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dimethyl sulfoxide; EDTA, ethylene diamine tetraacetate; ESI, FCS, fetal calf serum; gpt,   

xanthine-guanine phosphoribosyl transferase; HPLC, high performance liquid  
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primary rat hepatocytes; RNAase, ribonuclease; RP 18, reversed phase C18; SDS, sodium  

dodecylsulfate; SP1, specificity protein 1;  SULT, sulfotransferase; TRIS,  
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Abstract 

Estragole is a natural constituent in herbs and spices and in products thereof such as essential 

oils or herbal teas. After cytochrome P450-catalyzed hydroxylation and subsequent sulfation, 

estragole acts as a genotoxic hepatocarcinogen forming DNA adducts in rodent liver. Because 

of the genotoxic mode of action and the widespread occurrence in food and phytomedicines a 

refined risk assessment for estragole is needed. We analyzed the time- and concentration-

dependent levels of the DNA adducts N2-(isoestragole-3‘-yl)-2‘-desoxyguanosine (E3’N2dG) 

and N6-(isoestragole-3‘-yl)-desoxyadenosine (E3’N6dA), reported to be the major adducts 

formed in rat liver, in rat hepatocytes (pRH) in primary culture after incubation with 

estragole. DNA adduct levels were measured via UHPLC-ESI-MS/MS using stable isotope 

dilution analysis. Both adducts were formed in pRH and could already be quantified after an 

incubation time of 1 h (E3’N6dA at 10 µM, E3’N2dG at 1µM estragole). E3’N2dG, the main 

adduct at all incubation times and concentrations, could be detected at estragole 

concentrations < 0.1 µM after 24 h and < 0.5 µM after 48h. Adduct levels were highest after 6 

h and showed a downward trend at later time-points, possibly due to DNA repair and/or 

apoptosis. While the concentration-response characteristics of adduct formation were 

apparently linear over the whole concentration range, strong indication for marked hypo-

linearity was obtained when the modeling was based on concentrations < 1 µM only. In the 

micronucleus assay no mutagenic potential of estragole was found in HepG2 cells whereas in 

HepG2-CYP1A2 cells 1 µM estragole led to a 3.2 fold and 300 µM to a 7.1 fold increase in 

micronuclei counts. Our findings suggest the existence of a ‘practical threshold’ dose for 

DNA adduct formation as an initiating key event of the carcinogenicity of estragole indicating 

that the default assumption of concentration-response-linearity is questionable, at least for the 

two major adducts studied here.  
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1. Introduction 

The allylic phenylpropanoid estragole is a natural constituent in herbs and spices such as anise 

basil, fennel, tarragon etc. (Atkinson, 2018). After oral exposure, estragole is readily absorbed 

from the gastrointestinal tract and can undergo metabolism mainly in the liver (Smith et al. 

2002). Among several metabolic pathways, there is a bioactivating pathway via 1’-

hydroxylation at the allylic side-chain with subsequent enzymatic sulfation. The semi-stable, 

reactive sulfate conjugate thus formed can undergo sulfate elimination under formation of 

covalent bonds of the remaining moiety to nucleophilic targets (Miller et al., 1983). The major 

enzymes catalyzing the first critical step (1’-hydroxylation) are cytochromes P450 (CYP), 

most notably CYP1A2 (Jeurissen et al., 2007), and for the phase II step (sulfation of 

1’hydroxyestragole), sulfotransferases, most notably SULT1A1 (Suzuki et al., 2012b).  

There is accumulating evidence that the 1’-sulfoxy metabolite of estragole can also react with 

DNA leading to covalent adducts with guanine or adenine (Phillips et al., 1981). These are 

considered as pro-mutagenic lesions and major contributors to the genotoxicity and 

carcinogenicity of estragole observed in laboratory rodents (Miller et al., 1983).  

In general, the family of allylic phenyl propanoides has been investigated by several authors 

for its capacity to form DNA adducts in the liver. Examples are methyleugenol (Herrmann et 

al., 2014), ß-asarone (Stegmüller et al., 2018) and estragole (Phillips et al., 1981). 

Genotoxicity research on estragole including the search for DNA adducts has been focused on 

the liver, the principal target organ of carcinogenicity in mice (Drinkwater et al., 1976) and 

probably also in rats (Suzuki et al., 2012a). DNA adduct structures reported or suggested by 

Phillips et al. (1981) to be formed in mouse liver in vivo upon treatment of the animals with  

1’hydroxyestragole are N2-(estragole-1′-yl)-2′-desoxyguanosine (E1′N2dG), the two 

diastereomeric adducts N2-(trans-isoestragole-3′-yl)-2′-desoxyguanosine (trans-iE3’N2dG) and 

N2-(cis-isoestragole-3′-yl)-2′-desoxyaguanosine (cis-iE3′N2dG) and the adenosine adduct (N6-

(isoestragole-3′-yl)-2′-desoxyadenosine (iE3′N6dA). In addition Wiseman et al. (1985) found 
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C8-(isoestragol-3'-yl)-2’- desoxyguanosine (C8iE3’dG) in a reaction of 1’-acetoxyestragole 

with desoxyguanosine. Using a similar approach, Punt et al. (2007) found the adducts 

C8iE3’dG, two diastereomers of E1′N2dG, and trans-iE3’N2dG, the latter being the major 

adduct found in incubations of 1’-hydroxyestragole with hepatic PAPS-fortified S9-mix from 

human, rat or mouse. In rats treated with estragole over four weeks, trans-iE3’N2dG trans-

iE3′N6-dA, and C8iE3’dG were found in the liver,  iE3’N2dG and iE3′N6-dA being the major 

adducts (Ishii et al., 2011). Suzuki et al. (2012b) found a dose-dependent increase in the same 

estragole-derived hepatic DNA adducts after treatment of mice with estragole. Furthermore, at 

a dose level of 250 mg/kg b.w., significant increases in hepatic mutations in the SP1- and the 

gpt-locus were found in females. In rats, estragole treatment also led to the formation of DNA 

adducts in the liver and increased mutation frequencies at the gpt-locus with doses of 200 and 

600 mg/kg b.w. At lower dose levels, no significant mutagenicity was found (Suzuki et al., 

2012a).  

Nesslany et al. (2010) found increased unscheduled DNA synthesis (UDS) in hepatocytes of 

male rats 12-16 h after treatment (by gavage) with estragole at 250 mg/kg b.w. and at higher 

doses. With tarragon leaves they could not see any effects (up to the maximum dose of 6.25 

g/kg b.w. (18.75 mg estragole/kg b.w.).  

Here, we present data on the levels of two major DNA adducts, reported to be formed in rat 

liver, in estragole-treated pRH with a special focus on concentration-response characteristics. 

Furthermore, we show results on micronuclei formation in human HepG2 hepatoma cells 

over-expressing human CYP1A2, an enzyme considered as the major contributor to the 1’-

hydroxylation of estragole as the initiating metabolic step leading to genotoxicity and 

carcinogenicity.   
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2. Materials and methods 

2.1. Animals, cells and materials  

2’-Desoxyguanosine (dG), 2’-desoxyadenosine (dA), 2’-desoxycytosine were from 

AppliChem GmbH (Darmstadt, Germany) or TCI (Eschborn, Germany). The isotope-labeled 

nucleosides 15N5-dG and 15N5-dA with a degree of labeling of > 98 % were purchased from 

Silantes GmbH (Munich, Germany). Methanol (HPLC grade) was from VWR (Darmstadt, 

Germany), water was double distilled after deionization. RNAse was from Carl Roth 

(Karlsruhe, Germany), proteinase K and alkaline phosphatase from Sigma-Aldrich 

(Taufkirchen, Germany), phosphodiesterase and micrococcal nuclease from Worthington 

(Lakewood, NJ, USA). All other chemicals including solvents were at the highest purity 

commercially available from major suppliers. All plastic labware was from Greiner Bio-One 

(Frickenhausen, Germany).  

HepG2 cells were obtained from DSMZ (Heidelberg, Germany), HepG2 cells transfected with 

the human CYP1A2 gene (HepG2/CYP 1A2 cells, C7) were generated as described 

(Steinbrecht et al., 2020). pRH were isolated from young adult male Wistar rats, obtained 

from Janvier Labs (Le Genest-Saint-Isle, France). Animals were kept, and pRH were isolated 

according to the German Animal Protection Act and under the control of and with permission 

from the responsible authorities of the State of Rhineland-Palatinate, Germany. 

 

2.2. Synthesis and identification of estragole-derived DNA adducts 

N6-(isoestragole-3‘-yl)-desoxyadenosine (iE3’N6dA): 2′-Desoxyadenosine (100 mg; 371 

µmol) was diluted in 47.5 mL aqueous ammonium carbonate solution (10 mM). 1′-

acetoxyestragole (192 mg; 929 µmol) was diluted in 2.5 mL acetonitrile. Both solution were 

mixed. The reaction mixture was stirred for 72 h at 37 °C and subsequently separated via 

preparative HPLC. The solvent of the combined product containing fractions was removed via 

lyophilisation and the compounds were further dried in vacuo. Yield: 2 %. Analysis: tR 
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(HPLC) 24.8 min; tR (UHPLC) 3,71 min; LC-MS/MS fragmentation: [M+H]+ 398.2 m/z, [M-

desoxyribose]+ 282.8m/z, [M-dG]+ 147.1; 1H NMR (600 MHz, DMSO-d6) δ [ppm]: 2.25 (m, 

1 H, 2′dR); 2.72 (m, 1 H, 2′dR); 3.51 (m, 1 H, 3’R); 3.61 (m, 2 H, 3‘R); 3.69 (m, 1 H, 5′dR); 

3.72 (s, 3 H, OCH3); 3.86 (m, 1 H, 5′dR); 4.24 (s, 1 H, OH); 4.40 (s, 1 H, OH); 5.22 (s, 1 H, 

3′dR); 5.32 (m, 1 H, 4′dR); 6.21(m, 1 H, 1′dR); 6.34 (m, 1 H, 2′R); 6.45 (m, 1 H, 1′R); 6.85 

(m, 2 H, HAr); 7.32 (m, 2 H, HAr); 8.52 (m, 1 H, NH); 8.20 (s, 1 H, C2-dA); 8.35 (s, 1 H, 

C8-dA). 

N2-(isoestragole-3‘-yl)-2‘-desoxyguanosine (iE3’N2dG): 2′-Desoxyguanosine (100 mg; 351 

µmol) was diluted in 47.5 mL aqueous ammonium carbonate solution (10 mM). 1′-

acetoxyestragole (180 mg; 870 µmol) was diluted in 2.5 mL acetonitrile. Both solution was 

mixed. The reaction mixture was stirred for 72 h at 37 °C and subsequently separated via 

preparative HPLC. The solvent of the combined product containing fractions was removed via 

lyophilisation and the compounds were further dried in vacuo. Yield: 7.4 %. Analysis: tR 

(HPLC) 22.0 min; tR (UHPLC) 3,17 min; LC-MS/MS fragmentation: [M+H]+ 414.3 m/z, [M-

desoxyribose]+ 298.1 m/z, [M-dG]+ 147.1, [M-desoxyribose+NH3]+ 164,1; 1H NMR (600 

MHz, DMSO-d6) δ [ppm]: 2.12 (m, 1 H, 2′dR); 2.85 (m, 1 H, 2′dR); 3.48 (m, 1 H, 3’R); 3.55 

(m, 2 H, 3‘R); 3.72 (s, 3 H, OCH3); 3.73 (s, 1 H, 5’dR); 3.79 (s, 1 H, 5’dR); 4.35 (s, 1 H, 

OH); 4.88 (s, 1 H, OH);  5.28 (s, 1 H, 3′dR); 5.53 (m, 1 H, 4′dR); 6.10 (m, 1 H, 1′dR); 6.81 

(m, 1 H, 2′R); 6.90 (m, 1 H, 1′R); 6.87 (d, J= 8.44, 1 H, HAr); 6.90 (d, J= 8.44, 1 H, HAr); 

7.26 (d, J= 8.44, 1 H, HAr); 7.33 (d, J= 8,80, 1 H, HAr); 7.6 (s, 1 H, C8-dG); 8.52 (m, 1 H, 

NH). 

Isotope-labeled standards: 15N5-dG (1.121 mg; 4.12 μmol) or 15N5-dA (1.046 mg, 4.08 μmol) 

were used to synthesize isotope-labeled internal adduct standards with mg 7.98 and 7.98 mg 

1′-acetoxyestragole, respectively, in a total volume of 500 μl. Therefore 15N5-dG or 15N5-dA 

weighed directly into a 1.5 mL vial and solved in 440 µL aqueous ammonium carbonate 

solution (10 mM) and 1′-acetoxyestragole was solved in 60 µL acetonitrile. After vigorously 
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mixing of both solutions the reaction mixture was stirred over 72 h at 37 °C. Separation was 

accomplished by preparative HPLC. The solvent of the combined product containing fractions 

were reduced to in a speed vac. The concentration of the yielded isotope-labeled standard 

solutions was determined via HPLC-UV/VIS using known concentrations of the 

corresponding unlabeled derivatives. Yields: [15N5]-E3’N2dG: 1 %); [15N5]-(E3’N6dA) 13.1 

%. Analysis: LC-MS/MS: [15N5]-E3’N2dG: [M-H]+ 419.051 m/z [M-desoxyribose]+ 298.100 

m/z, [M-15N5dG]+ 147.000 m/z. [15N5]-E3’N6dA: [M-H]+ 403.227 m/z [M-desoxyribose]+ 

287.200 m/z, [M-15N5dA]+ 147.200 m/z. 

 

2.3. NMR spectroscopy 

NMR spectra were recorded using a Bruker (Bruker BioSpin, Rheinstetten, Germany) Avance 

600 MHz spectrometer at room temperature, the test compound being dissolved in DMSO-d6 

(1H NMR: δ 2.49 ppm). The data were processed using 1D Win NMR software (Bruker 

BinSpin, Rheinstetten, Germany).  

 

2.4. Preparative HPLC 

For separation an Agilent 1200 Series HPLC (Agilent Technologies, Kronberg, Germany) 

system equipped with two preparative pumps (G1361A), an automatic fraction collector 

(G1364B), and a Multi-Wavelength detector (MWD, MWD G1315A). As liquid phases 

double distilled water (A) and HPLC-grade methanol (B) or acetonitrile (C) were used. Data 

were analyzed using ChemStation software for LC (version B04.01, Agilent Technologies, 

Waldkirch, Germany). It was used an RP18 column (VDSpher PUR C18-SE, 5 μm, 250×20 

mm, VDS Optilab, Berlin, Germany). 

After injecting 10 ml sample volume, separation was carried out as follows (switch time/% 

B). For the first purification step of 15N5-E3’N2dG: 0 min/40%, 50 min/90%, 60 min/40% 

(flow rate 3 ml/min over 5 min, 15 ml/min over 55 min); for the second purification step of 
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15N5-E3’N2dG: 0 min/1%, 65 min/50%, 70 min/80%, 76 min/95%, 87 min/1% (15 ml/min 

throughout); for the separation of unlabeled E3’N2-dG: 0 min/40%, 50 min/90 %, 60 min/40% 

(3 ml/min over 5min, 15 ml/min over 55 min); for the purification of 15N5-E3’N6dA: 0 min/20 

%, 50 min/80 %, 60 min/20% (flow rate 2 ml/min over 5 min, 15 ml/min over 55 min); for the 

separation of unlabeled E3’N6dA: 0 min/20%, 50 min/80%, 60 min/20 % (3 ml/min over 5 

min, 15 ml/min over 55 min).   

 

2.5. Analytical HPLC 

The system consisted of an Agilent 1200 Series HPLC unit (Agilent Technologies, Kronberg, 

Germany), equipped with a G1322A degasser, a G1311A pump, a G1329A autosampler, a 

G1316A column oven, and a G1315A diode array detector. The system was run with a 

ChemStation for LC software (version B04.01, Agilent Technologies, Kronberg, Germany). 

As liquid phases 0.1 % aqueous formic acid (A), methanol (B) were used. After injection of a 

sample volume of 50 µl, the following gradients were used to monitor the reaction between 

dA/dG and 1’-acetoxyestragole or 3’-acetoxyanethol, respectively (switch time/% B): 0 min 

/1%, 20 min/70%, 25.1 min/95%, 30.1 min/1% (flow rate 1 ml/min at 25°C); for the 

separation of 15N5E3’N2-dG (switch time/% B): 0 min/1%, 20 min/50%, 21 min/80%, 29 

min/85%, 24.1 min/1% (flow rate 1 ml/min at 25°C). 

An RP18 column (LiChrospher®, 5 μm, 4.0 mm×4.0 mm, Merck, Darmstadt, Germany) with 

a pre-column filled with the same stationary phase was used.  

 

2.6. Quantification of DNA adducts (LC-MS/MS) 

Samples were separated on an Agilent 1290 Series UHPLC System (Agilent Technologies, 

Kronberg, Germany), equipped with a 6133A degasser, a G4220A pump, a G1367C 

autosampler, and a G1316C column oven. A UHPLC column filled with RP18 as stationary 

phase (U-VDSpher PUR C18-E 1.8 μm; 50×4.6 mm) and a pre-column filled with the same 
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material were used. As liquid phases 0.1% aqueous acetic acid (A) and methanol with 1 % 

acetic acid (B) were used at a flow rate of 0.8 ml/min at 25° C. Separation was achieved with 

a gradient with (switching time/% B) 0 min/10%, 1.2 min/50%, 4.3 min 90%, 4.31 min/95%, 

6.01 min/10 % at a flow rate of 0.8 ml/min. The injection volume was 5 μl. 

The system was coupled to a Sciex QTrap 5500 MS mass spectrometer AB Sciex, Darmstadt, 

Germany). Measurements were run using Analyst software 1.7 (AB Sciex, Darmstadt, 

Germany), and data analysis with Multiquant software 2.0  AB Sciex, Darmstadt, 

Germany).Ionization was achieved with an electron spray in the positive mode (ESI+) using 

Multiple Reaction Monitoring (MRM). Instrument specific parameters were the following: ion 

spray voltage 5.0 kV; ion source temperature 500 °C; curtain gas 45 psi; nebulizer gas 55 psi; 

heater gas 50 psi; dwell time 50 msec.  

 

2.7.Quantification of desoxyguanosine (dG) 

The dG concentrations in the hydrolysates were determined using HPLC/MS-MS 

methodology. The system consisted of an Agilent 1200 series equipped with 6133A degasser, 

a G1367C autosampler, a G1213B pump, and a G1316B column oven (Agilent, Waldkirch, 

Germany). Separation was carried out on a RP18 column (LiChrospher®, 5μm, 4.0mm x 125 

mm, Merck, Darmstadt, Germany) and a corresponding pre-column filled with the same 

stationary phase. As liquid phases 0.1% aqueous formic acid (A) and methanol (B) were used. 

Separation was achieved with a gradient with (switching time/ % B) 0 min/1%, 7 min/70%, 

12.1 min 95%, 17.1 min/1%, at a flow rate of 0.7 ml/min at 20°C. The injection volume was 

2.5 μl. 

The column was coupled to a TriplQuad mass spectrometer API3200 (AB Sciex, Darmstadt, 

Germany)) using Analyst Software 1.4.2 (Applied Biosystem, MDS Sciex, USA). For data 

analysis, the Multiquant Software 2.0 (AB Sciex, Darmstadt, Germany)) was used. Ionization 

was achieved with an electron spray in the positive mode (ESI+) using Multiple Reaction 
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Monitoring (MRM). Instrument specific parameters were the following: ion spray voltage 4.5 

kV; ion source temperature 450 °C; curtain gas 50 psi; nebulizer gas 45 psi; heater gas 50 psi; 

dwell time 100 msec.  

 

2.8. Cell culture 

Primary rat hepatocytes (pRH) were isolated in a two-step perfusion method (Schrenk et al., 

1992). Cell preparations with a vitality > 95 % were seeded on collagenated 100 mm Petri 

dishes for adduct analysis (7 x 106 cells/7 ml) or on 24 well plates for cytotoxicity 

measurement (2,5 x 105 cells/1 ml) in DMEM (low glucose, Life Technologies GmbH, 

Darmstadt, Germany) with 10% FCS (Life Technologies GmbH, Darmstadt, Germany) und 

1% Penicillin/Streptomycin-solution (Sigma-Aldrich, Taufkirchen, Germany). After 3-4 h, 

medium was replaced by fresh medium and the cells were incubated over 1 – 48 h with the 

test substances (dissolved in DMSO) or with 0.1 % DMSO only (negative control). 0.1 % 

saponin (final concentration, dissolved in water) was used as positive control for cytotoxicity 

testing. HepG2/CYP 1A2 (C7) cells were cultivated exactly as previously described (Steinbrecht et 

al., 2020). 

 

2.9. DNA extraction and hydrolysis, sample preparation  

After incubation, cells were washed with PBS and kept at -80°C until further processing. 

Therefore, the cells were lysed on ice with 800 µl lysis buffer (35 mM TRIS, 0.56 mM 

NaEDTA, 0.018 nM formic acid, 1 % SDS and 0.5 % TritonX100) and transferred into a 2 ml 

test tube. Then, 15 µl proteinase K (10 mg/ml) and 5 µl RNAse (10 mg/ml) were added and 

the mixture was kept for 3 - 4 h at 55 °C. After cooling to room temperature, 800 µl extraction 

solution I (phenol:chloroform:isoamyl alcohol, 25:24:1) were added and vortexed. The lysates 

were then centrifugated at 13,000 x g and 4°C for 10 min. The supernatants were incubated 

with 5 µl RNase (room temperature, 20 min), and were then treated with 700 µl extraction 
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solution II (chloroform:isoamyl alcohol, 24:1). After vortexing, the suspensions were 

centrifugated at 13,000 x g and 4°C for 10 min. The supernatants were removed and DNA 

was precipitated by adding 1.2 ml cold ethanol (100 %). After centrifugation at 13,000 x g 

and 4°C over 10 min, the pellets were dissolved in 250 µl water and 25 µl 3 M sodium acetate 

solution, and were DNA was precipitated with 500 µl isopropanol. After centrifugation at 

13,000 x g and 4°C over 10 min, the pellet was re-suspended in 700 µl aqueous ethanol (70 

%) and vortexed. After centrifugation (10 min at 4 °C and 13,000 x g), the pellet was dried at 

room temperature and dissolved in 50 µl water. The purity of the DNA was analyzed 

spectrophotometrically with a Nanodrop ND-1000 (ThermoScientific, Wilmington, NC, 

USA), and the DNA content was adjusted to 30 µg per sample. Each sample was spiked with 

50 fmol isotope-labeled adducts and 1 nmol 15N5-dG , an DNA was isolated according to 

Schumacher et al. (2013). 

 

2.10.Cytotoxicity testing 

pRH were seeded into collagenated 24 well plates (2,5 x 105 cells/ml) with 1 ml/well DMEM 

low glucose with 10% FCS and 1% penicillin/streptomycin solution over 3-4 h. HepG2 cells 

were seeded into 24 well plates (1.5 x 105 cells/ml) in 1 ml/well DMEM high glucose with 

sodium pyruvate, 10% FCS and 1% penicillin/streptomycin solution over 24 h, 

HepG2/CYP1A2 cells were cultured under the same conditions except for medium without 

added sodium pyruvate.  

Cultures were incubated over 24 h or 24 h and further cultivation for 72 h without test 

compound (HepG2 and HepG2/CYP1A2 cells) or 24 h (pRH) with the test substances 

dissolved in DMSO (0.1 % final concentration), DMSO only served as negative control, 0.1% 

saponin (final concentration) as positive control. After washing with PBS, 1 ml 44 µM 

resazurin solution in pure medium was added per well. After incubation over 60 min (HepG2 

and HepG2/CYP1A2 cells) or 90 min (pRH) with resazurin solution, fluorescence was 
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measured in a Fluoroscan plate reader at an excitation wavelength of 544 nm and an emission 

wavelength of 590 nm.  

 

2.11. Micronucleus assay 

HepG2 or HepG2/CYP1A2 cells were seeded on 60 mm Petri dishes in DMEM/high glucose 

(HepG2) or low glucose (HepG2/CYP1A2)/FCS/Pen-Strep at a density of 7 x 105 cells/2 ml 

medium. After 24 h medium was replaced by fresh medium and the cells were incubated with 

the test compounds dissolved in DMSO (0.1 % final concentration) over 72 h. Negative 

controls were treated with DMSO only, 0.5 µM mitomycin C (added as solution in DMSO) 

served as positive control. Then, the cells were trypsinized and the suspensions were 

centrifugated 500 x g for 5 min. The pellet was re-suspended in 1 ml PBS plus 3 ml ice-cold 

ethanol and vortexed. After incubation at -20 °C over 30 min, the suspension was 

centrifugated at 1,000 x g for 10 min. The supernatant was discarded and the pellet was stored 

at -20°C. For micronuclei counting, the pellet was re-suspended in 750 µl DAPI dye solution 

(13.8 µg/ml aqueous DAPI solution), and vortexed. After incubation at room temperature in 

the dark over 15 min, 10 µl of the suspension were transferred to slides and covered with 

cover slips (50 x 24 mm). After adding immersion oil on the cover slip, 1,000 nuclei were 

inspected under a fluorescence microscope (Axioskop, Zeiss, Jena Germany) at 64 x 

magnification. Micronuclei were identified as round or oval-shaped bodies with a diameter of 

1/3 of the corresponding nucleus at maximum, being stained more intensively as the nucleus, 

laying adjacent to a nucleus, not showing ‘bridging’ to a nucleus, being in same optical focus 

as the corresponding nucleus. 

 

2.12. Statistical analysis and modeling 

Data represent means ± S.D. from n=3 independent experiments. For multiple comparison 

with a control, Dunnett’s test was applied with probabilities of error (p) as indicated. For 
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concentration-response modeling, threshold doses concentrations (tc) were determined using 

the broken stick model (Lutz and Lutz, 2009) in R for windows version 3.6.3 (R Core team, 

2020). 

 

3. Results 

The synthesis of unlabeled and isotope-labeled N2-(isoestragole-3‘-yl)-2‘-desoxyguanosine 

(E3’N2dG) and N6-(isoestragole-3‘-yl)-desoxyadenosine (E3’N6dA) led to the expected 

adducts as demonstrated by mass (Figs. 1 A and B)  and 1H-NMR spectroscopy. The 

reference compounds were used as calibration standards for the quantitative analysis of both 

adducts in pRH.  

In pRH, estragole led to a slight non-significant decrease in viability (data not shown) 

whereas HepG2-CYP1A2 cells were more sensitive with a significant loss in viability at 30 

μM and above (Fig. 2). These data point to differences in handling of the substrate including 

uptake and metabolic activation and/or inactivation. The loss of viability in HepG2-CYP1A2 

cells did not exceed 50 %, a condition for the micronuclei assay (OECD, 2016). Non-

transfected HepG2 cells showed no estragole toxicity as expected due to the lack of critical 

CYP activities.  

There, incubation with increasing estragole concentrations led to a time- and concentration-

dependent increase in DNA adducts. Both adducts were found in an approximate ratio of 

dA:dG of 1:10. Significant levels of adducts were found already after 6 h at > 10 μM and after 

12 h at > 1 μM estragole. The time course of adduct levels was relatively similar between the 

dA (Fig. 3A) and dG (Fig. 3B) adduct. At estragole concentrations above 10 μM, the highest 

levels were seen after 12 h and a decrease by about 10 – 40 % after 48 h. Interestingly, the dG 

adduct level decreased more effectively over time than the dA adduct level. However, this 

time course was seen only for substrate concentrations >100 μM while at lower substrate 

concentrations levels remained almost constant or even increased between 6 and 48 h.  
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In a next step a concentration-response analysis for adduct levels was carried out to gain more 

information about the underlying mathematical function and key parameters. For this purpose, 

the data were modeled against a broken stick, which reveals a threshold concentration (tc) +/- 

95% confidence intervals. Should the intervals have bridged zero, the response was 

considered linear. Given the protracted dose concentration range, and the subsequent 

compression of the lower doses concentrations (apparent in Fig. 4A), it was considered 

judicious to model both the entire dose concentration-range and the lower doses 

concentrations alone, in case potential tcs, at the lower concentrations, were being masked by 

this compression. 

The analysis of the dA adduct revealed a linear relationship between the substrate 

concentration and the adduct level if the total concentration range was considered (Fig. 4A). 

When the calculation was focused on the three lowest estragole concentrations (< 1 μM), 

however, a non-linear function became obvious (Fig. 4B) which allowed the estimation of a 

‘practical threshold’ at a concentration of about 0.55 μM (95% confidence interval, rounded: 

0.46 - 0.99 μM). Below this concentration no increase in adduct levels above the LOQ and no 

effect of estragole on the adduct level could be observed. For the dG adduct a very similar 

picture was obtained for all concentrations (Fig. 4C) and for the lowest concentration range at 

< 1 μM (Fig. 4D). From these data a practical threshold of about 0.47 μM (95% confidence 

interval, rounded: 0.43 - 0.99 μM) could be derived. It needs to be mentioned that this type of 

influence of the concentration range was obtained for all time points analyzed, i.e. after 1, 6, 

24 and 48 h of treatment for the dG adduct and after 6, 24, and 48 h for the dA adduct (after 1 

h, no dA adducts were found at estragole concentrations < 1 μM). The calculated threshold 

concentrations were relatively independent from the time point, i.e. were at 0.5 μM as a mean 

value (Table 2).  

In order to analyze the genotoxic consequences related to estragole exposure, we next 

analyzed the levels of micronuclei in HepG2-CYP1A2 cells. Estragole concentrations 
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between 1 and 300 μM led to a concentration-dependent increase in micronuclei counts. At 

the lowest concentration of 1 μM the number was already significantly increased when 

compared to the control (Fig. 5). Testing of lower concentrations did not lead to increases 

over the control rate. However, the large variability between measurements in this 

concentration range (data not shown) did not warrant a concentration-response modeling. 

 

4. Discussion 

Estragole, a natural constituent in a variety of herbs and spices used in food and/or 

phytomedicine, has drawn much attention with respect to its hepatotoxic and carcinogenic 

properties (Martins et al., 2018). Thus, there is an increasing need for a thorough assessment 

of the risk of human estragole exposure with a special emphasis on the mode(s) of action of 

the compound and the dose (concentration) - response characteristics. Here, we investigated 

cytotoxicity and DNA adduct levels in estragole-treated rat pRH as a prototype target cell 

type for estragole toxicity. As a suitable human cell model for genotoxicity and cytotoxicity 

testing of estragole, metabolically competent HepG2-CYP1A2 cells were used.  

In previous studies, postnatal treatment of mice with estragole or 1'-hydroxyestragole 

significantly increased the incidences of hepatoma and hepatocellular carcinoma in the adult 

animals (Drinkwater et al., 1976; Miller et al., 1983). The affected livers also showed various 

types of non-neoplastic lesions such as chronic inflammation, portal fibrosis, bile duct 

proliferation, and focal areas of atypical cellular hyperplasia and megalocytosis. In rats, the 

evidence for carcinogenicity of estragole is less clear. At relatively high dose levels (75-600 

mg/kg b.w. per day), pre-neoplastic lesions such as hepatocellular hypertrophy, bile duct and 

oval cell hyperplasia, cholangiofibrosis, and chronic periportal inflammation were observed 

(NTP, 2011). Auerbach et al. (2010) reported changes in hepatic gene expression in estragole-

treated rats, indicating that estragole, also in rats, should be classified as a hepatocarcinogen.  

In our study, estragole did not exert significant cytotoxicity in pRH over an incubation period 
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of 24 h. Longer incubation periods were not used because of the substantial loss of drug-

metabolizing enzyme activities in pRH cultured over longer time (Gao et al., 2020). In 

contrast, human HepG2-CYP1A2 cells showed some cytotoxicity at estragole concentrations 

> 30 μM after 24 h incubation plus 72 h recovery, a schedule also used for the micronuclei 

assay. It has to be noted that none of the concentrations led to a loss in vitality exceeding 50 

% as recommended by the OECD as a condition for micronuclei analysis (OECD, 2016). In 

non-transformed HepG2 cells, no cytotoxicity was observed which is in agreement with the 

assumption that certain CYP activities are crucial for estragole toxicity. 

The major pathways of estragole metabolism include O-demethylation at the aromatic ring, 

epoxidation at the double bond of the allyl side chain, and 1’-hydroxylation at the allylic side-

chain with subsequent enzymatic sulfation (Smith et al., 2002). The latter pathway leads to a 

semi-stable, reactive conjugate which can undergo sulfate elimination under formation of 

covalent bonds of the remaining moiety to nucleophilic targets, mainly in the liver (Phillips et 

al., 1981). The major enzymes catalyzing the initial step (1’-hydroxylation) are cytochromes 

P450 (CYP), most notably CYP1A2 (Jeurissen et al., 2007). There is evidence that the ratios 

between the major pathways change with dose, i.e., in rodents the percentage of the 

metabolite 1’-hydroxyestragole among the total urinary radioactivity decreased with 

decreasing dose (Anthony et al., 1987). The authors discussed that this trend was likely to be 

relevant in humans where background exposure to estragole via food etc. was estimated to be 

in the range of 10 μg per kg b.w. per day (Smith et al., 2002). Likewise, Zeller et al. (2009) 

found that only a very small proportion of estragole ingested with a fennel fruit infusion by 

seven test persons appears to be metabolized to the crucial 1´-hydroxyestragole. In a human 

volunteer, the percentage of 1’-hydroxyestragole excreted via urine declined with decreasing 

estragole exposure.  

DNA adduct formation was considered as a hallmark of the liver carcinogenicity of estragole 

(Miller and Miller, 1983). In spite of its ability to covalently modify DNA bases, the 
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compound was classified based on dose-response considerations by Martins et al. (2012) as a 

‘weak’ genotoxin and carcinogen. In fact, relatively high dose levels were required to cause 

DNA adducts and mutations in rodent liver (Suzuki et al. 2012a;b). Paini et al. (2010) tried to 

predict the formation of DNA adducts in the liver of male rats on the basis of in vitro 

incubations with pRH exposed to 1’-hydroxyestragole at concentrations between 0.5 and 150 

μM. The model suggests that the formation of E3’N2dG, the principal dG-adduct in rat liver, is 

linear up to a dose of at least 100 mg estragole/kg b.w. allowing the estimation of adduct 

yields at human background exposure levels. Later, Paini et al. (2012) reported a dose-

dependent increase in the levels of E3’N2dG in the liver of estragole-treated rats being 

statistically significant at and above 30 mg/kg b.w. It has to be noted, however, that the actual 

human exposure estimates, e.g., from herbal teas (0.5 mg estragole per day) and other food 

items are at least one order of magnitude lower (Smith et al., 2002).  

Formation of the E3’N2dG adduct has been demonstrated by Young et al. (2020) in pRH 

treated for 2 h with 50 μM estragole. The authors found about 100 adducts per 108 bases, i.e., 

a much lower adduct density than in the present study. The difference is probably due to the 

much lower time of exposure compared to our study where the highest adduct numbers were 

achieved after 12 - 48 h. In our study, estragole concentrations below 1 μM did not lead to 

significant adduct levels although an LOQ of one adduct in 108 bases was achieved. At 1 and 

10 μM, a time-dependent increase in adduct levels was obtained, whereas at higher 

concentrations, a decrease was seen at later time points. This finding may be due to increased 

apoptosis and/or repair in adduct-bearing cells. The efficiency of repair of alkenylbenzene 

DNA adducts other than E3’N2dG has not been studied in detail so far (Yang et al., 2020). In 

HepaRG cells, CHO cells, and pRH, no or very limited disappearance of E3’N2dG was 

observed over several hours indicating marked persistence of the major adduct (Yang et al., 

2020)’. The authors concluded from molecular dynamics simulations that conformational 
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changes in double-stranded DNA by the E3′N2dG adduct are small, thus probably making it 

rather ineffective in triggering repair.’ 

From the data presented here, it is evident that the concentration-response characteristics for 

the levels of the two prominent estragole-derived adducts at dA and dG in pRH were linear 

when the whole concentration range between 0 and 300 μM was considered. It became 

hypolinear, however, when the modeling was focused on estragole concentrations < 1 μM. 

There, the adduct levels were not different from the untreated controls and did not increase 

significantly with increasing substrate concentrations. This effect is due to the overweight of 

data at higher concentrations resulting in a relatively good fit to the linear model. In contrast, 

hypo-linearity of dose-response functions of genotoxic carcinogens is frequently observed in 

toxicology, in particular at very high and very low dose levels (Clewell et al., 2019). Such 

findings are probably due to a number of factors (Thomas et al., 2015) such as i) the level of 

DNA adducts depends not only on their formation via a reactive intermediate but also on the 

efficacy of their repair, ii) metabolic detoxification pathways, both enzyme-catalyzed or non-

enzymatic, show a certain, limited capacity. Once being overwhelmed by increasing doses of 

a toxicant, the latter may get a chance to exert its toxicity to a full degree. It is currently not 

known if the lack of detectable adduct levels at low estragole concentrations is due to the 

aforementioned mechanisms.  

There is good evidence that estragole is genotoxic in rat hepatocytes, e.g., in the UDS assay in 

vitro (Howes et al., 1990) or ex vivo in cells isolated form estragole-treated rats (Nesslany et 

al., 2010). The doses required for a positive response in the latter study, however, were at 250 

mg/kg b.w. and above, i.e., at relatively high levels.  

Here, we investigated micronuclei formation in human HepG2 cells and in the HepG2-

CYP1A2 clone treated with estragole. Micronuclei formation was strictly dependent on the 

presence of CYP1A2. Furthermore, linear concentration-response characteristics were found 

for estragole concentrations between 1 and 300 μM. At 1 μM the micronuclei counts were still 
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statistically significantly different from the vehicle controls. Unfortunately, the relatively high 

variability in micronuclei counts, also between investigators, did not allow a reliable 

modeling of counts below 1 μM, which were not significantly, however, different from the 

vehicle control.  

DNA adduct formation is considered as an important contributor to the genotoxicity of 

estragole. Since the liver is the principal target organ of carcinogenicity in mice and probably 

also in rats and estragole leads to metabolism-related DNA adducts in the target organ, it 

fulfills the criteria for a genotoxic carcinogen. It appears plausible to regard DNA adduct 

formation and damage as key initiating events in estragole carcinogenicity. However, our data 

and data by others provide evidence that the underlying dose (concentration)-response 

relationship in target cells is hypo-linear at the lower, more relevant end of the substrate 

concentrations. Thus the default assumption of dose-linearity of carcinogenicity of estragole 

strongly based on dose-response data at high concentrations/doses is probably inadequate, at 

least based on our in vitro findings, and needs to be replaced by a thorough dose-response 

analysis at relevant dose levels including additional in vivo studies. 
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Figure legends 

 

Fig. 1. Structural formulae, masses ([M+H]+), fragmentation pattern ([M+H]+, and MS2-

spectra) of (A) N6-(isoestragole-3‘-yl)-desoxyadenosine (E3’N6dA), and (B) N2-(isoestragole-

3‘-yl)-2‘-desoxyguanosine (E3’N2dG). 

 

Fig. 2. Cytotoxicity of estragole (μM) in HepG2 cells (open bars) and HepG2-CYP1A2 cells 

(scattered bars) measured as percent resazurin reduction compared to vehicle (DMSO) only - 

treated controls. Cells were treated over 24 h and kept in culture for additional 72 before 

measurement. Bars represent means ± S.D. from n=3 independent experiments. **symbolize 

statistically significant differences from the control at p < 0.01.  

   

Fig. 3. Adduct levels (adducts per 108 nucleosides) in rat hepatocytes in primary culture 

treated with vehicle (DMSO) only (‘0’) or various concentrations of estragole, over 6, 12, 24 

or 48 h as indicated. Bars represent means ± S.D. for E3’N6dA (A) or E3’N2dG (B) from n=3 

independent experiments. Asterisks symbolize statistically significant differences from the 

control at ***p < 0.001, **p< 0.01 and *p<0.05; n.s. = non-significant. 

 

Fig. 4. ‘Broken stick’ modeling of the concentration-response relationships between estragole 

concentrations and DNA adduct levels in rat hepatocytes in primary culture after 48 h of 

incubation. Data points represent all biological (n=3) and technical (n=3-4) replicates for 

E3’N6dA (A,B) and E3’N2dG (C,D) over the estragole concentration ranges between 0 and 

300 μM (A,C) or between 0 and 1 μM (B,D).  
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Fig. 5. Micronuclei levels (micronuclei per 1,000 nuclei) in HepG2 cells (open bars) and 

HepG2-CYP1A2 cells (scattered bars) treated for 24 h with increasing concentrations of 

estragole, and a recovery phase of 72 h. Bars show means and S.D. of n=3 independent 

experiments.  **symbolize statistically significant differences from the vehicle (DMSO) only 

–treated control (C) at p < 0.01.  
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