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Abstract

In evolutionary robot systems where morphologies and con-
trollers of real robots are simultaneously evolved, it is clear
that there is likely to be requirements to refine the inher-
ited controller of a ‘newborn’ robot in order to better align
it to its newly generated morphology. This can be accom-
plished via a learning mechanism applied to each individ-
ual robot: for practical reasons, such a mechanism should
be both sample and time-efficient. In this paper, We investi-
gate two ways to improve the sample and time efficiency of
the well-known learner CMA-ES on navigation tasks. The
first approach combines CMA-ES with Novelty Search, and
includes an adaptive restart mechanism with increasing pop-
ulation size. The second bootstraps CMA-ES using Bayesian
Optimisation, known for its sample efficiency. Results using
two robots built with the ARE project’s modules and four en-
vironments show that novelty reduces the number of samples
needed to converge, as does the custom restart mechanism;
the latter also has better sample and time efficiency than the
hybridised Bayesian/Evolutionary method.

Introduction
Evolutionary Computation is increasingly being used to
evolve jointly the morphologies and controllers of robots.
While such experiments are often conducted solely in simu-
lation, more recently we are seeing the emergence of meth-
ods in which the resulting robots are built in the real-world,
for example using soft materials (Lipson, 2014) or even bi-
ological cells (Kriegman et al., 2020). Furthermore, with
the development of 3D-printing, rapid prototyping, and au-
tomated assembly the evolution of robots the real-world –
as opposed to evolving in simulation– is becoming feasi-
ble, at least in an academic setting (Brodbeck et al., 2015;
Vujovic et al., 2017; Jelisavcic et al., 2017). However, al-
though these examples result in actuated robots, they tend
not to include sensing capabilities. As morphologies be-
come more complex, for example adding multiple types of
sensor as well as multiple forms of actuation, an issue starts
to arise that the controllers of a ‘child’ robot produced via
reproduction operators may be sub-optimal for its new mor-
phology. This can manifest in different ways: in the worst-
case, this may result in a complete mis-match (e.g. the robot

has more sensors than there are inputs in the controllers),
while in the best-case it may simply require some tuning of
the parameters of the controller. To address this, a general
architecture for evolving robots in real-time and real-space
was suggested by Eiben et al. (2013), a tangible instantia-
tion of which is being created by the ARE project1 (Hale
et al., 2019). A key element of this architecture is the use of
two loops: an evolutionary loop that produces a blue-print
for morphologies and controllers that can then be fabricated,
with a secondary learning loop that specialises the controller
of a newly produced robot to its morphology (Eiben and
Hart, 2020).

The learning loop can be realised in many ways, but a
crucial factor is that it should take place in as few trials as
possible, particularly if this is conducted directly on a phys-
ical robot. In simulation, while the number of trials is typi-
cally not an important factor, the computation time required
to conduct such trials is. On a real robot, the time to conduct
a trial is usually significant, and cannot be easily reduced.
Trials also increase wear and tear on the robot and therefore
the risk of damage, thus effort is usually geared towards re-
ducing the number of trials needed.

The issue is further complicated by the fact that differ-
ent learning methods exhibit different behaviours in terms of
their sample efficiency (the number of samples need to reach
a satisfactory solution) and their time efficiency (the learning
progress over the time needed to obtain this progress.) For
example, Bayesian Optimisation (BO) (Snoek et al., 2012) is
well known to be sample efficient but has considerable com-
putational complexity (O(n3)) due the time required to com-
pute the inversion of the co-variance matrix and the maximi-
sation of the acquisition function. On the other hand, evolu-
tionary based search methods require constant time for gen-
erating candidate solutions, but this comes at the expense of
sample efficiency.

With this in mind, this paper aims at investigating two
ways to increase sample efficiency of the well-known al-
gorithm CMA-ES (Hansen, 2006), while keeping compu-
tational time low. Firstly, CMA-ES is combined with Nov-

1www.york.ac.uk/robot-lab/are/
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elty Search (Lehman and Stanley, 2011), given the decep-
tive nature of the tasks evaluated and previous reported suc-
cess of this type of quality-diversity approaches on similar
tasks (Pugh et al., 2016). A modified version of a CMA-
ES variant is proposed (IPOP-CMA-ES (Auger and Hansen,
2005)), which exploits multiple restarts, each with increas-
ing population size, increasing the global search over time
(NIP-ES). Secondly, an alternative method is proposed in
which the novelty-assisted CMA-ES is bootstrapped by a
Bayesian Optimiser. This combination draws inspiration
from the Bayesian-Evolutionary algorithm BEA proposed
by Lan et al. (2020) which has shown impressive results
in term of sample and time efficiency on modular robotics
platform. To evaluate these algorithms, Experiments are
conducted using robots with two morphologies on a maze
navigation task in four different environments. Specifically,
the paper investigates: (1) To what extent does adding nov-
elty and a restart mechanism improve the sample efficiency
of the CMA-ES learner? (2) Does bootstrapping CMA-ES
with a Bayesian Optimiser influence its time and sample ef-
ficiency? (3) How do the best algorithms found generalise
over multiple morphologies and multiple environments?

The novel contributions of the paper are twofold. Firstly,
we show that adding novelty and a custom restart mech-
anism to CMA-ES (a time-efficient learning method) sig-
nificantly improves its sample efficiency when solving de-
ceptive navigation tasks, by appropriately balancing explo-
ration and exploitation. We show that these results gener-
alise across two morphologies that have multiple sensors and
wheeled actuators. Secondly, on the task, the environments,
and the robots used in this study, NIP-ES is shown to have
better sample and time efficiency than NBO-ES, in contrast
to previously reported research (Lan et al., 2020) where the
hybridisation with BO was shown to be beneficial in a mod-
ular robot settting.

Related Work
Previous approaches to individual learning, also referred
to as policy-search, include Bayesian Optimisation (BO),
Reinforcement Learning (RL) and Evolutionary Algorithms
(EA).

A recent survey compares methods which aim at learn-
ing policies in a handful of trials (Chatzilygeroudis et al.,
2019), concluding that model-based BO methods such
as PILCO (Deisenroth and Rasmussen, 2011) or Black-
DROPS (Chatzilygeroudis et al., 2017) are the most sam-
ple efficient type of methods, but this is to the detriment of
time-efficiency. Moreover, these methods are computation-
ally very expensive when the parameter space is large. This
can be overcome by using priors on the dynamics of the
robot in tasks such as gait learning (Chatzilygeroudis and
Mouret, 2018) but this is not possible when morphologies
are unknown in advance, for example when morphologies
are evolved.

Sample-efficiency is also a central issue in RL, as the
number of evaluations needed to converge increases as a
function of the action/state space’s size. Efficient RL meth-
ods have been proposed both in classical RL (Yu, 2018) and
in deep-RL (Feinberg et al., 2018) although the latter often
need large amounts of data to converge. However, RL meth-
ods have been shown to have limitations in the case of tasks
with sparse or deceptive rewards. To address this, algorithms
capable of better exploration are required.

EAs are an interesting alternative to RL as they have
shown to be better in term of exploration (Stulp and
Sigaud, 2013). In particular, Evolutionary Strategies (ES)
— specifically Co-variance Matrix Adaptation ES (CMA-
ES) (Hansen, 2006) — have been used in several studies as
an alternative or complementary methods to RL because of
their efficiency and scalability (Pourchot and Sigaud, 2018;
Salimans et al., 2017). In contrast to RL methods, ES meth-
ods evaluate an entire set of solutions per iteration, increas-
ing their exploratory power. Moreover, their similarity to
population-based EA permits the combination of ES with
divergent search algorithms such as Novelty Search (NS)
(Conti et al., 2018): the highly exploratory power of these
methods enables them to solve tasks with deceptive or sparse
rewards but at the same time, reduces sample-efficiency.

A disadvantage of EA methods compared to BO and RL
is the amount of data exploited per trial: an EA relies on
a single assignment of fitness from episode to generate fu-
ture samples, while the former methods exploit data from
multiple states. A recent approach tried to realise the ben-
efits of both approaches in a hybridised method called the
Bayesian-Evolutionary Algorithm (BEA Lan et al. (2020)) ,
which bootstraps an EA with the data generated by a model
free Bayesian optimiser (MFBO). The time-efficiency of BO
is better than the EA during the early stages of learning, but
becomes worse over time — at the point at which it becomes
worse than the EA, the algorithm automatically switches to
the EA. However, the method was only tested in low dimen-
sional parameter space (18 parameters). As the time com-
plexity of BO is exponential as a function of the dimension
of the parameter space (Li et al., 2018), it is unclear whether
the method will scale to networks such as those used in this
study with more than one hundred parameters.

Background
We first fix some vocabulary and notation given that several
concepts are common in BO, RL, and EA but named differ-
ently.

• Controller : A specific policy which takes sensor values
as input and outputs motor commands.

• Sample : a particular set of values of the controller’s pa-
rameters, i.e. a specific point in the parameter space, de-
noted s. In the EA community, this is usually called a
genome.
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• Reward : the output of the objective function for a given
sample, denoted r (usually referred to in an EA as fitness).

• Behavioural descriptor : a low dimensional feature vec-
tor, denoted o which uniquely describes a behaviour ac-
cording to the task. The space where these descriptors are
defined is called the behavioural space B. (In RL, this is
called a state and in BO an observation).

All the algorithms described process data in the form of
triple (s, o, r): a sample, a behavioural descriptor, and a re-
ward.

CMA-ES and IPOP-CMA-ES
Co-variance Matrix Adaptation Evolution Strategies (CMA-
ES) are a specific type of EA: following initialisation from
a random sample the process : (1) draws λ samples from a
normal distribution; (2) evaluates the λ samples according
to the objective function; (3) selects the µ top samples ac-
cording to their rewards (4) updates the co-variance matrix
and the mean using an incremental rule which takes into ac-
count the new µ selected samples, controlled by a parameter
called the sigma step which decreases over the generations.
For more details, the reader can refer to the tutorial written
by Hansen (2016).

An extension of this algorithm called increasing popula-
tion CMA-ES (IPOP-CMA-ES) was proposed by Auger and
Hansen (2005). The principle is simple: the algorithm starts
with a small population, and then based on some criteria, is
halted and restarted multiple times, each time with increas-
ing population size. When the algorithm restarts all the pa-
rameters are reinitialised and a new random initial sample
is drawn. The stopping criteria detect either the degener-
ation of the co-variance matrix or a need for more global
exploration. In the original study multiple criteria are pro-
posed (Auger and Hansen, 2005): here we use custom crite-
ria more appropriate for our task (see the Methods’ section).
We use the implementation of IPOP-CMA-ES available in
the libcmaes library (Benazera, 2014).

Novelty Search
Novelty Search (NS), introduced by Lehman and Stanley
(2011), is an EA in which the traditional fitness is replaced
by a novelty score, resulting in a divergent search. The com-
putation of the novelty score is based on the defined be-
havioural space. Novelty is computed by comparing a con-
troller to its k nearest neighbours in the population and an
archive of past controllers, as shown in equation 1 (where o
and oi are the behavioural descriptors of the controllers, B
the behavioural space, and dB the distance defined on B).

S(o) =
1

K

K∑

i=0

dB(o, oi) (1)

The archive is updated at each generation by adding new
controllers based on pre-defined criteria. Several criteria are

proposed in the literature: in this paper the combination of
the stochastic criterion and the novelty criterion defined in
the empirical study of Gomes et al. (2015) are used. The for-
mer adds a new controller with a fixed probability while the
latter adds a controller with a novelty above a fixed thresh-
old. A practical feature of NS is its easy combination with
any EA.

Model-Free Bayesian Optimisation
Model-Free Bayesian Optimisation (MFBO) is a black-box
optimisation algorithm. In this paper, BO is used as a state-
based optimiser in which a probabilistic distribution models
a function (based on Gaussian Processes) that maps a sample
s to its associated behavioural descriptor o.

MFBO follows a typical active learning scheme : (1) the
probabilistic model is updated based on the data collected
and evaluated so far; (2) an acquisition function is max-
imised to find the best next sample to evaluate; (3) the new
sample is evaluated to obtain its behavioural descriptor and
reward. The reader is referred to Brochu et al. (2010) for a
detailed description. Several functions need to be defined by
the user. A kernel function is required to shape the uncer-
tainty model used by BO - we select the Matèrn 5/2 as used
in BEA (Lan et al., 2020). An acquisition function (which
controls the balance between exploration and exploitation)
must also be chosen; again we refer to BEA, selecting the
function GP-UCB (Lan et al., 2020). The implementation of
BO available in the LIMBO framework (Cully et al., 2016)
is used in this work.

Methods
A fully connected recurrent neural network (RNN) is used as
a policy representation whose weights and biases need to be
optimised by a learning method. The candidate algorithms
are described below. All parameters required to configure
the algorithms are given in table 1.

NIP-ES
To add novelty to CMA-ES (N-CMA-ES), inspiration is
drawn from NSRA-ES, proposed by Conti et al. (2018). The
objective is a weighted sum of the reward and the sparseness
(see equation 2). A novelty ratio η determines how much
of novelty or reward are taken into account in the objective
function. η is decreased by a fixed amount at each iteration.

f(x) = η ∗ S(x) + (1− η) ∗ r(x) (2)

To extend N-CMA-ES to NIP-ES, IPOP-CMA-ES is cus-
tomised by modifying the stopping criteria used to manage
restarts. The criteria defined in the classical IPOP-CMA-ES
(Auger and Hansen, 2005) are replaced by two stopping cri-
teria :

• the standard deviation of the population’s rewards is
≤ 0.05
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ARE-1

(ARE-puck)

ARE-2

(ARE-potato)

KEY:

Sensor
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Figure 1: Two pictures of the ARE-1 (”ARE-puck”)and
ARE-2 (”ARE-potato”) side by side. The sensors are prox-
imity sensors of 1 meter range and conic dispersion (in pur-
ple on the right picture). These pictures are screenshots
taken from the V-REP simulator.

• the standard deviation of the best rewards over a window
of 20 iterations is ≤ 0.05

These two criteria enable the algorithm to avoid prema-
ture convergence. The main difference w.r.t classical IPOP-
CMA-ES is the frequency of restart occurrence — here,
the stopping criteria are designed to trigger more frequent
restarts as sample efficiency is sought. Following a restart,
the sigma step and the novelty ratio are reinitialised to their
starting values, the population size (λ) is doubled and the
algorithm restarts from a new random sample.

NBO-ES
Novelty driven and bootstrapped with Bayesian optimisation
CMA-ES (NBO-ES) draws inspiration from BEA. The set of
solutions generated by running MFBO is used to create the
initial population of the EA. Like BEA, NBO-ES starts with
an MFBO which is itself bootstrapped by a dataset randomly
generated using Latin Hypercube sampling (Tang, 1993) and
runs for a fixed number of iterations. Following this, the λ
best solutions generated by MFBO are used to initialise the
starting population of N-CMA-ES.

Experimental Set-up
The experiments conducted during this study are navigation
tasks. The goal is for a robot to reach a specified target posi-
tion within 5% of precision. The radius of the white circles
shown in figure 2 indicate this target region. All learning al-
gorithms have a maximum budget of 10000 samples to com-
plete this task.

Four arenas are used (see figure 2). These arenas are de-
signed to have different features and to be increasing in term
of difficulty. The escape room is the simplest, the only dif-
ficulty for the robot is to be able to drive between the walls.
The middle wall and multi maze are designed to feature a de-
ceptive reward and thus the need to explore to reach the goal.
Additionally, the multi maze is designed to punish excessive
exploration as the robot starts in the centre of the maze and
there are multiple futile routes. Finally, the easy race is de-
signed to be difficult in term of control. This arena features
the longest path from the initial position to the target, such
that the robot has to move fast and accurately to achieve the

(a) Escape Room (b) Middle Wall

(c) Multi Maze (d) Easy Race

Figure 2: Environments used in the experiments. The target
positions are represented by the white circles and the initial
positions by the robot. The radius of the circle correspond
to 5% precision required to achieve the task. The arenas are
2 by 2 meters squares. These pictures are screenshots taken
from the V-REP simulator.

task. Moreover, it features a deceptive reward because of the
first turn which is very close to the target.

Two robots are used during the experiments (the ARE-
1 aka ”ARE-puck” and the ARE-2 aka ”ARE-potato” (see
figure 1) which are built from components used to au-
tonomously evolve and fabricates robots in the ARE project.
The ARE-puck has two wheels symmetrically positioned on
each side of its body and 4 sensors: 3 on one side and 1 on
another. The ARE-potato has two wheels and a caster wheel,
placed asymmetrically in relation to its body, and one sen-
sor. While the ARE-puck is a classical design for a naviga-
tion task, the ARE-potato was purposely designed to pose
difficulties and thus challenge a learner.

The experiments are conducted with the simulator V-REP
(Rohmer et al., 2013). As previously noted, the robots are
controlled by an RNN with one input per sensor, one output
per wheel, and 8 hidden neurons. This constitutes a parame-
ter space of 168 dimensions for the ARE-1 (ARE-puck) (154
weights and 14 biases) and 117 dimensions for the ARE-2
(ARE-potato) (106 weights and 11 biases).

The reward is the normalised distance to the target posi-
tion as defined in equation 3.

r(s) = 1− dB(pf (s), pt)

Dmax
(3)

where, s is a sample, dB is the spatial Euclidean distance,
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BO: size of initial dataset 50
BO: Number of iterations 50
BO: GP-UCB hyperparameter (δ) 0.1
CMA-ES: Population size (λ) 50
CMA-ES: Sigma step 1
NIP-ES: Initial population size (λ) 10
Novelty: initial ratio µ (η) 1
Novelty: µ decrement 0.05
Novelty: k (nearest neighbours) 15
Novelty: threshold to add to archive 0.9
Novelty: probability to add to archive 0.4
Evaluation time 120 seconds
Maximum number of samples 10000

Table 1: The hyperparameters values used in the experi-
ments

pf (s) the final position of s, pt the target position, andDmax

the maximum distance possible between two points in the
current arena. Thus, completing the task corresponds to a
reward above 0.95. The behavioural descriptor required to
compute novelty is defined by the final position of a robot
(o = pf (s)).

To compare the different methods, 3 different mea-
sures are used: (1) the number of samples needed to
reach the target within 5% accuracy; (2) the computa-
tional time in seconds needed to reach the target within
5% accuracy; (3) the maximum reward obtained. For
each experiment, 10 replications are conducted. All
experiments are launched on computers equipped with
two Xeon E5-2640v3 2.60GHz 8C/16T; no GPU are
used. All matrix operations are computed in paral-
lel. The source code used for this study is available here :
https://bitbucket.org/autonomousroboticsevolution/alife2020.

Results
The first set of experiments aims to assess the potential ben-
efits of augmenting CMA-ES with a) novelty search (N-
CMA-ES) and b) a restart mechanism (NIP-ES). These ex-
periments are conducted using the ARE-1 (”ARE-puck”)
robot, and only sample efficiency is measured as CMA-ES
take a constant time to process each sample hence the num-
ber of samples and the time of computation are equivalent.
Figure 3 shows the number of samples needed for each al-
gorithm to complete the task.

Overall, the best method is NIP-ES, which completes the
task in less than 1000 samples on average and in around 100
samples for the multi maze. Interestingly, N-CMA-ES needs
fewer samples on average than CMA-ES on the easy race
and the middle wall, but it needs more samples than CMA-
ES on the multi maze. This could be explained by the fact
that the multi maze was designed to punish exploration by
featuring multiple false paths around the initial position of
the robot. A novelty based algorithm will sacrifice some
samples in exploring these parts, while a purely goal based
algorithm will not.

Figure 3: Box plots representing the number of evaluations
needed to reach the target with 5 % of accuracy. CMA-ES,
N-CMA-ES and NIP-ES are compared on the middle wall,
the multi maze, and the easy race and on the ARE-1 (”ARE-
puck). The y-axis is in logarithmic scale.

Next, the hybridised algorithm NBO-ES is considered and
compare it to algorithms that comprise its constituent parts,
i.e. a) a pure BO approach (MFBO) and b) N-CMA-ES.
Experiments are conducted with a fixed budget of 300 sam-
ples due to exponential increase in computational time as-
sociated with MFBO. MFBO and NBO-ES both have an
initial dataset of 50 samples. Figure 4 shows the best re-
ward reached within the budget and the computational time
needed to process 300 samples. It would be difficult to de-
cide between the three methods based only on the best re-
ward. Indeed, only on the easy race are the results clear; N-
CMA-ES reaches the highest reward on average and MFBO
have a large variance compared to NBO-ES.

However, in terms of computational time, differences be-
tween the methods are clear (see figure 5). MFBO needs
on average around 60000 seconds, i.e. ≈ 17 hours, to pro-
cess 300 samples, while NBO-ES needs on average around
3000 seconds, i.e. a little less than 1 hour, and N-CMA-ES
on average around 300 seconds, i.e. 5 minutes. According
to these results the obvious choice seems to be N-CMA-ES.
However, for both NBO-ES and N-CMA-ES, many runs did
not manage to complete the task (the exact number is in-
dicated on the figure 4), i.e. obtain a reward above 0.95.
Therefore, it is possible that with more samples, NBO-ES
could outperform a variant of CMA-ES.

To further compare NIP-ES and NBO-ES, experiments on
the four mazes and with the two robots were conducted. In
these experiments, the budget is 10000 samples as described
in the previous sections. The results are presented in figures
6 and 7. Overall, only a few runs did not complete the tasks
on the 8 different experiments : three on the multi maze with
the ARE-potato, one on the easy race with the ARE-puck,
and five on the easy race with the ARE-potato (see figure 6).
The most difficult experiment seems to be the easy race with
the ARE-potato. The variance is large for both methods.
Half of the replications with NBO-ES did not complete the
task. This was expected as the ARE-potato was not designed
to be efficient in term of navigation and to complete the easy
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Figure 4: Box plots representing the best reward reached by
MFBO, NBO-ES, and N-CMA-ES on the four mazes and
with the ARE-1 (”ARE-puck”) with a budget of 300 sam-
ples. The numbers above the boxes indicate the number of
replications which have completed the task.

race a fast and accurate controller is needed.
Apart from the experiments conducted on the middle wall,

NIP-ES has a better sample efficiency than NBO-ES and on
all the mazes and with both robots NIP-ES has a better time
efficiency than NBO-ES (see figures 6 and 7). On average,
NIP-ES is able to generate a successful controller in hun-
dreds of samples and in fewer than 200 samples and less
than 40 minutes of computational time for some runs on the
simpler tasks (see table 2). In contrast, NBO-ES needs 2
hours for the longest run. Also, NIP-ES seems more reliable
as its variance over the replication is globally lower than the
one of NBO-ES (see figures 6, 7).

Discussion
In this study, two different approaches to improving the
sample-efficiency of CMA-ES were investigated in a robot
learning application. The motivational scenario is that of
a morphologically evolving robot system, where newborn
robots must optimise their inherited controller for their in-
herited body plan (Eiben and Hart, 2020). Arguably, the op-
timisation / learning algorithm would benefit from using the
inherited controller as a starting point as opposed to a ran-
dom start. However, in the current experiments we could not
benefit from this effect, because the robots we used were not
evolved but hand-designed. Therefore, they had no inher-
ited controller and we started the optimisation process from

Figure 5: Box plots representing the computational time
needed for processing 300 samples for MFBO, NBO-ES,
and N-CMA-ES on the four mazes and with the ARE-1
(”ARE-puck”). The y-axis is in logarithmic scale.

scratch. This means that our analyses belong to a worst-
case scenario and we expect that the results would be better
if the algorithms were integrated in a full blown evolution-
ary robot system where newly produced robots come with a
non-random controller.

The first version of the CMA-ES used a restart strategy
with increasing population, starting from a small population
and increasing it if more exploration is needed. The second
approach bootstrapped CMA-ES with MFBO, as it is well
known for its sample efficiency. By switching from MFBO
to CMA-ES in the early iterations, the goal is that the overall
time efficiency of the algorithm can be maintained.

However, MFBO does not appear to be an appropriate
choice in the experimental conditions used in this study.
Firstly, the parameter space size (≈ 150) results in a sig-
nificant time overhead. Moreover, the dynamics of wheeled
robots such as the ARE-puck and the ARE-potato are suffi-
ciently simple that there is little benefit to be gained by the
heavy computation involved in BO. Indeed, a lot of previous
research using BO to learn policies has been conducted on
robot morphologies with more complex dynamics (Chatzi-
lygeroudis et al., 2019). The result presented in this paper
also directly contrasts to BEA hybrid method proposed by
Lan et al. (2020): again it should be noted that the differ-
ence in the size of parameter space is considerable (18 vs
168) and in the dynamics.
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NIP-ES NBO-ES
ARE-1 (”ARE-puck”) ARE-2 (”ARE-potato”) ARE-1 (”ARE-puck”) ARE-2 (”ARE-potato”)

N T (s) N T(s) N T(s) N T(s)
Escape Room 123 (142) 220 (211) 173 (160) 257 (212) 245 (99) 2482 (985) 195 (88) 2029 (426)
Middle Wall 471 (299) 715 (371) 2461 (2437) 2410 (2143) 395 (304) 2870 (888) 1040 (1335) 2457 (1385)
Multi Maze 170 (256) 290 (351) 66 (30) 116 (51) 3500 (4266) 6016 (4703) 175 (101) 1952 (403)
Easy Race 905 (544) 1454 (803) 1194 (1026) 1472 (1153) 3585 (2756) 6466 (3223) 5675 (4634) 7150 (4571)

Table 2: Average values and in parenthesis the standard deviation of number of samples (N) and of computational time (T) in
seconds over the 10 replications of each experiments.

Figure 6: Box plots representing the number of samples
needed for NIP-ES and NBO-ES to complete the task on the
four mazes and on the both robots. The numbers under and
above the boxes indicate the number of replications which
have completed the task. Note the y-axis uses a logarithmic
scale

NIP-ES is a promising method which balances explo-
ration and exploitation, resulting in a method that is sample
efficient and time efficient. The approach integrates well-
understood methods: novelty search to realise exploration,
IPOP-CMA-ES to realise the optimisation capability and re-
current neural networks for control. However, for the most
complex set-up, i.e. easy race with both robots and middle
wall arenas with the ARE-potato, NIP-ES still needs more
than 1000 samples to find a successful controller. This is
too large to be directly used on a physical robotic platform.
Thus, although promising, there remains some room for im-
provement.

Figure 7: Box plots representing the computational time
needed for NIP-ES and NBO-ES to complete the task on
the four mazes and on the both robots. The y-axis is in log-
arithmic scale

Conclusion
When co-evolving morphologies and controllers of real
robots, it is likely that a learning phase that specialises a con-
troller to a morphology in an individual robot is required, to
mitigate against potential mis-matches between controllers
and morphologies, and speed up the evolutionary process.
When evolving in real-time and real-space using rapid-
prototyping methods, this is particularly important to reduce
the number of ‘wasted’ time-consuming trials. Although
the wider literature provides many examples of learning ap-
proaches (Reinforcement Learning, Bayesian Optimisation,
Evolutionary Algorithms), it is critical in this context that
the learner is both sample and time efficient. The paper
illustrates that suitably modified versions of CMA-ES are
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effective and efficient in solving maze-navigation tasks on
two wheeled robots. In contrast to methods such as Black-
DROPS (Chatzilygeroudis et al., 2017) which achieve very
high sample-efficiency by exploiting priors on the dynamics
of the robot, the method proposed in this paper is applicable
to morphologies produced by evolutionary methods where
these priors are not known in advance. Future work will
focus on improving the methods further in order to reduce
the number of samples required to learn to under 100 tri-
als, a key factor if we are to develop autonomously evolving
physical robotic eco-systems in the future.
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