous
node is 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝.

Figure 13. Computation of accumulated length to each dC-mesh node.

The target physical spacing between vertexes is not exactly 𝑅𝑅 but it is re-
calculated to ensure that the resultant vertexes are equally spaced. The

16

updated spacing is called 𝑅𝑅𝑅𝑅 and is obtained as 𝑅𝑅𝑅𝑅 = 𝐿𝐿𝑎𝑎𝑎𝑎𝑎𝑎𝑒𝑒𝑒𝑒𝑒𝑒/𝑁𝑁𝑁𝑁, where
𝑁𝑁𝑁𝑁 = 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝐿𝐿𝑎𝑎𝑎𝑎𝑎𝑎𝑒𝑒𝑒𝑒𝑒𝑒/𝑅𝑅) is the number of required segments between
vertexes.

Accumulated target distances (𝑅𝑅𝑅𝑅) are then sequentially searched. 𝑅𝑅𝑅𝑅
initially is set equal to 𝑅𝑅𝑅𝑅 and increases by 𝑅𝑅𝑅𝑅 in each step. The search first
finds which partition of the dC-mesh contains 𝑅𝑅𝑅𝑅, using the accumulated
physical lengths 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿. Then, it estimates the parameter coordinate
increment Δ𝜉𝜉 within that partition in order to achieve the distance 𝐿𝐿 =
𝑅𝑅𝑎𝑎 − 𝐿𝐿𝑎𝑎𝑎𝑎𝑎𝑎𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 by using the PPI algorithm from section 2.5. See one
example in Figure 14.

Figure 14. Example for the calculation of the seventh vertex.

The edge vertexes in the surface parameter space, required for triangulation
(see section 6), are computed by using point projection techniques [34].

5. SURFACE VERTEXES

For the calculation of surface vertexes the surface must first be discretized
into a dS-mesh (section 5.1). Sections 5.2 and 5.3 explain the two main
algorithms used repeatedly in sections 5.4 and 5.5 for the computation of
the surface vertexes.
5.1. Discretization of the parameter space. The dS-mesh
The dS-mesh is obtained by iterative partition of the parameter space.
Resultant rectangular partitions must be small enough such that the error in
equations (12) and (13) for any patch length remains below a prescribed
tolerance.
Six representative paths were selected within each partition of the dS-mesh,
they are the four edges and its two diagonals. The partition error is the
maximum error amongst these six paths. The second derivative ‖𝑺𝑺,𝜆𝜆

𝛼𝛼 ‖′′,
selected for error calculation (12), must be the maximum amongst the two

17

end points of the corresponding path. The calculation of these derivatives is
detailed in Appendix A. Figure 15 shows one example, with the fifth path
detailed and where ‖𝑺𝑺,𝜆𝜆 ‖′′ is called ℎ’’ for simplicity.

Figure 15. Error measurement in one partition of the dS-mesh.

Initially, partitions are the non-void knot spans. Error (𝐸𝐸𝑝𝑝) is evaluated for
each partition, which is divided into four rectangles if such error is greater
than the tolerance. The division process ends whenever the error is smaller
than the prescribed tolerance in all partitions.
Once the partitions are generated, the dS-mesh is extended beyond the
surface parameter limits with so-called perimeter partitions and corner
partitions. The main derivatives on these partitions are merely an extension
of the derivatives at the edge limits. These partitions are semi-infinite, i.e.
one end coincides with the surface parameter limit and the opposite goes to
the infinite. This extension will be relevant in section 5.4. The whole
process is depicted in Figure 16.

18

Figure 16. dS-mesh generation: initial setting, partition and extension with perimeter and

corner partitions.

It is possible to find locations where the error is greater than the tolerance
because the location 𝛼𝛼 introduced in equation (12) lies at the start or at the
end of the path (recall Figure 15) but there might exist an intermediate
value that leads to a higher error. In addition, only six orientations for the
paths are analysed event though there are infinite possibilities. In spite of
this risk, results are satisfactory (refer to section 7).
5.2. End Parameter Position of a path given its physical length (EPP)
This section explains the End Parameter Position procedure (EPP) that
estimates the end location 𝛏𝛏𝑏𝑏 of a path whose initial point coordinates 𝛏𝛏𝑎𝑎,
orientation 𝜃𝜃 and physical length are known a priori. The physical length is
called target length and it is denoted by R, as shown in Figure 17.

Figure 17. Path in parameter (left) and physical (right) spaces. The position 𝛏𝛏𝑏𝑏 is the

output of the EPP algorithm.

A semi-infinite line, starting at 𝛏𝛏𝑎𝑎 and with orientation 𝜃𝜃 is defined (see
Figure 18). The procedure is to move along this line computing at each
time its intersection with dS-mesh edges and calculating the segment
physical length by using the trapezoidal rule of equation (11). The 𝜃𝜃-
directional derivatives required for equation (11) can be estimated as shown

19

in Appendix B. When the accumulated length of the segments goes beyond
the target 𝑅𝑅, the parameter coordinate 𝛏𝛏𝑏𝑏 is searched by PPI within the
current segment (see section 2.5). Some examples are illustrated in Figure
19.

Figure 18. Estimation of different path increments to achieve the physical target distance
𝑅𝑅. Above represents the parameter space, with grey hatching the partition of dS-mesh

involved. Below it is detailed the path in the physical space.

One special case happens when the ray passes the surface parameter limits
and does not intersect any more partition edges. For this situation, the
second trial point c for PPI cannot be computed from the intersection with
the dS-mesh. Instead, it is obtained by adding a certain distance along the 𝜃𝜃
direction. In this work, the diagonal length of the surface parameter space
(𝑢𝑢𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑) is used for that effect. Figure 19 shows two examples representing
this particular case.

20

Figure 19. Examples of application of the EPP for some particular cases.

5.3. Intersection of two Arcs in Physical space (AIP)
In this section a procedure called Arcs Intersection in Physical space (AIP)
will compute the intersection (point 𝑐𝑐) of two arcs, 𝑎𝑎 and 𝑏𝑏, that lie on the
physical space of the surface. Let us define one arc, onto the surface
physical space centred at 𝒙𝒙𝑎𝑎, by its radius (𝑅𝑅), trial angle (𝛽𝛽) and amplitude
(𝛽𝛽𝑎𝑎𝑎𝑎𝑎𝑎), in this work 𝛽𝛽𝑎𝑎𝑎𝑎𝑎𝑎 = 15 degrees. The trial angle is the orientation
of the arc bisector and the total arc angle is twice the amplitude (see Figure
20).

Figure 20. Definition of arc and discretization into three lines.

To find the intersection, arcs are first discretized in a number of lines (𝑁𝑁𝑁𝑁),
as shown in Figure 20 at the right. Hence, the number of points to compute
per arc is 𝑁𝑁𝑁𝑁 + 1 (in this work 𝑁𝑁𝑁𝑁 = 3). Due to this discretization

21

procedure, a number of iterations is required to find the intersection point c.
The iterative process ends when the difference between two consecutive
intersections is less than a pre-established tolerance (in this work it is 1.0
%). After each iteration, the trial angles are re-oriented to the updated
intersection and the amplitudes are also adjusted accordingly. The rest of
this sub-section has two parts, one to explain the calculation of the end-
points of the arc lines and another to describe the iterative process.
Discretization of arcs:

Let us define 𝜋𝜋𝑎𝑎 as the tangent plane to the surface at location 𝒙𝒙𝑎𝑎, and 𝒑𝒑𝒑𝒑𝑎𝑎
as the vector projected from vector 𝒙𝒙𝑏𝑏 − 𝒙𝒙𝑎𝑎 onto 𝜋𝜋𝑎𝑎, with all of these
vectors represented in the physical space (Figure 21).

Figure 21. Tangent plane obtained by cross product of the derivatives to the surface (a).

Projected vector 𝒑𝒑𝒑𝒑𝑎𝑎 onto the 𝜋𝜋𝑎𝑎 plane (b). Front view of the projection’s procedure at the
right-bottom (c).

The trial angle 𝛽𝛽𝑎𝑎 is measured from vector 𝒑𝒑𝒑𝒑𝑎𝑎 as shown in Figure 22.
The value of 𝛽𝛽𝑎𝑎 for the first iteration is selected in the pattern space by
using relative positions between pattern coordinates of points 𝒓𝒓𝑎𝑎, 𝒓𝒓𝑏𝑏 and
𝒓𝒓𝑐𝑐. Their values are typically around -60 and +60 degrees for 𝛽𝛽𝑎𝑎 and 𝛽𝛽𝑏𝑏,
respectively, except for the first hexagon (see section 5.4). The angles for
the arc points vary from 𝛽𝛽𝑎𝑎1 = 𝛽𝛽𝑎𝑎 − 𝛽𝛽𝑎𝑎𝑎𝑎𝑎𝑎 to 𝛽𝛽𝑎𝑎4 = 𝛽𝛽𝑎𝑎 + 𝛽𝛽𝑎𝑎𝑎𝑎𝑎𝑎, with
steps Δ𝛽𝛽 = 2𝛽𝛽𝑎𝑎𝑎𝑎𝑎𝑎 𝑁𝑁𝑁𝑁⁄ , all within the 𝜋𝜋𝑎𝑎 plane.

22

Figure 22. Arc angles in the 𝜋𝜋𝑎𝑎 plane (a) and their counterparts in the parameter space (b).

Trial angle and angles for points 1 and 4 are also indicated.

Points for the discretized arcs are computed by the EPP algorithm from
section 5.2, whose inputs needed are the location 𝝃𝝃𝑎𝑎, the target distance 𝑅𝑅𝑎𝑎
and the orientation 𝜃𝜃 in parameter space. This angle corresponds to 𝛽𝛽, but
defined w.r.t. the horizontal axis in the parameter space. The procedure to
find 𝜃𝜃 from 𝛽𝛽 is depicted in Figure 23 and its steps are explained below:

- Compute the tangent plane 𝜋𝜋𝑎𝑎 in the physical space. The normal
vector to the plane is given by 𝒏𝒏𝒂𝒂 = 𝑺𝑺,𝜉𝜉

𝑎𝑎× 𝑺𝑺,𝜂𝜂𝑎𝑎 (for the computation
of the derivatives see Appendix B).

- Find 𝒑𝒑𝒑𝒑𝑎𝑎: the projection of 𝒙𝒙𝑏𝑏𝑎𝑎 onto 𝜋𝜋𝑎𝑎 (for arc 𝑏𝑏 use 𝒙𝒙𝑎𝑎𝑏𝑏).
- Form local base 𝑩𝑩𝑎𝑎 with vectors 𝒏𝒏𝒂𝒂, 𝒑𝒑𝒑𝒑𝑎𝑎 and 𝒘𝒘. Note that 𝒘𝒘 =

𝒏𝒏𝒂𝒂 × 𝒑𝒑𝒑𝒑𝑎𝑎.
- Compute vector 𝒗𝒗𝑎𝑎 contained in plane 𝜋𝜋𝑎𝑎 that forms 𝛽𝛽 degrees with

𝒑𝒑𝒑𝒑𝑎𝑎. This step involves computing vector 𝒗𝒗𝑎𝑎′ in the local base 𝑩𝑩𝑎𝑎
(at 𝛽𝛽 degrees from 𝒑𝒑𝒑𝒑𝑎𝑎) and transforming to the global coordinate
system to obtain 𝒗𝒗𝑎𝑎.

- Obtain 𝜃𝜃, which is the orientation of 𝒗𝒗𝑎𝑎 referred to the horizontal
axis in the parameter space, as described in section 2.5.

23

Figure 23. Calculation of angle 𝜃𝜃 correspondent to the 𝛽𝛽 angle. Computation of the 𝜋𝜋𝑎𝑎

plane and projected vector 𝒑𝒑𝒑𝒑𝑎𝑎 (a); local base 𝑩𝑩𝑎𝑎 (b); vector with 𝛽𝛽 angle 𝒗𝒗𝑎𝑎 (c);
corresponding angle 𝜃𝜃 in the parameter space (d).

The above-mentioned process is applied to the points of the arc for each
iteration. The arc points obtained are equally spaced in the physical space
but in the parameter space they can be distorted depending on the
parametrization procedure used.
Iterative process:
Once the a and b arcs are discretized, the intersection of their lines can be
calculated. The result is then compared against the previous intersection
and, if it is greater than a threshold (1% in this work), arcs are re-defined
and discretized again, and the intersection is re-calculated. If the difference
is less than tolerance, then the process ends and the latest intersection is the
one assumed valid.
After each iteration the trial angles are re-oriented to the latest computed
intersection. The closer the initial trial angles (𝛽𝛽𝑎𝑎 and 𝛽𝛽𝑏𝑏) are to the final
answer the smaller number of iterations are required. Since their initial
values are taken from the pattern space, they are very close to the final
answer and the number of iterations are typically equal or less than three. In
addition, the pattern space is used to know the side that 𝝃𝝃𝑐𝑐 must hold w.r.t.
the vector from 𝝃𝝃𝑎𝑎 to 𝝃𝝃𝑏𝑏 (𝝃𝝃𝑏𝑏𝑎𝑎) via the cross product 𝒓𝒓𝑏𝑏𝑎𝑎 × 𝒓𝒓𝑐𝑐𝑎𝑎. If the third
component of this cross product is positive, then 𝝃𝝃𝑐𝑐 must lie at the left-hand
side of 𝝃𝝃𝑏𝑏𝑎𝑎, otherwise it must lie at the right-hand side.

Four cases are possible to happen during the iterative process:

- Case A: intersection is found and it is in the correct side. If the error
is greater than the tolerance then the next iteration is prepared: trial

24

angles are reoriented to the updated intersection and arc amplitudes
are reduced after dividing by 𝑁𝑁𝑁𝑁. See Figure 24.

- Case B: intersection is found but it is located on the wrong side. The
angle amplitude is then doubled, see Figure 25.

Figure 24. AIP case A in the parameter space.

Figure 25. AIP case B in the parameter space. The pattern space is also shown for the ith

iteration.

- Case C: no intersection is found. Both the angle amplitude and the
number of segments per arc (𝑁𝑁𝑁𝑁) are doubled up for the next
iteration, see Figure 26.

25

- Case D: the intersection was found previously but it was lost in the
current iteration. The angle amplitude is then doubled for the next
iteration.

For cases B to D, the arc amplitude might need to be increased to raise the
possibilities of finding the intersection point.

Figure 26. AIP case C in the parameter space.

5.4. Computation of vertexes
This section explains how to compute the vertexes of the surfaces based on
the EPP and AIP algorithms. First, the vertex is arbitrarily placed at the
centre of the parameter and pattern spaces, i.e. 𝛏𝛏1 = (0.5,0.5) and 𝒓𝒓1 =
(0,0). Second, the vertex is computed by EPP with target distance 𝑅𝑅,
orientation 𝜃𝜃 = 0 and initial location 𝛏𝛏1. The rest of the first hexagon
vertexes (𝛏𝛏3 to 𝛏𝛏7) are computed by the algorithm AIP from the previous
vertex and 𝛏𝛏1, both with radius equal to 𝑅𝑅. Initial trial angles for AIP are
𝛽𝛽𝑎𝑎 = −60 and 𝛽𝛽𝑏𝑏 = +60. Figure 27 illustrates the fourth vertex
calculation in the pattern space, showing only the final iteration for clarity.

26

Figure 27. Fourth vertex computation.

The remaining vertexes are computed alongside the creation of the
hexagons during their propagating motion in the form of a 2D hexagonal
wave. Within one hexagon, each vertex is computed using two vertexes
from previous hexagons as centre points for the intersection of the arcs
(AIP). This pair, called base vertexes, is selected according to the current
vertex position: side or corner (see Figure 28). The base vertexes for the
former are the closest of the previous hexagon’s side. The base vertexes for
the latter are at both sides of the previous corner. If we call a and b to be
the base vertexes and c to be the current vertex, the inputs required for AIP
are described in Table 2 for each type of vertex.

Figure 28. Vertex computation for some contours in the pattern and parameter spaces for

side and corner vertexes. Only the final iteration arcs are depicted here for clarity.

Table 2. Inputs used for the intersection of arcs (AIP) to find each type of vertex.
Current vertex location Initial trial angles 𝛽𝛽𝑎𝑎 and 𝛽𝛽𝑏𝑏 radius

Side -60 and 60 𝑅𝑅
corner -60 and 60 √3 𝑅𝑅

Not all the vertexes are computed: one vertex is computed if and only if at
least one of its base vertexes lies inside the surface parameter limits. This
rule avoids the computation of most of the vertexes that do not lie in the
surface, reducing the computational cost considerably. Therefore, the
unique hexagonal front that propagates from the central point will be cut
and divided into two or more fronts by the surface boundaries during the

27

propagation process, but its divergence is still a possibility. The
propagation of contours ends at the hexagon that has all its vertexes non-
computed, i.e. all the base vertexes, from previous hexagons, lie outside the
surface parameter limits.
One of the base vertexes might be outside the limits in the parameter
domain. That vertex involves computations beyond the limits of the surface
and this is why the perimeter and corner elements of a dS-mesh are
necessary (recall section 5.1).
5.5. Recovering of non-computed base vertexes
The procedure described in section 5.4 might lead to a vertex c with one
base vertex non-computed. Let us call a and b to the computed and non-
computed base vertexes respectively. If vertex c is to be calculated (we
assume a inside surface limits) the base vertex b needs to be estimated.
Two carry out this ‘rescue’ of vertex b we need first to identify its
neighbours.
The vertexes that surround the b vertex in its first and second perimeters are
localized using their relationship in the pattern space (see Figure 29). The
relevant information required from these neighbour vertexes are their
references, pattern distances and angles measured from vertex 𝑏𝑏. Two of
them are then selected, giving priority to the first perimeter and to the pair
that form 60 or 120 degrees with each other. The calculation of the b vertex
is done by using AIP and the selected neighbour vertexes.

Figure 29. Pattern space representation of neighbour vertexes of 22 (side vertex) and 32

(corner vertex). First and second perimeters are indicated in solid line.

28

6. TRIANGULATION

This section details the surface triangulation. Section 6.1 explains the
calculation of edge vertexes in the pattern space. Section 6.2 gives the
criteria to detect non-valid surface vertexes for the triangulation. Section
6.3 shows the triangulation itself and section 6.4 details the improvement
achieved at the edges.
The surface vertexes computed so far may be classified as follows. Let us
define 𝛥𝛥𝑥𝑥𝑡𝑡ℎ as a pre-established threshold distance in the physical space,
which is measured from the surface edges (in this work 𝛥𝛥𝑥𝑥𝑡𝑡ℎ = 𝑅𝑅/3), then:

- SI-vertex: is a surface vertex which lies inside the parameter limits
of the surface and is located further away of more than 𝛥𝛥𝑥𝑥𝑡𝑡ℎ from
the edges of the surface.

- SE-vertex: is a surface vertex inside the parameter limits of the
surface and lies within a distance lower than 𝛥𝛥𝑥𝑥𝑡𝑡ℎ when measured
from the edges of the surface.

- SO-vertex: is a surface vertex which lies outside of the surface
parameter limits.

6.1. Estimation of edge vertexes in the pattern space
The edge vertexes’ coordinates in the pattern space are part of the final
triangulation procedure and, furthermore, they form the constraint that
determines which triangles are inside or outside of the computable domain.
Since these coordinates are unknown (edge vertexes were computed
independently, see section 4) they need to be estimated.
We construct a triangulation with all surface vertexes (SO, SE and SI-
vertexes) in the parameter space. This triangulation allows the mapping
ℝ2 → ℝ2 from the surface parameter space to the pattern space. The
parameter coordinates for the edge vertexes lie within this triangular net,
therefore their pattern coordinates may be calculated by the following
mapping:

𝒓𝒓𝑎𝑎 = �𝑁𝑁𝑖𝑖𝒓𝒓𝑖𝑖
3

𝑖𝑖=1

 (19)

Where shape functions 𝑁𝑁𝑖𝑖 are the area coordinates, as defined in equation
(20), where 𝐴𝐴𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 is the area of the triangle and 𝐴𝐴𝑖𝑖 are the sub-areas
attached to each node of the triangle. In Figure 30, one example for the
computation of the pattern coordinates for vertex 𝑎𝑎 is illustrated.

29

𝑁𝑁𝑖𝑖 =
𝐴𝐴𝑖𝑖

𝐴𝐴𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
 (20)

Figure 30. Triangulation of all vertexes in the parameter space (a) and calculation of the

pattern coordinates of the edge vertex 𝑎𝑎 (b).

The triangulation explained in this section is not the final aim chased by the
QIT procedure but it is a temporary triangulation that permits the estimation
of the pattern coordinates of edge vertexes with some degree of accuracy.
6.2. Removal of non-valid surface vertexes
Only SI-vertexes are considered in the triangulation (valid vertexes).
Meanwhile SO and SE-vertexes are non-valid. SO-vertexes are detected
because they are located on the outside of the surface limits. SE-vertexes
are closer than 𝛥𝛥𝑥𝑥𝑡𝑡ℎ to the edges of the surface. To measure the distance
from one surface vertex to the edges, the closest pair of edge vertexes needs
to be found. Then the distance from the vertex to the segment between both
edge vertexes is computed in the physical space.
6.3. Delaunay triangulation in the pattern space
Triangulation is done in the pattern space mainly for two reasons:
- It will be quasi-isotropic, given the vertexes arrangement of this space.
- It is a 2D plane space that facilitates the entire process.

30

The resultant triangulation in the physical space will inherit the same
features of the triangulation on the pattern space since the location of its
vertexes follows the same scheme.
Valid surface and edge vertexes obtained in previous steps are used in this
section for the Delaunay triangulation. Edge vertexes impose constraints to
the triangulation: they form the perimeter of the domain (see Figure 31).

Figure 31. All vertexes and resultant triangulation with valid vertexes in the pattern space.

6.4. Edge strip triangles amendment
Let us call edge triangles strip to triangles that have at least one edge
vertex. As the pattern coordinates of edge vertexes were already estimated
(section 6.2) they might not yield the highest quality triangulation in the
physical space along this strip.
A localized improvement through the edge triangles strip is needed to
reduce their distortion. Since not all the triangles are to check but only the
edge strip ones, the process is computationally cheap. Triangles are selected
in pairs, forming one quadrilateral, in advancing sequence along the four
different edges separately. In each quadrilateral, both diagonals are
measured in the physical space and the shortest diagonal is selected, which
might coincide with the original or might not (the diagonal is then flipped).
Quadrilaterals with at least one angle greater than 180º are not checked.
Figure 32 illustrates one example for demonstration purposes, where only
one edge strip is detailed for clarity.

31

Figure 32. Edge triangles strip before (a) and after (b) improvement. Quadrilaterals

advancing at left edge (c).

7. NUMERICAL EXAMPLES

The aim of the two examples presented in this section is to demonstrate the
performance of QIT. Geometry and algorithm input details are listed in
Appendix D. For both examples, the resultant mesh from the proposed QIT
algorithm is compared with the equivalent highest quality triangulation
ideally achievable, that we call BIT (acronym for ‘Bounded Isotropic
Triangulation’). Details of such triangulation are provided in Appendix C,
but here we list the most relevant features:

- All angles are sixty degrees.

- All triangles have the same area: 𝐴𝐴𝐵𝐵𝐵𝐵𝐵𝐵 = 𝑅𝑅2

4
𝑡𝑡𝑡𝑡𝑡𝑡60.

- Vertexes valences frequency is the closest possible to the ideal
case: two vertexes of valence 2, two with valence 4, a few with
valence 3 and the rest with valence 6.

To characterize the triangulation performance, we set intervals for angles,
triangle sizes and valences, and count the number of instances in each
interval to obtain the frequency, expressed in percentage. The frequencies
are plotted and compared against the BIT reference solutions. In addition,
the so-called quality index 𝑄𝑄 described in equation (21), is computed. This
is a numerical indicator in percentage of how close the triangulation is to
the BIT reference solution. The ideal value is 100 %.

32

𝑄𝑄 = 25
𝑓𝑓𝑠𝑠𝑎𝑎

100
+ 25

𝑓𝑓𝑛𝑛𝑎𝑎

100
+ 25

𝑓𝑓𝑣𝑣3𝑎𝑎

𝑓𝑓𝑣𝑣3𝑏𝑏
+ 25

𝑓𝑓𝑣𝑣6𝑎𝑎

𝑓𝑓𝑣𝑣6𝑏𝑏
 (21)

The inputs for equation (21) are frequencies, in percentage, for:

𝑓𝑓𝑠𝑠𝑎𝑎: triangles of QIT, with sizes in the same interval as BIT size
(𝐴𝐴𝐵𝐵𝐵𝐵𝐵𝐵);

𝑓𝑓𝑛𝑛𝑎𝑎: angles of QIT in the same interval of 60 degrees;

𝑓𝑓𝑣𝑣3𝑎𝑎 and 𝑓𝑓𝑣𝑣3𝑏𝑏 : vertexes with the valence number equal to 3 for both
QIT and BIT;

𝑓𝑓𝑣𝑣6𝑎𝑎 and 𝑓𝑓𝑣𝑣6𝑏𝑏 : vertexes with the valence number equal to 6 for both
QIT and BIT.

Note that the frequencies for the size and angles for the BIT are 100 %.
7.1. Single surface with severe distortion in the parameter space
A single surface with abrupt increments in parameter space is meshed with
our QIT algorithm. The algorithm was performed for two different sizes:
𝑅𝑅 = 12 and 𝑅𝑅 = 5. Derivatives were estimated by spline surface fitting, as
described in Appendix B. In spite of the distortion in the parameter space,
the resultant triangulations remain mostly isotropic, only some few
triangles appear to be distorted due to the presence of edges. The quality
factor 𝑄𝑄 is greater when 𝑅𝑅 = 5 because the number of triangles affected by
the edges is less than in the other case when R = 12. This indicates that if
the edges have a small influence on the overall surface’s domain then the
closer to the BIT reference solution is the QIT triangulation and, therefore,
it proves that the QIT method brings onto the surface physical space an
accurate ‘image’ of the pattern space.
Figure 33 shows the surface in the physical space with the knot spans
depicted and one triangulation with vertexes equally spaced in the
parameter space to highlight the distortion in the parametrization. Figure
34 illustrates the QIT method with both 𝑅𝑅 = 12 and 𝑅𝑅 = 5. Figure 35
shows the propagation of contours in the parameter space, where the
divergent nature of the front can be clearly seen, note also some of the
contours go further off the surface limits. Figures 36 to 38 show the
frequency plots.

33

Figure 33. Left: surface for triangulation. Right: triangulation with nodes equally spaced

in the parameter space.

Figure 34. Resultant QIT triangulation. Left: 𝑅𝑅 = 12. Right: 𝑅𝑅 = 5.

Figure 35. Contours propagation in the parameter space, red lines are the surface limits.

Left: 𝑅𝑅 = 12. Right: 𝑅𝑅 = 5.

34

Figure 36. Frequency plots for triangle sizes. Red represents the QIT while blue represents

the BIT. Left: 𝑅𝑅 = 12. Right: 𝑅𝑅 = 5.

Figure 37. Frequency plots for angles. Red represents the QIT while blue represents the

BIT. Left: 𝑅𝑅 = 12. Right: 𝑅𝑅 = 5.

Figure 38. Frequency plots for valences. Red represents the QIT while blue represents the

BIT. Left: 𝑅𝑅 = 12. Right: 𝑅𝑅 = 5.

35

The quality index (Q) is computed below for both cases. Note how the
quality raises from 62 to 80 % when the target distance decreases from 12
to 5, i.e. if a finer mesh is used then it gets closer to the ideal BIT.

𝑄𝑄 = 25
41

100
+ 25

55
100

+ 25
24
33

+ 25
51
65

= 62 %

𝑄𝑄 = 25
78

100
+ 25

80
100

+ 25
12
18

+ 25
75
81

= 80 %

To illustrate the influence of the tolerance in the computational cost, Figure
39 is used. It includes the plot for the relative computational time (tr) for
edge vertex tolerances of 0.25, 0.50, 1.0, 2.0 and 4.0 % (vertical axis on the
right-hand side of the plot). The surface vertex tolerances are 4 times larger,
e.g. 2.0 % for the tolerance for edge vertexes, the tolerance for surface
vertexes is 8.0 %. The triangle size used was 𝑅𝑅 = 12. That relative
computational time is referred to the tolerance of 1.0 % for edges. It also
includes the quality index (Q), which is plotted in the vertical axis on the
left-hand side of the plot. It can be clearly seen that it decreases as the
tolerance becomes larger, as expected.

Figure 39. Relative computational time (tr) and quality index (Q) versus tolerances.

The quality improvement with the tolerance restriction can also be seen in
Figure 40, where the resultant meshes are depicted for tolerances of 4.0
and 0.25 %.

36

Figure 40. Triangulation for tolerances of 4.0 % (left) and 0.25 % (right).

7.2. Three contiguous surfaces
This example shows how three contiguous surfaces are conformal
triangulated using the QIT algorithm, i.e. their shared edges have the same
curve discretization. The target distance used was 𝑅𝑅 = 5. Figure 41 gives
the surfaces in the physical space with knot spans and control points (left)
and the computed edge vertexes (right). Figure 42 shows the final result
after triangulation (left), where the general isotropy and uniformity of the
triangulation can be clearly observed. On the right side of that figure, the
edge shared by contiguous surfaces is detailed, where conformal meshes
can be observed. Finally, Figure 43 provides the frequency plots showing
again the tendency of the QIT algorithm to achieve mesh isotropy close to
the perfect solution delivered by BIT. The quality index for this case is 73
%, as calculated below.

𝑄𝑄 = 25
54

100
+ 25

77
100

+ 25
9

13
+ 25

80
86

= 73 %

37

Figure 41. Left: surfaces for triangulation. Right: edge vertexes resultant from the QIT

algorithm.

Figure 42. Left: resultant mesh from the QIT algorithm. Right: detail for the merging of

the mesh for different surfaces.

38

Figure 43. Frequencies of sizes, angles and valences. Red represents our QIT and blue BIT

8. CONCLUSIONS AND FUTURE WORK
A new procedure for triangulating NURBS surfaces is presented in this
work. It provides a quasi-isotropic triangular mesh at once, with no
preliminary tessellation, based on a divergent advancing front technique
that avoids front collisions. Each new vertex position is calculated using
trapezoidal numerical integration, which provides simplicity and therefore
efficiency. The error committed in this approximation is controlled by
previous discretization of the parameter space. When there is more than one
surface involved, their meshes are conformal at the shared curve because
vertexes of such curve are computed once and applied for both surfaces.
Derivatives are required repeatedly for this algorithm. In order to improve
the efficiency, alternatives to the analytical calculation of these derivatives
are proposed in Appendix B.
The examples proposed demonstrated that the method delivers high quality
triangulations that tend to be isotropic, regardless of the shape or
parametrization used. Potential extensions or improvements of the method
are listed below:

- This procedure applies to non-trimmed surfaces. Application to
trimmed surfaces is still pending.

- Triangulations obtained by the algorithm presented here might be
the initial stage for further refinements at certain zones such as high
curvature areas or where analysis results (e.g. strains) are expected
to present sudden variations.

9. ACKNOWLEDGMENTS
The authors gratefully acknowledge the Department of Engineering Design
and Mathematics of the University of the West of England that partially
founded this research. They also acknowledge to Dr. Arnaud Marmier,
senior lecturer at the same university, for his comments on this work.

39

10. APPENDIXES
Appendix A: Derivatives of a function that is as norm of first derivative of

another function

Let 𝑓𝑓(𝑢𝑢) be a function defined as the norm of first derivative of another
function 𝒈𝒈(𝑢𝑢):ℝ1 → ℝ𝑑𝑑. For the sake of clarity we remove the free
variable from the notation, then 𝑓𝑓(𝑢𝑢) is expressed as 𝑓𝑓, 𝒈𝒈(𝑢𝑢) as 𝒈𝒈 and so
on.

𝒈𝒈 = 𝑔𝑔𝑖𝑖 ∀ 𝑖𝑖 = 1 𝑡𝑡𝑡𝑡 𝑑𝑑 (A.1)

𝑓𝑓 = ‖𝒈𝒈′‖ = ��𝑔𝑔𝑖𝑖′2
𝑑𝑑

𝑖𝑖=1

�

1/2

 (A.2)

First derivative of 𝑓𝑓 is computed by simple differentiation of (A.2), that
yields (A.3).

𝑓𝑓′ =
∑ (𝑔𝑔𝑖𝑖′ 𝑔𝑔𝑖𝑖′′)𝑑𝑑
𝑖𝑖=1

𝑓𝑓
 (A.3)

Applying differentiation again to (A.3) we obtain the second derivative of
𝑓𝑓, written in (A.4).

𝑓𝑓′′ =
∑ (𝑔𝑔𝑖𝑖′′𝑔𝑔𝑖𝑖′′ + 𝑔𝑔𝑖𝑖′ 𝑔𝑔𝑖𝑖′′′)𝑑𝑑
𝑖𝑖=1 𝑓𝑓 − ∑ (𝑔𝑔𝑖𝑖′ 𝑔𝑔𝑖𝑖′′)𝑑𝑑

𝑖𝑖=1 𝑓𝑓′
𝑓𝑓2

 (A.4)

For NURBS surfaces 𝑺𝑺(𝜉𝜉, 𝜂𝜂) the directional derivatives are functions of
main derivatives (𝑺𝑺,𝜉𝜉 and 𝑺𝑺,𝜆𝜆) and are not trivial. First directional derivative
𝑔𝑔𝑖𝑖′ = 𝑺𝑺,𝜆𝜆 is (A.5).

𝑺𝑺,𝜆𝜆 = 𝑺𝑺,𝜉𝜉 𝑐𝑐𝑐𝑐𝑐𝑐 𝜃𝜃 + 𝑺𝑺,𝜂𝜂 𝑠𝑠𝑠𝑠𝑠𝑠 𝜃𝜃 (A.5)

Second 𝑔𝑔𝑖𝑖′′ = 𝑺𝑺,𝜆𝜆𝜆𝜆 and third 𝑔𝑔𝑖𝑖′′′ = 𝑺𝑺,𝜆𝜆𝜆𝜆𝜆𝜆 directional derivatives are
explained here. Let 𝒗𝒗 be a vector with orientation 𝜃𝜃 and ‖𝒗𝒗‖ = 1, i.e. 𝑣𝑣1 =
cos 𝜃𝜃 and 𝑣𝑣2 = sin𝜃𝜃. Let 𝑆𝑆(𝛏𝛏) be a function such that 𝒈𝒈(𝑢𝑢):ℝ2 → ℝ1 with
𝛏𝛏 = (𝜉𝜉, 𝜂𝜂)𝑇𝑇. Derivatives w.r.t. 𝜉𝜉 and 𝜂𝜂 at location 𝛏𝛏0 may be calculated as
expressions (A.6) and (A.7).

𝑆𝑆,𝜉𝜉 = lim
ℎ→0

𝑆𝑆(𝛏𝛏0 + (ℎ, 0)) − 𝑆𝑆(𝛏𝛏0)
ℎ

= lim
ℎ→0

𝑆𝑆(𝜉𝜉0 + ℎ, 𝜂𝜂0) − 𝑆𝑆(𝜉𝜉0, 𝜂𝜂0)
ℎ

 (A.6)

40

𝑆𝑆,𝜂𝜂 = lim
ℎ→0

𝑆𝑆(𝛏𝛏0 + (0, ℎ)) − 𝑆𝑆(𝛏𝛏0)
ℎ

= lim
ℎ→0

𝑆𝑆(𝜉𝜉0, 𝜂𝜂0 + ℎ) − 𝑆𝑆(𝜉𝜉0, 𝜂𝜂0)
ℎ

 (A.7)

Directional first derivative of 𝑆𝑆 with 𝜃𝜃 orientation at location 𝛏𝛏0 is given by
equation (A.8), which is equivalent to (A.9).

𝑆𝑆,𝑣𝑣 = lim
ℎ→0

𝑆𝑆(𝛏𝛏0 + ℎ𝒗𝒗) − 𝑆𝑆(𝛏𝛏0)
ℎ

= lim
ℎ→0

𝑆𝑆(𝜉𝜉0 + ℎ𝑣𝑣1, 𝜂𝜂0 + ℎ𝑣𝑣2) − 𝑆𝑆(𝜉𝜉0, 𝜂𝜂0)
ℎ

 (A.8)

𝑆𝑆,𝑣𝑣 = 𝛁𝛁𝑺𝑺 · 𝒗𝒗 = �
𝑆𝑆,𝜉𝜉
𝑆𝑆,𝜂𝜂
�
𝑇𝑇

�
𝑣𝑣1
𝑣𝑣2�

(A.9)

Directional second derivative is obtained as follows:

𝑆𝑆,𝑣𝑣𝑣𝑣 = lim
ℎ→0

�lim
ℎ→0

𝑆𝑆(𝛏𝛏0 + ℎ𝒗𝒗 + ℎ𝒗𝒗) − 𝑆𝑆(𝛏𝛏0 + ℎ𝒗𝒗)
ℎ � − �lim

ℎ→0

𝑆𝑆(𝛏𝛏0 + ℎ𝒗𝒗) − 𝑆𝑆(𝛏𝛏0)
ℎ �

ℎ
 (A.10)

𝑆𝑆,𝑣𝑣𝑣𝑣 = lim
ℎ→0

𝑆𝑆(𝛏𝛏0 + 2ℎ𝒗𝒗) − 2𝑆𝑆(𝛏𝛏0 + ℎ𝒗𝒗) + 𝑆𝑆(𝛏𝛏0)
ℎ2

 (A.11)

Developing equation (A.11) and grouping terms we arrive to the bilinear
form (A.12), which is equivalent to (A.13).

𝑆𝑆,𝑣𝑣𝑣𝑣 = 𝒗𝒗𝑇𝑇 𝑯𝑯 𝒗𝒗 = {𝑣𝑣1 𝑣𝑣2} �
𝑆𝑆,𝜉𝜉𝜉𝜉 𝑆𝑆,𝜉𝜉𝜉𝜉
𝑆𝑆,𝜉𝜉𝜉𝜉 𝑆𝑆,𝜂𝜂𝜂𝜂

� �
𝑣𝑣1
𝑣𝑣2� (A.12)

𝑆𝑆,𝑣𝑣𝑣𝑣 = 𝑣𝑣𝑖𝑖𝑣𝑣𝑗𝑗 𝑆𝑆,𝑖𝑖𝑖𝑖 ∀ 𝑖𝑖, 𝑗𝑗 = 1,2 (A.13)

In (A.13), sub-index of 𝑆𝑆,𝑖𝑖𝑖𝑖 indicates derivatives w.r.t. 𝜉𝜉 (sub-index =1) or
𝜂𝜂 (sub-index=2). Same procedure for third directional derivative yields
equation (A.14):

𝑆𝑆,𝑣𝑣𝑣𝑣𝑣𝑣 = lim
ℎ→0

𝑆𝑆(𝛏𝛏0 + 3ℎ𝒗𝒗) − 3𝑆𝑆(𝛏𝛏0 + 2ℎ𝒗𝒗) + 3𝑆𝑆(𝛏𝛏0 + ℎ𝒗𝒗) + 𝑆𝑆(𝛏𝛏0)
ℎ3

 (A.14)

Developing (A.14) and grouping terms, the third directional derivative can
be expressed as (B.15).

𝑆𝑆,𝑣𝑣𝑣𝑣𝑣𝑣 = 𝑣𝑣𝑖𝑖𝑣𝑣𝑗𝑗𝑣𝑣𝑘𝑘 𝑆𝑆,𝑖𝑖𝑖𝑖𝑖𝑖 ∀ 𝑖𝑖, 𝑗𝑗 = 1,2 (A.15)

Where sub-index of 𝑆𝑆,𝑖𝑖𝑖𝑖𝑖𝑖 indicates derivatives w.r.t. 𝜉𝜉 (sub-index =1) or 𝜂𝜂
(sub-index=2).

41

So far, third directional derivatives expression (A.9), (A.13) and (A.15) are
deducted for functions 𝑆𝑆:ℝ2 → ℝ1. Application for function 𝑺𝑺:ℝ2 → ℝ𝑑𝑑 is
direct. Each of the 𝑑𝑑 components of the directional derivative can be
calculated separately by equations (A.9), (A.13) and (A.15). For example
for 𝑑𝑑 = 3 (𝒙𝒙 = 𝑥𝑥,𝑦𝑦, 𝑧𝑧) third directional derivative has three components as
per equation (A.16).

𝑆𝑆𝑥𝑥,𝑣𝑣𝑣𝑣𝑣𝑣 = 𝑣𝑣𝑖𝑖𝑣𝑣𝑗𝑗𝑣𝑣𝑘𝑘 𝑆𝑆𝑥𝑥,𝑖𝑖𝑖𝑖𝑖𝑖 ∀ 𝑖𝑖, 𝑗𝑗 = 1,2

𝑆𝑆𝑦𝑦,𝑣𝑣𝑣𝑣𝑣𝑣 = 𝑣𝑣𝑖𝑖𝑣𝑣𝑗𝑗𝑣𝑣𝑘𝑘 𝑆𝑆𝑦𝑦,𝑖𝑖𝑖𝑖𝑖𝑖 ∀ 𝑖𝑖, 𝑗𝑗 = 1,2

𝑆𝑆𝑧𝑧,𝑣𝑣𝑣𝑣𝑣𝑣 = 𝑣𝑣𝑖𝑖𝑣𝑣𝑗𝑗𝑣𝑣𝑘𝑘 𝑆𝑆𝑧𝑧,𝑖𝑖𝑖𝑖𝑖𝑖 ∀ 𝑖𝑖, 𝑗𝑗 = 1,2

(A.16)

Appendix B: Surface derivatives estimation

Analytical calculation of NURBS derivatives is computationally expensive.
To increase the algorithm speed we propose two alternatives. In both cases
analytical derivatives are calculated previously at certain locations (sample
points) and then a surface is fitted to them. The first presented method fits
spline surfaces to those sample points. The second method uses the dS-
mesh nodes as sample points to linearly interpolate between them. We
recall that 𝜃𝜃-directional derivative is computed as per equation (B.1).

𝑺𝑺,𝜆𝜆 = 𝑺𝑺,𝜉𝜉 𝑐𝑐𝑐𝑐𝑐𝑐 𝜃𝜃 + 𝑺𝑺,𝜂𝜂 𝑠𝑠𝑠𝑠𝑠𝑠 𝜃𝜃 (B.1)

B.1 Derivatives computed from fitted B-spline surfaces
B.1.1 Basic definitions

Let 𝑭𝑭(𝜉𝜉, 𝜂𝜂):ℝ2 → ℝ6 be a function that store the NURBS surface 𝑺𝑺(𝜉𝜉, 𝜂𝜂)
derivatives fields, i.e. 𝑆𝑆𝑗𝑗 ,𝛽𝛽 with 𝑗𝑗 = 1,2,3 that corresponds to 𝑥𝑥,𝑦𝑦, 𝑧𝑧
components; and 𝛽𝛽 = 1,2 for derivatives w.r.t. 𝜉𝜉 and 𝜂𝜂. The domain of 𝑭𝑭 is
the parameter space of 𝑺𝑺. The 𝑖𝑖th component of 𝑭𝑭 corresponds to 𝑗𝑗𝑗𝑗𝑗𝑗.
Figure B.1 shows two examples.

42

Figure B.1. Derivatives fields of NURBS surface showing the first and last derivatives
components.

We define in each knot span of 𝑺𝑺 a set of six spline surfaces to approximate
the six components of 𝑭𝑭. Spline1 surface 𝑻𝑻𝑖𝑖𝑘𝑘:ℝ2 → ℝ3 is to be fitted to the
(𝛽𝛽𝛽𝛽𝛽𝛽)th derivative component within the 𝑘𝑘th knot span of 𝑺𝑺. We will refer
to each of those sets of six spline surfaces as k-set.

𝑻𝑻𝑖𝑖𝑘𝑘 has the parameter space S�𝑘𝑘 with components (𝑢𝑢, 𝑣𝑣) and maps onto ℝ3,
with two first components, called plan coordinates, equal to (𝑢𝑢, 𝑣𝑣) and the
third component, called height (𝜁𝜁), with the 𝐹𝐹𝒊𝒊 derivative estimation, (see
Figure B.2).

1 We refer to B-spline as spline for brevity.

43

Figure B.2. k-set for the seventh span of the NURBS surface (first and last components are
shown).

Features of each k-set are listed below:

- Parameter space domain coincides with the correspondent 𝑺𝑺 knot
span domain: S�𝑘𝑘 = (𝜉𝜉𝑘𝑘1, 𝜉𝜉𝑘𝑘2) ⊗ (𝜂𝜂𝑘𝑘1, 𝜂𝜂𝑘𝑘2), where 𝜉𝜉𝑘𝑘1, 𝜉𝜉𝑘𝑘2, 𝜂𝜂𝑘𝑘1
and 𝜂𝜂𝑘𝑘2 are the kth knot span limits.

- Control points plan coordinates coincide with their parameter
coordinates (𝑢𝑢, 𝑣𝑣), therefore one parameter location for 𝑻𝑻𝑖𝑖𝑘𝑘
coincides with its physical plan coordinates and with the parameter
coordinates of 𝑺𝑺.

- Control points are equally spaced on plan in each direction, i.e. plan
coordinates form a regular net on S�𝑘𝑘.

- The six splines of the k-set share the same plan coordinates, hence
they share parametrization.

- The six splines of the k-set share basis functions, i.e. they use the
same knot spans, degrees and number of control points.

- Control points heights are to be fitted to the correspondent
derivatives field, e.g. 𝑻𝑻3𝑘𝑘 fits to 𝐹𝐹3 = 𝑆𝑆1,3 = 𝑆𝑆𝑧𝑧,𝜉𝜉.

There is one k-set defined separately for each knot span of 𝑺𝑺 in order to
guarantee that those splines are fitted to a smooth field avoiding any
potential 𝐶𝐶0 transition between knot spans. The fitted splines in this work
are quadratic. Previously to fit 𝑻𝑻𝑖𝑖𝑘𝑘 splines to derivatives fields 𝑆𝑆𝑗𝑗,𝛽𝛽, we

44

need to define the number of control points in each direction, which is
driven by the error estimation as shown in section B.2.2.

B.1.2 Number of control points

Explanations in this section are given for one k-set and one derivative field
𝐹𝐹𝑖𝑖. Sub-index on 𝐹𝐹 is removed for clarity. The number of control points is
driven by the estimation of error. Absolute error is given by equation (B.2),
that is deducted in section B.2.5.

𝐸𝐸 ≤ �
1
3!
�𝐹𝐹𝜶𝜶,𝜉𝜉𝜉𝜉𝜉𝜉 ∆𝜉𝜉𝑟𝑟

3 + 3𝐹𝐹𝜶𝜶,𝜉𝜉𝜉𝜉𝜉𝜉 ∆𝜉𝜉𝑟𝑟
2∆𝜂𝜂𝑟𝑟 + 3𝐹𝐹𝜶𝜶,𝜂𝜂𝜂𝜂𝜂𝜂 ∆𝜂𝜂𝑟𝑟2∆𝜉𝜉𝑟𝑟+𝐹𝐹𝜶𝜶,𝜂𝜂𝜂𝜂𝜂𝜂 ∆𝜂𝜂𝑟𝑟3� � (B.2)

Where ∆𝜉𝜉𝑟𝑟 and ∆𝜂𝜂𝑟𝑟 are the representative increments (see section B.2.5,
equation B.28) and derivatives are at location 𝜶𝜶 = (𝜉𝜉𝛼𝛼, 𝜂𝜂𝛼𝛼) that belongs to
the knot span sub-domain S�𝑘𝑘 and maximises the error. Relative error in
percentage is obtained as equation (B.3), being 𝐹𝐹� the root mean square over
the whole knot span (B.4) that might be estimated by Gauss quadrature.

𝐸𝐸𝑟𝑟 = 100 𝐸𝐸 𝐹𝐹�⁄ (B.3)

𝐹𝐹� = �
1

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴S�𝑘𝑘
� 𝐹𝐹 𝑑𝑑S�𝑘𝑘
S�𝑘𝑘

 (B.4)

𝐸𝐸𝑟𝑟 in the derivative estimation is to be equal or less than the prescribed
tolerance. This condition will determinate the number of control points for
the k-set following next steps:

- Initial number of control points corresponds to 𝑻𝑻𝑖𝑖𝑘𝑘 spline with a
single knot span, since 𝑻𝑻𝑖𝑖𝑘𝑘 is quadratic, initial number of control
points is three in each direction. Therefore initial representative plan
increments are Δ𝜉𝜉0𝑟𝑟 = 0.72 (𝜉𝜉𝑘𝑘2 − 𝜉𝜉𝑘𝑘1)/2 and Δ𝜂𝜂0𝑟𝑟 =
0.72 (𝜂𝜂𝑘𝑘2 − 𝜂𝜂𝑘𝑘1)/2, where 𝜉𝜉𝑘𝑘1, 𝜉𝜉𝑘𝑘2, 𝜂𝜂𝑘𝑘1 and 𝜂𝜂𝑘𝑘2 are the knot span
limits.

- Third derivatives are needed, but 𝜶𝜶 location is unknown, then we
calculate exact derivatives values 𝐹𝐹,𝜉𝜉𝜉𝜉𝜉𝜉 ,𝐹𝐹,𝜉𝜉𝜉𝜉𝜉𝜉 ,𝐹𝐹,𝜂𝜂𝜂𝜂𝜂𝜂 and 𝐹𝐹,𝜂𝜂𝜂𝜂𝜂𝜂 at
locations of a net of 𝑠𝑠 × 𝑠𝑠 equally spaced (in this work 𝑠𝑠 = 3).

- 𝐸𝐸𝑟𝑟 is computed with equations (B.2), (B.3) and (B.4) for each of
these 𝑠𝑠 × 𝑠𝑠 points using the initial representative increments
Δ𝜉𝜉0𝑟𝑟and Δ𝜂𝜂0𝑟𝑟. We consider only the highest value among the 𝑠𝑠 × 𝑠𝑠
errors.

45

- The ratio 𝑑𝑑 = 𝐸𝐸𝑟𝑟 /𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 is calculated.
- To reduce our error by a 𝑑𝑑 factor, we can only reduce the

representative increments as shown in equation (B.5).

𝐸𝐸 𝑑𝑑⁄ ≤ �
1
3! �

𝐹𝐹𝜶𝜶,𝜉𝜉𝜉𝜉𝜉𝜉 𝛥𝛥𝜉𝜉𝑟𝑟
3 𝑑𝑑⁄ + 3𝐹𝐹𝜶𝜶,𝜉𝜉𝜉𝜉𝜉𝜉 𝛥𝛥𝜉𝜉𝑟𝑟

2𝛥𝛥𝜂𝜂𝑟𝑟 𝑑𝑑⁄ + 3𝐹𝐹𝜶𝜶,𝜂𝜂𝜂𝜂𝜂𝜂 𝛥𝛥𝜂𝜂𝑟𝑟
2𝛥𝛥𝜉𝜉𝑟𝑟 𝑑𝑑⁄ +𝐹𝐹𝜶𝜶,𝜂𝜂𝜂𝜂𝜂𝜂 𝛥𝛥𝜂𝜂𝑟𝑟

3 𝑑𝑑⁄ � � (B.5)

- We use first and last summands of (B.5) to estimate updated
increments in each direction to reduce the error below tolerance, as
shown in equations (B.6) and (B.7).

Δ𝜉𝜉𝑟𝑟 = �
Δ𝜉𝜉𝑟𝑟0

3

𝑑𝑑
�
1/3

=
0.72 (𝜉𝜉𝑘𝑘2 − 𝜉𝜉𝑘𝑘1)/2

𝑑𝑑1/3 (B.6)

Δ𝜂𝜂𝑟𝑟 = �
Δ𝜂𝜂𝑟𝑟0

3

𝑑𝑑
�
1/3

=
0.72 (𝜂𝜂𝑘𝑘2 − 𝜂𝜂𝑘𝑘1)/2

𝑑𝑑1/3 (B.7)

- With these representative increments (𝛥𝛥𝜉𝜉𝑟𝑟, 𝛥𝛥𝜂𝜂𝑟𝑟) the actual
increments (𝛥𝛥𝛥𝛥, 𝛥𝛥𝛥𝛥) are obtained dividing by 0.72 and then the
number of control points in each direction is calculated as (B.8) and
(B.9).

𝑛𝑛 = 𝑚𝑚𝑚𝑚𝑚𝑚 �3, 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 �
(𝜉𝜉𝑘𝑘2 − 𝜉𝜉𝑘𝑘1)
𝛥𝛥𝜉𝜉𝑟𝑟/0.72

� � (B.8)

𝑚𝑚 = 𝑚𝑚𝑚𝑚𝑚𝑚 �3, 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 �
(𝜂𝜂𝑘𝑘2 − 𝜂𝜂𝑘𝑘1)
𝛥𝛥𝜂𝜂𝑟𝑟/0.72

� � (B.9)

The number of control points 𝑛𝑛 and 𝑚𝑚 are shared by the six splines of the k-
set.
B.1.3 Surface fitting
Once the number of control points is obtained all the splines features of the
k-set are already defined with the exception of control points heights (𝜁𝜁).
These coordinates are obtained by surface fitting techniques. Matrix 𝐀𝐀
(B.10) is computed only once for the k-set, since basis functions are shared
by the six splines. Computation of matrix 𝐀𝐀 needs parameter coordinates of
control points. As stated before, these parameter coordinates coincide with
their plan coordinates: 𝑢𝑢, 𝑣𝑣.

46

𝐀𝐀 = �
𝑁𝑁1(𝑢𝑢1)𝑀𝑀1(𝑣𝑣1) … 𝑁𝑁1(𝑢𝑢1)𝑀𝑀𝑚𝑚(𝑣𝑣𝑚𝑚)

⋮ ⋮
𝑁𝑁𝑛𝑛(𝑢𝑢𝑛𝑛)𝑀𝑀1(𝑣𝑣1) … 𝑁𝑁𝑛𝑛(𝑢𝑢𝑛𝑛)𝑀𝑀𝑚𝑚(𝑣𝑣𝑚𝑚)

� (B.10)

To compute heights of each of the six splines control points, we use
equations (B.11) and (B.12), where 𝑎𝑎 may be substituted by 𝑥𝑥, 𝑦𝑦 or 𝑧𝑧, and
the exact values at control points: 𝐹𝐹𝑥𝑥 ,𝜉𝜉11 ,𝐹𝐹𝑥𝑥,𝜉𝜉12 , … ,𝐹𝐹𝑧𝑧 ,𝜂𝜂𝑛𝑛𝑛𝑛, are needed.
These exact values are computed analytically prior to this operation.

�
𝜁𝜁111
⋮

𝜁𝜁1𝑛𝑛𝑛𝑛
� = 𝐀𝐀−1 �

𝐹𝐹𝑎𝑎,𝜉𝜉11

⋮
𝐹𝐹𝑎𝑎,𝜉𝜉𝑛𝑛𝑛𝑛

� (B.11)

�
𝜁𝜁611
⋮

𝜁𝜁6𝑛𝑛𝑛𝑛
� = 𝑨𝑨−1 �

𝐹𝐹𝑎𝑎,𝜂𝜂11

⋮
𝐹𝐹𝑎𝑎,𝜂𝜂𝑛𝑛𝑛𝑛

� (B.12)

Once the height of control points are calculated, we achieve all the features
of the six splines of 𝑻𝑻𝑖𝑖𝑘𝑘 that approximates the components of 𝑺𝑺,𝜉𝜉 and 𝑺𝑺,𝜂𝜂
with error equal or less than the tolerance. In addition, the input parameter
coordinates for 𝑺𝑺 and for 𝑻𝑻𝑖𝑖𝑘𝑘 are the same: (𝜉𝜉, 𝜂𝜂) = (𝑢𝑢, 𝑣𝑣).

B.1.4 Estimation of directional derivatives using fitted splines

The norm of 𝜃𝜃-directional derivative can be estimated at location 𝛏𝛏𝑎𝑎 using
the fitted spline surfaces 𝑻𝑻𝑖𝑖𝑘𝑘. Firstly the surface 𝑺𝑺 knot span where 𝛏𝛏𝑎𝑎 lies
is identified in order to select the corresponding k-set. Then the six
components of both derivatives are calculated entering in each spline
surface with the same 𝛏𝛏𝑎𝑎 coordinates. Note that basis functions are to be
calculated only once, as the six splines share them. Estimation of
derivatives vectors 𝑺𝑺,𝜉𝜉 and 𝑺𝑺,𝜂𝜂 are assembled and 𝜃𝜃-directional derivative is
computed as equation (B.1).
B.1.5 Error in approximation with spline surface

This section demonstrates that the error when fitting a bi-quadratic spline
surface to a function 𝐹𝐹(𝜉𝜉, 𝜂𝜂) within the rectangular domain (𝜉𝜉1, 𝜉𝜉2) ⊗
(𝜂𝜂1, 𝜂𝜂2) is calculated as expression (B.13).

𝐸𝐸 ≤ �
1
3!
�𝐹𝐹𝜶𝜶,𝜉𝜉𝜉𝜉𝜉𝜉 ∆𝜉𝜉𝑟𝑟

3 + 3𝐹𝐹𝜶𝜶,𝜉𝜉𝜉𝜉𝜉𝜉 ∆𝜉𝜉𝑟𝑟
2∆𝜂𝜂𝑟𝑟 + 3𝐹𝐹𝜶𝜶,𝜂𝜂𝜂𝜂𝜂𝜂 ∆𝜂𝜂𝑟𝑟2∆𝜉𝜉𝑟𝑟 + 𝐹𝐹𝜶𝜶,𝜂𝜂𝜂𝜂𝜂𝜂 ∆𝜂𝜂𝑟𝑟3� � (B.13)

47

Where 𝜶𝜶 = (𝜉𝜉𝛼𝛼, 𝜂𝜂𝛼𝛼) is an unknown location in (𝜉𝜉1, 𝜉𝜉2) ⊗ (𝜂𝜂1, 𝜂𝜂2) whose
derivatives 𝐹𝐹𝜶𝜶,𝜉𝜉𝜉𝜉𝜉𝜉 ,𝐹𝐹𝜶𝜶,𝜉𝜉𝜉𝜉𝜉𝜉 ,𝐹𝐹𝜶𝜶,𝜂𝜂𝜂𝜂𝜂𝜂 and 𝐹𝐹𝜶𝜶,𝜂𝜂𝜂𝜂𝜂𝜂 lead to the maximum error,
and 𝛥𝛥𝛥𝛥𝑟𝑟 = 0.72 𝛥𝛥𝛥𝛥 and 𝛥𝛥𝛥𝛥𝑟𝑟 = 0.72 𝛥𝛥𝛥𝛥 are the representative increments,
being 𝛥𝛥𝛥𝛥 and 𝛥𝛥𝛥𝛥 the increments in 𝜉𝜉 and 𝜂𝜂 directions between a regular
spaced set of control points. 𝐹𝐹 values at parameter coordinates
corresponding to control points must be analytically calculated.

We start with the error of a 𝑝𝑝-degree polynomial interpolation to a function
𝑓𝑓(𝜉𝜉):ℝ1 → ℝ1 using a set of 𝑝𝑝 + 1 points. That interpolation can be
expressed in Newton’s polynomials form (B.14).

𝑞𝑞(𝜉𝜉) = 𝑓𝑓(𝜉𝜉0) + 𝑓𝑓[𝜉𝜉1, 𝜉𝜉0](𝜉𝜉 − 𝜉𝜉0) + 𝑓𝑓[𝜉𝜉2, 𝜉𝜉1, 𝜉𝜉0](𝜉𝜉 − 𝜉𝜉1)(𝜉𝜉 − 𝜉𝜉0) + ⋯
+ 𝑓𝑓�𝜉𝜉𝑝𝑝,⋯ , 𝜉𝜉0��𝜉𝜉 − 𝜉𝜉𝑝𝑝�⋯ (𝜉𝜉 − 𝜉𝜉0) (B.14)

Where 𝑓𝑓 is known at locations 𝜉𝜉0, 𝜉𝜉1, … , 𝜉𝜉𝑝𝑝 and the finite difference are
obtained as (B.15), being the first one (B.20).

𝑓𝑓�𝜉𝜉𝑝𝑝, 𝜉𝜉𝑝𝑝−1,⋯ , 𝜉𝜉1, 𝜉𝜉0� =
𝑓𝑓�𝜉𝜉𝑝𝑝, 𝜉𝜉𝑝𝑝−1,⋯ , 𝜉𝜉1� − 𝑓𝑓�𝜉𝜉𝑝𝑝−1,⋯ , 𝜉𝜉1, 𝜉𝜉0�

𝜉𝜉𝑛𝑛 − 𝜉𝜉0
 (B.15)

𝑓𝑓[𝜉𝜉1, 𝜉𝜉0] =
𝑓𝑓(𝜉𝜉1) − 𝑓𝑓(𝜉𝜉0)

𝜉𝜉1 − 𝜉𝜉0
 (B.16)

Equation (B.14) has the same structure as Taylor’s polynomial and the error
committed in this interpolation has a similar expression to Taylor’s error
[33], which is expressed in its Lagrange form as (B.17).

𝐸𝐸𝑝𝑝 ≤
1

(𝑝𝑝 + 1)!
 𝑓𝑓(𝑝𝑝+1)(𝜉𝜉𝛼𝛼)� (𝜉𝜉 − 𝜉𝜉𝑖𝑖)

𝑝𝑝

𝑖𝑖=0
 (B.17)

Where 𝜉𝜉𝛼𝛼 is an unknown location within �𝜉𝜉0, 𝜉𝜉𝑝𝑝� whose 𝑝𝑝 + 1 derivative
maximises the error, and 𝜉𝜉 is the location where we want to estimate 𝑓𝑓
value using the polynomial interpolation.

For the particular case of 𝑝𝑝 = 2, the error is expressed as (B.18).

𝐸𝐸2 ≤
1
3!

 𝑓𝑓(3)(𝜉𝜉𝛼𝛼)(𝜉𝜉 − 𝜉𝜉0)(𝜉𝜉 − 𝜉𝜉1)(𝜉𝜉 − 𝜉𝜉2) (B.18)

The error when using spline instead a polynomial has similar expression as
demonstrated further on. Let 𝐶𝐶(𝜉𝜉) be a 2-degree spline defined within

48

certain knot span. Since degree is 2, the number of basis functions
influential on that span are three, which we call 𝑁𝑁1(𝜉𝜉), 𝑁𝑁2(𝜉𝜉) and 𝑁𝑁3(𝜉𝜉).
Then any 𝐶𝐶(𝜉𝜉) value is calculated as (B.19), where 𝑧𝑧𝑖𝑖 are the control
points coordinates.

𝐶𝐶(𝜉𝜉) = 𝑁𝑁1(𝜉𝜉) 𝑧𝑧1 + 𝑁𝑁2(𝜉𝜉) 𝑧𝑧2 + 𝑁𝑁3(𝜉𝜉) 𝑧𝑧3 (B.19)

Recall that each basis function is a 2-degree polynomial within the span
[34], hence each basic function approximates to a function 𝑓𝑓𝑖𝑖(𝜉𝜉), i.e.
𝑁𝑁𝑖𝑖(𝜉𝜉) ≈ 𝑓𝑓𝑖𝑖(𝜉𝜉), so that their linear combination with control points
coordinates 𝑧𝑧𝑖𝑖 result the function 𝑓𝑓(𝜉𝜉) as shown in equation (B.20).

𝑓𝑓(𝜉𝜉) = 𝑓𝑓1(𝜉𝜉) 𝑧𝑧1 + 𝑓𝑓2(𝜉𝜉) 𝑧𝑧2 + 𝑓𝑓3(𝜉𝜉) 𝑧𝑧3 (B.20)

Therefore the error committed within each basis function 𝑁𝑁𝑖𝑖 has the same
expression than the Newton’s polynomial approximation (B.21).

𝐸𝐸2𝑖𝑖 ≤
1
3!
𝑓𝑓𝑖𝑖
𝛼𝛼 ,𝜉𝜉𝜉𝜉𝜉𝜉 (𝜉𝜉 − 𝜉𝜉0)(𝜉𝜉 − 𝜉𝜉1)(𝜉𝜉 − 𝜉𝜉2) (B.21)

Where 𝑓𝑓𝑖𝑖
𝛼𝛼 ,𝜉𝜉𝜉𝜉𝜉𝜉 indicates third derivative of 𝑓𝑓𝑖𝑖 at 𝜉𝜉𝛼𝛼, being 𝜉𝜉𝛼𝛼 an unknown

location within (𝜉𝜉0, 𝜉𝜉2) whose 𝑓𝑓𝑖𝑖
𝛼𝛼 ,𝜉𝜉𝜉𝜉𝜉𝜉 maximises the error, 𝜉𝜉 is the location

where we want to estimate 𝑓𝑓 value using the spline and 𝜉𝜉0, 𝜉𝜉1 and 𝜉𝜉2 are the
parameter coordinates of control points. The error when using 𝐶𝐶 is
therefore the linear combination of the three errors as expressed in equation
(B.22).

𝐸𝐸2𝐶𝐶 ≤
1
3!
�𝑓𝑓1

𝛼𝛼 ,𝜉𝜉𝜉𝜉𝜉𝜉 𝑧𝑧1 + 𝑓𝑓2
𝛼𝛼 ,𝜉𝜉𝜉𝜉𝜉𝜉 𝑧𝑧2 + 𝑓𝑓3

𝛼𝛼 ,𝜉𝜉𝜉𝜉𝜉𝜉 𝑧𝑧3� (𝜉𝜉 − 𝜉𝜉0)(𝜉𝜉 − 𝜉𝜉1)(𝜉𝜉 − 𝜉𝜉2) (B.22)

In (B.26) the expression within left brackets is the third derivative of 𝑓𝑓,
hence that equation can be expressed as (B.23).

𝐸𝐸2𝐶𝐶 ≤
1
3!
𝑓𝑓𝛼𝛼 ,𝜉𝜉𝜉𝜉𝜉𝜉 (𝜉𝜉 − 𝜉𝜉0)(𝜉𝜉 − 𝜉𝜉1)(𝜉𝜉 − 𝜉𝜉2) (B.23)

Note that (B.23) has the same structure as equation (B.18). To generalize
(B.23) for any location within the knot span, and assuming control points
with parameter coordinates equally spaced 𝛥𝛥𝛥𝛥, we locate a representative 𝜉𝜉
at mid point of one of the intervals and calculate the representative interval
𝛥𝛥𝜉𝜉𝑟𝑟 as equation (B.24). Figure B.3 illustrates the location of this
representative 𝜉𝜉 coordinate.

49

𝛥𝛥𝜉𝜉𝑟𝑟 = �
1
2
𝛥𝛥𝛥𝛥

1
2
𝛥𝛥𝛥𝛥

3
2
𝛥𝛥𝛥𝛥�

1/3

≈ 0.72 𝛥𝛥𝛥𝛥 (B.24)

Figure B.3 Location of representative coordinate 𝜉𝜉.

Using the representative increment 𝛥𝛥𝜉𝜉𝑟𝑟 equation (B.23) might be expressed
as (B.25). Which establishes the estimated maximum error for any location
for a 2-degree spline curve fitting to a set of equally spaced points.

𝐸𝐸2𝐶𝐶 ≤
1
3!
𝑓𝑓𝛼𝛼 ,𝜉𝜉𝜉𝜉𝜉𝜉 𝛥𝛥𝜉𝜉𝑟𝑟

3 (B.25)

Extension to spline surface 𝑇𝑇(𝜉𝜉, 𝜂𝜂) that approximates to a scalar function
𝐹𝐹(𝜉𝜉, 𝜂𝜂) involves chain rule for derivatives calculation. Here we show
directly the error result for the sake of brevity. Equation (B.26) shows error
for 𝑝𝑝-degree and equation (B.27) is particularized for 2-degree case with
representative increments. The fitted surface 𝑇𝑇(𝜉𝜉, 𝜂𝜂) is to have a
rectangular domain shared with 𝐹𝐹(𝜉𝜉, 𝜂𝜂) defined as (𝜉𝜉1, 𝜉𝜉2) ⊗ (𝜂𝜂1, 𝜂𝜂2).

𝐸𝐸𝑝𝑝𝑆𝑆 ≤ � �𝑝𝑝𝑚𝑚�
𝜕𝜕𝑝𝑝+1

𝜕𝜕𝜕𝜕𝑚𝑚𝜕𝜕𝜕𝜕𝑝𝑝+1−𝑚𝑚
𝐹𝐹(𝜉𝜉𝛼𝛼 ,𝜂𝜂𝛼𝛼)� (𝜉𝜉 − 𝜉𝜉𝑖𝑖)

𝑚𝑚

𝑖𝑖=0
 � �𝜂𝜂 − 𝜂𝜂𝑗𝑗�

𝑝𝑝+1−𝑚𝑚

𝑗𝑗=0

𝑝𝑝+1

𝑚𝑚=0

 (B.26)

𝐸𝐸2𝑆𝑆 ≤ �
1
3!
�𝐹𝐹𝜶𝜶,𝜉𝜉𝜉𝜉𝜉𝜉 𝛥𝛥𝜉𝜉𝑟𝑟

3
+ 3𝐹𝐹𝜶𝜶,𝜉𝜉𝜉𝜉𝜉𝜉 𝛥𝛥𝜉𝜉𝑟𝑟

2
𝛥𝛥𝜂𝜂𝑟𝑟 + 3𝐹𝐹𝜶𝜶,𝜂𝜂𝜂𝜂𝜂𝜂 𝛥𝛥𝜂𝜂𝑟𝑟

2
𝛥𝛥𝜉𝜉𝑟𝑟

+ 𝐹𝐹𝜶𝜶,𝜂𝜂𝜂𝜂𝜂𝜂 𝛥𝛥𝜂𝜂𝑟𝑟
3
� � (B.27)

In (B.27) 𝛥𝛥𝛥𝛥𝑟𝑟 and 𝛥𝛥𝛥𝛥𝑟𝑟 are the representative increments, calculated as
(B.24). The derivatives of 𝐹𝐹 are at one location 𝜶𝜶 = (𝜉𝜉𝛼𝛼, 𝜂𝜂𝛼𝛼) within the
domain (𝜉𝜉1, 𝜉𝜉2) ⊗ (𝜂𝜂1, 𝜂𝜂2) such hat the computed error is maximum.

In our case in particular, functions to approximate is 𝐹𝐹𝑖𝑖 = 𝑆𝑆𝑗𝑗 ,𝛽𝛽. Sub-indexes
values are 𝑗𝑗 = 1,2,3 for 𝑥𝑥, 𝑦𝑦 and 𝑧𝑧; and 𝛽𝛽 = 1,2 for 𝜉𝜉 and 𝜂𝜂. Some
examples of expressions for derivatives required in equation (B.27) are
provided below:

50

𝐹𝐹1,𝜉𝜉𝜉𝜉𝜉𝜉 = 𝑆𝑆𝑥𝑥 ,𝜉𝜉𝜉𝜉𝜉𝜉𝜉𝜉

𝐹𝐹1,𝜉𝜉𝜉𝜉𝜉𝜉 = 𝑆𝑆𝑥𝑥 ,𝜉𝜉𝜉𝜉𝜉𝜉𝜉𝜉

𝐹𝐹4,𝜂𝜂𝜂𝜂𝜂𝜂 = 𝑆𝑆𝑥𝑥 ,𝜂𝜂𝜂𝜂𝜂𝜂𝜂𝜂

𝐹𝐹6,𝜂𝜂𝜂𝜂𝜂𝜂 = 𝑆𝑆𝑧𝑧 ,𝜂𝜂𝜂𝜂𝜂𝜂𝜂𝜂

B.2 Directional derivatives computed from the dS-mesh

The norm of 𝜃𝜃-directional derivative can be estimated at certain location 𝛏𝛏𝑎𝑎
from the dS-mesh by linear interpolation by following next three steps.
Firstly partition of dS-mesh where 𝛏𝛏𝑎𝑎 lies is identified, secondly the main
derivatives (𝑺𝑺,𝜉𝜉 and 𝑺𝑺,𝜂𝜂) of that element nodes are extracted (they are
analytically calculated previously) and the 𝜃𝜃-directional derivative is
computed at each node as per equation (B.1). Third, the norm of 𝜃𝜃-
directional derivative at 𝛏𝛏𝑎𝑎 is estimated by bi-linear interpolation of norms
from the element nodes, as equation (B.28).

�𝑺𝑺,𝜆𝜆
𝛏𝛏𝑎𝑎 � ≈ �𝑁𝑁𝑘𝑘(𝛏𝛏𝑎𝑎) �𝑺𝑺,𝜆𝜆𝑘𝑘 �

4

𝑘𝑘=1

 (B.28)

Where 𝑁𝑁𝑘𝑘(𝛏𝛏𝑎𝑎) and 𝑺𝑺,𝜆𝜆
𝑘𝑘 are the value of the 𝑘𝑘𝑡𝑡ℎ basis function at position 𝛏𝛏𝑎𝑎

and the derivative value at 𝑘𝑘𝑡𝑡ℎ node respectively.

The dS-mesh is non-conformal, therefore if the location 𝛏𝛏𝑎𝑎 lies at the edge
between two elements, only the smallest one, more accurate, is considered.
This procedure leads to a high speed directional derivative estimation.
However recall that dS-mesh was refined to control error for physical
length computation, equation (B.29), and not for derivatives itself. The
error of the derivative linear interpolation is calculated as (B.30).

𝐸𝐸 ≤
−1
12

 ‖𝑺𝑺,𝜆𝜆𝛼𝛼 ‖′′ ‖𝝃𝝃𝑏𝑏 − 𝝃𝝃𝑎𝑎‖3 (B.29)

𝐸𝐸𝑑𝑑 ≤
1
2

 ‖𝑺𝑺,𝜆𝜆𝛼𝛼 ‖′′ ‖𝝃𝝃𝑏𝑏 − 𝝃𝝃𝑎𝑎‖ (B.30)

The relationship between both errors is:

𝐸𝐸𝑑𝑑
𝐸𝐸
≤

3
‖𝝃𝝃𝑏𝑏 − 𝝃𝝃𝑎𝑎‖2

 (B.31)

51

It is clear that the estimated error for derivatives interpolation is greater
than error for path length trapezoidal rule (we assume ‖𝝃𝝃𝑏𝑏 − 𝝃𝝃𝑎𝑎‖ < 1).
Since dS-mesh is generated to control error (B.29) and not (B.30), the error
or this estimation of derivatives is not fully controlled. Therefore this
method, that is faster than the splines fitting (section B.1) can be used only
if the accuracy is not critical in the triangulation process.
Appendix C: Bounded isotropic triangulation

This appendix defines the bounded isotropic triangulation (BIT) and
explains how to obtain a BIT and its characterization parameters (angles,
triangles sizes and valences) corresponding to any triangulation (AT). BIT is
the ideal isotropic triangulation version of AT and therefore the highest
quality triangulation ideally achievable.

C.1 Bounded isotropic triangulation (BIT)

BIT is a portion of unbounded isotropic triangulation. The latter extends to
infinite, i.e. presents no boundary edges, all angles are sixty degrees, all
nodes valences are six and all triangles are the same size (Figure C.1 (a)).
The former is bounded by four edges forming a rhomboid (Figure C.1 (b)),
therefore not all valences are six, however sizes and angles are preserved as
ideal isotropic. Parameters that characterize the BIT are the number of rows
and columns, designated as 𝑟𝑟𝑏𝑏 and 𝑐𝑐𝑏𝑏. Figure C.1 provides one example.

Figure C.1. Ideal isotropic triangulation (a) and extraction of 6 x 5 BIT (b).

The number of triangles (𝑡𝑡𝑏𝑏) and number contour segments (𝑠𝑠𝑏𝑏) of BIT are
computed from 𝑟𝑟𝑏𝑏 and 𝑐𝑐𝑏𝑏 as shown in equations (C.1) and (C.2).

52

𝑡𝑡𝑏𝑏 = 2 𝑟𝑟𝑏𝑏 𝑐𝑐𝑏𝑏 (C.1)

𝑠𝑠𝑏𝑏 = 2 (𝑟𝑟𝑏𝑏 + 𝑐𝑐𝑏𝑏) (C.2)

As mention, BIT has all angles equal to sixty degrees and all triangles are
the same size, but not all vertexes valences are six. Vertexes valences are
calculated as per Table C.1.

Table C.1 Frequency (number of instances) of vertexes valences.
Valence Frequency
1 2
2 2
3 2((𝑐𝑐𝑏𝑏 − 1) + (𝑟𝑟𝑏𝑏 − 1))
4 0
5 0
6 (𝑐𝑐𝑏𝑏 − 1) × (𝑟𝑟𝑏𝑏 − 1)

C.2 Computation of BIT correspondent to any triangulation (AT)

Given AT mesh we can find its correspondent BIT using equations (C.1)
and (C.2). By manipulation of them we arrive to expressions (C.3).

𝑟𝑟𝑏𝑏 =
𝑠𝑠𝑎𝑎
4

+ �𝑠𝑠𝑎𝑎
2

16
−
𝑡𝑡𝑎𝑎
2

𝑠𝑠𝑏𝑏 =
𝑠𝑠𝑎𝑎
4
− �𝑠𝑠𝑎𝑎

2

16
−
𝑡𝑡𝑎𝑎
2

(C.3)

In equations (C.3) we input the AT number of triangles and edge segments
(𝑡𝑡𝑎𝑎 and 𝑠𝑠𝑎𝑎) and obtain its correspondent BIT number of rows and columns
(𝑟𝑟𝑏𝑏 and 𝑐𝑐𝑏𝑏) and afterwards the BIT vertexes valences frequency as per
Table C.1. Figure C.2 provides one example of the BIT associated to AT.

53

Figure C.2. Computation of BIT (right) for a given AT (left). Contour segments of AT are
numbered.

BIT is the closest version of AT to an ideal isotropic triangulation, then the
closest the parameters (angles, sizes and valences) of AT are to its BIT the
higher quality presents the former.
Appendix D: Data for numerical examples
D.1 Example 7.1: single surface

Table D.1. QIT inputs.

𝑅𝑅 Threshold
distance to edge

Tolerance for
curves (%)

Tolerance for
surfaces (%)

Tolerance for
derivatives (%)

12 and 6 4 and 2 1.0 4.0 15.0

Table D.2. Surface NURBS features.
No. control points 𝑛𝑛 = 6 𝑚𝑚 = 5
Degrees 𝑝𝑝 = 2 𝑞𝑞 = 2

Knot vectors 𝛯𝛯 = {000 0.25 0.50 0.75 111}
𝛨𝛨 = {000 0.50 0.50 111}

Table D.3. Control points coordinates and weights.
 1 2 3 4 5

1 0, 0, -90, 1 0, 0, 0, 0.707 0, 30, 0, 1 0, 60, 0, 0.707 0, 60, -30, 1
2 30, 0, -15, 1 30, 15, 0, 1 30, 30, 0, 1 30, 45, 0, 1 30, 60, -15, 1
3 95, 0, 0, 1 95, 15, 0, 1 95, 30, 0, 1 95, 45, 0, 1 95, 60, 0, 1
4 150, 0, 0, 6 137.5, 15, 0, 1 125, 30, 0, 1 112.5, 45, 0, 1 100, 60, 0, 1
5 150, 65, 0, 1 137.5, 65, 0, 1 125, 65, 0, 1 112.5, 65, 0, 1 100, 65, 0, 1
6 150, 100, 0, 1 137.5, 100, 0, 1 125, 100, 0, 1 112.5, 100, 0, 1 100, 100, 0, 1

54

D.2 Example 7.2: three contiguous surfaces

Table D.4. QIT inputs.

𝑅𝑅 Threshold
distance to edge

Tolerance for
curves (%)

Tolerance for
surfaces (%)

Tolerance for
derivatives (%)

5 1.67 1.0 4.0 15.0

- Bottom surface:

Table D.5. Surface NURBS features.
No. control points 𝑛𝑛 = 3 𝑚𝑚 = 5
Degrees 𝑝𝑝 = 2 𝑞𝑞 = 2

Knot vectors 𝛯𝛯 = {000 111}
𝛨𝛨 = {000 0.50 0.50 111}

Table D.6. Control points coordinates and weights.
 1 2 3 4 5

1 108, 40, 0, 1 108, -28, 0, 0.707 40, -28, 0, 1 -28,-28, 0, 0.707 -28, 40, 0, 1
2 80, 40, 75, 1 80, 0, 75, 0.707 40, 0, 75, 1 0, 0, 75, 0.707 0, 40, 75, 1
3 80, 40, 150, 1 80, 0, 150, 0.707 40, 0, 150, 1 0, 0, 150, 0.707 0, 40, 150, 1

- Mid surface:

Table D.7. Surface NURBS features.
No. control points 𝑛𝑛 = 5 𝑚𝑚 = 2
Degrees 𝑝𝑝 = 2 𝑞𝑞 = 1

Knot vectors 𝛯𝛯 = {000 0.50 0.50 111}
𝛨𝛨 = {00 11}

Table D.8. Control points coordinates and weights.
 1 2

1 0, 40, 150, 1 20, 40, 150, 1
2 0, 0, 150, 0.707 20, 20, 150, 0.707
3 40, 0, 150, 1 40, 20, 150, 1
4 80, 0, 150, 0.707 60, 20, 150, 0.707
5 80, 40, 150, 1 60, 40, 150, 1

- Top surface:

Table D.9. Surface NURBS features.
No. control points 𝑛𝑛 = 3 𝑚𝑚 = 5
Degrees 𝑝𝑝 = 2 𝑞𝑞 = 2

Knot vectors 𝛯𝛯 = {000 111}
𝛨𝛨 = {000 0.50 0.50 111}

Table D.10. Control points coordinates and weights.

55

 1 2 3 4 5

1 60, 40, 150, 1 60, 20, 150,
0.707 40, 20, 150, 1 20, 20, 150, 0.707 20, 40, 150,

1

2 60, 40, 210,
0.707

60, 20, 230,
0.50

40, 20, 230,
0.707 20, 20, 230, 0.707 20, 40, 210,

1

3 60, 100, 210, 1 60, 100, 230,
0.707 40, 100, 230, 1 20, 100, 230,

0.707
20, 100,
210, 1

11. REFERENCES
[1] T.J.R. Hughes, J.A. Cottrell, Y. Bazilevs, ‘Isogeometric analysis: CAD, finite

elements, NURBS, exact geometry and mesh refinement’. Computer Methods in
Applied Mechanics and Engineering, 194(39), pp. 4135-4195, 2005

[2] J.A. Cottrell, T.J.R. Hughes, Y. Bazilevs, ‘Isogeometric analysis: toward
integration of CAD and FEA’, Oxford: Wiley, 2009.

[3] T.J. Baker, ‘Mesh generation: Art or science?’, Progress in Aerospace Sciences,
41(1), pp. 29-63, 2005.

[4] K. Shimada, ‘Current issues and trends in meshing and geometric processing for
computational engineering analyses’, Journal of Computing and Information
Science in Engineering, 11(2), pp. 021008, 2011.

[5] Q. Du, V. Faber, M. Gunzburger, ‘Centroidal Voronoi tessellations: Applications
and algorithms’, SIAM Review, 41(4), pp. 637-676, 1999.

[6] P.J. Frey, H. Borouchaki, P. George, ‘3D Delaunay mesh generation coupled with
an advancing-front approach’, Computer Methods in Applied Mechanics and
Engineering, 157(1-2), pp. 115-131, 1998.

[7] R. Löhner, P. Parikh, ‘Generation of three‐dimensional unstructured grids by the
advancing‐front method’, International Journal for Numerical Methods in Fluids,
8(10), pp. 1135-1149, 1988.

[8] K. Nakahashi, D. Sharov, ’Direct surface triangulation using the advancing front
method’, 12th Computational Fluid Dynamics Conference 1995, pp. 1686, 1995.

[9] J.R. Tristano, S.J. Owen, S.A. Canann, ‘Advancing Front Surface Mesh
Generation in Parametric Space Using a Riemannian Surface Definition’, IMR
1998, pp. 429-445, 1998.

[10] M.A. Yerry, M.S. Shephard, ‘Automatic three‐dimensional mesh generation by
the modified‐octree technique’, International Journal for Numerical Methods in
Engineering, 20(11), pp. 1965-1990, 1984.

[11] M.S. Shephard, M.K. Georges, ’Automatic three‐dimensional mesh generation by
the finite octree technique’, International Journal for Numerical Methods in
Engineering, 32(4), pp. 709-749, 1991.

[12] X. Sheng, B.E. Hirsch, ‘Triangulation of trimmed surfaces in parametric space’,
Computer-Aided Design, 24(8), pp. 437-444, 1992.

[13] H. Borouchaki, P. Laug, P. George, ‘Parametric surface meshing using a
combined advancing‐front generalized Delaunay approach’, International Journal
for Numerical Methods in Engineering, 49(1‐2), pp. 233-259, 2000.

[14] R.J. Cripps, S. Parwana, ‘A robust efficient tracing scheme for triangulating
trimmed parametric surfaces’, Computer-Aided Design, 43(1), pp. 12-20, 2011.

[15] E. Béchet, J. Cuilliere, F Trochu, ‘Generation of a finite element MESH from
stereolithography (STL) files’, Computer-Aided Design, 34(1), pp. 1-17, 2002.

56

[16] D. Wang, O. Hassan, K. Morgan, N. Weatherill, ’EQSM: An efficient high quality
surface grid generation method based on remeshing’, Computer Methods in
Applied Mechanics and Engineering, 195(41-43), pp. 5621-5633, 2006.

[17] S.W. Yang, Y. Choi, ’Triangulation of CAD data for visualization using a
compact array-based triangle data structure’, Computers & Graphics, 34(4), pp.
424-429, 2010.

[18] E. Marchandise, J. Remacle, C. Geuzaine, ‘Optimal parametrizations for surface
remeshing’, Engineering with Computers, 30(3), pp. 383-402, 2014.

[19] R. Aubry, S. Dey, E.L. Mestreau, B.K. Karamete, D. Gayman, ‘A robust
conforming NURBS tessellation for industrial applications based on a mesh
generation approach’, Computer-Aided Design, 63, pp. 26-38, 2015.

[20] J. Guo , F. Ding, X. Jia, D. Yan, ‘Automatic and high-quality surface mesh
generation for CAD models’, Computer-Aided Design, 109, pp. 49-59, 2019.

[21] V. Surazhsky, P. Alliez, C. Gotsman, ‘Isotropic remeshing of surfaces: a local
parameterization approach’, 2003.

[22] P. Alliez, E.C. De Verdire, O. Devillers, M. Isenburg, ’Isotropic surface
remeshing’, 2003 Shape Modeling International. 2003, IEEE, pp. 49-5, 2003.

[23] S.W. Yang, Y. Choi, ‘Triangulation of CAD data for visualization using a
compact array-based triangle data structure’, Computers & Graphics, 34(4), pp.
424-429, 2010.

[24] Y. Li, W. Wang, R. Ling, C. Tu, ‘Shape optimization of quad mesh elements’,
Computers & Graphics, 35(3), pp. 444-451, 2011.

[25] M.S. Ebeida, A. Patney, J.D. Owens, E. Mestreau, ‘Isotropic conforming
refinement of quadrilateral and hexahedral meshes using two‐refinement
templates’, International Journal for Numerical Methods in Engineering, 88(10),
pp. 974-985, 2011.

[26] M. Tsai, C. Cheng, M. Cheng, ‘A real-time NURBS surface interpolator for
precision three-axis CNC machining’, International Journal of Machine Tools and
Manufacture, 43(12), pp. 1217-1227, 2003.

[27] P. Bézier, ‘Numerical control: mathematics and applications’, 1970.
[28] A.R. Forrest, ‘Interactive interpolation and approximation by Bézier polynomials’,

The Computer Journal, 15(1), pp. 71-79, 1972.
[29] S. Bernstein, ‘Démonstration du théoreme de Weierstrass fondée sur le calcul des

probabilities’, Comm.Soc.Math.Kharkov, 13, pp. 1-2, 1912.
[30] M.G. Cox, ‘The numerical evaluation of B-splines’, IMA Journal of Applied

Mathematics, 10(2), pp. 134-149, 1972.
[31] C. De Boor, ‘On calculating with B-splines’, Journal of Approximation theory,

6(1), pp. 50-62, 1972.
[32] E. Isaacson, H.B. Keller, ‘Analysis of numerical methods’, John Wiley & Sons,

1966.
[33] S.C. Chapra, R.P. Canale, ‘Numerical methods for engineers’, Boston: McGraw-

Hill Higher Education, 2010.
[34] L. Piegl, W. Tiller, ‘The NURBS Book’, 2 edn. Springer-Verlag, 1996.

	1. Introduction
	1.1. Triangulation of parametric surfaces
	1.2. Isotropic meshes
	1.3. Proposed method
	1.4. Article structure

	2. Theoretical formulation
	2.1. NURBS
	2.2. Length of paths on NURBS
	2.3. Trapezoidal rule for path lengths
	2.4. Path Parameter Increment corresponding to a physical length (PPI)
	2.5. Orientation of a surface tangent vector in the parameter space

	3. Preliminaries
	3.1. Pattern space
	3.2. A whole view: the QIT algorithm
	3.3. Conventions and definitions

	4. Vertexes of edge curves
	4.1. Discretization of the parameter space. The dC-mesh
	4.2. Edge vertexes calculation

	5. Surface vertexes
	5.1. Discretization of the parameter space. The dS-mesh
	5.2. End Parameter Position of a path given its physical length (EPP)
	5.3. Intersection of two Arcs in Physical space (AIP)
	5.4. Computation of vertexes
	5.5. Recovering of non-computed base vertexes

	6. Triangulation
	6.1. Estimation of edge vertexes in the pattern space
	6.2. Removal of non-valid surface vertexes
	6.3. Delaunay triangulation in the pattern space
	6.4. Edge strip triangles amendment

	7. Numerical examples
	7.1. Single surface with severe distortion in the parameter space
	7.2. Three contiguous surfaces

	8. Conclusions and future work
	9. Acknowledgments
	10. Appendixes
	Appendix A: Derivatives of a function that is as norm of first derivative of another function
	Appendix B: Surface derivatives estimation
	B.1 Derivatives computed from fitted B-spline surfaces
	B.2 Directional derivatives computed from the dS-mesh

	Appendix C: Bounded isotropic triangulation
	C.1 Bounded isotropic triangulation (BIT)
	C.2 Computation of BIT correspondent to any triangulation (AT)

	Appendix D: Data for numerical examples
	D.1 Example 7.1: single surface
	D.2 Example 7.2: three contiguous surfaces

	11. References

