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Abstract. The digestive health of cows is one of the primary factors that determine their well-
being and productivity. Under- and over-feeding are both commonplace in the beef and dairy 
industry; leading to welfare issues, negative environmental impacts, and economic losses. 
Unfortunately, digestive health is difficult for farmers to routinely monitor in large farms due 
to many factors including the need to transport faecal samples to a laboratory for 
compositional analysis. This paper describes a novel means for monitoring digestive health via 
a low-cost and easy to use imaging device based on computer vision. The method involves the 
rapid capture of multiple visible and near-infrared images of faecal samples. A novel three-
dimensional analysis algorithm is then applied to objectively score the condition of the sample 
based on its geometrical features. While there is no universal ground truth for comparison of 
results, the order of scores matched a qualitative human prediction very closely. The algorithm 
is also able to detect the presence of undigested fibres and corn kernels using a deep learning 
approach. Detection rates for corn and fibre in image regions were of the order 90%. These 
results indicate the potential to develop this system for on-farm, real time monitoring of the 
digestive health of individual animals, allowing early intervention to effectively adjust feeding 
strategy. 
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1. Introduction 

Accurate feeding of animals in the beef and dairy industries is important both for efficient production and to 
reduce the impact of cattle farming on the wider environment. Sustainability in the ruminant livestock sector 
involves efficient use of resources to deliver quality products (meat and milk) with minimal impact on the 
environment. By improving estimates of feed composition, digestibility, and digestive health, it will be possible 
to obtain: 

• Efficient and more precise nutrient delivery to the animal, thereby reducing instances of overfeeding 
nutrients such as protein and improving productivity which will maintain competitiveness of home-
produced livestock products. 

• Minimised release of pollutants such as ammonia and urea (arising from poor utilisation of protein in the 
rumen and the animal) to land and water. 

These important societal and economic targets are directly related to the mitigation of climatic impact of 
livestock and can be facilitated via the development of tools to support sustainable livestock production systems 
[1]. 

Both under- and over-feeding of nutrients are inefficient and can lead to environmental, economic and welfare 
issues. Farm businesses cannot afford to waste expensive resources by feeding nutrients in amounts surplus to 
requirements [2]. Equally, it is relatively common for farm rations to perform under expectations: too much or 
too little of some components, poor mixing or poor sorting can lead to poor productivity, in addition to health 



and welfare problems [3]. Optimisation of feed for production ruminants is imperfect with discrepancies often 
arising, especially for precision feeding strategies that aim to minimise surplus nutrient supply. For fresh forage 
feeds, the general (“book”) dietary parameters may not agree with the actual values resulting from genenomic 
and environmental factors (often referred to as the “GxE effect”) and management [4]. Further, for total mixed 
rations (TMR) the nutritional values may be affected by on farm storage conditions [2]. 

There is a current need for improved methods of assessment of feed use efficiency; especially ones that can be 
directly applied on a farm. Key issues are the presence of excess starch or too little effective fibre in the feed, 
which can lead to subclinical rumen acidosis [5]. However, the farmer's ability to make feed strategy decisions 
quickly is restricted by the time needed for off-site lab-based chemical analysis of feed and faeces and the lack 
of an appropriate method for determining the optimal level of effective fibre required. Equally, currently 
available on-farm diagnostics [6], often relying on visual assessment, are not well positioned to make specific 
recommendations for remedial actions to halt losses in milk or meat production, or poor feed use efficiency. 
Rapid and accurate diagnosis of poor feed use efficiency will enable more effective dietary adjustments to be 
made to improve nutrient use efficiency and sustain production. 

Given the above discussion, new proxies for feed adequacy are sought based on real-life practice that can be 
applied in a tool for better on-farm resource management. This paper proposes a method to parametrise faecal 
consistency as an indicator of gut health and diet fibre content using computer vision. This is a less subjective 
version of current on-farm visual assessment scores of faecal consistency [7], [6], [8]. A portable imaging 
system has been developed to include near-infrared (NIR) or visible light sources able to capture and analyse the 
three-dimensional appearance of samples and formulate an objective health score based on consistency. Further, 
machine learning has been applied to a database of training images to extract data related to the presence of 
undigested fibres and corn kernels in the samples adding to the health score above. 

In addition to the immediate estimation of cattle digestive health, it is envisaged that, ultimately, this method 
will allow for the estimation of feed quality (e.g. protein and fibre concentrations and particle size). In 
combination with other technology such as NIR spectroscopy, the development of “on-farm visual analysis” as 
an additional automated diagnostic tool will significantly enhance the ability to make real-time feeding 
decisions. This will enable more precise, strategic feeding of individual animals (in a so-called “precision” 
farming manner) and herds for on-farm nutrient management to improve welfare, production and the 
environment. 

It is hoped that, with the proposed system, it will be easy for farmers to frequently assess the digestive health of 
cattle on the farm with minimal training and cost outlay. Section 2 describes the bespoke hardware used for this 
project, and computer vision algorithms for faecal consistency scoring and grain/fibre detection. Results and 
discussion of implications is then provided in Section 3. Finally, Section 4 presents the main conclusions. 

2. Materials and Methods 

This section first describes the hardware and methods used to acquire the necessary data for the two parts of the 
image analysis, i.e. consistency score estimation and corn kernel/fibre detection. It then furnishes the algorithms 
used to subsequently process the data. 

2.1.  Data Capture 

The requirements for the data capture hardware were that: 

• the system is relatively low cost; 
• the system is easy to use and portable; 
• the system is minimally affected by typical farm conditions including common changes to ambient light and 

temperature; 
• fibres and corn are visible, where possible; 



• the surface structure (e.g. three-dimensional roughness) associated with the scoring method can be 
extracted; and 

• there is a manageable computational expense. 

Note that corn kernels were used as a common test case – other undigested cereal grains will be considered in 
future work using a similar paradigm. 

The method of photometric stereo (PS) [9] was chosen as the basic hardware for data capture. This technique 
involves the capture of at least three 2D images of an object with different illumination directions, which are 
then used to determine the orientation of the surface of the sample (in the form of surface normal vectors) at 
each pixel on the target object/sample. The map of surface normals can be integrated into a depth estimate [10]. 
However, this step should only be used if necessary as it introduces distortions to the data due to the 
accumulation of noise and systematic artefacts in the reconstruction process [11]. Therefore, the adopted 
algorithm, as described below, uses the surface normal data as a means of encoding 3D information. The 
method was chosen due to its ability to obtain both 3D and 2D surface geometry simultaneously, its relatively 
low cost of off-the-shelf components and its high resolution; thus largely meeting the above requirements. 

For this project, a bespoke rig was constructed based on earlier work carried out by the authors for other 
applications [11], [12]. The rig, shown in Figure 1, consists of a USB3.0 Point Grey Grasshopper camera (both 
colour and monochrome NIR were used), four white LEDs and four NIR LEDs (850nm). The lights are 
interfaced to a laptop computer (that can be bolted on top of the device) via an Arduino micro-controller and 
Python code. The code triggers the camera to capture images in turn with one image per illuminated light 
source. The Python code also processes the raw images to obtain albedo (reflectance) and surface normal data. 
An example of the recovered albedo, surface normals and depth is shown in Figure 2. The algorithm either uses 
NIR or visible lights but not both simultaneously. Experiments determined that the NIR data appeared to give 
better results for 3D analysis but that the visible light offered superiority for some of the 2D aspects covered 
below. 

  

Figure 1. Photograph of the bespoke data capture rig. Left: during an actual sample data capture in laboratory conditions. Right: 
from below without power supply and laptop. Note that the camera and LEDs are not visible in the left image as they are 
underneath the computer/power supply. 

 



  

  

Figure 2. Sample data captured from the PS rig shown in Figure 1. (a) Albedo. (b-d) 𝒙𝒙, 𝒚𝒚 and 𝒛𝒛 components of surface normals 
respectively. (e) Depth. NIR illumination was used for this figure. 

 

2.2. Scoring 

This section describes an approach to score the health of a cow using the consistency of its faeces as an indicator 
of digestive function and health. In the literature, several researchers have attempted to standardise the 
parametrisation of manure structure using a score from 1 (very runny) to 5 (firm). While there is a large degree 
of subjectivity associated with this approach, it forms a well-established foundation on which to build a metric 
for this project [13], [6]. 

2.2.1. Concept 

Based on consideration of the 2D and 3D appearance variation in samples of particular scores and the mechanics 
by which a sample drops to the ground, it was decided to parametrise each sample for this project using three 
metrics and then combine them into the overall score. The metrics are termed 

• Border metric 
• Shininess metric 
• Normal metric 

The border metric parametrises the roughness or irregularity of the border of the sample as it appears on the 
ground, noting that a runny low-score sample would splatter widely, forming a rough border. The shininess 
metric describes the reflectance of the sample: lower scoring samples are more shiny (while it may seem more 
logical to assign higher scores to shinier samples, the equations/algorithm below are kept more compact when 
matte samples score more highly). Finally, the normal metric characterises the roughness of the 3D surface 
topography within the body of the sample itself. Referring to the literature [13] it can be seen that the low-score 
samples are smoother than high score samples. 

In summary, a sample with a high total score should correspond to high values of the normal metric but low 
values for border and shininess metrics. If we refer to the metrics for border, shininess and normal as 𝑆𝑆𝐵𝐵, 𝑆𝑆𝑆𝑆 and 
𝑆𝑆𝑁𝑁 respectively, then we can pose the total score, 𝑆𝑆, as: 

 𝑆𝑆 =
𝑆𝑆𝑁𝑁
𝑆𝑆𝐵𝐵𝑆𝑆𝑆𝑆

 (1) 

 



All data for this section were captured at the University of Reading Centre for Dairy Research (CEDAR) in 
October 2018. The full dataset is publicly available from [14]. There was a total of twenty samples which had 
been frozen and then thawed for the data capture session. In each case, the thawed sample was stirred to restore 
original consistency as much as possible (although some liquid had escaped from the rest of the sample during 
the thaw) and 0.2 kg extracted and placed in a small pot. The sample was then dropped from a fixed height of 
approximately 1 m (to approximate the act of animal defecation) onto a white acrylic sheet covered in blue 
tissue paper. The capture rig was carefully placed above the sample and then used for data capture, as shown in 
Figure 1. 

To enable consistent conditions for experimentation, the data was captured indoors with the lights switched off 
and only minimal daylight reaching the sample from outside. However, a significant amount of ambient light 
was still present and seemed not to adversely affect results when compared to images taken in complete 
darkness (with a shroud over the capture hardware). To optimise the image quality, a different aperture was used 
for visible and NIR lights (𝑓𝑓1.8 and 𝑓𝑓4 respectively). Experimental results later showed that NIR illumination 
gave superior results for the normals metric while visible illumination fared better for the border and shininess 
metrics when compared to human subjective evaluation. 

For reference, Figure 3 shows the visible light image and a rendering of the surface normals for the samples that 
later gave the lowest and highest scores respectively. These will be used in the next section as test cases to 
describe the algorithm. 

 

 

Figure 3. 2D images (top) and 3D surface normals (bottom) of the lowest-scoring (left) and highest-scoring (right) samples. 

 

2.2.2. Algorithm 

The overall algorithmic structure is illustrated by Figure 4. The top part of the diagram shows the set of four raw 
images, {𝐼𝐼}0,1,2,3, and corresponding light source vectors, {𝐋𝐋}0,1,2,3, used for the photometric stereo function 

(“PS”). For example, the first light source has direction vector 𝐋𝐋0 = �𝐿𝐿0𝑥𝑥, 𝐿𝐿0𝑦𝑦 , 𝐿𝐿0𝑧𝑧�
𝑇𝑇
 from the centre of the sample 

and this generates an image 𝐼𝐼0, which is an array of intensity values. Both the raw images and surface normals 𝑁𝑁 
will be used for the computation of the metrics. For simplicity, only the 𝑧𝑧 (vertical) component of the surface 
normals are used. 
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Figure 4. Flowchart to demonstrate the structure of the algorithm. For simplicity, this assumes either visible or NIR lights are used, 
but not both. The various symbols used are defined in the main text of the paper as they are first used. 

 

Border 

Consider first the process to compute the border metric. At the heart of this is the method to segment the part of 
the image containing the sample from the rest of the image. To do this, the well-established Otsu thresholding 
method [15] is invoked. This automatically selects a threshold value whereby all pixels with an intensity above 
this are assumed to be “background” (since the ground appears lighter in the image than the actual faecal 
sample). Rather than applying the threshold to any single raw image, the algorithm is applied to image 𝐼𝐼min, 
which takes the minimum of the four raw image intensities for each pixel. This reduces bias towards a particular 
light source direction and was experimentally shown to be more robust than using, say, the mean intensity. 

The validity of this clearly depends on the surface from which the sample is captured so may need revising for 
application in the field. Direct application of the Otsu method results in a few spurious regions such as where 
faeces has split up on the ground or where there are bright spots in the image. These are cleaned up by a few 
standard morphological operations: filling holes, eroding the perimeter and extracting the largest contiguous 
region of the image. The result of this is a “mask” image 𝑀𝑀 that shows the approximate region of the sample. 
This takes the form of a binary image of same dimensionality as the original (4 megapixels) where pixels have 



value “1” if they are part of the faecal sample and “0” otherwise. The white areas in Figure 5 are examples of 
extracted masks. In future work, a mask regions convolutional neural network [16] could be applied here to 
reduce the effect of foreground-background similarities further, thus making the method reliable in less 
controlled conditions. 

The border metric itself is extracted using the “solidity” measure. First, the convex hull of the segmented image 
is found. This is the smallest possible fully-convex polygon capable of containing the entire sample. The solidity 
is then defined as the proportion of pixels in the convex hull that are also in the mask. This is illustrated in 
Figure 5 where larger grey areas force a lower score: the sample with a smoother edge has a convex hull that 
more closely matches the mask. The border metric, 𝑆𝑆𝐵𝐵, is simply one minus the solidity, where in general, a 
higher score indicates a more irregular border. All scores (except the total score) are then normalised such that 
the maximum value is scaled to 1. 

 

Figure 5. Segmented regions and convex hulls for the two extreme samples in Figure 3. The solid white areas are masks, while the 
areas enclosed in grey are the convex hulls. The border scores for these samples are 0.74 and 0.14 respectively. 

 

Shininess 

The left side of Figure 4 shows the progression towards the shininess metric. The principle here is that shiny 
surfaces will exhibit a greater number of specular highlights: that is, there will be more regions of the image that 
appear to show strong direct reflections from the lights. This is demonstrated by Figure 6: there are far more 
specular highlights in the low scoring sample. 

 

Figure 6. Portion of the raw images shown in Figure 3 for to each of the four visible light sources with the difference between 
maximum and minimum intensity for each pixel shown to the right. The low and high scoring samples are on the top and bottom 
row respectively. The shininess scores for these cases are 0.84 and 0.53 respectively. 

The adopted method to quantify this is to consider that, for a given point on the sample, a specular highlight is 
unlikely to appear with more than one light source. Therefore, it can be expected that, of the four intensity 
values recorded for a given pixel, one will be much brighter than the other three in the presence of specularity. 
Let the highest of the four intensities be 𝐼𝐼max and the lowest be 𝐼𝐼min. Consider now the difference, 𝐼𝐼′ = 𝐼𝐼max −
𝐼𝐼min. High values of 𝐼𝐼′ indicate specularities and, therefore, shininess. An illustration of how 𝐼𝐼′ is related to 
shininess is shown to the far-right of Figure 6. The shininess metric, 𝑆𝑆𝑆𝑆, is then taken as the mean of the new 
image, 𝐼𝐼′, for all pixels in mask 𝑀𝑀. 

 



Normal 

The right-hand portion of Figure 4 describes the normal metric calculation. The key principle here is that more 
high-frequency features in the surface normal data corresponds to greater roughness. This motivates a two-step 
process. The first step aims to highlight such features by subtracting the normal data from a Gaussian-smoothed 
version of itself as shown in the top rectangle of the right-hand side of Figure 4: 

 𝑁𝑁′ = |GF(𝑁𝑁) −𝑁𝑁| (2) 

where GF represents the Gaussian filter operation. The motivation for this approach is that the Gaussian filter 
has a blurring effect on the image: maintaining low frequency data and diminishing high-frequency. The 
difference between this and the original thus leaves only the high frequency data, which is the indicator of 
roughness. By simple trial-and-error, the Gaussian standard deviation of 5 pixels seemed to give qualitatively 
best results although this is not necessarily completely optimised. A different, but related, method to this was 
used previously for human skin melanoma detection [17]. An alternative would involve the Fourier transform 
but at greater computational expense. 

A median smooth filter, “SF”, is then applied in the next step where each pixel is replaced with the median of a 
20-neighbourhood local median (higher weighting for centre pixels). As well as removing noise, this also 
smooths over spurious regions of small highlights in the image. Most importantly, the standard deviation filter, 
“SDF”, is then applied to obtain image 𝑁𝑁′′. This acts in a similar way to the median filter except that the local 
standard deviation in 𝑁𝑁′ is used to form a new image instead of the median. In this case however, there is no 
centre-weighting and a larger neighbourhood consisting of a circle of radius 51 pixels is used. The motivation 
for this is that firmer samples appear rougher in the image and should, thus, have greater local variations in 
intensity. A few other filters (e.g. entropy and range) and neighbourhood sizes were also tested with either 
similar or inferior results. Figure 7 shows the images resulting from this process. It is clear from Figure 7 that 
high values are present for the rougher surface, as required. The final normals metric is then taken as the mean 
value of 𝑁𝑁′′ for all pixels in mask 𝑀𝑀. 

 

 

Figure 7. Left: images (𝑵𝑵′) after the first stage of normal metric computation using Equation (2). Right: images (𝑵𝑵′′) after standard 
deviation filter applied. For this particular case, the normal metric scores are 0.73 and 1. 

 

 

 



Total 

The very final stage of the algorithm, shown at the bottom of Figure 4, is simply to combine the metrics using 
Equation (1). It is not immediately obvious that the three scores should be given equal weighting. In fact, it was 
empirically determined that weighting the shininess metric higher gave superior results: 

 𝑆𝑆 =
𝑆𝑆𝑁𝑁

𝑆𝑆𝐵𝐵𝑆𝑆𝑆𝑆2
 (3) 

This improvement may be due to an inherent feature of the shininess properties that shininess affords a generally 
more robust metric, or that values must be forced apart by raising the metric to a power. For the results in the 
next subsection, Equation (3) was used to combine metrics, noting that this is not necessarily completely 
optimised. 

2.3.  Machine Learning for Feature Detection 

This section describes how a machine learning algorithm was employed to classify images according to the 
presence, or otherwise, of large fibre particles or corn kernels in the samples. Classification was limited to these 
two types for simplicity. However additional types of feature could be added in the future using the same 
learning framework. 

Deep learning [18] is a ubiquitous method in modern computer vision due to its exceptionally high performance 
in solving previously intractable problems. Its main drawback is the need to “train” the system using a great 
many labelled samples. Deep convolutional neural network methods construct huge hierarchies of low, medium 
and high level image features based on a large number of labelled images. The distribution of these features for 
given image classes are then used to distinguish images or regions of certain objects. Unfortunately, it is often 
unfeasible to acquire the number of images needed per class for a given project/application. 

Many recent contributions in the field overcome this challenge using the principle of transfer learning [18]. In 
this case (slightly simplified), the low and medium level features are used from pre-trained networks that 
contain a wide range of mostly unrelated images and the system is trained for the higher-level features using a 
smaller and more focused image database of relevant data. 

For this study, transfer learning was used on 100 soil samples (to simulate real samples). The image database 
consisted of roughly equal numbers of samples without fibres or corn kernels, samples with fibres (extracted 
from celery) and samples with corn kernels. All soil samples had some water added to match a real faecal 
sample, but to varying degrees to simulate real variations in viscosity. The collected images were manually 
broken down into sub-images and labelled accordingly. Figure 8 shows a few representative examples. In 
practice, there was a slightly uneven distribution of class samples for training. Figure 9 summarises the numbers 
of sub-images used for each class. 

   

Figure 8. Example of manually labelled training data where each square is labelled either “neither”, “fibre”, “corn” or “both” (the 
lower-right box is a result of the MATLAB graphical user interface developed for annotation). 



 

 

Figure 9. Distribution of training sub-images (neither: 215, fibre: 145, corn: 180). 

 

Transfer learning was applied using MATLAB, which was also used to test the classification accuracy. A 
variety of network architectures were applied with a small, but significant variation in classification rate. The 
overall-best performing network was Resnet-101 [19] so all results presented in this paper use that architecture. 
Experiments were carried out using the standard MATLAB implementation of Resnet-101 with only the fully-
connected layer and the classification layer changed, as necessary to reflect that only three possible output 
classes should be allowed (“corn”, “fibre”, “neither”). It is likely this gave best results since the network was 
designed to minimise over-fitting in relatively small datasets. However, it should be noted that developing a new 
or optimised network was not the focus of this paper and experiments were restricted to use those architectures 
already implemented in the MATLAB Deep Learning Toolbox such as AlexNet, GoogLeNet and various 
ResNet-50/101 [20]. The classification algorithm expects just a single image input (recall there are eight images 
from the PS rig – four from visible light and four from near-infrared light) so it was necessary to construct a 
final image from one or more of the raw images. The results of different image combinations are shown in the 
next section. 

3. Results and Discussion 

3.1.  Scoring using the Three Metrics 

Table 1 summarises all metrics for the two extreme cases shown in Figure 3. This shows good spread for each 
metric. Figure 10 shows the distribution of the metrics for all 20 samples collected at CEDAR. This shows that 
samples are well-spaced in score-space. As expected, given the arguments leading to Equation (1), results show 
negative correlation between the normal score and both shininess and border, but positive correlation between 
shininess and border scores. 

Sample Border Shininess Normal Total 
Left in Figure 3 0.74 0.84 0.73 1.4 
Right in Figure 3 0.14 0.53 1 26 

Table 1. Summary of individual metrics for the extreme cases. 

 



 

Figure 10. Distribution of metrics for all 20 samples. The colours indicate the total score while the numbers show the rank of the 
sample's total score compared to others. The data point ranked 1 (i.e. lowest of all scores) indicates the left-hand sample from 
Figure 3, while the point ranked 20 is the right-hand sample of Figure 3. 

 

The full set of images is shown in Figure 11 in order of total score. The method appears to have been successful 
in placing the samples in an order that closely matches the manual scoring method. Given the relatively small 
variation among the samples, it is difficult even for a human to place these in an exact order. There are certainly 
no obvious mistakes in the ordering of the samples except perhaps that the fourth-lowest-ranked sample should 
probably have a higher score. This is a result of the sample splitting in two when dropped (it has by far the 
highest border metric) and would likely be addressed using a more repeatable drop process (see Section 4).  

 

Figure 11. Images of samples according to calculated total score (score values above-left of each sample). 

 

3.2. Corn Kernel and Fibre Detection using Deep Learning 

Classification rates varied depending on how the raw images from the capture rig were pre-processed to form 
inputs to the neural network. The rates are summarised in Figure 12. The most obvious way to combine the 



images was to simply take the mean intensity across all raw images (either all four visible images, all four NIR, 
or all eight combined). However, this gave very poor results, barely improving on statistical chance. It is thought 
that this poor result is due to the mean intensity having the effect of smoothing over useful information. More 
successful combinations are shown in Figure 12. 

 

Figure 12. Classification rates using MATLAB's default training parameters for various image combinations. The whiskers indicate 
the standard deviations of accuracies when the test dataset images are changed. 

 

Interestingly, excellent results were achieved using the median (“med. vis” and “med. NIR”) instead of the 
mean: presumably as this does not have the smoothing effect mentioned above and/or a reduced impact of 
outliers. It does however, seem better when just using the visible lights rather than NIR (though note the large 
standard deviations in test results). Results using individual images (“ind. vis.” and “ind. NIR” in Figure 12) 
were unsurprisingly inferior while using the minimum intensity for a given pixel location gave best results of 
all. Results for the maximum intensities are not shown as this confounded the algorithm by emphasising 
specularities. 

The fact that the results in Figure 12 are so varied, and that the other network architectures considered only 
affected results by a few percentage points, reinforce the more general research by [21] that image quality and 
pre-processing are the key steps to optimisation. Fine-tuning the network optimisation parameters from the 
MATLAB default gave similarly small improvements although optimising the mini-batch size did yield results 
over 90% in certain cases when set to 30 or higher. 

The highest recognition rates here are clearly very promising; especially considering that the manual labelling 
process was limited in that it did not permit much freedom in how the image was broken down (a mask regions 
convolutional neural network is more flexible [16] but is reserved for future work). On the other hand, the 
samples used here contain more visually obvious features compared to real samples which would typically have 
finer and shorter fibres for example. Therefore, it is unlikely that the method in its current form would 
extrapolate to real-world data without any reduction in classification rate. This will be explored in further work. 

4. Conclusion 

This research has proven the potential for the use of computer vision in the assessment of cattle faeces 
consistency and large particle content. The scoring method closely matched subjective analysis while the deep 
learning approach gave promising results in the detection of undigested corn and fibre. While the current data 
capture hardware is clearly not as convenient as, say a mobile telephone camera, it is nevertheless portable and 
cheap enough for realistic usage on a farm and diminishes the need for regular samples to be transferred for 
laboratory analysis. While the current device shown in Figure 1 is clearly only at prototype stage, this could 
easily be made more compact and transportable. In particular: the computer could be replaced with a low-cost 
embedded system (using a Raspberry Pi [22], for example); the desktop power supply can be replaced with a 



simple fixed-voltage unit; and the legs could be made foldable. These steps would allow the entire system to fit 
into a padded briefcase-style container. 

Despite the clear outcomes of the research, there remain a few questions/tasks necessary to consider during any 
follow-on research to make the method more applicable: 

• A greater range of fibre and corn sample training images would improve robustness. 
• The scoring algorithm should be tested on a greater range of samples (i.e. those scoring 1 or 5 in the 

literature's scoring method [13]) and mapped to more established metrics. 
• The scoring system would be more reliable if the process for dropping the samples were made more 

convenient and repeatable: e.g. by releasing the sample from some device, such as that suggested in Figure 
13. 

• It may prove that a deep regression network [21] is able to enhance the scoring by better learning the means 
by which human experts grade the samples. 

• As mentioned in the introduction, it is hoped that the method can be calibrated against better-established 
technologies, such as visual assessment or wet screening of faeces to establish particle size distribution [6]. 
This would theoretically allow to attain the precision of such well-known methods using the more objective 
technology discussed in this paper. 

• Other features such as “bubbles”, which are indicators of abnormal hindgut fermentation of starch, could be 
investigated to incorporate into a feature detector. 

 

Figure 13. Schematic design of a device that would make the dropping process more convenient and repeatable. The device has a 
fixed height, has a detachable cup with scale to scoop the correct amount of sample and a trigger to release an opening below. 
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