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Human activity recognition (HAR) can be exploited to great benefits in many applications, including elder care, health care,
rehabilitation, entertainment, and monitoring. Many existing techniques, such as deep learning, have been developed for specific
activity recognition, but little for the recognition of the transitions between activities. This work proposes a deep learning based
scheme that can recognize both specific activities and the transitions between two different activities of short duration and low
frequency for health care applications. In this work, we first build a deep convolutional neural network (CNN) for extracting
features from the data collected by sensors. Then, the long short-term memory (LTSM) network is used to capture long-term
dependencies between two actions to further improve the HAR identification rate. By combing CNN and LSTM, a wearable sensor
based model is proposed that can accurately recognize activities and their transitions. The experimental results show that the
proposed approach can help improve the recognition rate up to 95.87% and the recognition rate for transitions higher than 80%,

which are better than those of most existing similar models over the open HAPT dataset.

1. Introduction

Human behavior recognition (HAR) is the detection, in-
terpretation, and recognition of human behaviors, which
can use smart heath care to actively assist users according to
their needs. Human behavior recognition has wide appli-
cation prospects, such as monitoring in smart homes, sports,
game controls, health care, elderly patients care, bad habits
detection, and identification. It plays a significant role in
depth study [1] and can make our daily life become smarter,
safer, and more convenient.

Currently, human behavior data can be acquired in two
ways: one is based on computer vision and the other is based
on sensors [2]. Behavior recognition based on computer
vision has been studied for a long time and has a mature
theoretical basis. However, the vision-based approaches
have many limitations in practice. For example, the use of a
camera is limited by various factors, such as light, position,

angle, potential obstacles, and privacy invasion issues, which
make it difficult to be restricted in practical application.
Although the research time of sensor-based behavior rec-
ognition is relatively short, with the development and
maturity of microelectronics and sensor technology, there
are various types of sensors, such as accelerometers, gyro-
scopes, magnetometers, and barometers. These sensors can
be integrated into mobile phones and wearable devices such
as watches, bracelets, and clothes. Furthermore, state-of-the-
art wearable sensors have solved the issue of antimagnetic
field interference, such as [3], which can accurately estimate
the current acceleration and angular velocity of motion
sensors in real time in the presence of magnetic field in-
terference. So these wearable sensors are usually small in
size, high in sensitivity, and strong in anti-interference
ability, so the sensor-based identification method is more
suitable for practical situations. Moreover, sensor-based
behavior recognition is not limited by scene or time, which
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can better reflect the nature of human activities. Therefore,
the research and application of human behavior recognition
based on sensors are more and more valuable and
significant.

Besides, the HAR includes two types: basic actions and
transition actions. Due to the low incidence and short
duration of transition movement, there are relatively few
studies on the transition movement from standing to sitting,
walking to standing, and so on in the research of human
behavior recognition [4]. However, the study of transitional
movement is a very important part of human behavior
recognition. In order to improve the behavior recognition
rate, transition action recognition is not negligible. The
transition action is the distinction of a variety of basic ac-
tions in frequent alternations. The accurate division of the
transition action can accurately segment the streaming data
to a certain extent and ultimately improve the recognition
rate. In addition, the behavior recognition methods based on
traditional patterns have shortcomings such as manual
feature extraction. With the application and development of
deep learning in different fields, the deep learning model also
shows great advantages in the field of behavior recognition.

The main contributions of this work are summarized as
follows:

(1) We presented a deep learning model composed of
convolutional and Long Short-Term Memory re-
current layers, which can automatically learn local
features and model the time dependence between
features.

(2) We discussed the influence of key parameters in deep
learning model on performance and finally deter-
mined the best parameters in the model.

(3) We analyzed and compared the experimental results
with other models that adopt the same common data
set. The results show that the proposed method is
superior to the other advanced methods.

In this work, we use both acceleration sensor and a
gyroscope sensor of smart phones to acquire data and
proposed a CNN-LSTM hybrid model to recognize the
transition motion. Convolution neural network (CNN) [5] is
a type of depth neural network used as a feature extractor. It
is characterized by local dependence, so it has good per-
formance in extracting local features. However, human
activity information belongs to long instance, which is
composed of complex movements and changes with time. So
the CNN model does not work well in extracting the rela-
tionship between time and features. The Long Short-Term
Memory (LSTM) [6] neural network is a kind of recursion
network that contains a memory to simulate a time de-
pendent sequence problem. Therefore, the mixture of CNN-
LSTM can accurately identify the basic and transitional
features of activities.

The remainder of the paper is organized as follows:
Section 2 reviews the literature on human activity identi-
fication based on deep learning and existing problems;
Section 3 presents the mixed deep learning framework
proposed in this paper for existing problems; Section 4
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discusses and analyzes the experimental results based on
experimental data. Finally, Section 5 concludes this paper.

2. Related Works

Due to the extensive application of human-computer in-
teraction, behavior detection, and other technologies, hu-
man behavior recognition has become a hot field [7]. Human
behavior recognition can be regarded as a representative
pattern recognition problem. The traditional pattern of
behavior recognition research using decision tree, support
vector machine (SVM), and other machine learning algo-
rithms can obtain much satisfactory results, in premise of
some controlled experimental environments and a small
number of labeled data. However, the accuracy of these
methods depends on the effectiveness and comprehen-
siveness of manual feature extraction. In addition, these
methods can only extract shallow features. Because of these
limitations, the behavior recognition methods based on
traditional pattern recognition are limited in classification
accuracy and model generalization.

In recent years, deep learning has developed rapidly and
attracted many research efforts, especially in image, pro-
cessing time series, natural language, logical reasoning, and
other complex data processing aspects and has achieved
unparalleled achievements [8]. Different from the traditional
behavior recognition method, deep learning could reduce
the workload of feature design. In addition, the higher-level
and more meaningful features can be learned via the end-to-
end neural network. Furthermore, the deep network
structure is more suitable for unsupervised incremental
learning. Moreover, deep networks created by super-
imposing several layers of features can model data with
complex structures. In a word, the deep learning is an ideal
method for HAR.

Since deep learning has made outstanding achievements
in image feature extraction, many researchers first try to
apply it to behavior recognition based on video. In early
periods, Taylor et al. [9] used convolution threshold
Boltzmann machine to identify video behavior data and
extract sensitive features. Ji et al. [10] proposed a three-
dimensional CNN model to capture more action informa-
tion from space and time. Liu et al. [11] proposed that CNN
and conditional random domains (CRFs) be combined for
action segmentation and recognition. The CNN can auto-
matically learn space-time characteristics, while CRF is able
to capture the dependency between outputs. Other common
deep learning methods are also widely used, such as re-
cursive neural network [12] and long short-term memory
network. On one hand, it is successful on application of deep
learning in video behavior recognition. On the other hand, it
is also widely used in human behavior recognition based on
Sensors.

Zeng et al. [13] proposed treating the single-axis sensor
data as one-dimensional data of images and then sending
them to CNN for identification. Jiang and Yin [14] com-
bined the signal sequences of accelerometer and gyroscope
into an active image, enabling deep convolutional neural
network (DCNN) to automatically learn the optimal features
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from the active image. Chen and Xue [15] modified the CNN
convolution kernel to adapt to the characteristics of triaxial
acceleration signals. Ronao and Cho [16] proposed a con-
vNet, which realized efficient and data adaptive human
behavior recognition with smart phone sensors. ConvNets
not only utilize the inherent time-local dependence of sensor
signal sequences but also provide an adaptive method for
extracting robust features. Experimental results show that
this method can recognize similar actions, which are difficult
to be processed by traditional machine learning. Murad and
Pyun [17] and Zhou et al. [18] proposed three deep recursive
neural network structures based on LSTM to establish
recognition models to capture time relations in input se-
quences and could achieve more accurate recognition. Due
to the superior performance of LSTM in behavior recog-
nition application, Guan and Plotz [19] and Qi et al. [20]
improved the LSTM and proposed an integration model,
integrating different LSTM learners into an integrated
classifier. Through the experimental evaluation in the
standard data set, it is proved that the integrated system
composed of LSTM learners is superior to a single LSTM
network. Ignatov [21] combined the manually extracted
statistical features with the features automatically extracted
by neural network and realized a human behavior recog-
nition method based on user autonomous deep learning.
Among them, CNN extracted local features, while statistical
features preserved the information about the global form of
time series. Experiments on open data sets show that the
model has the advantages of small computation, short
running time, and good performance. Nweke et al. [22] and
Wang et al. [23], respectively, summarized the application of
deep learning method in sensor-based behavior recognition
and not only put forward detailed views on the existing
work, but also pointed out the challenges and improvement
directions of future research.

This work demonstrated the potential of deep neural
network to learn the potential features and time series
features. Nevertheless, existing works on action recognition
mainly focus on the aspect of basic behavior recognition,
while the transition between actions is usually ignored be-
cause the transition action has a short duration. However, it
is necessary to study the transition action in depth in order
to improve the robustness of the model. The precise division
of the transition action can accurately segment the streaming
data to a certain extent and ultimately improve the recog-
nition rate. In this paper, CNN combined with LSTM hybrid
model is adopted to extract deep and advanced features, and
elaborate description is made of basic and transition action,
so as to realize accurate identification.

3. Proposed Method

The overall architecture diagram of the method proposed in
this paper is shown in Figure 1, which contains three parts.
The first part is the preprocessing and transformation of the
original data, which combines the original data such as
acceleration and gyroscope into an image-like two-dimen-
sional array. The second part is to input the composite image
into a three-layer CNN network that can automatically

extract the motion features from the activity image and
abstract the features, then map them into the feature map.
The third part is to input the feature vector into the LSTM
model, establish a relationship between time and action
sequence, and finally introduce the full connection layer to
achieve the fusion of multiple features. In addition, Batch
Normalization (BN) is introduced [24], in which BN can
normalize the data in each layer and finally send it to the
Softmax layer for action classification.

3.1. Data Preprocessing. Due to the large amount of be-
havioral data collected by the sensor, it is impossible to input
all the data into the depth model at one time. Therefore,
sliding window segmentation should be carried out before
data input into the model. The behavior recognition method
proposed in this paper can recognize both the basic action
and the transition action at the same time. The transition
action lasts for a short time; it is necessary to choose the
appropriate window size. If the window is too large, im-
portant information will be lost. Otherwise, the computa-
tional costs will be increased. After data segmentation, the
behavioral data collected by sensors are one-dimensional
time series different from image data. Therefore, before
applying the deep learning model to these input data, it is
necessary to input and adapt them. Dimension transfor-
mation is carried out on the data after window segmentation.
The method of transformation is to splice the sensor data of
all axes into a two-dimensional matrix. The advantage of this
approach to data processing is that it preserves the corre-
lation between sensors’ axes. Finally, samples similar to
pictures are formed and input into the deep learning model.
Figure 2 shows the model structure of data preprocessing.

3.2. Feature Learning Based 1D-CNN. The original uniaxial
acceleration and gyroscope data are equivalent to two-di-
mensional array of images after dimensional transformation.
The feature image is input into the convolution neural
network, and its structure is generally composed of con-
volution layer and pooling layer. The convolution layer
carries out convolution operation on the input image
through convolution kernel to obtain feature mapping. The
pooling layer extracts local features from the feature map of
the convolution layer through sampling operation to lessen
the size of neurons and the number of parameters. The
convolution layer and pooling layer are stacked to form a
deep structure, which can automatically extract the action
feature information from the original action data [5].

The CNN model structure designed in this paper is
shown in Figure 3. The CNN network model consists of
three convolution layers and three pooling layers (each
convolution layer is followed by one pooling layer) and
finally outputs a number of feature map images with action
features. Table 1 illustrates the settings of different param-
eters for each convolution and pooling layer. Convolution is
achieved by the convolution of two-dimensional convolu-
tion kernel with images superimposed by multiple adjacent
frames. The convolution kernel number of the three con-
volution layers is 18, 36, and 72, respectively. The
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TaBLE 1: Activity label corresponding to the original data.
convolution kernel size is 2 x 8, 2x 18, and 2 x 36, and the
1d Exp Label Start End step size is 1. Since the filter may not be able to process the
1 1 5 250 1232 data in a certain direction in the operation of convolution, to
i } Z gg g ;i’gi avoid reducing data of the image edge, the padding pa-
) . g 5105 3359 rameter is introduced and set to “SAME” and 0 is added to
] 1 5 2360 3374 the edge of the input image matrix. After the convolution
1 1 1 3375 3662 operation in the convolution layer, the output will usually
1 1 5 3663 4538 pass through a nonlinear activation function and then form
1 1 11 4539 4735 the output of the convolution layer. The popular activation
1 1 5 4736 5667 functions include Sigmoid function, ReLU function, and
1 1 11 5668 5859 Tanh function. Among them, ReLU function can change the
1 1 5 5860 6786 negative value of the data extracted by CNN into 0, and the
1 1 11 6787 6977 positive value of the data greater than 0 remains unchanged.
1 1 5 6978 8078

After nonlinear processing operation, the positive value
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greater than 0 can be more clearly expressed by the extracted
features. Therefore, ReLU activation function is used in the
convolution layer of CNN:

0, x<0,
f(x) = max (0, x) = (1)
x, x=0.
Further, we have
, 0, x<0,
f(x)= (2)
1, x=0.

Pooling layer is regarded as reducing the number of
feature mappings and parameters. The popular pooling
techniques include maximum pooling and average pooling.
In recent years, relevant theoretical analysis and perfor-
mance evaluation have shown the superior performance of
the maximum pooling strategy, which is widely used in deep
learning [25, 26]. Moreover, some studies show that the
maximum pooling technology is very suitable for sensor-
based human behavior recognition [27]. Therefore, all
pooling layers of CNN in this paper utilized the maximum
pooling technique. Specific convolution and pooling process
parameters are set as shown in Table 2.

3.3. Feature Fusion and Action Classification. To improve the
recognition rate of transition actions, we build a LSTM after
the CNN network {f, f,...... S} is the feature sequence
converted from the feature map calculated by CNN from the
images composed of original data. Therefore, the sequence
{fifaeennnn f} input LSTM and the storage unit of LSTM
will produce a sequence of characters {m;,m,...... m,}.

Since LSTM has different gating units, memory units
such as input gate, forgetting gate, and output gate are
combined with learning weights to solve the problem of
gradient disappearance in the process of back propagation of
ordinary circular neural network. Meanwhile, LSTM can
model time-dependent actions and fully capture global
features, so as to improve the recognition accuracy [28].
LSTM cell controls the inward flowing information of
neurons, which is composed of forgetting gate, input gate,
and output gate. Furthermore, the predicted value of LSTM
cell is obtained using Tanh function.

Firstly, the forgetting gate determines how much in-
formation from the previous moment can be accumulated to
the current cell. As shown in equation (3), the probability
value is calculated to determine the amount of information
that can pass through the gate:

Ly =o(wy» a7 2] +by), (3)

where w/ represents the weight corresponding to the input
vector, b represents the bias, ‘=1’ presents the output of the
neuron at the last moment, and x& represents the current
input of the neuron.

Secondly, the input gate consists of update gate and Tanh
layer, which controls how much information can flow into
the current cell. The calculation process is shown in equa-
tions (4)-(6). The input of the input gate and the output of
the forgetting gate update the cell at the same time,

TaBLe 2: The convolution and pooling layers of the CNN
architecture.

Layers Convld_1 Convld_2 Convld_2
Size 1x2x8 1x2x18 1x2x%x36
Stride Ix1x1 1x1x1 I1x1x1
Channel 18 36 72
Layers Pooling 1 Pooling 2 Pooling 3
Size 1x2x18 1x2x%x36 1x2x%x72
Stride 1x1x1 1x1x1 1x1x1
Channel 18 36 72

discarding unwanted information. Then, the predicted value
of the current unit is determined by the output gate, and the
output of the model is obtained, as shown in equations (7)
and (8):

I, =o(w,*[a“",x“]+b,), (4)
C = tanh(w.* [a“"", x| +b,), (5)
C,=T,+CY 41, xC" P, (6)
I, =o(w, * [a“ 7, x¥] +b,), (7)
a® =T,» tanh(C?). (8)

After the processing of LSTM layer, the final output is a
set of vectors containing time and action sequence corre-
lation, which are input into the full connection layer for the
fusion of global action features. The training process of
neural network model becomes complicated since the sta-
tistical distribution of input of each layer changes with the
parameters of the previous layer. To keep the distribution of
output data from changing too much, a lower learning rate
will be used, which could reduce the training speed. To solve
this issue, this paper introduces the BN to standardize the
values of each layer in LSTM (the output of neurons at the
last moment and the input at the current moment), so that
the mean and variance of sum will not change with the
change of the distribution of the underlying parameters and
effectively separate the parameters of each layer from other
layers. In this way, the gradient disappearance or explosion
can be prevented and the training speed of the network can
be accelerated. The BN algorithm is shown in Algorithm 1.

In Algorithm 1, 1, and ¢2 are the mean and variance of x;
obtained through minibatch. The mean and variance were
used to normalize x; to make the sample follow normal
distribution. However, the positive distribution is not able to
reflect the characteristic distribution of the training samples,
and thus it is necessary to introduce the scaling factor y and
the shift factor 5. As training progresses, y and f are also
learned by back propagation to improve accuracy.

After BN operation, the features are more obvious, so
input them to Softmax layer to extract the action features
and classify them in time series. In this model, the output
layer uses Softmax normalized exponential function to
calculate the posterior probabilities of different actions to
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Output: { y; = BNM(XI')}

Input: data set: y = {x, ...x,}

(1) Calculate the mean of data set: y,— (1/n) Y, x;

(2) Calculate the variance of data set: C)ZC<— (Un) Y, (x;— yx)z
(3) Normalize data: x;« (x; — yx/\/g +¢)

(4) Scale change and deviation: y;—yX; + = BN, 5 (x;)

(5) Return learning parameter y and f3

ALGORITHM 1: Algorithm of batch normalization.

realize classification. It maps the output values of neurons
between (0, 1), which can be regarded as the prediction
probability of actions, and the largest one is the result of
classification. Then the Softmax output layer outputs a
category vector such as [0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0],
indicating that the classification result is an action numbered
5.

3.4. Model Implementation and Training. The neural net-
work described here is implemented in TensorFlow [29]. It is a
lightweight library for building and training neural networks.
Model training and classification runs on a conventional
computer with a 2.4 GHz CPU and 16 GB memory.

The model is trained in a fully supervised manner to
backpropagate the gradient from the Softmax layer to the
convolution layer. Network parameters are optimized by
using minibatch gradient descent method and Adam opti-
mizer through minimizing cross-loss function [13]. Adam is
widely used due to its advantages in simple implementation,
efficient calculation, and low memory demand. Compared
with other kinds of random optimization algorithms, Adam
has great advantages. In this paper, to better train the model,
after the training data are input into the network. Adam
optimizer and backpropagation algorithm are used to learn
and optimize the network parameters. Meanwhile, the cross-
entropy loss function is used to calculate the total error, as
shown in the following equation:

C:_%Z[ylnaﬂl—y)ln(l—a)]’ 9)
X

where y is the true tag and a is the predicted value.

To improve efficiency, small batches of data segment size
are segmented during training and testing. With these
configurations, the cumulative gradient of the parameters is
calculated after each small batch. The weights are randomly
and orthogonally initialized. As a form of regularization, we
introduce a dropout operator on each dense layer of input.
This operator sets the activation of a randomly selected unit
to zero during training. Dropout technology proposed by
Hinton et al. [30] is based on the principle of randomly
deleting some nodes in the network while maintaining the
integrity of input and output neurons, which is equivalent to
training many different networks. Different networks may
overfit in different ways, but their average results can ef-
fectively reduce overfitting. In addition, dropout allows
neurons to learn stronger features by not relying on other

specific neurons. The number of parameters to be optimized
in a deep neural network varies depending on the type of
layer it contains. And it has a great impact on the time and
computer skills required to train the network. The specific
model training parameters will reflect the best choices in the
experiment.

4. Activity Recognition

4.1. Experiment Data. In addition to common basic actions,
this paper also studies transition actions. Actually, a few
existing public data sets contain transition actions. There-
fore, this paper adopts the international standard Data Set,
Smart phone Based Recognition of Human Activities and
Postural Transitions Data Set [31, 32] to conduct an ex-
periment, which is abbreviated as HAPT Data Set. The data
set is an updated version of the UCI Human Activity
Recognition Using popularity Data set [8]. It provides raw
data from smart phone sensors rather than preprocessed
data. In addition, the action category has been expanded to
include transition actions. The HAPT data set contains
twelve types of actions. Firstly, it has six basic actions that
include three types of static actions, such as standing, sitting,
and lying, and three types of walking activities such as
walking, going downstairs, and upstairs; Secondly, it has six
possible transitions between any two static movements:
standing to sitting, sitting to standing, standing to lying,
lying to sitting, sitting to lying, and lying to standing.

The HAPT data collection process is shown in Figure 4.
The experiment involved 30 volunteers, whose ages range
from 19 to 48, each wearing a smart phone on their waist.
Data collection is carried out with the built-in acceleration
sensor and gyroscope, and the sampling frequency is 50 Hz.
Meanwhile, video records of the experimental process are
made for the convenience of subsequent data marking.

The collected data is saved in the form of .txt, and the
acceleration and gyroscope data are stored independently,
with 60 groups, respectively. As shown in Table 1, it is the
label information corresponding to the original data of the
experiment. Among them, the first column is the experiment
ID, the second column is the experimenter number, the third
column is the action label, and the fourth and fifth columns
are the start and end row labels of the corresponding sensor
data. The label ranges from 1 to 12, representing 12 types of
actions. It can be seen from the figure that the collected data
contains invalid data, and the first 250 pieces of data are
unlabeled and belong to invalid data.
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FIGURE 4: Data collection of the physical activities.

TaBLE 3: The data amount of various activities in the HAPT.

Type ID Number
Walk Al 122,091
Upstairs A2 116,707
Downstairs A3 107,961
Sit down A4 126,677
Stand A5 138,105
Lie A6 136,865
Stand to sit A7 10,316
Sit to stand A8 8,029
Sit to lie A9 12,428
Lie to sit Al0 11,150
Stand to lie All 14,418
Lie to stop Al2 10,867

After preliminary processing of the original data, all the
data without labels were deleted. Finally, 815,614 valid pieces
of data were obtained. Due to the low frequency and short
duration of transition action, as well as the high frequency
and long duration of basic action, there is a considerable
difference in data volume between transition action and
basic action. The data volume of the six transition actions is
much lower than that of the other basic actions, accounting
for only about 8% of the total data. Table 3 lists the amount of
data for different actions. The original data is divided into
three parts, training set, verification set, and test set, in which
the training set is used for model training, and verification
set is used to adjust parameters, and test set is used to
measure the quality of the final model.

4.2. Parameters Setting. In the deep learning network, the
model parameters greatly affect its recognition rate.
Therefore, the experimental analysis of the number of
neurons, learning rate, BN, Batch size, and other parameters
in LSTM layer would be conducted in the following sections.

4.2.1. Number of Neurons in LSTM Layer. In order to verify
the influence of the number of neurons in LSTM layer on the
recognition results, the following experiments are carried
out in this paper, as shown in Figure 5. It shows that the
recognition rate is the lowest when each LSTM layer con-
tains only 8 neurons. This is because, given less neurons, the
network lacks the necessary learning ability and information
processing ability, resulting in the low recognition rate. As
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FIGURE 5: Accuracy of different numbers of neurons on test sets.

the number of neurons increases, the recognition rate tends
to increase. When the number of neurons is 64, the rec-
ognition rate reaches 95.87%. If the number of neurons is too
large, the complexity of network structure will increase and
the learning speed of network will slow down. Therefore,
considering the training time of the network, the number of
LSTM layer neurons in this paper is tentatively 64.

4.2.2. The Learning Rates. Experiments are carried out at
different learning rates in this paper. As shown in Table 4, it
can be seen that the recognition rate of the model reaches a
maximum of 95.87% when the learning rate is 0.002.
Therefore, the learning rate of 0.002 is adopted.

4.2.3. BN Operation. To verify the improvement of the BN
operation on the network model, a comparative experiment
is carried out first with and without BN layer. The epoch is
set to 400, and other parameters remain unchanged. The
recognition rates of both methods on the test set are shown
in Table 5. Obviously, the recognition rate on the test set is
improved by about 4.24% after the BN layer is added.

4.2.4. Batch Size. Batch size refers to the Batch sample size,
whose maximum value is the total number of samples in the
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TaBLE 6: Accuracy of different batch size on test sets.

Learning rate Recognition rate (%) Batch size Recognition rate (%)
0.001 93.57 25 91.74
0.0015 94.21 50 92.88
0.002 95.87 75 92.92
0.0025 92.39 100 93.10
0.003 93.34 125 94.33
0.0035 92.12 150 95.87
0.004 92.84 175 93.45
0.0045 92.01 200 93.37
225 93.72
250 93.45
TaBLE 5: Accuracy and loss rate on test sets with or without BN 275 92.84
layer. 300 93.35
325 94.06
Recognition rate (%) 350 93.34
Without BN layer 91.63 375 92.96
With BN layer 95.87 400 93.53

training set. When the amount of data is small, the batch
data is the whole data set, so that it can approach the extreme
value direction more accurately. However, in practical ap-
plications, the amount of data used by deep learning is
relatively large, and the principle of small batch processing is
generally adopted. Using small batch processing requires
relatively little memory and faster training time. Within an
appropriate range, increasing the batch size can more ac-
curately determine the direction of gradient descent and
cause less training shock. However, when the batch size
increases to a certain value, the determined downward di-
rection will not change and the correction of parameters will
slow down significantly. The identification results of dif-
ferent batch sizes are shown in Table 6. It can be seen that
when the batch size is 150, the maximum identification rate
reaches 95.87%. Therefore, 150 is selected as the best batch
size in this paper.

The parameters of the CNN-LSTM model proposed in
this paper are shown in Table 7.

5. Experimental Results and Analysis

For human movement recognition, Wang and Liu [33]
proposed to use the F-measure standard measurement
method to verify the performance of the deep-rooted
LSTM network model in human activity recognition. Lu
et al. [34] demonstrated the superiority of the model in
behavior recognition by using accuracy, prediction rate,
and recall rate in the experiment. Therefore, to evaluate
the performance of the motion recognition method
proposed in this paper, we also used the measurement
method of accuracy, recall rate, loss rate, and F-measure in
the experiment.

According to the above parameters, the recognition
confusion matrix of 12 different actions is shown in Table 8.
Accuracy curve of CNN-LSTM model is shown in Figure 6.
It can be seen from Table 9 that the overall recognition rate
of CNN-LSTM is high, and the CNN-LSTM has a better
recognition effect on the transition action.

TaBLE 7: Experimental parameters of CNN-LSTM model.

Parameters Value
Input vector size 150
Input channel number 8
Convolution kernel size 3
Pool size 2
Activation function ReLu
LSTM layer 1
Neurons number 64
Dropout 0.5
Learning rate 0.002
Batch size 150
Epoch 400

TaBLE 8: Confusion matrix of various actions.

Predict
Actual
Al A2 A3 A4 A5 A6 A7 A8 A9 Al10 All Al2

Al 40 1 3 0 0 0 0 0 0 0 0 0
A2 5 38 3 0 0 0 0 0 0 0 0 0
A3 1 3 346 0 0 0 0 0 0 0 0 0
A4 1 0 0 3832 3 1 0 1 1 0 0
A5 0O 0 1 31 41 0 0 0 0 0 0 0
A6 0 0 0 1 0 457 0 0 0 0 0 0
A7 0o 0 0 1 0 0 17 0 0 0 0 0
A8 o 0 0 0 0O 0 0 4 0 0 1 0
A9 0O 0 0 0 0 0 0 0 19 1 4 1
AI00 0 0 0O 0O 0 0 0 0 1 14 0 2
Al1 0 1 0 1 0 0 1 0 2 1 32 1
A2 0 0 0 0 0 0 0 0 0 1 1 16
6. Case Study

In the non-deep-learning method, the random forest clas-
sification method (RF) and K-nearest neighbor (KNN)
classification perform well in action classification recogni-
tion. Therefore, the CNN-LSTM model proposed is com-
pared with the RF and KNN methods. First of all, input the
HAPT data set into RF and KNN. Then, segment the original
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FIGURE 6: Accuracy curve of CNN-LSTM Model.

TaBLE 9: The recognition accuracy, recall rate, and F value of various actions.

1D Accuracy (%) Recall (%) F-measure (%)
Al 99.03 98.32 98.68
A2 97.78 98.73 98.35
A3 98.86 98.02 98.44
A4 90.76 91.85 91.30
A5 93.09 93.09 93.09
A6 99.78 99.56 99.56
A7 94.44 89.47 91.89
A8 100 100 100
A9 76.00 82.61 79.17
Al0 82.35 77.78 80.00
All 82.05 86.49 84.21
Al2 88.89 80.00 84.21

TaBLE 10: Average accuracy of various actions in CNN-LSTM, RF, and KNN models.

ID RF (%) KNN (%) CNN-LSTM (%)
Al 99.90 88.10 99.03

A2 92.50 97.80 97.78

A3 90.20 99.40 98.86

A4 91.90 83.80 90.76

A5 90.80 87.50 93.09

A6 97.10 100 99.78

A7 71.30 66.70 94.44

A8 72.00 68.00 100

A9 51.30 38.60 76.00

Al0 74.90 36.30 82.35

All 59.20 33.70 82.05

Al2 61.10 57.90 88.89
sensor data and calculate the mean value, variance, co-  than that of RF and KNN methods for both basic actions and
variance, and 15 features. Finally, classify the basic actions  transition actions.

and transition actions according to the clustering results. In addition to the comparison with RF and KNN clas-

The classification results are shown in Table 10. It canbe seen  sifier, our proposed model is also compared with a single
that the recognition rate of CNN-LSTM model is higher =~ CNN, a single LSTM, CNN-GRU, and CNN-BLSTM deep



10 Security and Communication Networks
TaBLE 11: Average accuracy of different activities with five deep learning models.
ID CNN (%) LSTM (%) CNN-BLSTM (%) CNN-GRU (%) CNN-LSTM (%)
Al 97.50 97.70 97.41 99.75 99.03
A2 97.25 97.10 95.65 98.99 97.78
A3 95.60 97.15 100 96.57 98.86
A4 91.26 90.26 91.96 81.99 90.76
A5 90.80 90.80 84.74 92.48 93.09
A6 99.67 98.58 100 99.78 99.78
A7 76.47 64.86 44.44 77.78 94.44
A8 100 66.67 66.67 50.00 100
A9 63.83 69.39 62.07 48.00 76.00
A10 84.85 70.27 80.00 52.94 82.35
All 72.50 69.33 65.00 71.79 82.05
Al12 83.30 70.27 70.59 55.56 88.89

TABLE 12: Average accuracy of the five models in this paper.

Method Average recognition rate (%)
CNN 94.29
LSTM 93.22
CNN-BLSTM 92.73
CNN-GRU 93.34
CNN-LSTM 95.87

TaBLE 13: Average accuracy of different methods on test set in the
paper [35, 36].

Method Average recognition rate
BLSTM [35] 87.5
DBN [36] 89.6
CNN-LSTM 95.8

learning models. Table 11 shows the average accuracy of
various actions in five different depth models. As can be seen
from Table 11, CNN-LSTM not only has a slightly higher
recognition of basic movements than the other five models,
but also has a significantly better recognition of transition
movements, especially standing to sitting, sitting to lying,
and standing to lying. Table 12 shows the recognition rates of
different models on the test set. It can be seen from the table
that the average recognition rate of the three models is
higher than 90%, but the recognition effect of CNN-LSTM
model is slightly better than that of CNN, LSTM, CNN-
GRU, and CNN-BLSTM.

To prove the effectiveness of the CNN-LSTM deep
learning model, it is also compared with other deep learning
methods using the same dataset. Kuang [35] applied BLSTM
to construct the behavior recognition model. Hassan et al.
[36] used deep belief network (DBN) for human behavior
recognition. We compared the performance with the ap-
proaches in [35, 36], with the result shown in Table 13. It
follows that the proposed CNN-LSTM can achieve highest
average recognition rate.

7. Conclusion

This paper explored the recognition method based on deep
learning and designed the behavior recognition model based
on CNN-LSTM. CNN learns local features from the original

sensor data, and LSTM extracts time-dependent relation-
ships from local features and realizes the fusion of local
features and global features, fine description of basic and
transition movements, and accurate identification of the two
motion patterns.

The actions identified in this paper only include common
basic actions and individual transition actions. In the next
step, more kinds of actions can be collected and more
complex actions can be added, such as eating and driving.
And the individual recognition can be realized by consid-
ering the behavior differences of different users. Meanwhile,
the deep learning model still needs to be optimized and
improved. Studies show that the combination of depth
model and shallow model can achieve better performance.
Deep learning model has strong learning ability, while
shallow learning model has higher learning efficiency. The
collaboration between the two can achieve more accurate
and lightweight recognition.
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