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Effects of salt water on the ballistic protective performance of bullet-

resistant body armour 

 

Abstract 

Bullet resistant body armour is used by law enforcement agencies and military personnel 

worldwide, often in inclement weather. Some fibre types used in body armour perform 

poorly when wet resulting in a reduced level of protection; this is why most body armour 

protective elements are water-repellent treated and / or protected by a water-resistant 

cover.  Some of the users operate in the maritime environment. The effect of salt water on 

body armour performance has not been previously reported. In this work the effect of 

soaking body armour in salt water and exposing body armour for up to ten soaking and 

drying cycles in salt water was investigated. The effectiveness of the water-resistant cover 

was investigated by considering three cover conditions i) intact, ii) cut and iii) removed. Wet 

armour was heavier and provided significantly less protection from 9mm Luger FMJ 

ammunition when compared to not-conditioned armour irrespective of cover condition. The 

presence of a cover (intact or cut) resulted in heavier armours and poorer protection as the 

water was less able to drain out of the armour. A degradation in performance of armours 

exposed to soaking and drying cycles was noted, but this was similar across all regimes 

considered (one, three, five and ten cycles) and not as great as for wet armours. 
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Introduction 

Bullet resistant body armour is used by law enforcement agencies and military personnel 

worldwide. Body armours typically consist of two major elements i) soft armour which 

provides protection from targeted threats including fragmentation, sharp-weapons and 

pistol ammunition (depending on intended end-user) and ii) hard body armour plates 
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(dependant on threat these are either ceramic faced / composite backed or 100% 

composite) that provide protection from high velocity rifle ammunition (Lewis et al., 2017). 

Protection is ‘measured’ by considering whether or not the ammunition of interest 

perforates the armour (i.e. passes through the armour into the body) and by measuring the 

backface signature (BFS) which is the amount of deformation of the rear of the armour due 

to a non-perforating event (Croft and Longhurst, 2007). BFS cannot be directly correlated to 

behind armour blunt trauma (BABT), but standard test methods provide a maximum 

allowable BFS (Croft and Longhurst, 2007). BABT injuries that body armour wearers suffer 

are typically bruises to the skin and to some underlying organs, and broken ribs (Carr et al., 

2016). Soft armours are made using fabrics containing para-aramid (e.g. Kevlar®, Twaron®) 

or ultra-high molecular weight polyethylene (UHMWPE e.g. Dyneema®, Spectra®) fibres and 

provide protection from a range of projectiles dependent upon construction (Lewis et al., 

2017). 

The properties of para-aramid fibres are affected by moisture; UHMWPE fibre as less 

susceptible (Li et al., 2015). The ballistic protective performance of wet para-aramid fabrics 

is reportedly up to 40% lower than dry para-aramid fabrics (Laible, 1980; Gibb, 2005). To 

minimise the risk of moisture affecting the protective performance of para-aramid fabrics 

used in body armour they are often water repellent treated and/or enclosed in water 

resistant covers, which are typically made from polyvinyl chloride (PVC). However, with 

everyday usage the covers can become damaged and potentially split, allowing the ingress 

of moisture in to the ballistic protective element. In addition, if the body armour becomes 

submerged in water (for example the wearer falls into a body of water) it is possible that 

water will permeate through the PVC cover resulting in the para-aramid fabric becoming 

saturated. 

Within the UK, there are a number of in-shore and off-shore police marine units who 

have a responsibility for patrolling the waterways around the UK, including providing 

specialist firearms support during operations (Ministry of Defence, 2018).These patrols are 

often conducted using Rigid Hulled Inflatable Boats (RHIBs) which expose the occupants to 

the effect of salt water spray, especially in rough sea conditions; potentially resulting in the 

body armour they are wearing becoming wet. There is always a risk of the RIB occupants 

entering the water. How salt water affects the ballistic performance of body armour is not 



known. Although the body armour is dried between patrols, the effect of regular soakings 

with salt water and drying has also not been previously studied. Laundering (washing and 

drying cycles) can affect the ballistic protective performance of fabrics (Helliker et al., 2014). 

The salinity of sea water varies worldwide between 31 g/L and 38 g/L with pH 

varying between 7.5 and 8.4; the mean salinity of sea water at Harwich over a 12-month 

period was 34.48 g/L (Centre for Environment Fisheries and Aquacultre, 2018).  

This paper investigates the effect of soaking and soaking and drying cycles in saline 

water typical of UK sea water on the ballistic performance of a typical UK Police Authorised 

Firearms Officer (AFO) para-aramid body armour. 

 

Method 

Plastic containers were filled with a salt water solution of 35 g/L salinity. The water was 

monitored using an Extech® RF20 portable salinity refractometer and pH paper to ensure it 

was between 34 – 35 g/L and a pH of 8 throughout the soaking regimes investigated (see 

below). 

Body armours were selected that were certified to the UK Home Office standard HG2 

/ KR2 protection level that is typically worn by AFOs (Croft and Longhurst, 2007). The 

armours contained front and rear panels in an outer cover; each panel contained a 

protective pack with a water-resistant cover. The protective packs of the armours consisted 

of a HG2 element with a KR2 element located at the rear1. The body armours had been 

previously issued to officers and were beyond their shelf-life expectancy, however all panels 

were inspected prior to testing for signs of damage and only those classified with no visible 

damage were used for this work. The panels were prepared in pairs for testing in one of 

three 'cover' conditions: 

1. water-resistant cover intact, 

2. water-resistant cover cut on the edges with 50 mm slits at 6 locations (Figure 1) and  

3. water-resistant cover completely removed. 

                                                           
1 HG2 = handgun protection level 2; KR2 = knife protection level 2 



 

 
Figure 1 Location of cuts in body armour covers 

 

To provide baseline data, two test panels were tested as-received with covers on and 

two tested as-received with the covers removed (i.e. test panels were not subjected to an 

'exposure' regime). For each cover condition described above, two test panels were 

subjected to one, three, five or ten cycles of 3-hours soaking and 45-hours drying. Test 

panels were dried vertically at 20 ±3 ˚C with the final drying process timed to enable the 

armour panels to be tested within 30-minutes of completion of the final 45-hours drying 

period. An additional set of two test panels were prepared for each cover condition and 

subjected to ballistic testing 'wet' by soaking in salt water for 3-hours and then drying 

vertically for 5-minutes before the first test shot was taken. The test schedule is presented 

in Table 1. 

 

Table 1 Test schedule (n = 2 for each cover condition / exposure combination) 

cover  exposure regime 

Intact as-received 

removed as-received 

Intact soaked (3-hours) and dried (45-hours) for one cycle 

Intact soaked (3-hours) and dried (45-hours) for three cycles 

Intact soaked (3-hours) and dried (45-hours) for five cycles 

Intact soaked (3-hours) and dried (45-hours) for ten cycles 

Cut soaked (3-hours) and dried (45-hours) for one cycle 



Cut soaked (3-hours) and dried (45-hours) for three cycles 

Cut soaked (3-hours) and dried (45-hours) for five cycles 

Cut soaked (3-hours) and dried (45-hours) for ten cycles 

removed soaked (3-hours) and dried (45-hours) for one cycle 

removed soaked (3-hours) and dried (45-hours) for three cycles 

removed soaked (3-hours) and dried (45-hours) for five cycles 

removed soaked (3-hours) and dried (45-hours) for ten cycles 

Intact soaked (3-hours) and dried (5-minutes)  

Cut soaked (3-hours) and dried (5-minutes)  

removed soaked (3-hours) and dried (5-minutes)  

 

Before and after the defined soaking and drying or soaking regimes, the test panels 

were weighed to two decimal places (i.e. 0.01 g) to determine any change in mass. 

The test panels were marked with shot locations one to five in accordance with the 

HOSDB 2007 standard and mounted on trays of calibrated Roma Plastilina No 1 (Croft and 

Longhurst, 2007). Each test panel was shot five times from a distance of 5 m with 9mm FMJ 

Luger DM11A1B2 bullets using a proof housing fitted with a 580 mm barrel (1 in 11 twist). 

The impact velocity of each shot was recorded using a Weible W-700 Doppler radar. 

Between each shot the test panel was checked for perforation by the bullet and the 

backface signature (BFS) recorded by measuring the depth of the indentation in the 

Plastilina using a calibrated depth gauge. The test panel was smoothed between shots and 

repositioned on the tray. 

 

Results 

Effect of conditioning on mass of panel 

Mean mass data for pairs of front and back test panels across all variables are presented in 

Table 2. All exposed test panels were heavier than not-exposed test panels. Wet test panels 

were the heaviest for all cover conditions. For all soaking and drying regimes except one 

cycle, test panels with the cover removed had the smallest increase in mass; for test panels 

exposed for one soaking and drying cycle the intact cover set had the smallest increase in 

mass, but this was very similar to the increase in mass for panels exposed to one soaking 

and drying cycle with the cover removed (12% and 14% respectively). Considering the mean 



mass across all test panels exposed to soaking and drying regimes, similar changes in mass 

were observed after exposure for one, five and ten soaking and drying cycles (15%, 14%, 

15% respectively); a heavier change in mean mass was observed after exposure for three 

soaking and drying cycles (25%). Test panels that had their water-resistant covers intact or 

cut were heavier irrespective of having been exposed to a soaking and drying or soaking 

regime. 

 

Table 2 Mean mass data (%) for test panels (n = 2 per variable combination) 

Cover exposure mean change in mass (%) 

Intact not-conditioned 0 

removed not-conditioned 0 

Intact one cycle 12 

Cut one cycle 19 

removed one cycle 14 

Intact three cycles 30 

Cut three cycles 24 

removed three cycles 20 

Intact five cycles 18 

Cut five cycles 17 

removed five cycles 8 

Intact ten cycles 21 

Cut ten cycles 16 

removed ten cycles 8 

Intact wet 70 

Cut wet 61 

removed wet 25 

 

Ballistic testing 

Mean impact velocity for the ammunition used was 415 m/s (SD = 4 m/s). One of the 170 

impacts resulted in a perforation of the complete test panel i.e. both the HG2 and KR2 

portions (cover removed, exposed to three soaking and drying cycles, 412 m/s). All 

ammunition expanded on impact with the test panels irrespective of other variables 

considered. 

The ballistic protective performance of the test panels was assessed by considering 

the proportion of shots that perforated the HG2 packs (n = 2 packs, n = 5 shots per pack 



across all variables) i.e. whether the bullet was retained in the HG2 pack or in the KR2 pack 

located towards the rear of the test panel. Summary data across the two variables of cover 

condition and exposure regime are given in Table 3. No shot perforated the HG2 packs of 

the not-exposed test panels irrespective of the cover being present or not. However, the 

majority of shots on wet test panels perforated the HG2 packs (mean = 87%); further 

analysis suggested that presence of the water-resistant cover reduced this degradation, 70% 

of shots perforated the protected HG2 packs compared to 100% of shots when the cover 

was removed. A large degradation in ballistic protective performance was also noted for test 

panels that had been exposed to one or three cycles of soaking and drying in saline water 

when the cover was removed. However, this degradation was reduced as the number of 

exposure cycles increased. Cycled test panels with covers intact typically provided a higher 

level of protection than test panels with the covers damaged or removed. The exception to 

this was for three soaking and drying cycles with the cover intact. 

 

Table 3 Percentage of shots that perforated HG2 packs (n = 10 per variable condition) 

Cover exposure % of shots that perforated HG2 packs 

Intact not-conditioned 0 

removed not-conditioned 0 

Intact one cycle 0 

Cut one cycle 10 

removed one cycle 100 

Intact three cycles 50 

Cut three cycles 0 

removed three cycles 100* 

Intact five cycles 0 

Cut five cycles 0 

removed five cycles 10 

Intact ten cycles 0 

Cut ten cycles 0 

removed ten cycles 30 

Intact Wet 70 

Cut Wet 90 

removed Wet 100 

*one bullet perforated the test panel 

 



The BFS values were measured for each shot and summary statistics are provided in 

Table 4. Data variability (expressed as CV) ranged from 5% to 33% with no obvious trend 

due to the variables considered (Table 4). Fourteen of 169 shots (one perforation) resulted 

in a BFS of greater than 25 mm (the maximum allowable in the standard the armours were 

designed against). Of these, 11 shots were on wet armours; i.e. 37% of shots on wet armour 

resulted in a BFS greater than that allowed in the standard. In comparison no shots onto the 

not-exposed armours resulted in a BFS greater than 25 mm. Considering the mean BFS 

across each variable, only one exposure regime resulted in a mean BFS greater than 25 mm, 

that was for armours with intact covers shot while wet (5 out of 10 shots resulted in a BFS 

greater than 25 mm). Considering the two variables of cover condition and exposure regime 

in greater detail, the lowest mean BFS was observed for not-exposed test panels, the 

highest for wet test panels. With respect to increasing numbers of soaking and drying cycles 

similar values for mean BFS were observed for one, three and five cycles irrespective of 

cover condition with a slight decrease for ten cycles (20 mm, 19 mm, 19 mm and 17 mm 

respectively). The condition of the water-resistant cover did not appear to affect the 

measured BFS in test panels exposed to soaking and drying regimes. 

 

Table 4 Summary statistics for backface signature (n = 10 per variable condition) 

Cover Condition mean (mm) SD (mm) CV (%) 

Intact not-conditioned 14 4 29 
removed not-conditioned 18 2 11 
Intact one cycle 19 1 5 
Cut one cycle 21 2 10 
removed one cycle 18 4 22 
Intact three cycles 19 4 21 
Cut three cycles 17 4 24 
removed three cycles 19* 3 16 
Intact five cycles 18 3 17 
Cut five cycles 20 2 10 
removed five cycles 19 4 21 
Intact ten cycles 21 2 10 
Cut ten cycles 17 4 24 
removed ten cycles 12 4 33 

Intact Wet 26 2 8 
Cut Wet 23 5 22 
removed Wet 24 3 13 



*one bullet perforated the test panel 

 

Discussion 

There are several points that require discussion i) mass of test panels, ii) perforation of test 

panels and iii) effect on backface signature. 

The wet test panels were the heaviest as expected. Water ingress occurred into the 

individual fabric layers. Wet test panels with the covers intact or slit were much heavier (up 

to 70%) than all other test panels presumably due to the water being trapped in the covers 

and not being able to drain out; this is further evidenced by the wet test panels with covers 

removed having a lower mass (25%) than the other wet test panels. Other work has 

demonstrated large increases in mass when various fabrics and garments are wet e.g. (Laing 

et al., 2010; Crow and Osczevski, 1998; Laing et al., 2008). That mass of the test panels 

increased after soaking and drying exposure cycles in a saline solution was also expected 

and is likely due to salt crystallising and being trapped within the fabric and panel structure 

during the drying process. Residual moisture may have also remained trapped in the fabric 

packs. It was noticeable that test panels with intact covers exposed for three soaking and 

drying cycles had a higher mass (30%) than other test panels exposed to soaking and drying 

cycles with their covers intact (12%, 18% and 21%); this may be due to degradation of the 

seams of the covers before testing resulting in a greater ingress of moisture which became 

trapped during the drying phase. Excluding the test panels exposed for three soaking and 

drying cycles, an upward trend in mass was observed suggesting increased amount of 

trapped crystalline salt in the panels with an increasing number of soaking and drying cycles. 

 Previously published research (for fresh not saline water) suggested that a 

degradation in performance of up to 40% occurred for wet compared to dry ballistic 

protective fabrics (Laible, 1980; Gibb, 2005). Degradation in protection was observed in the 

current work for wet test panels, although at a higher level; this might be due to the 

different projectiles used. The previous work used non-deforming 1.1 g steel fragment 

simulating projectiles at similar impact velocities to the current work which used 9mm Luger 

FMJ ammunition that expanded on impact with the test panels. The 1.1g FSPs will be more 

penetrative due to the concentration of the kinetic energy over a smaller strike face. Higher 



levels of degradation were also observed for specimens with covers removed that had been 

exposed to soaking and drying cycles; this suggested that the covers provide some 

protection from the degradative effects observed. It is noticeable that the higher level of 

HG2 element perforation observed for test panels with intact covers exposed for three 

soaking and drying cycles correlated with the increased mass for these panels further 

suggesting trapped moisture due to seam disruption (Tables 2 and 3). 

 That a higher number of shots on wet panels compared to dry panels resulted in a 

BFS greater than that allowed in the standard was expected; similar results have been 

observed in test laboratories worldwide for decades, but are rarely reported openly. 

Whether such increases in BFS would lead to more severe BABT is difficult to comment on, 

however, given an increase in BFS by as much as 25% it does seem likely that a more 

injurious event would occur. When considering test panels that had been exposed to cycles 

of soaking and drying, a slight increase in BFS compared to not-exposed panels was 

observed, but this was still within the limit of 25 mm in the standard giving confidence in the 

protection offered by armours that had been exposed in such a way. 

 

Limitations 

This work was conducted using one type of body armour and one type of ammunition at a 

given velocity. The results are not necessarily transferable to other armour systems, 

ammunition and exposure conditions. However, the work suggests that these other 

situations should be considered. 

 

Conclusions 

Wet armours provide less protection than dry armours. If the armour gets wet ensuring that 

is has completely dried is important as this work suggested that residual moisture can affect 

ballistic protective performance with respect to an increased likelihood of more severe 

BABT. Armour exposed to soaking and drying cycles (up to ten) in saline water was affected 

with respect to the protection levels offered, but the results suggested that a satisfactory 

level of protection would still be provided. 
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