
SPECIAL SECTION ON BLOCKCHAIN
TECHNOLOGY: PRINCIPLES AND APPLICATIONS

Received April 30, 2020, accepted June 14, 2020, date of publication June 30, 2020, date of current version July 20, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3006113

Security Properties of Light Clients
on the Ethereum Blockchain
SANTERI PAAVOLAINEN 1 AND CHRISTOPHER CARR2,3
1Department of Communications and Networking, School of Electrical Engineering, Aalto University, 00076 Aalto, Finland
2Department of Information Security and Communication Technology, Norwegian University of Science and Technology, 7491 Trondheim, Norway
3Department of Accounting, Economics and Finance, University West of England, Bristol BS16 1ZG, U.K.

Corresponding author: Santeri Paavolainen (santeri.paavolainen@aalto.fi)

This work was supported by the European Union’s Horizon 2020 Research and Innovation Programme under Grant 779984. The work of
Christopher Carr was supported in part by the Norwegian University of Science and Technology, Trondheim, Norway.

ABSTRACT Ethereum is a decentralized blockchain, known as being the second most popular public
blockchain after Bitcoin. Since Ethereum is decentralised the canonical state is determined by the Ethereum
network participants via a consensus mechanism without a centralized coordinator. The network participants
are required to evaluate every transaction starting from the genesis block, which requires a large amount
of network, computing, and storage resources. This is impractical for many devices with either limited
computing resources or intermittent network connectivity. To overcome this drawback Ethereum defines
a light client protocol where the light client fetches the blockchain state from a node operating as a light
protocol server. Light clients are unable tomaintain blockchain state internally, and as a consequence can only
perform partial validation on blocks. Thus they rely on the light server for full block validation and to provide
the updated blockchain state. Light clients connect to multiple light servers to mitigate the risk of relying on
a single potentially dishonest server. Ethereum light clients are known to suffer from a probabilistic security
model, but they are widely assumed to be secure under normal operating conditions. In fact, the implicit
security assumptions of light clients have not been formally characterised in the literature. We present and
analyse the probabilistic security guarantees under three different adversarial scenarios. The results show
that for any adversary that is able to manipulate the network, the security assurances provided by the light
protocol are severely impacted, and in some cases entirely lost. These results clearly demonstrate that the
assumption of normal operating conditions is insufficient to justify the security assumptions of light clients.
Our work also provides insight to the security of light clients under different security parameters, allowing
light client implementers to more accurately understand the potential security trade-offs.

INDEX TERMS Blockchain, ethereum, light client, light ethereum subprotocol, security.

I. INTRODUCTION
The Ethereum blockchain is a well-known second-generation
blockchain technology [1]. In contrast to earlier blockchain
technologies, such as Bitcoin [2], Ethereum has a far shorter
block interval — the period between state transitions — and
allows for expressive smart contracts. Smart contracts are
programs whose program code and execution state are
stored on the blockchain. Ethereum has accounts as explicit
entities, in contrast with Bitcoin where transactions are
referred to as unspent transaction outputs — called UTXOs.
The two approaches are distinguished as account-centric
blockchain and transaction-centric blockchain models by
Ren and Erkin [3]. They observe that in both blockchain

The associate editor coordinating the review of this manuscript and

approving it for publication was Wenbing Zhao .

models, consensus requires that all nodes in the network can
reliably acquire and compute the state transition function.
This requirement for consensus becomes a critical issue when
attempting to connect resource constrained devices to the
Ethereum network.

The Ethereum network is a distributed set of computer-
participants called nodes, which have significant resource
requirements. A node containing the full block history
requires hundreds of gigabytes of storage. Even a node that
discards much of the historical data still needs gigabytes
of available storage [4]. For devices with limited storage
space this may already inhibit them from participating in the
network consensus protocol.

In addition to storing the blockchain history and its current
state, a nodemust validate and process incoming blocks. Such
nodes are also called called validating nodes or full nodes.

VOLUME 8, 2020 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 124339

https://orcid.org/0000-0002-7523-347X
https://orcid.org/0000-0002-3202-1127

S. Paavolainen, C. Carr: Security Properties of Light Clients on the Ethereum Blockchain

For a node to apply the full consensus protocol, it needs to
have sufficient bandwidth and computational capacity. We
call a constrained device any device that lacks the resources to
operate as a consensus-protocol following node. For example,
most mobile devices would fall into the constrained device
category, as well as most Internet of Things (IoT) devices
including consumer and industrial embedded applications.
Devices which may have the required storage and process-
ing capacity, but are lacking in either network connectivity
(intermittent connectivity) or availability of power (battery-
powered devices including vehicles) are also considered to
be constrained in this study.

To address the problem of constrained devices many
blockchains define light protocols used by light clients. Bit-
coin defines the Simple Payment Verification (SPV) [2] pro-
tocol and Ethereum has the Light Ethereum Subprotocol
(LES) [5]. These offload parts of the blockchain consensus
and state management protocol to light protocol servers. In
general, light clients are able to quickly identify the cur-
rent canonical chain, retrieve and validate block headers,
and query the light servers for further information such as
transactions and blockchain state. While these light protocols
are designed for space-efficient and secure data retrieval, they
have the potential to introduce new attack vectors.

Light clients are reliant on light servers to both process
blocks and keep them informed of the current state. Unlike
full nodes, light clients cannot determine if a block it receives
is based on, or describes operations that would result in an
invalid blockchain state. They are effectively stateless and
rely only on information from block headers to determine
the true chain. This creates a potential attack vector for light
clients, making them more vulnerable to entities who may
wish to deceive them. In reality, some implementations do
store blockchain data so that it is not a stateless process. How-
ever, this behavior is not part of the Ethereum specification
and is not a required behavior of a conforming light client.
Moreover, even storing some previous state may not prove a
reliable countermeasure. Consequently light clients are sus-
ceptible to attacks where a malicious entity gains a substan-
tial but not necessarily a majority of computational power
even for a short period of time. This vulnerability is com-
pounded when availability of local full nodes is decreased,
or a greater percentage are malicious, such as in network
partitioning attacks. Notably, the network may be partitioned
even under normal conditions without any action specifically
targeting the network. For example, the Internet may suffer
from routing problems [6] or national security apparatus may
temporarily block Internet access in a large region [7], [8].

It has been previously shown that Ethereum light clients
achieve only probabilistic security assurances.1 However,
the overall security is considered to be high under nor-
mal operating assumptions, where ‘‘normal’’ in this case

1The consensus protocol itself has a probabilistic finality property, see [9],
[10], but for simplification we describe it as fully deterministic in the absence
of hostile activities.

means that there is complete availability to each node.
Al-Bassam et al. [11] write that light clients operate ‘‘well
under normal circumstances’’, and would suffer security
degradation only if a majority of the consensus controlling
nodes (i.e. miners and full nodes) collude. Leiba et al. [12]
similarly state that light clients are secure against dishon-
est servers when the majority of miners are honest and
the light client is able to connect to at least one honest
node. Many other works have noted these assumptions or
demonstrated the weaker security assurances offered for light
clients [13]–[16], but have not formally characterised the
security of light clients to the extent our work provides.

Despite the general understanding of light client’s security
requirements, there is no comprehensive and formal descrip-
tion of the properties of light clients on an Ethereum network.
This article addresses that omission.We describe the behavior
of the Light Ethereum Subprotocol (LES), describe formally
the common security assumptions, and evaluate the probabil-
ity of a successful adversarial injection of an incorrect block
under three different attack scenarios. The focus is solely on
the Ethereum network, however many aspects of this analysis
are valid for other account-centric blockchains.

This work takes a deep look at Ethereum light clients and
their potential for malicious compromise. The contributions
this article makes are:

• A formal definition of adversary’s goals and capabilities,
and the different attack scenarios wemodel (Section IV).

• A definition of different Markov processes to model the
adversary’s probability of success under different attack
scenarios (Section V).

• Results assessing the security of a light client under
the different attack scenarios under different relevant
security parameters (Section VI).

We also discuss related work in Section II, with
Section III covering background information on the Ethereum
blockchain and light clients. Conclusions and discussion can
be found in Section VII. Additionally Appendix A pro-
vides examples of how the adversary could exploit a light
client, and Appendix B provides a detailed description of the
Markov process matrix construction.

II. RELATED WORK
The interplay between honest miners and a miner attempt-
ing in some manner to subvert the blockchain mining pro-
cess has previously been addressed by at least Eyal and
Sirer [17], Nayak et al. [18], Sapirsthein et al. [19], and
Gervais et al. [20]. Their work focuses on strategies that can
be employed by a miner to maximize their mining rewards
through strategic withholding of mined blocks, and on how
to potentially exploit this benefit thereafter. While the dif-
ferent mining strategies described in the papers may break
the intended purpose of mining rewards—i.e. to incentivize
decentralized miners to reach rapid consensus—miners in
these papers do nonetheless follow the consensus protocol
correctly and attempt to get the mined blocks to be accepted

124340 VOLUME 8, 2020

S. Paavolainen, C. Carr: Security Properties of Light Clients on the Ethereum Blockchain

as part of the blockchain network. This is in contrast to our
work, where the adversary never has the intention to generate
blocks that the network would accept.

One can distinguish between attempts to manipulate
the blockchain consensus mechanism to one’s benefit—as
above—and attacks against a specific user or groups of
users while they transact on the blockchain. This includes
attacks such as the double-spend attack, Finney attack, and
others—see [21], [22] for a summary. It is also possible to
target blockchain nodes directly, for example using eclipse
attacks [23]–[25] to manipulate and even isolate blockchain
nodes from other nodes. While most of the results related
to eclipse attacks against blockchain nodes apply only to
Bitcoin, it is interesting thatMarcus et al. specifically observe
that Ethereum network nodes are more susceptible to eclipse
attacks than Bitcoin nodes [24].

The challenges of constrained devices to blockchain inte-
gration is manifold and complex field. Some approaches
look for mechanisms that allow the light client to
reduce the amount of data that has to be transmitted.
Kiayias et al. introduce Non-Interactive Proofs of Proof-of-
Work (NIPoPoWs) [26] that allow up to 90% reduction
in the block headers that need to be transmitted over the
network. Bünz et al. further extend the proposed mecha-
nism to light clients on both Bitcoin and Ethereum [27].
Danzi et al. measure bandwidth requirements of blockchain
clients, and propose radio link layer aggregation [14] and
multicasting schemes [28] to reduce bandwidth requirements.
Other similar approaches have been taken by Palai et al. [15],
Pustišek et al. [29], for example.

While integrating IoT devices with popular public
blockchains such as Ethereum and Bitcoin is often desir-
able, another approach is to turn the problem around, and
make the integration easier by designing the blockchain
technology itself from start to be more IoT-friendly. Using
alternative Sybil protection mechanisms such as staking in
Tendermint [30] can change the dynamics of the validation
process, making it easier for IoT devices even when this has
not been the primary goal of the blockchain design. Blum
and Bocek have proposed a blockchain specifically designed
for light clients [31]. If public blockchain interaction is
required, another approach is to use multiple blockchains,
and segregate constrained devices into the more IoT-friendly
blockchain, straddling the two blockchains using interledger
techniques [32].

Al-Bassam et al. accurately identify the security prob-
lems posed for light clients, and consider a situation where
the majority of the consensus is colluding against light
clients [11]. Their approach is to have nodes employ a gossip
protocol, distributing fraud proofs, i.e. proofs that are easily
verifiable by a constrained device to demonstrate a block to be
malicious, allowing light clients to avoid exposure to invalid
block state even without the need to fully validate all blocks.
In their case the fraud proofs are assumed to be identified by
honest nodes. This is in contrast to our scheme, where the
invalid blocks are not sent to the honest network (thus, no

honest node could generate a fraud proof against them). We
do not assume a dishonest majority, either.

While not specifically a protocol problem, Gruber et al.
remark that ‘‘full nodes only have little incentives to (cor-
rectly) serve lightweight clients’’ [33]. This seems like a
grave omission in the light client model—miners and full
nodes themselves gain benefit from propagating blocks and
headers to other full nodes, but they gain nothing from pro-
viding light protocol services. This leaves the light servers
open for other incentives which may not be detrimental to
light clients.

There are potential mitigation methods that are applicable
to light clients in particular. For example, Marcus et al.
describe countermeasures an Ethereum light client can take
to protect itself against adversary attempting to eclipse it
from the honest network [24]. Paavolainen and Nikander [34]
propose a mechanism where the owner of an IoT device
sends periodic decentralized beacons to the device attesting
the owner’s view of the canonical blockchain, allowing the
device to determine a trusted blockchain state independently
of the light protocol servers’ intent.

III. ETHEREUM BLOCKCHAIN
Ethereum is a public and decentralized blockchain technol-
ogy, operationally deployed as a peer network2 [1]. Any
node following the defined peer-to-peer protocol can join
the network, retrieve historical blocks and transactions, sub-
mit transactions to the network, and if desired, act as a
miner and propose new blocks to the network. Since the
Ethereum network uses a cryptographic proof-of-work as a
Sybil attack protection measure, this requires miners to invest
resources in solving the cryptographic puzzle. To aid under-
standing, Table 1 lists the notation used within this section,
and throughout.

A. BLOCK STRUCTURE
The block header of Ethereum is described in Fig. 1, with
the fields that are referred to in the text in bold. Ommers (or
uncle blocks), transactions, and receipts are not part of the
block header, but are considered part of the block, and are
transmitted separately. Unlike other fields, the block state is
only inferred from the block, and is not explicitly defined, or
transported, as part of the block. The majority of the fields
are not relevant to this article, and we refer the reader to
the Ethereum documentation [1] for further information. As
in many other blockchains, the block header refers to the
previous block by the hash of that block’s header, termed the
parent hash in Ethereum. We refer to the block header as B,
and for a specific block n as Bn. The block header is often
referred by the hash of the block header, hn = hash(Bh).
Since any change in the information contained within the

2There are different networks using the same technology, such as Rop-
sten and Rinkeby test networks. ‘‘The Ethereum network’’ refers to the
‘‘main’’ network recognized by the cryptocurrency identifier ETH. This net-
work is sometimes called the ‘‘homestead’’ network. Confusingly enough,
‘‘Ethereum’’ refers also to the technology in general.

VOLUME 8, 2020 124341

S. Paavolainen, C. Carr: Security Properties of Light Clients on the Ethereum Blockchain

FIGURE 1. Ethereum block header diagram.

block header will result in a change of its hash output, this
creates a hash chain from any block n to the starting block,
called the genesis block, block 0.
A block contains several data structures that are referred

to from the block header, but are not part of the block header
itself. For example, the list of transactions Tn is transferred
separately, and is referred to from the header by the hash of
the root node of the transaction trie. The trie is deterministi-
cally populated from the transactions list, and consequently
tn = hash(Tn) authenticates the set of transactions Tn. There-
fore the list of transactions in a block cannot be altered, as
any such change would result in a different value for the
transaction root hash.

The block header also contains a hash of the system state
rn = hash(Sn), which is is the root hash of theMerkle-Patricia
trie of all account states. The system state Sn is not explicitly
transmitted between (regular) Ethereum network nodes, and
is instead maintained separately by each participating node.
Thus the state Sn is considered implicit, and not considered
to be directly part of the block n.

B. MINING
A cryptographic puzzle is easy to verify, but difficult to
solve. The Ethereum blockchain uses a cryptographic puzzle
as a protection against Sybil attacks, called a proof-of-work
puzzle. The puzzle requires the hash of the block header to
meet specific requirements. A miner can generate variations
in the block header by changing the order of transactions, or
more commonly, by changing the nonce field in the block
header. Once a miner can generate a block header that meets
the requirements, it broadcasts the block header through the
peer-to-peer network of participating nodes.

More formally, the goal of the miner is to be able to
generate a provisional blockB′n+1, distribute it to the network,
and have it become part of the honest blockchain as block
Bn+1. We use ′ to indicate that the value is provisional and
the corresponding block has not yet been accepted as part of
the honest chain.

The miner starts by determining the current head of the
chain Bn, i.e. finding the block that along the whole chain

TABLE 1. Notation used in this article. See Sections III–IV for details.

to the genesis block B0 accumulates the largest value for
the work function3 W . The next step is to determine the
set of transactions T ′n+1 to include in the block. This set of
transactions is then used to update the blockchain state as
described in (1) (slightly simplified—see [1] and [35] for
a complete description). This defines a transition from an
earlier state Sn as a function of the state transfer function 5,
and executing the set of transactions T ′n+1, resulting in a new
state S ′n+1:

S ′n+1 = 5(Sn,T ′n+1). (1)

The miner encodes the necessary information of the new
state S ′n+1 and transactions T ′n+1 as r ′n+1 and t ′n+1, includes
them in the block header B′n+1, and checks if the hash of
the block header hash(B′n+1) is a valid solution to the crypto-
graphic puzzle. If it is not, the miner will modify the nonce
in the block header, and repeat until it either succeeds, or it

3While Bitcoin selects the chain with most blocks, Ethereum has a more
complex selection policy based on the total amount of work included in
the chain, including work in proposed, but eventually abandoned blocks aka
uncle blocks or ommers.

124342 VOLUME 8, 2020

S. Paavolainen, C. Carr: Security Properties of Light Clients on the Ethereum Blockchain

detects a competing block header Bn+1 broadcast by another
miner.

If the miner succeeds, it will broadcast its block header
B′n+1 to the network. If there are no competing block headers,
or the miner’s block ‘‘wins’’ the competition, it will become
committed to the chain, so Bn+1 = B′n+1. At this point it
can also be said that at block n + 1 the network’s state is
Sn+1 = S ′n+1 as originally calculated by the miner, thus
forming a consensus on the state of the network.

C. MINING NETWORK
We define the network that is correctly following the
Ethereum consensus rules, as described by the Ethereum
protocol, as the honest network. This portion of the network
consists of honest miners, honest validating nodes, and hon-
est light protocol servers. In contrast to the adversary, as
defined in Section IV-A, the honest network is not attempting
to subvert any node on the network.

While the probability of successfully mining a block for
any single miner is very small, the total probability of mining
success over a large number of miners may be modelled using
an exponential distribution [17], [18], [36]. Therefore we can
identify the honest network’s capacity to produce new, valid
blocks as an exponential distribution Exp(µ0), with the mean
interval between two successfully mined blocks as µ−10 . For
simplicity, we set µ0 = 1, and fix the time scale so that the
time expressed is abstracted to [t] = [1

µ0
] = 1.

The mining network may be partitioned — split into at
least two distinct and mutually exclusive networks.We define
the amount of partitioning as γ ∈ [0, 1] from the viewpoint
of some arbitrary light client, so that in normal operating
conditions when no partitioning occurs γ = 0. Without loss
of generality we define a partitioned network as a network
split into two parts where: γµ0 hashing power is currently
unreachable from the from the light client, andµ = (1−γ)µ0
is in the portion of the network that is reachable.

D. BLOCK VALIDATION
Any node receiving a new block header can directly verify
that the block header itself is valid.We denote this verification
process as Vh(Bn). This process ensures both the structural
correctness of the block header (length, field values, etc.), and
more importantly checks that the hash of the block header
meets the requirements of the cryptographic puzzle. Since the
block header contains references to auxiliary information not
included in the block, such as the hash of the transaction trie
tn, a node can verify that a list of transactions is part of a block.
The transaction list validation is an another validation that a
node may perform, but for the purposes here, we can assume
that Vh represents all validations that can be performed based
on the block header and associated data with modest resource
requirements.

A node can determine that the system state referenced in
the block header as rn is correct by evaluating the blockchain
state transition function itself S ′n = 5(Sn−1,Tn), and

FIGURE 2. The information used in block validation for the block header
validator Vh and the block state validator Vs.

verifying that hash(S ′n) = rn. We denote this verfication
as Vs(Sn−1,Bn,Tn, . . .), and the full set of checks as V ≡
Vh ∧ Vs, as shown in Fig. 2.

The state Sn for any n is not explicitly transmitted as
part of the Ethereum protocol—transmitting it would defeat
the whole goal of decentralized security model where each
node relies only on the state it has independently validated.
The inclusion of the root hash of the Merkle-Patricia trie
construction of the current blockchain state, rn in the block
header does, however, allow any node to verify that they
share the same view of the blockchain state as the mining
node. As described earlier, the state information Sn required
to compute rn can be several gigabytes in size, and requires
processing power and network bandwidth to maintain. Con-
sequently, along with miners and validating nodes there is a
third network participant, commonly called a light node or a
light client, that is unable to perform state validation Vs. In
summary, the three nodes types are:

Miners that are able to generate new blocks Bn+1 that pass
the full set of validations V . To do this, they validate other
incoming blocks to identify the canonical chain and maintain
the state S.
Validating nodes perform all validations V on blocks

arriving from other nodes and reject invalid blocks. Validating
nodes maintain the state S.

Light clients communicate with other nodes to receive
information on new blocks. They will query light protocol
servers for any blockchain state they need. Light clients can
perform header validation Vh, but not state validation Vs.
While miners and validating nodes form a peer-to-peer

network where all nodes are peers (miners are different only
in internal behavior, not external), light clients rely on some
of the nodes to act as a intermediary to the light client. This
client-server model defines a protocol differing from the nor-
mal peer-to-peer protocol, a light client protocol, described
below.

VOLUME 8, 2020 124343

S. Paavolainen, C. Carr: Security Properties of Light Clients on the Ethereum Blockchain

FIGURE 3. Overview of the behavior of a light client using the Light
Ethereum Subprotocol.

E. LIGHT CLIENT PROTOCOL
Light nodes can still perform Vh validation. This allows them
to identify the canonical chain i.e. the chain with the largest
amount of work that forms a unbroken chain of blocks to the
genesis block B0. This chain is verified by the light client to
follow the consensus protocol for Vh validation. Additionally,
while the light client is unable to calculate Sn on its own, it
can still use the inclusion of the state root rn to validate a
proof of inclusion for any account in the full blockchain state.
The proof of inclusion is a subset of the full Merkle-Patricia
state trie, with a path starting from the root and descending to
the subset of state requested by the client. The light node can
retrace the path up to the root node and verify that the root
hash matches rn from the target block. In practice, this means
that assuming the client has the canonical block header, it can
authenticate all state responses from light servers, and reject
any responses that do not match the established consensus on
the canonical chain.

When a light node uses another node for state management
and retrieval, it is called a light client. It operates a light
protocol to communicate with the full node, and is known
as a light server. This mechanism is general to other types
of blockchains, such as SPV for Bitcoin. For Ethereum it is
known as the Light Ethereum Subprotocol (LES) [5].

An overview of the process of a light client using LES
protocol is shown in Fig. 3. If the client wants to identify the
balance of a specific account, it first identifies the canonical
chain by performing header validation on all block headers
it receives, and identifies the chain with the largest amount
of work. Next, the client queries the server for the target
account information at some predetermined block depth k .
If the canonical blockchain head is Bn, then the client is
interested in the state from block n − k . The server replies
with the specific account state data, and the proof of inclusion
as the required hashes of the Merkle-Patricia tree. The client

calculates the hash of the retrieved subset of the state data,
and ascends up the inclusion proof until it reaches its own
root hash r ′n−k , which it then compares against the rn−k from
the block header Bn−k .
Since the value of k is controlled by the client, it can be

tuned to different values depending on the client’s require-
ments. For deciding on a suitable k value the general guidance
is to consider overall security requirements and risks [37].
For example, if the light client needs to quickly act on a state
change (such as a payment transaction), then it has to use a
lower k value. Similarly, if the client does not have to react
to rapid changes it can safely use a higher k value. As an
upper bound k = 30 seems to be a reasonable choice since
some cryptocurrency exchanges use it before processing real-
world money transfers based on deposits on the Ethereum
blockchain [38].

A light client is assumed to contact a large number of
light servers, potentially chosen at random. The number N of
servers the client connects to is determined by the client. The
client may receive information about different chain heads
from different servers. This may happen if there are forks
in the blockchain for instance. However, since the client can
independently determine the total amount of work each chain
represents, it can be assumed to be able to determine the
canonical chain. It is expected that the honest chain — in the
long run — will always contain the most amount of work.
Consequently the common assumption is that the canonical
chain, representing the largest amount of work is also the
honest chain. Note that the client does not determine the
canonical chain by voting—if it receives just one copy of the
chain with the most work, it will consider that chain to be the
canonical chain even if all other servers it communicates with
provide an alternate chain.

F. ETHEREUM NETWORK CHARACTERISTICS
For evaluation purposes we need to note some characteristic
features of the Ethereum blockchain network that is often
also referred to as the homestead network. The mean block
interval in this network varies slightly (µ−10 in our notation),
although it is commonly approximated as 15 seconds.

The capacity of the Ethereum network to determine
whether a particular block header meets the required prop-
erties of the cryptographic puzzle is called hashrate. Since
hashrate is a way of describing the speed of block cre-
ation, sometimes the terms mining power, hashing power
etc. are used to express the same idea. The main Ethereum
network—as of writing of this article—has an aggregate
hashrate4 of 180× 1012 per second (terahashes/s, TH/s). For
comparison, a high-end GPU card5 attains a hash rate of
88 MH/s representing less than one millionth of the hashrate
of the full network. Since the likelihood of successfully find-
ing a new block for a single GPU-based miner is very low,
most miners join so-called mining pools which aggregate its

4https://www.etherchain.org/charts/topMiners
5https://www.hashrates.com/gpus/

124344 VOLUME 8, 2020

S. Paavolainen, C. Carr: Security Properties of Light Clients on the Ethereum Blockchain

members’ hashrate and divide mining rewards in proportion
to the contribution of each member. At the time of writing the
largest single Ethereum mining pool controls about 30% of
the total hashrate, the 10th biggest pool has 1.4% of the total
mining power, and the top 10 mining pools hold in aggregate
over 80% of all hashing power.

IV. THREAT MODEL AND ATTACK SCENARIOS
Next we consider the general threat model and three different
attack scenarios against which we evaluate the vulnerability
of a light client on the Ethereum network. First we describe
the adversary and its goals and capabilities, explaining what
the adversary needs to accomplish in relation to the honest
network to succeed. Then, three different attack scenarios are
described that provide more specific context on the behavior
of the light client and the adversary.

A. ADVERSARY
We assume an adversary can mine blocks at a mean rate
λ−1, i.e. its relative mining power in relation to the honest
network is λ/µ0. The adversary also controls a set of dis-
honest light protocol servers which are not affected by any
network partition γ > 0. For a summary of the configuration
regarding a light client’s network environment please see
Fig. 4. In summary, the adversary controls an adversarial
network consisting of dishonest miners and dishonest light
protocol servers.

In our model, the adversary is targeting a specific target
node that exclusively uses the light protocol to interact with
the Ethereum network. The specific goal of this adversary
is to inject an adversarial block to the target, and have the
target consider the injected block part of the canonical chain.
Consequently, the target may change its behavior in a manner
that is exploitable by the adversary. For a more detailed
discussion and examples on how the adversary can use an
injected adversarial block to their advantage, seeAppendixA.

B. ADVERSARIAL CHAIN
The adversary generates a fork in the blockchain—the adver-
sarial chain—that does not have to conform to the Ethereum
state transfer rules. Therefore the adversary is permitted to
generate blocks that fail state validation. The invalid blocks
would be rejected immediately by the honest network, but this
does not concern the adversary as it does not have any need
to distribute the invalid blocks to the honest network. Instead,
the adversary wants to inject the invalid blocks to the targeted
light client so that it will use the adversarial state S̃n. This
state is not consistent with the state transformation rules of
the honest network:

S̃n = 5̃(Sn−1, T̃n) ∧ S̃n 6= 5(Sn−1, T̃n). (2)

The state is encoded in the adversarial block B̃n that, due
to (2), would fail the state validation Vs. This deviation is
however, undetectable by the light client as by definition, it
is unable to perform state validation. The adversarial block

FIGURE 4. Scenario with adversarial and honest network, and a target
node. A target node with honest and adversarial networks, including
partitioning. DM = dishonest miner, DS = dishonest server, HM = honest
miner, HV = honest validating node, HS = honest server.

must, however, still pass the Vh validation at the client, i.e. it
must contain a valid proof-of-work.

The adversarial chain is the sequence of blocks mined by
the adversary

(
B̃n−m, . . . , B̃n

)
. The adversarial chain con-

sists of blocks that would not be accepted to the honest chain
as they fail state validation. We similarly identify adversarial
transactions of block n as T̃n, the adversarial state S̃n, and
the resulting state root hash r̃n. In our analysis the state
transfer function 5̃ does not necessarily have to follow the
defined Ethereum state transfer rules, i.e. ∃S,T : 5(S,T) 6=
5̃(S,T).

For the adversary to successfully manipulate the client’s
view of the network state it must generate a chain that
the light node would accept as the canonical chain and
reply to the client node’s state requests with extracts from
the adversarial state S̃. This implies the following three
requirements:

R1. The client must connect to a light protocol server that
the adversary controls;

R2. An adversary must be able to convince the client
to recognize the adversarial chain as the canonical
chain. This requires that the work function of the
adversarial chain is larger than that of the honest
chain;

VOLUME 8, 2020 124345

S. Paavolainen, C. Carr: Security Properties of Light Clients on the Ethereum Blockchain

FIGURE 5. Conflict between honest and adversarial chains with respect to
the client. B0 is the block the adversary forks its chain from (not
necessarily the genesis block).

R3. The adversarial chain must be deep enough so that the
client with depth parameter k will use an adversarial
block B̃n−k instead of an honest block Bn−k .

This process is demonstrated in Fig. 5 where the adversary
has forked the honest chain at block n = 0. The vertical lines
represent samples in time. The1W is the difference of work
between the honest and adversarial chains; h is the height of
the adversarial chain from the fork. The lines from the client
represent the block the client would be using at different block
depth k values. When the client is presented with both chains,
it would select the adversarial chain if1W > 0 and select the
honest chain when 1W ≤ 0.

As an example, the adversary in Fig. 5 has initially suc-
ceeded in mining a block B̃1. This results in the adversary
having a parallel chain of height h = 1 and the difference
in the work function of the two chains is favourable to the
adversary with1W = 1. Since the adversarial chain contains
more work than the honest chain, a light client would accept
the adversarial chain. However, when the honest chain mines
B1, the work difference between the two chains decreases to
zero and the adversary cannot be certain that its chain would
be selected. In our model we conservatively assume that ties
are always resolved to the honest network.

Moreover, the adversary would not necessarily succeed at
block B̃1 if the block depth parameter k of the client is over
zero. For example, with the final state in the diagram where
the adversarial chain is at B̃4 and the honest chain is at B3 i.e.
1W = 1 and h = 4, the client using k = 4 would bypass all
of the adversarial blocks and use state from the honest block
B0, with the adversary consequently failing. Conversely, if
k < h ∧ 1W > 0 the adversary would be able to provide
adversarial state S̃ from its own block and succeed. Our goal
is to determine the probability of a a success for an adversary.

C. ATTACK SCENARIOS
While the goal of the adversary is to inject its own block to
the target node, the general context of the attack affects the
timing and constraints of the attack. IoT devices and other
types of light clients vary significantly in their capabilities
and how they are deployed. How the device operates on
the blockchain affects the type of attacks an adversary can

initiate. We have decided to condense these variations into
three different attack scenarios A1–A3 that we believe are
useful abstractions of real-world attacks.
A1. The target node performs one read-only operation on

the blockchain at unpredictable time t0, whereby it
reads state from the blockchain at depth k . The goal of
the attacker is to ensure the state that is used is obtained
from an adversarial block.

A2. The target node connects to the network at time t0 that
is not known to the attacker a priori, and disconnects
at time t1 = t0 + 1t . Unlike in the A1 scenario, the
adversary needs to inject state that is dependent on
information available at t0, thus forcing the adversary
to generate a fresh fork. The adversary has 1t time
to successfully construct an adversarial chain that the
target accepts.

A3. Similar to A2, but the client does not have a natural
timeout (t1 is unbounded). Hence the adversary has
indefinite time 1t for the injection attack.

For all scenarios A1–A3, we assume the adversary needs to
inject only one invalid state that is independent of later actions
by the adversary or the target node. We define this as 1-inject
attack.

Since these attack scenarios are general, let us describe
potential examples where they would be applicable and the
questions we want to answer. The A1 scenario is a stationary
scenario, where the adversary needs to inject information
known a priori, while the client connect time t0 is unknown.
Upon establishing a connection, the client will perform only
a single state check, i.e. 1t is zero or very close to it. A
simple but practical example of this case would be someone
attempting to falsely convince someone else that they have
a 1-million ether balance. The adversary has to constantly
maintain an adversarial chain that it has to present at any time
that client chooses. This leads to the first question:
Q1. What is the probability of the adversary of having a

successful adversarial chain at any randomly chosen
point in time?

A battery-powered device provides an example of the A2
scenario. The device periodically connects to the network
remaining connected until the battery completely drains. If
the battery is charged by solar power, the next reconnect
time can not be accurately predicted. This scenario is also
applicable to other situations with a natural timeout where
the attack fails if no adversarial block is injected within
the time limit 1t . A merchant waiting for commitment on
an Ethereum payment would become suspicious after an
excessive delay, for example. Specifically, in the A2 scenario
an adversary is not able to ‘‘pre-prepare’’ the attack, and
they must start creation of the adversarial chain at t0. This
could occur because the adversary needs to inject a specific
identifier to the blockchain state, which must be first obtained
from the client. This raises the second question:
Q2. What is the adversary’s probability of 1-inject success

within 1t time?

124346 VOLUME 8, 2020

S. Paavolainen, C. Carr: Security Properties of Light Clients on the Ethereum Blockchain

Finally, if the client either does not have a timeout at all
(t →∞), or the adversary is able to control t1 by choosing the
time of attack when they have a successful adversarial chain,
the adversary will eventually always succeed. For example,
if the target is a smart lock which reads the list of allowed
key card identifiers from a smart contract, the attacker can
physically wait near the target, and attempt a break-in only
when an acceptable adversarial chain has been achieved. The
relevant question is not the probability of success, but of the
time required, leading to the third question:
Q3. What is the expected time needed for the adversary to

gain a specific success probability?
For all three scenarios the adversary may be able to achieve

γ > 0 by exploiting naturally occuring Internet outages.
We can assume that some honest mining capacity remains,
however not all: 0 < γ < 1. If an adversary is able to perform
active attacks, they may be able to completely isolate a client
from all honest servers resulting in γ = 0.

In practice, isolatingminers from each other is difficult due
to their large geographic dispersion. An adversary with phys-
ical or proximate access to the target may be more successful
in isolating the client from honest servers. Nonetheless, we
conclude that an attacker may be able to either exploit a
previously partitioned Ethereum network, or to purposefully
generate a partition to their benefit.

V. ANALYSIS
With the formalism of light client behavior and the adver-
sary’s goals defined, the next step is to develop a model based
on these definitions that allows us to evaluate the security of
the light client under different operating conditions. This is
defined as a Markov process whose construction depends on
the client’s depth k parameter and the attack scenario.

A. CONNECTIONS TO HONEST AND DISHONEST SERVERS
Meeting requirement R1 is dependent on whether a light
node connects to a server controlled by an adversary. In this
step the client will pick out a random set of N nodes it will
connect to.While this process is technically selection without
replacement, we assume the overall population is sufficiently
large that we can describe the whole source population using
a continuous variable f = M0

N0+M0
, which represents the pro-

portion of dishonest light server nodes, within the population
of dishonest nodes M0 and honest nodes N0, that the light
client may connect to. Therefore, the probability of a light
client connecting toM dishonest nodes follows the Bernoulli
trial distribution B(N , f),

P(M dishonest nodes) =
(
N
M

)
f M (1− f)N−M . (3)

We can identify three different limiting cases that are rele-
vant to later analysis of an adversarial success probability.
C1. The client connects to only honest nodes (M = 0).
C2. The client connects only to dishonest nodes (M = N).
C3. The client connects to at least one honest and dishonest

nodes (0 < M < N).

FIGURE 6. Probability of a client connecting to at least one dishonest light
server as a function of the proportion of dishonest servers f in the server
population, and the number N of connections the client establishes.

For simplicity, we observe that C1 and C2 are degenerate
cases of the full analysis model (developed later) and do not
have to be considered separately:

1) If M = 0, the adversary has no possibility of success,
as we assume honest servers are also validating nodes
and would refuse to propagate the adversarial chain to
the target node (effectively λ = 0).

2) If M = N , this is functionally equivalent to γ = 1 ⇒
µ = 0, as any new blocks from the honest network will
not reach the target node.

If N is sufficiently large a light client is highly likely to
connect to at least one dishonest server even with modest f :

P(M > 0) = 1− P(M = 0) = 1− (1− f)N . (4)

This is shown in Fig. 6. It is also possible that an adversary
using other methods such as network proximity or active
connectionmanipulation to artificially boostP(M > 0) above
the value from (4). Consequently we assume the target
node connects to at least one honest and to at least one
dishonest node (case C3).

B. NON-CAPTIVE MODEL (A1)
We describe the interplay between the honest network and the
adversary using a continuous-time Markov process. Markov
processes have been previously used for blockchain miner
analysis by Eyal and Sirer [17] to describe selfish mining
strategy, while Nayak et al. [18] extend the selfish mining
model with two-phase Markov process to evaluate alternative
mining strategies.

In our model, the adversary has to meet two specific cri-
teria regarding the adversarial chain. The adversarial chain
must have more work than the honest chain to meet the R2
requirement. Also, the adversary must be able to generate a
sufficiently deep chain tomeet the R3 requirement. This latter
requirement is dependent on the client’s choice of k , the block
depth parameter.

These criteria are tracked in the Markov process states as
(h,1W) parameters, where h is the phase of the model, and

VOLUME 8, 2020 124347

S. Paavolainen, C. Carr: Security Properties of Light Clients on the Ethereum Blockchain

FIGURE 7. Markov process for a light client with block depth k = 2,
applicable for attack scenario A1. This model has an infinite birth-death
process tracking the 1W value.

1W is the work difference between adversarial and honest
chains. We encode the depth of the adversarial chain in the
phase parameter h = 0, 1, . . . up to level h = k + 1 which
subsumes all chain depths that are sufficiently deep to meet
R3 (h > k). The work difference 1W is the difference
between work in the adversarial chain and work in the honest
chain, and consequently R2 is met when 1W > 0.
The model includes two different processes: λ-process

for adversarial mining and µ-process for honest network
miners.6 The transition rates for these processes are λ and
µ respectively and are state- and time-independent. (Network
partitioning is incorporated via theµ = (1−γ)µ0 definition.)
Fig. 7 displays an example with k = 2 on how the states
can be arranged in a meaningful way to describe the system
model starting from the initial state (0, 0). The model has
four different types of state transitions. The simplest one is
λ-transition, i.e. the adversary successfully mines a block,
when the adversarial chain is not yet deep enough to satisfy
R2 requirement as described below (the notation is in the
format transition : condition ⇒ newstate, with the current
state defined by h and 1W).
1) λ : h ≤ k ⇒ (h+ 1,1W + 1)
Thus, when the system is on k + 1 phase, an λ-transition

remains on the current phase, and increases 1W :
2) λ : h = k + 1⇒ (h,1W + 1)
When the honest networkmines a block, ourmodel resets

to the initial state if the work difference grows so large that
more λ-transitionswould be needed than from the initial state.
If this is not yet the case, it will simply reduce1W (move one
step left in the figure):

3) µ : 1W = 1− k ⇒ (0, 0)
4) µ : 1W > 1− k ⇒ (h,1W − 1)
From Fig. 7 we can characterise some additional features.

The black circle in the figure represents the state where
the adversary mines the first block that fails Vs validation.
The red circles represent states where the adversary is able

6We prefer to use λ and µ instead of α, β used by other authors [17],
[18]. The underlying process closely resembles a two-dimensional birth-
death process, and the literature more commonly uses λ andµ in this context.

FIGURE 8. Markov process for a light client with block depth k = 2,
applicable for attack scenarios A2 and A3. This model includes a captive
state.

to convince the light node to accept invalid state, where
h > k ∧1W > 0. The solid arrows represent transitions
where the adversary successfully mines a block (λ-transition)
and dashed arrows (leading from right to left), are those
where the honest network successfully mines a block — a
µ-transition. While this model is bounded at the left by
1W ≥ 1− k , it may have indefinitely large1W in the k+ 1
phase. This is described by an infinite birth-death process
from the last state with inbound λ-transition from (k+1, k+1)
state.

The model is formally defined as a Q = qi,j transition
matrix where qi,j is the transition intensity from state i to
state j. More specifically for k = 2 the matrix Q2 is
(3 = −λ− µ in the diagonal) (5), as shown at the bottom
of the next page.

Please see Appendix B for details on how to succinctly
describe the Q matrix by using generator matrices for each
phase of the model.

C. CAPTIVE MODEL (A2 & A3)
The model in Section V-B describes the probabilities of
the adversary succeeding in injecting an invalid block to
a light client at any specific time. It is not, however, suit-
able for analysing the cumulative probability, i.e. the like-
lihood of an adversary succeeding at, or before, a specific
time.

Unlike the non-captive model, the captive model as
described in Fig. 8 is finite and has an absorbing state. The
absorption state (k+1,≥1) applies for all success transitions.
This allows us to evaluate the success probability of scenarios
A2 and A3 as a function of time as now the model captures
the cumulative probability of success for any time at or before
given t .
The transitions in the captive model are mostly similar to

the non-captive model for h < k , but differ for phases k and
k+1. In the captivemodel when the adversarymines a block
the simplest transition is a straightforward transition to a non-
success state in the next phase:

1) λ : h ≤ k ∧1W < 0⇒ (h+ 1,1W + 1)

124348 VOLUME 8, 2020

S. Paavolainen, C. Carr: Security Properties of Light Clients on the Ethereum Blockchain

FIGURE 9. Probability of success by the attacker using non-captive model as a function of ρ = λ/µ ratio at the equilibrium state e.g. when t →∞, and for
different k values. It is possible to read different γ values from the graph by the relation of µ = (1− γ)µ0.

When the system is in phase k + 1, but still far away from
the success state it will keep in the same phase:

2) λ : h = k + 1 ∧1W < 0⇒ (h,1W + 1)
There is only one success state, so all transitions that would

in non-captive model end up in h > k ∧ 1W > 0 state end
up in the same, single absorbing success state:

3) λ : h ≥ k ∧1W ≥ 0⇒ (k + 1,≥1)
When the honest network mines a block the transitions

are similar as in non-captive model. The system may reset to
(0, 0) state, or stay in phase but decrease the work difference.
Note however, that there is no µ-transition out of the success
state.

4) µ : 1W = 1− k ⇒ (0, 0)
5) µ : h < k ∧1W ≤ 0⇒ (h,1W − 1)
The captivemodel is finite, and its size is solely determined

by the k parameter. As it has an absorbing state that can be
reached from all other states, eventually the probability of
being in state πk+1,≥1 → 1 as t → ∞. Thus, if λ > 0 and

given enough time, the adversary will always succeed in the
captive model.

D. NUMERICAL APPROXIMATION
The underlying non-captive Markov process (Section V-B)
is irreducible and infinite. The process does have a limiting
distribution if λ < µ and this can be solved analytically by
noting that the birth-death process has a recurrence relation
and can be replaced by a single term. However, there are
limits—in practice, an analytical solution using symbolic
mathematics software seems to be out of reach for k > 6
for calculating the limiting distribution, and for k > 2 for a
time-dependent (derivative) solution.

Since we are interested in both large k > 10 values as well
as determining the time evolution of the adversarial success
probability this necessitates the use of numerical methods.
This requires truncation of the Q matrix to a finite size and
approximation of t → ∞ to a finite value to determine the
equilibrium probability distribution.

Q2 =



−λ · · λ · · · · · · · · · ·

µ 3 · · · λ · · · · · · · ·

· µ 3 · · · λ · · · · · · ·

· · µ 3 · · · λ · · · · · ·

µ · · · 3 · · · · λ · · · ·

· · · · µ 3 · · · · λ · · ·

· · · · · µ 3 · · · · λ · · · · ·

· · · · · · µ 3 · · · · λ ·

µ · · · · · · · 3 λ · · · ·

· · · · · · · · µ 3 λ · · ·

· · · · · · · · · µ 3 λ · ·

· · · · · · · · · · µ 3 λ ·

· · · · · · · · · · · µ 3 λ
...

. . .



(5)

VOLUME 8, 2020 124349

S. Paavolainen, C. Carr: Security Properties of Light Clients on the Ethereum Blockchain

FIGURE 10. The time development of attacker’s success probability using captive model for different λ ratios along the horizontal axis, and
for different µ values along the vertical graphs axis (corresponding to different γ partitioning values, e.g. µ = (1− γ)µ0). The individual lines
correspond to k = {3,7,13,21,30} from top to bottom. The time units are normalized to µ−1

0 e.g. value of one represents the block interval in
the original honest portion of the network. Please note that both axes in the graphs are logarithmic.

We truncate the matrix using a b parameter (length of the
birth-death chain) by dynamically increasing it from an initial
value until the absolute change of the probability of the last
birth-death process state is below a threshold (10−6), or we hit
a maximum size for the birth-death process (bmax = 1000).
We justify the use of a maximum truncation length by noting
that this limit only occurs when λ ≈ µ which we consider
to be an unlikely long-term equilibrium due to the dynamic
nature of the honest mining pool, and thus less relevant to our
analysis. In practice we see smooth behavior in the results for
the region around λ ≈ µ.
By using a truncated Q matrix the time evolution of the

state probabilities π̄ = (π1, . . . , πn) is from initial state π̄0 =
(1, 0, . . .) in [t] = [µ−10] units:

π̄ (t) = π̄0eQt . (6)

This can be used to compute the time evolution of the
probability distribution. Finally, to calculate the equilibrium
distribution we approximate t →∞ as t = 107/max(λ,µ).

This was empirically determined to be sufficiently large, as
using larger t values would have less than 10−4 change in the
absolute result.

The Markov process with a captive state (aka absorbing
state, Section V-C) is finite and does not need to be truncated.
Therefore the captive model matrix size is solely determined
by the parameter k . However, due to the absorbing state the
model can take require a large time value to reach a steady
state, we use an accurate binary search only for small t values,
and for larger values provide only an approximate lower
bound.

VI. RESULTS
The results are presented for the three different questions
posed in Section IV-C.

Q1. What is the adversary’s probability of having a
successful adversarial chain at any random point in time?
The equilibrium probabilities of the non-captive model are
shown in Fig. 9.

124350 VOLUME 8, 2020

S. Paavolainen, C. Carr: Security Properties of Light Clients on the Ethereum Blockchain

TABLE 2. The time t (in µ−1
0 units) that is required to reach specific probability p for success in injecting at least one adversarial block to the target node.

Results are shown with two significant digits. For t > 107 the required time is approximate only. The wall-clock time is approximately 25 minutes for
100µ−1

0 , 4 hours for 1000µ−1
0 , almost 2 days for 104, 17 days for 105, half year for 106 and almost 5 years for 107 block intervals. All results are shown

with two digits of accuracy.

The equilibrium model is time-independent, and conse-
quently only the ratio ρ = λ/µ has an impact. The graph
shows ρ ∈ [0, 1.5] and various k values. The overall result
is as expected—a larger k parameter gives lower success
probability for the adversary (i.e. higher security for the
light client), and the ρ value has to be substantial before the
instantaneous success probability is at p = 0.1 level even for
a low k = 1 value.

The literature does not generally give details on what
is considered a ‘‘normal environment’’ for light clients to
operate securely. We assume this means λ� µ⇒ ρ � 1
and k ≥ 3. For example, consider an attacker control-
ling mining power equivalent to 5% of the honest network
(λ = 0.05, µ = 1 ⇒ ρ = 0.05). The probability p
of success in the non-captive model’s equilibrium limit is
p = 0,16 · 10−3 for k = 3, and p = 0,11 · 10−6 for
k = 7. The probability diminishes rapidly for larger k values

(p(k = 30) = 0,27 · 10−24). These results are in line with the
view that light clients are secure under the assumption of an
honest majority of computing power and a passive attacker.
This corresponds to a scenario where the timing of the activity
is controlled by the client, such as checking whether a very
recent transaction—whose timing cannot be influenced by
the attacker—is deep enough in the chain.

We also consider a situation where the attacker is able
to subvert a major mining pool on the honest network. For
example, subverting 30% of the honest network equals to
λ = 0.3, µ = 0.7 ⇒ ρ = 3/7 ≈ 0.43. In this case
the equilibrium probabilities would be significantly different:
p = 0,15 for k = 3, p = 0,038 for k = 7, p = 9 · 10−3

for k = 12, and p = 1,2 · 10−3 for k = 20. This result
must be interpreted as meaning that an adversary would have
approximately 4% probability of successfully injecting an
invalid state to the light client with k = 7 when the adversary

VOLUME 8, 2020 124351

S. Paavolainen, C. Carr: Security Properties of Light Clients on the Ethereum Blockchain

is attempting to maintain an adversarial chain with previously
known invalid state.

Q2. What is the adversary’s probability of 1-inject suc-
cess within 1t time? The dynamic captive model takes the
time evolution of the success probability into account, and
provides a view into situations where the adversary has only
a limited amount of time to perform the attack to perform a
1-inject attack. In this scenario, the attacker starts mining an
adversarial chain at a specific point in time, and has 1t time
to succeed in the attack. This can be a situation where the
adversary has to interact with the client, or when the client
generates a transaction, and the adversary has 1t time until
the client checks for the status of the transaction. As can
be seen in Fig. 10, the success probability increases as 1t
increases.

Using the same adversary as in earlier results, we will
first look at a modest mining power that is well within reach
of a well-resourced adversary, λ = 0.05, µ = 1. The
adversary’s success probability increases over time, and for
a client with k = 7 block depth, p(t = 20) = 0,46 · 10−6,
p(t = 240) = 12 · 10−6, p(t = 5760) = 0,3 · 10−3,
and p(t = 2102400) = 0,1 (these correspond to 5 minutes,
1 hour, 1 day, and 1 year respectively). Under this scenario, an
adversary with a modest λ = 0.05 mining power has a 10%
probability of success at least once within a year against a
light client with block depth k = 7. The probablity increases
rapidly for lower k , for example p(k = 3, t = 240) = 0,019
representing a significant probability of success over just
one hour.

If we take the adversary capable of subverting a 30%
mining pool, it can gain substantial success probability even
if able to operate the mining pool for only one hour (t = 240).
For low k values the success probability is very high, for
example p(k = 3) = 1. Even for a relatively high k = 12,
the adversary has over 25% probability of successful state
injection against a light client when leveraging the subverted
miner.

Q3. What is the expected time needed for the
adversary to gain a specific success probability? We
have summarised a selection of k , λ and µ values for
p = {0.5, 0.9, 0.99} in Table 2. The results show
the same general pattern as observed above: the time
required for success increase as k increases. Conversely,
the required time decreases as λ/µ ratio decreases.
Therefore, achieving even a 50% success probability in
unfavourable conditions (λ = 0.05, k = 7) requires over
six years.

The situation changes drastically, again, for an adversary
capable of subverting a mining pool. Targeting a light node
with k = 7, the adversary can achieve 50% success rate in
120 block intervals (30 minutes), and 99% success probabil-
ity in less than 3 hours (740 block intervals). Even for a very
high value k = 30 the corresponding 50% success chance
occurs in a week (t = 44 000), and 99% probability in just
over 2 months (t = 290 000).

VII. CONCLUSIONS
Our results reject many of the common assumptions on
light client security. While light clients may be considered
secure against invalid block injections from adversaries under
‘‘common’’ scenarios, these are optimistic scenarios—with
a short attack window, an honest majority, and no network
partitioning. However, the situation changes drastically as
one moves away from these optimistic assumptions. Even
with only modest hashing power, an adversary has a statisti-
cally significant probability of success under partial network
isolation. We also see that if an adversary is able to subvert
an existing mining pool on the Ethereum network, its success
probability increases substantially.

The security of light clients is further eroded when we
consider adversaries who able to manipulate the operating
environment of the target node. The adversary may have
access to the device, and even without tampering with the
device itself, it could manipulate its network accessibility
or power availability. GSM and WiFi jammers are relatively
easy to obtain and deploy, allowing a malicious entity the
ability to control availability of the network that a client is
connected to. It has already been shown that the security
assurances of an eclipsed light client are severely reduced.
Our model (at γ = 1) confirms that.

We also demonstrate that even without isolating the
client, or partitioning the network, a patient adversary that
can mount 1-injection attack can gain significant success
probability if willing to wait (for days or months). The
naive IoT-based lock example from Appendix A-C could be
attacked by a patient adversary—they set up a person on-site
who waits for a signal when the attack is successful, who then
dashes over to the lock with a fake key card.

A secure system cannot rely on optimistic situations, and
must be secure under an active adversary.We believe there is a
clear need for a formal blockchain model that would not only
consider the adversary’s mining power, but take into account
partitioning and eclipsing scenarios.

For constrained devices our recommendation would be
not to use light client protocols for any devices which are
not under trusted human supervision or interaction, e.g. any
off-site or industrial applications in particular. If interaction
with public blockchains is required, we would recommend
to look into ledger-to-ledger bridging approaches [39], or
employ a trusted third party to attest and pin down the
blockchain state [34]. For other light clients we see at k ≥ 12
the time for 1-inject success under somewhat ‘‘reasonable but
powerful adversary’’ assumptions is several hundred block
intervals or more. If a human is in the loop, this delay of sev-
eral hours would probably raise healthy suspicion. In general,
we believe a light client should choose a k value significantly
larger than for a validating node for the same use case.

It is interesting to note that one might naively assume that a
light client is more secure against eclipse attacks (connecting
to only dishonest servers) with large values of N . However,
as N increases the client is more and more likely to connect

124352 VOLUME 8, 2020

S. Paavolainen, C. Carr: Security Properties of Light Clients on the Ethereum Blockchain

to at least one dishonest server. Since the adversary in our
model requires only one connection to dishonest server to be
able to complete, this means that as N increases, in some cir-
cumstances the light node becomes increasingly susceptible
to attack.

We identify potential mitigation strategies and areas of
further research. The most pressing mitigation would be to
ensure all blockchain-related operations come with a hard
timeout, after which the client should abort the operation
and require retry, or fall back to a safe mode requiring man-
ual (human) intervention. If this is not feasible, the device
could use heuristics to determine when a partition occurs,
and change to a safe operating mode until normal Ethereum
connectivity is restored. We do also recognise that if these
safe mode protocols are not designed correctly they could also
become a potential attack vector.

Ethereum blockchain is not the only applicable blockchain
technology, and even other variants and proposed proto-
col changes within the ‘‘Ethereum family’’ may provide
different level of security for light clients. For example,
a proof-of-stake mechanism would change the adversarial
model significantly and in our opinion whether a proof-of-
stakemechanismwould bemore or less secure to a light client
is not immediately obvious. We see this also as a potentially
useful area of further research.

While we discuss the threat of 1-inject attacks, further elab-
oration of the scenarios with potentially an analysis of exist-
ing smart contracts on whether they can be securely operated
by light clients under 1-inject threat model or not could be
beneficial. Similarly, analysing vulnerability of a light client
to 2-inject attacks under different operating regiments would
potentially allow identification of secure operating regimes
under more complex adversarial light client interactions.

Finally, the analysis is limited by our assumptions. For
example, Ethereum allows slow changes to the difficulty of
the cryptographic puzzle in response to changes in the net-
work hashing power. This means that a partitioned network
will over time adapt so that it will again reach a similar
block interval as the full network. We do not take this into
account. While we believe that this assumption has very little
effect, it is a notable divergence from the Ethereum protocol.
Similarly, we believe that the adversary’s strategy as defined
in Section IV-A is most likely sub-optimal. This does not
invalidate our results, but does mean that our results represent
a conservative lower bound on the adversary’s success prob-
ability, and thus also the upper bound for light client security
under the described attack.

APPENDIX A
EXAMPLES OF ATTACKS AGAINST A LIGHT CLIENT
Without a deep knowledge of Ethereum security model it
is not perhaps immediately obvious what an adversary is
able to achieve by injecting a block B̃ to the client. This
section describes some of the potential types of attacks
the adversary may be able to achieve under different
scenarios.

Important: There are many different methods that can
be employed at LES clients to mitigate many of the attacks
below either completely, or decrease adversary’s success
probability significantly. These examples are intended only
to demonstrate the mechanisms at an adversary’s disposal if
or when they succeed in injecting an invalid block B̃ into a
client.

A. DOUBLE-SPENDING ATTACK
The classic double-spending attack is based on the idea that
an adversary tricks the target into thinking they have received
a payment from the adversary, while the adversary success-
fully manages to keep the payment to themselves. In this
scenario we have the adversary as a buyer, and the target as
a seller. The two parties agree on a payment for goods. The
buyer generates a transaction for sending the required amount
of cryptocurrency to the seller’s account. The seller can look
at the transaction and verify the amount and recipient, after
which the seller can submit the transaction to the blockchain
network (seller does not have to trust the buyer to submit the
transaction). The seller will first verify that the transaction has
been accepted to a mined block, and then wait for k blocks
until handing out the merchandise.

The double-spending attack has been analysed extensively,
see for example Karame et al. [40], and Liao and Katz [41].
In our model the adversary has no need for incorrect state
S̃, as all that is required in the inclusion of the payment to
the adversarial chain, and the ability to present and maintain
this incorrect view, and present it to the buyer. The adversary
would submit a conflicting transaction to the honest network
just like in a normal double-spending attack.

Thus, while a double-spending attack is similarly feasible
under our model, it can be performed by the adversary with-
out the need to generate incorrect blocks B̃ if the transaction
itself is acceptable to the honest network. If the transaction
is not valid — for example, the payee is missing sufficient
funds — then the method described in this article becomes
relevant.

B. FAKE WEALTH
Since the state S̃ on the adversarial chain does not have to
follow normal state transition rules, the adversary can simply
set his or her own account balance to an arbitrary amount (say,
1 000 000 ethers, equivalent to several million USD). Under
normal state transition rules this balance must be traceable
through transactions to either blockchain rewards, or the
genesis block wealth, and cannot be created out of thin air.
These constraints do not, of course, apply to the adversarial
state S̃.

Whether just showing off a fake balance to another device
is actually useful is, though, questionable.

C. FOOLING AN IoT DEVICE
Let’s assume there’s a lock that is opened by a near-field com-
munication device (NFC device) utilizing a secure challenge-
response protocol. This allows the lock to securely establish

VOLUME 8, 2020 124353

S. Paavolainen, C. Carr: Security Properties of Light Clients on the Ethereum Blockchain

the identity of the NFC device, while an eavesdropper is
unable to clone the identity due to the presence of the
challenge-response protocol.

Each lock is configured to allow only a specific set of
identified NFC devices to open the lock. The set of allowed
NFC identifiers is managed by a smart contract. The smart
contract is periodically queried to provide a list of identi-
fiers that, if demonstrated via NFC protocol, open the lock.
The portion of a smart contract below demonstrates how
the owner of the locks sets the allowed keys, and how
the locks retrieve the set of keys that are allowed to open
the lock.7

contract LockManager {
address owner;
mapping (uint => uint[]) public allowedKeys;

...

function setAllowedKeys(
uint lockId,
uint[] memory fobIds)

public
{

require(msg.sender == owner,
‘‘Only owner can modify keys’’);

allowedKeys[lockId] = fobIds;
}

function getAllowedKeys(
uint lockId)

public view returns (uint[] memory)
{

return allowedKeys[lockId];
}

...
}

The underlying assumption is that since the smart con-
tract is secure, the set of allowed keys can only be changed
by the contract owner. Thus, assuming the owner’s secret
key is secure, in Ethereum, any party using the method
getAllowedKeys is guaranteed to retrieve only the values
as set by the owner. No other party is able to generate a
transaction that would be accepted by setAllowedKeys.
Since the honest blockchain consists only of blocks that pass
the both Vh and Vs validations, the security of the contract and
its data are presumed.

However, a lock relying on LES protocol can be fooled into
accepting a key ũ (‘‘unlocker’’) not part of the set of allowed
keys Ul for the specific lock l. This can be accomplished by
two different ways if the adversary is able to fool the lock to
accepting an invalid block B̃ as a valid representation of the
smart contract state.

The first mechanism is to modify the smart contract’s
storage, where values of all of the smart contract’s variables

7The authorsmost definitely do not think it is a good idea to use blockchain
to specify the set of allowed keys.

are stored. The adversary can determine the location of the
allowedKeysmapping in the storage, and calculate the stor-
age location of the key array for lock l. Thus, the adversary
is able to generate a block B̃n where the state of correct
execution S̃n = π̃ (Sn−1,T) differs from the ‘‘correct’’ Sn only
by having ũ ∈ Ũ l in S̃n (and thus, in B̃n accepted by the lock),
while in the ‘‘correct’’ smart contract state ũ /∈ Ul . Thus, when
later the lock updates its set of allowed keys, it will retrieve
block B̃, verify its Vh validity, and retrieve Ũ l . At this point
is it trivial for the adversary to use its own key ũ to open the
lock.

The second mechanism does not need to alter the smart
contract storage at all—instead it will simply overwrite the
whole smart contract (this is possible in Ethereum because the
smart contract address, while unique and permanent, does not
authenticate the smart contract code). In short, the adversary
changes the smart contract’s code to onewhich always returns
the adversary’s key:

contract LockManager {
function getAllowedKeys(

uint /*unused lockId*/)
public view returns (uint[] memory)

{
uint256[] memory keys = new uint256[](1);
keys[0] = <adversary’s key id>;
return keys;

}

...
}

The smart contract code is referenced via its account data,
which in turn contains hash of the smart contract bytecode
(called codeHash). In the Ethereummodel a smart contract’s
code is immutable—under correct 5 transition rules there
is no valid execution that changes an account’s codeHash.
The actual bytecode M is referenced by its hash hash(M),
meaning that under honest network assumption the client is
able to verify the correctness of the retrieved contract code by
hashing it and comparing to the account’s codeHash value.
However, the adversary is able to modify the smart contract
account, and change the codeHash value to hash(M̃) value
with M̃ being, for example, the version of the code always
returning adversary’s own key identifier.

APPENDIX B
GENERATING THE Q MATRIX
We are using generator matrices—matrices as parts of
matrices—to help structure the Q matrix construction. The
use of generator matrices allows us to describe each phase of
theMarkov process as a ‘‘single’’ row of backward, local, and
forward matrices for the phase. These ‘‘meta-rows’’ are not
uniform in size, and depend on parameters of the model.

A. GENERAL CONSTRUCTION
Section V-B describes theMarkov process for the adversarial,
non-captive model, and its transition matrix Q, where a Q2

124354 VOLUME 8, 2020

S. Paavolainen, C. Carr: Security Properties of Light Clients on the Ethereum Blockchain

FIGURE 11. Generic description of the non-captive Markov process. The
black circle represents the first B̃ block mined by the adversary, and red
circles represent states where the adversary is able to inject invalid state
to the client (e.g. succeeds). There are an infinite number of success
states in non-captive model, which can be modeled as a simple
birth-death process.

matrix for the non-captive model was given as an example.
While thematrixmay look daunting at first, here we show that
it has a recurring structure thanks to the phase-type construc-
tion. The use of generator matrices has been described in the
literature, for example, by Harchol-Balter [42]. We employ
this technique to describe a generic generator structure for
any Qk:

Qk =



L0 F0
B1 L1 F1

. . .
. . .

. . .

. Bh Lh Fh
. . .

. . .
. . .

.Bk+1 Lk+1


(7)

Each phase of the model is described by a single generator
row in the abovematrix. All the elements in theQmatrixG,L,
and F are themselvesmatrices of varying size (m×n).We refer
to these are the backward generator, the local generator, and the
forward generator matrix respectively. The number of states
m(h, k) for each phase h is dependent on the depth parameter
k for h ∈ {0, . . . , k} for of a non-captive model portion can
expressed as a recurrence relation (see also Fig. 12):

m(0, k) = 1 (8)

m(h, k) = k + h h ≤ k. (9)

Since the value of1W can growwithout bounds, the size of
the Lk+1 matrix is theoretically infinite, although in practice
it is truncated at some point. We define the truncation length
of the 1W > k + 2 portion as b and use it to define m at phase
k + 1:

m(k + 1, k) → ∞ (10)

mb(k + 1, k) = 2k + b+ 1. (11)

The captive model mc(h, k) is slightly different on the h =
k+1 phase (there is a corner case for k = 1with only one state

FIGURE 12. The captive process is similar to the non-captive model
except for success states, which are replaced with a single (k + 1,≥1)
state that has no outbound µ-transitions. The captive model is always
finite in size. Note that for k = 1 the regular rectangular shape of the
1W ≤ 0 states breaks—to see how this is left as an intellectual exercise
for the reader.

on h = k + 1 phase instead of two states one might expect):

mc(h, k) = m(h, k) h < k + 1 (12)

mc(2, 1) = 1 (13)

mc(k + 1, k) = k + 1 k 6= 1. (14)

We define the total number of states are Mb(k) =
∑
m(h, k)

and Mc(k) =
∑
mc(h, k) as the total number of core states for

the two models:

Mb(k) = 3/2k2 + 5/2k + b+ 2 (15)

Mc(1) = 4 (16)

Mc(k) = 3/2k2 + 2/2k + 2 k 6= 1. (17)

B. CORE BACKWARD MATRIX
The number of columns nB in the backward generator matrix
Bh for non-captive models can be expressed as recurrence
relation where each phase’s backward generator matrix is
the same width as previous phase’s one plus the number of
columns in the local generator matrix nL of previous phase:

nB(0, k) = 0 (18)

nB(h, k) = nB(h− 1, k)+ nL (h− 1, k) h ≤ k + 1. (19)

For the captive model the number of backward generator
matrix columns ncB is almost identical, apart from the lack of
birth-death process phase:

ncB(h, k) = nB(h, k) h ≤ k + 1. (20)

The backward matrix Bh, size m(h, k) × nB(h, k), has only
a single transition to the first state always from the leftmost
e.g. first state in the phase for all core phases. That is, the
backward transition is always to the first phase—state 1.

B0 = [] (21)

Bh =


µ 0 · · ·

0 0 · · ·

...
...

. . .

 0 < h ≤ k + 1 (22)

VOLUME 8, 2020 124355

S. Paavolainen, C. Carr: Security Properties of Light Clients on the Ethereum Blockchain

The captive model backward generator matrix is same as
non-captive model’s.

Bch = Bh (23)

C. LOCAL MATRIX
The size of a local matrix for both non-captive nL (h, k) and
captive ncL (h, k) is always the same, e.g. the number of states
in the phase:

nL (h, k) = m(h, k) (24)

ncL (h, k) = mc(h, k) (25)

For non-captive model in all phases 0 < h < k+1, the local
generator matrix is always similar with µ-transitions moving
to the previous state in the same phase, and the diagonal being
balanced with the λ-transition in the forward matrix:

L0 =
[
−λ

]
(26)

Lh =


−λ− µ 0 · · · · · ·

µ −λ− µ 0 · · ·

0 µ −λ− µ · · ·

...
. . .

. . .
. . .

 0 < h < k + 1

(27)

While the first row may appear to be unbalanced, it has a
resetµ-transition that is part of the backward generatormatrix
Bh.
Since the k+1 phase contains the birth-death process from

1W > k + 2 onwards, the local generator matrix for it will
also have λ-transitions most of the time:

L∗k+1 =


−λ− µ λ 0 · · · · · · · · ·

µ −λ− µ λ 0 · · · · · ·

0 µ −λ− µ λ 0 · · ·

...
. . .

. . .
. . .

. . .
. . .


(28)

If b→ ∞ this does not stop, but if b is finite then at some
point the last state cannot have a λ transition and needs to be
balanced:

Lk+1 =


−λ− µ λ · · · · · · · · ·

...
. . .

. . .
. . .

. . .

· · · · · · · · · µ −µ

 (29)

For the captive model, the local generator matrix is iden-
tical except for k + 1 phase where the very last state has no
transitions (it is absorbing state).

Lch = Lh h ≤ k (30)

Lck+1 =


−λ− µ λ · · · · · · · · ·

...
. . .

. . .
. . .

. . .

0 · · · · · · · · · 0

 (31)

D. FORWARD MATRIX
The size of the forward generator matrix depends on the
number of states in the next phase.

nF (h, k) = nL (h+ 1, k) h < k + 1 (32)

nF (k + 1, k) = b (33)

nF (k + 2, k) = 0 (34)

ncF (h, k) = nF (h, k) h < k (35)

ncF (k, k) = mcL (k + 1, k) (36)

ncF (k + 1, k) = 0. (37)

The generator matrix is easiest to describe consisting of a
zero matrix, and a diagonal λ matrix:

Fh =
[
0m(h,k),nL (h+1,k)−nL (h,k) λIm(h,k)

]
h ≤ k (38)

or put more descriptively,

F0 =
[
0 · · · λ

]
(39)

Fh =


0 λ 0 · · · · · ·

0 0 λ 0 · · ·

...
. . .

. . .
. . .

...

· · · · · · · · · · λ

 0 < h ≤ k (40)

For the captive model the forward generator matrix is sim-
ilar up to the previous-to-last phase which needs to transition
either to the non-absorbing state (if the target state has 1W ≤
0), or to the sole absorbing state otherwise.

Fch = Fh h < k (41)

Fck =



0 λ · · · · · ·

...
. . . λ · · ·

...
. . .

. . . λ

...
. . .

. . .
...

0 · · · · · · λ


(42)

Neither non-captive or captive model have further phases
than k + 1, and consequently there is no forward matrix for
phase k + 1.

ACKNOWLEDGMENT
The authors would like to thank Prof. Colin Boyd for the work
he put into a draft of another earlier article, which eventually
lead us to the topic considered in this article. They also would
like to thank Signe-Anita Lindgrén for her help during the
proofreading of the final version.

REFERENCES
[1] G. Wood, ‘‘Ethereum: A secure decentralised generalised transaction

ledger,’’ Ethereum Project Yellow Paper, vol. 151, pp. 1–32, Apr. 2014.
[2] S. Nakamoto. (2008). Bitcoin: A Peer-To-Peer Electronic Cash System.

[Online]. Available: https://bitcoin.org/bitcoin.pdf
[3] Z. Ren and Z. Erkin, ‘‘VAPOR: A value-centric blockchain that is scale-

out, decentralized, and flexible by design,’’ in Financial Cryptography
and Data Security. FC (Lecture Notes in Computer Science), vol.
11598, I. Goldberg and T. Moore, Eds. Cham, Switzerland: Springer,
2019, pp. 487–507. [Online]. Available: https://link.springer.com/
chapter/10.1007/978-3-030-32101-7_29

124356 VOLUME 8, 2020

S. Paavolainen, C. Carr: Security Properties of Light Clients on the Ethereum Blockchain

[4] A. Schoedon. (Nov. 29, 2017). The Ethereum-Blockchain Size Will not
Exceed 1TB Anytime Soon. Accessed: Jan. 11, 2018. [Online]. Avail-
able: https://dev.to/5chdn/the-ethereum-blockchain-size-will-not-exceed-
1tb-anytime-soon-58a

[5] Ethereum. (May 2019). Light Ethereum Subprotocol (LES). Accessed:
Oct. 19, 2019. [Online]. Available: https://github.com/ethereum/devp2p/
blob/master/caps/les.md

[6] M. J. Levy. (Jun. 27, 2019). The Deep-Dive Into How Verizon and a BGP
Optimizer Knocked Large Parts of the Internet Offline Monday. Accessed:
Nov. 7, 2019. [Online]. Available: https://blog.cloudflare.com/the-deep-
dive-into-how-verizon-and-a-bgp-optimizer-knocked-large-parts-of-the-
internet-offline-monday/

[7] NetBlocks. (Aug. 3, 2019). Evidence of Internet Disruptions in Russia
During Moscow Opposition Protests. Accessed: Nov. 7, 2019. [Online].
Available: https://netblocks.org/reports/evidence-of-internet-disruptions-
in-russia-during-moscow-opposition-protests-XADErzBg

[8] C. Hogg. (May 14, 2010). China Restores Xinjiang Internet. Accessed:
Nov. 7, 2019. [Online]. Available: http://news.bbc.co.uk/2/hi/asia-pacific/
8682145.stm

[9] V. Gramoli, ‘‘From blockchain consensus back to Byzantine consensus,’’
Future Gener. Comput. Syst., vol. 107, pp. 760–769, Jun. 2020, doi: 10.
1016/j.future.2017.09.023.

[10] C. Natoli andV. Gramoli, ‘‘The balance attack or why forkable blockchains
are ill-suited for consortium,’’ in Proc. 47th Annu. IEEE/IFIP Int. Conf.
Dependable Syst. Netw. (DSN), Jun. 2017, pp. 579–590, doi: 10.1109/
DSN.2017.44.

[11] M. Al-Bassam, A. Sonnino, and V. Buterin, ‘‘Fraud and data avail-
ability proofs: Maximising light client security and scaling blockchains
with dishonest majorities,’’ 2018, arXiv:1809.09044. [Online]. Available:
http://arxiv.org/abs/1809.09044

[12] O. Leiba, Y. Yitzchak, R. Bitton, A. Nadler, and A. Shabtai, ‘‘Incen-
tivized delivery network of IoT software updates based on trustless
proof-of-distribution,’’ in Proc. IEEE Eur. Symp. Secur. Privacy Work-
shops (EuroS&PW), Apr. 2018, pp. 29–39, doi: 10.1109/EuroSPW.2018.
00011.

[13] L. da Costa, A. Neto, B. Pinheiro, W. Cordeiro, R. Araújo, and A. Abelém,
‘‘Securing light clients in blockchain with DLCP,’’ Int. J. Netw. Manage.,
vol. 29, no. 3, p. e2055, 2019, doi: 10.1002/nem.2055.

[14] P. Danzi, A. E. Kalor, C. Stefanovic, and P. Popovski, ‘‘Delay and commu-
nication tradeoffs for blockchain systems with lightweight IoT clients,’’
IEEE Internet Things J., vol. 6, no. 2, pp. 2354–2365, Apr. 2019, doi: 10.
1109/JIOT.2019.2906615.

[15] A. Palai, M. Vora, and A. Shah, ‘‘Empowering light nodes in blockchains
with block summarization,’’ in Proc. 9th IFIP Int. Conf. New Technol.,
Mobility Secur. (NTMS), Feb. 2018, pp. 1–5, doi: 10.1109/NTMS.2018.
8328735.

[16] N. Alexopoulos, S. M. Habib, and M. Mühlhäuser, ‘‘Towards secure
distributed trust management on a global scale: An analytical approach
for applying distributed ledgers for authorization in the IoT,’’ in Proc.
Workshop IoT Secur. Privacy (IoT S&P). NewYork, NY, USA: ACM, 2018,
pp. 49–54, doi: 10.1145/3229565.3229569.

[17] I. Eyal and E. G. Sirer, ‘‘Majority is not enough: Bitcoin mining is vul-
nerable,’’ in Financial Cryptography and Data Security (Lecture Notes
in Computer Science). Berlin, Germany: Springer, 2014, pp. 436–454,
doi: 10.1007/978-3-662-45472-5_28.

[18] K. Nayak, S. Kumar, A. Miller, and E. Shi, ‘‘Stubborn mining: Gener-
alizing selfish mining and combining with an eclipse attack,’’ in Proc.
IEEE Eur. Symp. Secur. Privacy (EuroS&P), Mar. 2016, pp. 305–320,
doi: 10.1109/EuroSP.2016.32.

[19] A. Sapirshtein, Y. Sompolinsky, and A. Zohar, ‘‘Optimal selfish min-
ing strategies in bitcoin,’’ in Financial Cryptography and Data Security
(Lecture Notes in Computer Science). Berlin, Germany: Springer, 2016,
pp. 515–532, doi: 10.1007/978-3-662-54970-4_30.

[20] A. Gervais, G. O. Karame, K. Wüst, V. Glykantzis, H. Ritzdorf, and
S. Capkun, ‘‘On the security and performance of proof of work
blockchains,’’ in Proc. ACM SIGSAC Conf. Comput. Commun. Secur.
New York, NY, USA: ACM, Oct. 2016, pp. 3–16, doi: 10.1145/2976749.
2978341.

[21] M. Saad, J. Spaulding, L. Njilla, C. A. Kamhoua, D. Nyang,
and A. Mohaisen, ‘‘Overview of attack surfaces in blockchain,’’ in
Blockchain for Distributed Systems Security. Hoboken, NJ, USA: Wiley,
2019, ch. 3, pp. 51–66. [Online]. Available: https://onlinelibrary.wiley.
com/doi/pdf/10.1002/9781119519621, doi: 10.1002/9781119519621.

[22] J. Joshi and R. Mathew, ‘‘A survey on attacks of bitcoin,’’ in Proc. Int.
Conf. Comput. Netw. Big Data IoT (ICCBI), in Lecture Notes on Data
Engineering and Communications Technologies, A. Pandian, T. Senjyu,
S. M. S. Islam, and H. Wang, Eds. Cham, Switzerland: Springer, 2020,
pp. 953–959, doi: 10.1007/978-3-030-24643-3_113.

[23] E. Heilman, A. Kendler, A. Zohar, and S. Goldberg, ‘‘Eclipse attacks on
bitcoin’s peer-to-peer network,’’ in Proc. USENIX Secur. Symp., 2015,
pp. 129–144.

[24] Y. Marcus, E. Heilman, and S. Goldberg, ‘‘Low-resource eclipse attacks
on Ethereum’s peer-to-peer network,’’ in Proc. IACR Cryptol. ePrint Arch.,
2018, vol. 2018, no. 236, pp. 1–15.

[25] A. E. Yves-Christian, B. Hammi, A. Serhrouchni, and H. Labiod, ‘‘Total
eclipse: How to completely isolate a bitcoin peer,’’ in Proc. 3rd Int.
Conf. Secur. Smart Cities, Ind. Control Syst. Commun. (SSIC), Oct. 2018,
pp. 1–7, doi: 10.1109/SSIC.2018.8556790.

[26] A. Kiayias, A. Miller, and D. Zindros, ‘‘Non-interactive proofs of proof-
of-work,’’ Cryptol. ePrint Arch., Rep. 2017/963, 2017. [Online]. Available:
http://eprint.iacr.org/2017/963

[27] B. Bünz, L. Kiffer, L. Luu, and M. Zamani, ‘‘Flyclient: Super-light
clients for cryptocurrencies,’’ Cryptol. ePrint Arch., Rep. 2019/226, 2019.
[Online]. Available: http://eprint.iacr.org/2019/226

[28] P. Danzi, A. E. Kalor, C. Stefanovic, and P. Popovski, ‘‘Repeat-authenticate
scheme for multicasting of blockchain information in IoT systems,’’ in
Proc. IEEE Globecom Workshops (GC Wkshps), Dec. 2019, pp. 1–7,
doi: 10.1109/GCWkshps45667.2019.9024468.

[29] M. Pustišek, A. Umek, and A. Kos, ‘‘Approaching the communication con-
straints of Ethereum-based decentralized applications,’’ Sensors, vol. 19,
no. 11, p. 2647, 2019, doi: 10.3390/s19112647.

[30] A. Amoordon and H. Rocha, ‘‘Presenting tendermint: Idiosyncrasies,
weaknesses, and good practices,’’ in Proc. IEEE Int. Workshop Blockchain
Oriented Softw. Eng. (IWBOSE), Feb. 2019, pp. 44–49, doi: 10.1109/
IWBOSE.2019.8666541.

[31] R. Blum and T. Bocek, ‘‘Superlight–a permissionless, light-client only
blockchain with self-contained proofs and BLS signatures,’’ in Proc. IFIP
IEEE Symp. Integr. Netw. Service Manage., Apr. 2019, pp. 36–41.

[32] V. A. Siris, P. Nikander, S. Voulgaris, N. Fotiou, D. Lagutin, and
G. C. Polyzos, ‘‘Interledger approaches,’’ IEEE Access, vol. 7,
pp. 89948–89966, 2019, doi: 10.1109/ACCESS.2019.2926880.

[33] D. Gruber, W. Li, and G. Karame, ‘‘Unifying lightweight blockchain client
implementations,’’ in Proc. Workshop Decentralized IoT Secur. Standards.
San Diego, CA, USA: Internet Society, 2018, pp. 1–8, doi: 10.14722/diss.
2018.23010.

[34] S. Paavolainen and P. Nikander, ‘‘Decentralized beacons: Attesting the
ground truth of blockchain state for constrained IoT devices,’’ in Proc.
Global IoT Summit (GIoTS), Jun. 2019, pp. 1–6, doi: 10.1109/GIOTS.
2019.8766432.

[35] E. Hildenbrandt, M. Saxena, X. Zhu, N. Rodrigues, P. Daian, D. Guth,
and G. Rosu. (Aug. 1, 2017). KEVM: A Complete Semantics of the
Ethereum Virtual Machine. Accessed: May 17, 2019. [Online]. Available:
https://www.ideals.illinois.edu/handle/2142/97207

[36] Y. Sompolinsky and A. Zohar, ‘‘Bitcoin’s security model revisited,’’ 2016,
arXiv:1605.09193. [Online]. Available: http://arxiv.org/abs/1605.09193

[37] N. Carter. (Aug. 5, 2019). It’s the Settlement Assurances, Stupid. Accessed:
Nov. 7, 2019. [Online]. Available: https : / /medium.com/nic__carter/its-
the-settlement-assurances-stupid-5dcd1c3f4e41

[38] Payward. (2019). Cryptocurrency Deposit Processing Times. Accessed:
Nov. 7, 2019. [Online]. Available: http://support.kraken.com/hc/en-us/
articles/203325283-Cryptocurrency-deposit-processing-times

[39] P. Nikander, J. Autiosalo, and S. Paavolainen, ‘‘Interledger for the indus-
trial Internet of Things,’’ in Proc. IEEE 17th Int. Conf. Ind. Informat.
(INDIN), vol. 1, Jul. 2019, pp. 908–915, doi: 10.1109/INDIN41052.2019.
8972167.

[40] G. O. Karame, E. Androulaki, and S. Capkun, ‘‘Double-spending fast
payments in bitcoin,’’ inProc. ACMConf. Comput. Commun. Secur. (CCS).
New York, NY, USA: ACM, 2012, pp. 906–917, doi: 10.1145/2382196.
2382292.

[41] K. Liao and J. Katz, ‘‘Incentivizing blockchain forks via whale trans-
actions,’’ in Financial Cryptography and Data Security (Lecture Notes
in Computer Science), M. Brenner, K. Rohloff, J. Bonneau, A. Miller,
P. Y. Ryan, V. Teague, A. Bracciali, M. Sala, F. Pintore, and M. Jakobsson,
Eds. Cham, Switzerland: Springer, 2017, pp. 264–279. [Online]. Available:
https://link.springer.com/chapter/10.1007%2F978-3-319-70278-0_17 doi:
10.1007/978-3-319-70278-0_17.

[42] M. Harchol-Balter, Performance Modeling and Design of Computer Sys-
tems: Queueing Theory in Action. Cambridge, U.K.: Cambridge Univ.
Press, 2013, doi: 10.1017/CBO9781139226424.

VOLUME 8, 2020 124357

http://dx.doi.org/10.1016/j.future.2017.09.023
http://dx.doi.org/10.1016/j.future.2017.09.023
http://dx.doi.org/10.1109/DSN.2017.44
http://dx.doi.org/10.1109/DSN.2017.44
http://dx.doi.org/10.1109/EuroSPW.2018.00011
http://dx.doi.org/10.1109/EuroSPW.2018.00011
http://dx.doi.org/10.1002/nem.2055
http://dx.doi.org/10.1109/JIOT.2019.2906615
http://dx.doi.org/10.1109/JIOT.2019.2906615
http://dx.doi.org/10.1109/NTMS.2018.8328735
http://dx.doi.org/10.1109/NTMS.2018.8328735
http://dx.doi.org/10.1145/3229565.3229569
http://dx.doi.org/10.1007/978-3-662-45472-5_28
http://dx.doi.org/10.1109/EuroSP.2016.32
http://dx.doi.org/10.1007/978-3-662-54970-4_30
http://dx.doi.org/10.1145/2976749.2978341
http://dx.doi.org/10.1145/2976749.2978341
http://dx.doi.org/10.1002/9781119519621
http://dx.doi.org/10.1007/978-3-030-24643-3_113
http://dx.doi.org/10.1109/SSIC.2018.8556790
http://dx.doi.org/10.1109/GCWkshps45667.2019.9024468
http://dx.doi.org/10.3390/s19112647
http://dx.doi.org/10.1109/IWBOSE.2019.8666541
http://dx.doi.org/10.1109/IWBOSE.2019.8666541
http://dx.doi.org/10.1109/ACCESS.2019.2926880
http://dx.doi.org/10.14722/diss.2018.23010
http://dx.doi.org/10.14722/diss.2018.23010
http://dx.doi.org/10.1109/GIOTS.2019.8766432
http://dx.doi.org/10.1109/GIOTS.2019.8766432
http://dx.doi.org/10.1109/INDIN41052.2019.8972167
http://dx.doi.org/10.1109/INDIN41052.2019.8972167
http://dx.doi.org/10.1145/2382196.2382292
http://dx.doi.org/10.1145/2382196.2382292
http://dx.doi.org/10.1007/978-3-319-70278-0_17
http://dx.doi.org/10.1017/CBO9781139226424

S. Paavolainen, C. Carr: Security Properties of Light Clients on the Ethereum Blockchain

SANTERI PAAVOLAINEN received the M.Sc.
degree in computer science from the University of
Helsinki, Finland, in 2016, and the B.Sc. degree in
engineering physics from the School of Science,
Aalto University, Finland, in 2019, where he is cur-
rently pursuing the Ph.D. degreewith the School of
Electrical Engineering. He enrolled to University
of Helsinki, Helsinki, Finland, in 1993, but soon
after got sidetracked and worked in the software
industry for over two decades. During this time, he

has worked extensively on scalable Internet service design, cloud computing,
and technology strategy development. Eventually, he heard the siren song of
academia. His research interests in the IoT devices and distributed ledger
(i.e., blockchain) integration.

CHRISTOPHER CARR received the master’s
degree (Hons.) in cryptography and communica-
tion technology from the Royal Holloway Uni-
versity of London, in 2012, and the Ph.D. degree
in Trondheim from the Norwegian University of
Science and Technology, in 2014. During his time
as a Ph.D. candidate, he took part in a televised
research dissemination competition, was awarded
a scholarship at the Queensland University of
Technology and won finding for a startup project

that was subsequently established into its own company. He is currently
working in blockchain technology, amongst other areas, with the Norwegian
University of Science and Technology. He also works as a Research and a
Teaching Fellow with the University West of England, Bristol.

124358 VOLUME 8, 2020

