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Deep Learning Model for Demolition Waste Prediction in a Circular 1 

Economy 2 

Abstract 3 

An essential requirement for a successful circular economy is the continuous use of materials. 4 

Planning for building materials reuse at the end-of-life of buildings is usually a difficult task 5 

because limited time are usually made available for building removal and materials recovery. 6 

In this study, deep learning models were developed for predicting the amount (in tons) of 7 

salvage and waste materials that are obtainable from buildings at the end-of-life prior to 8 

demolition. Datasets used for deep neural network model developments were extracted from 9 

2,280 building demolition records obtained from the practitioners in the UK Demolition 10 

Industry. The data was partitioned into training, testing and validation datasets in the ratio 11 

8:1:1. Deep learning models were developed with a deep learning framework in R 12 

programming environment. The average R-squared value for the three deep learning models is 13 

0.97 with Mean Absolute Error between 17.93 and 19.04. The models were evaluated with four 14 

scenarios of a case study building design. The results of the evaluation show that, given basic 15 

features of buildings, it is possible to predict with a high level of accuracy, the amount of 16 

materials that would be recovered from a building after demolition. The models developed will 17 

provide decision support functionalities to demolition engineers and waste management 18 

planners during the pre-demolition audit exercise.  19 

Keywords: Deep learning, Deep Neural Network, Buildings’ End-of-Life, Circular Economy, 20 

Building Materials  21 

1 Introduction 22 

Enabling sustainable consumption and environmental sustainability require concerted 23 

efforts among the stakeholders in a circular economy (CE). Although there is increasing 24 
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awareness towards sustainable consumption and development (Fuchs et al., 2016), there is the 25 

need for systems and solutions that efficiently support processes and operations that lead to 26 

sustainability, especially in the architecture, engineering and construction (AEC) industry 27 

(Cheng and Ma, 2013). Determining the maximum derivable economic and environmental 28 

values from a building at the end-of-life prior to deconstruction and demolition is one of the 29 

key requirements for sustainability in the construction and demolition (C&D) industry (Song 30 

et al., 2017). Pre-demolition audits have been identified as a tool that provides valuable 31 

information required by stakeholders (clients, architects, engineers, contractors, planners etc.)  32 

in the C&D industry to optimise existing buildings as part of decommissioning, deconstruction 33 

and demolition process (Hurley, 2003). In the UK, pre-demolition audits are part of the 34 

requirements within the Building Research Establishment Environmental Assessment Method 35 

(BREEAM) construction scheme which specifies that the audit should ascertain if materials 36 

recovery for reuse is feasible and maximise materials recovery from the demolition for 37 

subsequent up-cycling (Adams, 2013).   38 

Through various legislations and the adoption of the circular economy model, concerted 39 

efforts are being put in place by governments of nations to extend the lifespan of building 40 

materials in the economy to conserve the embodied energy of materials (COM, 2014). To 41 

facilitate adequate planning for materials recovery and reuse at the end-of-life, it is essential to 42 

have access to information about the material type and quantities that would be generated from 43 

the process. This information is presently being obtained through pre-demolition audits in 44 

Europe (European Commission, 2018). Undertaking a pre-demolition audit could be very 45 

challenging, especially where little or no information is available. In circumstances where 46 

blueprints and sectional drawings that can be used to interpret the construction methods and 47 

materials used in the building are available, generating pre-demolition audits could be 48 

completed as a desktop study and complemented by visits to confirm the blueprints (Hurley, 49 
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2003). Completing pre-demolition audit as a desktop study is impracticable as most buildings 50 

that are due for demolition do not possess necessary 2D and 3D information. The required 51 

information about buildings for pre-demolition audits generation is usually gathered through 52 

direct measurement and examination of the building during site visits. This process of 53 

generating pre-demolition audit is very tedious, cumbersome and time-consuming (Hurley, 54 

2003).  It is also difficult to adequately prepare for how the arisings from demolition activities 55 

are reused, recycled or landfilled. This bottleneck usually leads to unexpected costs in arising 56 

separation, transportation and processing. This study provides an intelligent and objective 57 

approach for estimating the nature and volume of arisings and corresponding use cases (i.e. 58 

reusable, recyclable and items to be disposed) from basic building properties as input.  59 

Limited time is usually made available for old building removal from sites before the 60 

construction of new one commences. The demolition engineers have no luxury of time to allow 61 

for a thorough pre-demolition audit exercise. (Rose, 2019). The successful application of deep 62 

learning in different areas, for example, (Ajayi et al., 2019; Wan et al., 2014), informed our 63 

belief that its application for predicting demolition wastes will facilitate timely access to 64 

information about potential waste arisings from buildings at the end-of-life thereby supporting 65 

efficient planning for materials reuse and recycling. The novelty of this work is in the 66 

application of a carefully selected machine learning model to address the challenges of 67 

estimating end-of-life values of buildings. 68 

This study employs the deep learning technique to develop a computational tool for 69 

predicting the amount of building materials that are obtainable from building demolition 70 

exercise. This is to facilitate timely access to end-of-life properties of buildings to support 71 

decision making in terms of skip requirement planning, waste transfer station and direct reuse 72 

identification. The specific objectives are:  73 
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i. to design deep learning models for predicting amount in tons of building materials 74 

that would be generated from building after demolition. 75 

ii. to assess the accuracies of the models with the test dataset. 76 

iii. to evaluate the models with a case study building design. 77 

  78 

The rest of the paper is organised as follows: The literature review is covered in section 2, 79 

where approaches to predicting and estimating C&D waste and their limitations are presented. 80 

Various applications of deep learning models are also presented in section 2. The theoretical 81 

underpinning of this study is presented in section 3. Section 4 contains the methodology 82 

adopted for this study, where data description and model development are demonstrated. Model 83 

testing and evaluation are also presented in section 4. The Discussion and Conclusion are 84 

presented in sections 5 and 6.  85 

2 Literature Review  86 

In this section, various approaches for estimating construction wastes and demolition arisings 87 

are presented. Limitations of the existing methods are also discussed. Further, the application 88 

of deep learning models in diverse areas such as speech recognition, image processing, energy 89 

prediction etc. are presented. 90 

2.1 Approaches to construction and demolition waste estimation in a CE  91 

According to Wu et al., (2014), existing construction and demolition waste estimation 92 

and quantification process can be grouped into three categories, namely: construction waste, 93 

renovation waste and demolition waste. The result from the estimation and quantification of 94 

C&D waste process could provide necessary information to stakeholders to assess the potential 95 

wastes quantities, allowing for adequate preparation for their sustainable management (Yuan 96 

and Shen, 2011). The current method of estimating pre-demolition audit (also called waste 97 
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audit) is largely manual and requires a lot of time and effort since information such as material 98 

volume needed to be measured or retrieved from available documents manually. Previous 99 

works that have tried to estimate C&D wastes are presented in table 1. These works consider 100 

the various group of waste such as C&D waste, construction waste only and demolition and 101 

refurbishment waste at different coverage level (i.e. project level or regional level).  102 

Table 1: C&D Waste Prediction and Estimation Methods 103 

SN Method of Prediction/ 
Estimation and Sources 

Group of Waste Coverage 
Level 

Comment 

1 BIM based model for 
waste estimation 
 
Cheng & Ma (2013) 
 

 
 
Demolition and 
renovation 

 
 
 
Project 

This tool leverages the 
functionalities provided by 
BIM to estimate the 
demolition waste. It 
requires a, properly 
developed BIM model of 
building to function. BIM 
models are not available for 
most of the buildings that 
are due for demolition. 

2 Hybrid model based on 
gray model and support 
vector regression    
Song, Wang, Liu, & 
Zhang, (2017) 

 
 
C&D 

 
 
Region 

This approach to C&D 
waste prediction is based on 
the annual waste output of a 
region. It will be difficult if 
not impracticable to apply 
the approach at an 
individual project level. 

3 Li, Zhang, Ding, & Feng, 
(2016) 
Quantitative models for 
waste estimation based on 
material quantity takeoff, 
conversion ratios between 
different waste 
measurement units and 
work breakdown 
structure. 

 
 
Construction only 

 
 
Project 

The quantitative models 
developed used work 
breakdown structure 
(WBS), material quantity 
takeoff, etc. for predicting 
construction waste. These 
models rely on the 
availability of materials 
quantity takeoff for their 
operation. The quantity-
takeoff information is 
usually not available for 
most old buildings. 

 104 

 Cheng & Ma (2013) developed a tool for estimating demolition and renovation waste 105 

in Hong Kong, based on the functionalities provided by the Building Information Modelling 106 
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(BIM). The BIM based tool developed is capable of estimating demolition wastes from a 107 

properly prepared 3-D model of buildings.  Akanbi et al., (2018) developed a BIM-based 108 

system for estimating salvage value of building materials through a building’s lifecycle. In our 109 

opinion, these BIM based systems are excellent tools to support the demolition and 110 

refurbishment waste estimation of buildings with BIM models. The usability of the models is 111 

limited because almost all the buildings that are due for demolition and refurbishment has no 112 

BIM model. In fact, in some cases, the 2-D drawings are non-existent, limiting the usability of 113 

the tool.  114 

A hybrid model based on the model (GM) and support vector regression (SVR) for 115 

predicting annual C&D waste in China was developed in (Song et al., 2017). A transition 116 

matrix was used to compute the C&D waste quantities after the annual total area of construction 117 

(ATAC) has been estimated. This approach to C&D waste prediction is based on the annual 118 

waste output of a region. It will be difficult if not impracticable to apply the approach at an 119 

individual project level. Quantitative models for construction waste estimation were developed 120 

in (Li et al., 2016) in which material quantity takeoff, conversion ratios between different waste 121 

measurement units, wastage levels of different materials used in different work packages and 122 

work breakdown structure (WBS) are integrated. These tools rely on the availability of 123 

materials quantity takeoff for their operation. The materials quantity-takeoff information is 124 

usually not available for most old buildings. Also, the models only estimate construction waste. 125 

In summary, while the current state-of-the-art approaches for estimating the C&D wastes 126 

provide a huge improvement over the manual method of estimating the wastes through pre-127 

demolition audits, the challenges with them include their inability to be usable for old building 128 

stocks. For example, the approach developed in (Cheng and Ma, 2013) can only be used with 129 

buildings with properly prepared 3D model.  The hybrid model developed in (Song et al., 2017) 130 

can only be used to estimate annual C&D waste output of regions. This work seeks to fill this 131 
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gap by developing machine learning models to estimate the materials output from buildings 132 

based on the basic features of the building.   133 

2.2 Deep Learning Models and Application 134 

Deep learning (DL) is a computational technique that utilises multiple hidden processing 135 

layers for learning data representations and relationship with multiple levels of abstraction 136 

(LeCun et al., 2015). Deep learning models are neural networks that are made up of three 137 

principal layers, i.e. input, hidden and output layers. The hidden layers contain several layers 138 

with a large number of neurons in each layer. Different deep learning architectures have been 139 

used in different domain with a high level of performance reported. For example,  140 

unsupervised, pre-trained or feedforward neural networks which include Deep Belief Network 141 

(Lee, Grosse, Ranganath, & Ng, 2011), Deep Neural Network (Fayek et al., 2017), Recurrent 142 

Neural Networks (Schmidhuber, 2015), and Convolutional Neural Networks (Sharif Razavian 143 

et al., 2014) are examples of common deep learning architecture. In feedforward deep neural 144 

networks, data flows from the input layer to the output layer without looping back. Recurrent 145 

neural networks, allow data to flow in any direction and have been used extensively in language 146 

modelling (Sutskever et al., 2014). Convolutional Neural Networks are standard for computer 147 

vision applications (Klein et al., 2017). A summary of the description of these deep learning 148 

architectures is presented in table 2.  In the present work, the feedforward architecture has been 149 

employed because of its simplicity and suitability for regression problems.  150 

 151 

 152 

 153 
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Table 2: Deep Learning Architecture and Model Description 154 

DL Model Description 

Deep Neural Network Deep Neural Networks (DNN) are feed-forward neural networks that 
comprise multiple layers of transformations and nonlinearity with the 
output of each layer feeding the subsequent layer (Fayek et al., 2017). 
Detail description of DNN is provided in the section 3.3. 

Convolutional Neural 
Network  

Convolutional Neural Networks (CNN) are the architecture of deep 
learning suitable for image processing. According to (LeCun et al., 
2015), CNNs are designed to process data in the form of multiple arrays, 
e.g. signals and sequences, images or audio spectrograms and video or 
volumetric images. 

Recurrent Neural 
Network 

Recurrent Neural Network (RNN) processes an input sequence one 
element at a time, maintaining in their hidden units, a state vector that 
implicitly contains information about the history of all the past elements 
of the sequence (LeCun et al., 2015). RNNs are parameterized families 
of probability distributions that extrapolate a finite training set to a 
distribution over an entire space (Sutskever, 2013). 

Deep Belief Network This is are probabilistic generative models that contain multiple layers 
of stochastic, latent variables (Heaton, 2015).  Deep Belief Network is a 
stack of Restricted Boltzmann Machines with a single layer of feature-
detecting units. (Schmidhuber, 2015) 

 155 
 156 

Our motivation for employing deep learning in this study is because of its capacity to 157 

discover complex structures and relationships in high-dimensional data and its ability to 158 

dynamically construct new task-specific attributes from data representations (Wan et al., 2014). 159 

This feature has enabled DL models to surpass existing machine learning approaches, as 160 

demonstrated in various classification and regression works (Mayr et al., 2016). For example, 161 

deep learning has been successfully used in domains such as vision and image processing (Pang 162 

et al., 2017), speech recognition (Fayek et al., 2017), and traffic control (Zhao et al., 2017). 163 

Other application areas are power and energy consumption (Fan et al., 2017), credit scoring 164 

(Luo et al., 2017), drug molecule analyses (Ma et al., 2015), building cooling load prediction 165 

(Fan et al., 2017; Luo et al., 2019), natural language processing (Costa-jussà et al., 2017), and 166 

medicine (AlRahhal et al., 2016). Other important features of DL models are the ability to work 167 

better with massive data sets and handle high dimensional, nonlinear relationships in a sparse, 168 
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noisy data (Mamoshina et al., 2016). DL models also possess the capability to track and 169 

generate attribute importance and contribution towards the achievement of a training goal (Lee 170 

et al., 2017). Details of the mathematical description of deep neural networks are presented in 171 

section 3.3. 172 

3 Theoretical Background to the Study 173 

Taking a cue from Akinade, (2017), this study is underpinned by two well establish 174 

theories, as shown in figure 1. These theories are (i) theory of artificial intelligence and (ii) 175 

theory of the tragedy of the commons. The two theories are obtained from the fields of machine 176 

intelligence and resource management. Details of these theories are presented in the following 177 

subsections. 178 

 179 

 180 

 181 

 182 

 183 

3.1 Theory of the tragedy of the commons 184 

The theory of the tragedy of the commons explains the danger inherent in the selfish 185 

indiscriminate use of a finite resource (Hardin, 1968). A wide range of common resources was 186 

enunciated by (Hardin, 1968) and sought to incorporate various restraints to encourage a 187 

balanced coexistence within the society.  The theory of the tragedy of the commons can be 188 

considered as providing the basis for the principle of material circularity in a circular economy. 189 

Considering construction materials and landfill sites as a common resource which are finite in 190 

nature, then this work leverages the development in AI to facilitate planning for material reuse 191 

and recycling as well as the reduction in the amount of materials that are landfilled.  192 

Figure 1: Theoretical Underpinning of this Study 

Deep Learning 
Model for 

Demolition Waste 
Prediction 

Theory of Artificial 
Intelligence 

Theory of the 
Tragedy of the 

Commons 

Decision Support 
Purpose 

Circular Economy 
Principle Support 
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3.2 Theory of the artificial intelligence 193 

This study is hinged on the proposition at the Dartmouth conference of 1956 on artificial 194 

intelligence(AI) that  “every aspect of learning or any other feature of intelligence can in 195 

principle be so precisely described that a machine can be made to simulate it” (McCarthy et 196 

al., 2006)., Although the philosophical issue of whether a machine could act intelligently is a 197 

topic that generates ongoing discussion (Akinade, 2017), the epistemological and heuristic part 198 

of AI form the theoretical basis for this study. While the epistemological part of AI is concerned 199 

with the nature of information about the world, the heuristic part deals with mechanisms of 200 

using the information stored in the memory of machines for solving and interpreting solutions 201 

to problems. The epistemological and heuristic suitability is required to define the existing pre-202 

demolition audit estimation problem with a computational tool.  203 

3.3 Mathematical Description  204 

The solution developed in this study is represented symbolically to show the relationship 205 

between the input features and the resultant output as would be represented in the memory of 206 

a computer machine.  Basic features of building that include (i) gross floor area (GFA), (ii) 207 

building volume (iii) number of floor (iv) building architype and (iv) building usage type, are 208 

the independent variable (X) and the amount in tons of building material is the dependent 209 

variable (Y). The goal is to develop a relationship between the basic building features and the 210 

materials outputs that are expected from the building demolition. Equation (1) shows the 211 

description of the relationship between the basic building features and the amount of the 212 

recyclable material.  The actual relationship between the building features and the recyclable 213 

amount are established during the training of the DNN model based on the internal state of the 214 

machine.  215 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = 𝑓𝑓(𝑔𝑔𝑓𝑓𝑅𝑅, 𝑣𝑣𝑣𝑣𝑅𝑅𝑣𝑣𝑣𝑣𝑅𝑅,𝑓𝑓𝑅𝑅𝑣𝑣𝑣𝑣𝑓𝑓𝑓𝑓,𝑣𝑣𝑓𝑓𝑅𝑅𝑔𝑔𝑅𝑅,𝑅𝑅𝑓𝑓𝑅𝑅ℎ𝑖𝑖𝑖𝑖𝑅𝑅𝑖𝑖𝑅𝑅)                               (1) 216 
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Similarly, equations (2) and (3) show the description of the relationship between the basic 217 

building features and reusable and landfill amounts.  218 

𝑅𝑅𝑅𝑅𝑣𝑣𝑓𝑓𝑅𝑅 = 𝑓𝑓(𝑔𝑔𝑓𝑓𝑅𝑅, 𝑣𝑣𝑣𝑣𝑅𝑅𝑣𝑣𝑣𝑣𝑅𝑅,𝑓𝑓𝑅𝑅𝑣𝑣𝑣𝑣𝑓𝑓𝑓𝑓,𝑣𝑣𝑓𝑓𝑅𝑅𝑔𝑔𝑅𝑅,𝑅𝑅𝑓𝑓𝑅𝑅ℎ𝑖𝑖𝑖𝑖𝑅𝑅𝑖𝑖𝑅𝑅)                                           (2) 219 

𝐿𝐿𝑅𝑅𝐿𝐿𝐿𝐿𝑓𝑓𝑖𝑖𝑅𝑅𝑅𝑅 = 𝑓𝑓(𝑔𝑔𝑓𝑓𝑅𝑅, 𝑣𝑣𝑣𝑣𝑅𝑅𝑣𝑣𝑣𝑣𝑅𝑅, 𝑓𝑓𝑅𝑅𝑣𝑣𝑣𝑣𝑓𝑓𝑓𝑓, 𝑣𝑣𝑓𝑓𝑅𝑅𝑔𝑔𝑅𝑅,𝑅𝑅𝑓𝑓𝑅𝑅ℎ𝑖𝑖𝑖𝑖𝑅𝑅𝑖𝑖𝑅𝑅)                                      (3) 220 

The underlying principle in this work is to use the basic feature of a building to predict the 221 

amount of the building materials and their categories (reusable, recyclable and landfill) that 222 

will result from building deconstruction and demolition at the end-of-life.  223 

Through training, the computer machine (DNN machine in this case) learn the 224 

relationship between the dependent variable and independent variables and maps an input to 225 

the output, i.e.  𝑌𝑌 = 𝑓𝑓(𝑋𝑋). This mapping is parameterised by weights, which are optimised 226 

during the learning process. The machine uses data samples to train a model to make 227 

predictions while passing learned features of data through different layers of abstraction. DNNs 228 

usually have many hidden layers with large neurons, and thousands of neurons may exist in 229 

each layer (Ciresan et al., 2012). This feature distinguishes DNNs from the traditional artificial 230 

neural networks that have a modest number of neurons. The deep learning process is formally 231 

described as follows.  Let the output of a neuron at layer ℓ be denoted by ℎℓ, and its input 232 

vector coming from the previous layer by ℎℓ−1, then we have the activation of neurons in matrix 233 

notation defined as ℎℓ = 𝜎𝜎�𝑅𝑅ℓ+𝑊𝑊ℓℎℓ−1�. ℎℓ denotes the output of a neuron at layer ℓ, and its 234 

input vector by ℎℓ−1 coming from the previous layer, 𝑅𝑅ℓ is a vector of biases, 𝑊𝑊ℓ is a matrix 235 

of weights and 𝜎𝜎(∙) is the activation function, which is applied element-wise. Activation 236 

functions are nonlinear transformations of weighted data. Examples are tanh, rectified linear 237 

unit, sigmoidal and maxout. 238 
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At the input layer, the input vector, 𝑥𝑥 = ℎ𝑜𝑜, is the raw data to be analysed by the 239 

network. The output vector ℎℓin the output layer is used to make predictions. For a multi-class 240 

classification task, the output of layer ℓ is defined as in equation (4). 241 

ℎ𝑖𝑖ℓ =
𝑅𝑅𝑥𝑥𝑖𝑖�𝑅𝑅𝑖𝑖ℓ + 𝑊𝑊𝑖𝑖

ℓℎℓ−1�
∑ 𝑅𝑅𝑥𝑥𝑖𝑖�𝑅𝑅𝑗𝑗ℓ + 𝑊𝑊𝑗𝑗

ℓℎℓ−1�𝑗𝑗
                           (4) 242 

where 𝑊𝑊ℓ is the matrix of weights, 𝑊𝑊𝑖𝑖
ℓ is the 𝑖𝑖𝑡𝑡ℎ row of 𝑊𝑊ℓ, ℎ𝑖𝑖ℓ > 0, and ∑ ℎ𝑖𝑖ℓ = 1𝑖𝑖  and for a 243 

regression task, the output is given in equation (5) as 244 

ℎ𝑖𝑖ℓ = 𝛼𝛼𝑜𝑜𝑜𝑜 + 𝛼𝛼𝑜𝑜𝜎𝜎�𝑅𝑅𝑖𝑖ℓ + 𝑊𝑊𝑖𝑖
ℓℎℓ−1�                    (5) 245 

where α0k represents the bias applied to the output layer and αk the set of weights between the 246 

previous layers and the last. The outputs and the target function y are used together in a cost 247 

function ℰ�ℎℓ,𝒴𝒴�, which is convex in 𝑅𝑅ℓ + 𝑊𝑊ℓℎℓ−1. The cost functions for both classification 248 

and regression tasks are defined in equations (6) and (7). 249 

ℇ�ℎℓ,𝑅𝑅� = −𝑅𝑅𝑣𝑣𝑔𝑔ℎ𝑦𝑦ℓ , 𝐶𝐶𝑅𝑅𝑅𝑅𝑓𝑓𝑓𝑓𝑖𝑖𝑓𝑓𝑖𝑖𝑅𝑅𝑅𝑅𝑖𝑖𝑖𝑖𝑣𝑣𝐿𝐿               (6)  250 

ℇ�ℎℓ,𝑅𝑅� = �𝑅𝑅 − ℎ𝑦𝑦ℓ�
2

, 𝑅𝑅𝑅𝑅𝑔𝑔𝑓𝑓𝑅𝑅𝑓𝑓𝑓𝑓𝑖𝑖𝑣𝑣𝐿𝐿             (7) 251 

ℎ𝑦𝑦ℓ  is the network output and y is the desired response.  The architecture of a typical feedforward 252 

deep neural network is presented figure 2. The input layer provides the required dataset for the 253 

model to learn the patterns and map them to the corresponding output. 254 
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 255 

Figure 2: Architecture of Feedforward Deep Neural Network 256 

 257 

4 Research Methods 258 

The process of data acquisition, data pre-processing, feature selection and deep learning 259 

model development are presented in this section.  The quantity and end-of-life use case of 260 

building materials are predicted by using DL based models. The data acquisition and pre-261 

processing, as well as model development, are presented in the following subsections. The 262 

general research outline for this study is presented in figure 3. Data pre-processing and 263 

selection of variables are carried out to clean the deconstruction and demolition datasets 264 

obtained from the UK members of Institution of Demolition Engineers (IDE) and National 265 

Federation of Demolition Contractors (NFDC). Three DNN models were constructed to set 266 

relationships between dependent and independent variables. Selected variables from the dataset 267 

make up the independent variables, while recyclable, reusable and landfill components of the 268 

total recoverable building materials make up the dependent variables. Relevant optimisation 269 

techniques are then used to maximise each model’s prediction accuracy. The DNN model 270 

interpretation is presented next. The Interpretable Machine Learning (IML) features of R-271 

package are used to present the interpretation of the models. Lastly, the prediction accuracies 272 
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of the models are evaluated on test data using evaluation metrics that include Mean Absolute 273 

Error (MAE), Accuracy, Kappa statistic, Sensitivity and R-squared (R2). The models are then 274 

evaluated on a case study building. The ground floor plan and detail information about the case 275 

study building have been presented in our previous work (Akanbi et al., 2019; Akinade et al., 276 

2015).   277 

 278 

Figure 3: Research methodology outline 279 

 280 

4.1 Data acquisition, pre-processing and variable selection 281 

The data used in this work is made up of the building demolition records obtained from 282 

members of the UK’s National Federation of Demolition Contractors (NFDC) and Institute of 283 

Demolition Engineers (IDE). Our informants are major players in the demolition industry in 284 

the UK. It should be mentioned at this juncture that, it is not always possible for the demolition 285 

engineers to get adequate records of materials from building demolition exercise. This is mostly 286 

due to lack of space, time and facility to segregate demolition rubbles on site. The practice is 287 

to transport the rubbles to the nearest Waste Transfer Stations (WTS) where proper segregation 288 

is done and the materials put into the correct route (reuse, recycle or landfill). The WTS would 289 

have been the ideal source of data for this work, but there is a major challenge of mapping 290 
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outputs from waste segregation process to the actual buildings that produced the waste. This is 291 

because building rubbles from different demolition site are aggregated at the WTS before 292 

further processing. 293 

Demolition records from 2,280 buildings were obtained. The dataset comprises 294 

information about buildings and the amount of different building materials obtained from the 295 

demolition work. Generally, Demolition Engineers keep as much information as possible about 296 

the building to be demolished. This building information includes the location of the building, 297 

owner of the building, building features such as gross floor area, volume, presence of 298 

mezzanine, down below, underground tank etc. With the support of our informants, five key 299 

features of buildings are identified as major determinants of the quantity of building materials 300 

recoverable from demolition work.  These features include gross floor area (GFA), volume, 301 

number of floors, building architype and usage. The dataset also contains entries for each of 302 

the waste categories (reusable, recyclable and landfill). A negligible fraction (9 records, i.e. 303 

0.004%) of the dataset contains missing information (i.e. the volume of the building). The 304 

missing volumes were calculated by multiplying the gross floor area of the building by the 305 

typical height of a building (i.e. 2.80m). Part of the dataset is presented in table 3 due to limited 306 

available space. The distribution of the dataset with respect to building architypes and building 307 

usage are presented in figures 4 and 5. 308 

 309 

 310 

 311 

 312 
 313 
 314 
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Table 3: Sample Building Demolition Data 315 

Building Features Output (tons) 

Id Architype Usage GFA Volume Floors Total Recycle Reuse Dispose 

Bld_1 Concrete Offices 1233.00 04315.50 5 0827.2192 0737.4018 0081.9335 0007.8838 

Bld_2 Concrete Offices 4320.00 15121.00 3 0495.2443 0444.4498 0049.3833 0001.4111 

Bld_3 Concrete Offices 3642.00 12782.00 6 2640.0006 2337.1200 0259.6800 0043.2006 

Bld_4 Concrete Education 4582.00 16037.00 2 1382.0142 1105.6679 0122.8520 0153.4943 

Bld_5 Concrete Education 3679.00 12876.50 2 1108.5596 0886.9059 0098.5451 0123.1086 

Bld_6 Concrete Education 1553.00 05435.50 2 0469.0567 0375.3015 0041.7002 0052.0550 

Bld_7 Concrete Education 1833.00 06415.50 2 0554.0118 0443.2702 0049.2522 0061.4893 

Bld_8 Concrete Education 0014.00 00042.00 1 0012.0659 0009.6640 0001.0738 0001.3280 

Bld_9 Concrete Education 0015.80 00047.50 1 0014.3046 0011.4497 0001.2722 0001.5827 

Bld_10 Concrete Education 0015.10 00045.50 1 0012.8742 0010.3130 0001.1459 0001.4153 

Bld_11 Concrete Retail 0272.00 01632.00 1 0161.7586 0143.3397 0015.9266 0002.4922 

Bld_12 Concrete Offices 9526.00 33341.00 5 0196.5606 0175.9320 0019.5480 0001.0806 

Bld_13 Concrete Retail 0957.50 76380.00 1 0498.1691 0383.2304 0042.5812 0072.3576 

Bld_14 Concrete Education 0207.50 00726.00 1 0034.4868 0022.8271 0002.5363 0009.1234 

Bld_15 Concrete Education 1069.00 03742.00 1 0126.5902 0108.6538 0012.0726 0005.8638 

Unit of variables: GFA – m2, Volume – m3, Architype – number, Usage – number, Floors – number 316 
 317 
 318 
 319 

 320 
 321 
 322 
 323 
 324 
 325 
 326 
 327 
 328 
 329 
 330 
 331 
 332 
 333 
 334 
 335 
 336 
  337 

Figure 4: Distribution of Building Demolition Data based on Building Architype 338 

 339 

Total   2280 
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 340 

Figure 5: Distribution of Building Demolition Data based on Building Usage 341 

 342 

4.2 Deep Neural Network Model Development 343 

The architecture of DNN models for predicting the amount of building materials in tons 344 

based on the selected input is presented in this section. Three DNN models are developed to 345 

predict the amount of recycled, reused and landfill materials. Figure 6 shows the DNN 346 

architecture employed for the prediction of demolition waste and their categories.  The dataset, 347 

after pre-processing was split into 80% for training, 10% for testing and 10% for validation.  348 

Precisely, 1708 observations were used to build the models through supervised training with 349 

the remaining 520 observations used for validation and testing of the models.  Three regression 350 

models were developed in using the h2o deep learning framework in R data analysis and 351 

programming environment. h2o is an open source CRAN package, high-speed, and Java machine 352 

learning library software, designed with distributed algorithms scale to big data (Kochura et al., 2018).  353 

h2o has an interface to Python, Scala, R, Spark, and Hadoop. 354 
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Examining the sensitivity of deep neural networks is a way to find an optimal structure 355 

of the network (Al-Rahhal et al., 2016). To obtain the best validation results for the DNN 356 

models, there is need to determine the best structure of the neural network (i.e. the number of 357 

hidden layers, the number of activation units in each layer and activation functions) and control 358 

hyper-parameters. The control hyper-parameter was obtained through the use of random 359 

search. The random search approach is many times more efficient than the grid search method 360 

in that it replaces the regular grid by random sampling (Tixier et al., 2016). According to (Lee 361 

et al., 2011), the network architecture is responsible for classification and prediction accuracy 362 

improvement. The three DNN models are objectively evaluated with respect to architecture. 363 

The control parameters shown in table 4 are tuned to maximise each model’s prediction 364 

accuracy on the test dataset. Different hyper-parameter combination obtained through random 365 

search are applied to each of the models. Optimal control settings are determined by a 5-fold 366 

cross-validation with 10% holdout.  367 

In deep learning model development, the validation process prevents overfitting by 368 

comparing the performances of prediction algorithms created using the training data and 369 

selecting the algorithm that exhibits the best performance metric. In this case, an algorithm 370 

with the least Mean Absolute Error (MAE) is chosen as suggested in (Tixier et al., 2016).  The 371 

accuracies of different DNN network structures for reusable materials, with respect to MAE 372 

and R-Squared, are depicted in figures 7 and 8. We settled for the optimal structure with four 373 

layers (6, 12, 12 and 6 neurons in layers 1, 2, 3 and 4), Rectifier activation function, ℓ1 = 1𝑅𝑅 −374 

3 , ℓ2 = 1𝑅𝑅 − 8, and epoch =250. This structure has the least MAE value of 17.9326 value and 375 

R-Squared value of 0.9818. Besides, we found out that for this specific regression problem the 376 

higher number of neurons were not making a significant difference in the accuracy of the model 377 

and which necessitate our choice of fewer neurons to reduce network’s complexity. The 378 

optimal topology is denoted with a magenta line with small circles at the plotting points in 379 
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figure 7 and 8.  The architectures of the other two DNN models are determined accordingly, 380 

and appropriate optimal hyper-parameter values were obtained. 381 

 382 

Figure 6: DNN Model Architecture for Demolition Waste Prediction 383 

 384 
Table 4: Hyper-parameter combinations 385 

Parameter List 

Activation function Rectifier, Maxout, RectifierWithDropout, Tanh, TanhWithDropout, 
etc. 

layers 1, 2, 3, 4 

neurons 40, 100, 180, 270, 500 

rho 0.9, 0.999 

epoch 10, 30, 50, 100 

epsilon 1e-10, 1e-4 

ℓ1 regularisation 0, 1e-4, 1e-7, 1e-8 

ℓ2 regularisation 0, 1e-4, 1e-6, 1e-7 

input_dropout_ratio 0, 0.05 

 386 
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 387 

                    388 
Figure 7:  Accuracy of DNN configurations for reusability with MAE as the metric 389 

                        390 
Figure 8: Accuracy of DNN configurations for reusability with R-Squared as the metric 391 

 392 

There are several deep learning optimisation algorithms such as Least-squares methods 393 

(Gauss-Newton, Levenberg–Marquardt), quasi-Newton methods (Broyden–Fletcher–394 

Goldfarb–Shanno (BFGS)) amongst others. These methods are too costly in terms of 395 
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computation resources required for neural networks (Schmidhuber, 2015). Conjugate gradient 396 

(CG), Limited-memory-BFGS (L-BFGS) and other methods are fast alternatives, but the CG 397 

algorithm, in general, requires more cycles to reach the minimum and L-BFGS can overfit on 398 

a small training set (Bengio, 2012). 399 

Stochastic Gradient Descent (SGD) algorithm is a fast training procedure for reducing 400 

the cost or loss function (computing a gradient overall training samples), compared with other 401 

optimisation techniques. (Bottou, 2010) The algorithm computes outputs, errors and the 402 

average gradient of observations, and adjusts the weights where necessary. Using a 403 

parallelisation technique with a suitable DNN architecture, the performance of the SGD 404 

algorithm over L-BFGS improves with the size of the training data (Bengio, 2012). The 405 

parallelised SGD (Recht et al., 2011) is applied in the development of the three DNN models. 406 

The parallelised SGD models a lock-free shared-memory system where each processor 407 

independently performs stochastic gradient updates. The lock-free stochastic gradient keeps a 408 

global result vector and allows each processor to update the vector without considering other 409 

processors. Under certain conditions, this asynchronous procedure preserves the convergence 410 

of stochastic gradient methods and results in ample speed-ups for many available cores (Recht 411 

et al., 2011). All models tuning, training and prediction were performed using the h2o 412 

framework in R. h2o was adopted because it is a fast and scalable open-source framework for 413 

machine learning applications development. 414 

4.3 Effect of Small and Bias Data 415 

According to Mayr et al. (2016), DNN is synonymous with big-data applications and, it 416 

results in overfitting when used on a small dataset. To mitigate the problem of overfitting, the 417 

dropout technique combined with SGD was incorporated in the training procedure. Data 418 

imbalance is a form of bias in machine learning, where the class distribution is not uniform 419 

among various classes. For instance, missing data also represent an aberration in data, which 420 
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could significantly affect the prediction. The DNN structures used in this study (insensitive to 421 

imbalanced data) are similar to the classic DNN (Larochelle et al., 2009). The h2o framework 422 

automatically performs mean imputation for missing values during training. 423 

4.4 Performance Metrics for Model Verification 424 

The predictive accuracies of the three DNN models on test dataset were measured to 425 

assess their generalisation abilities as suggested by (LeCun et al., 2015). Mean Absolute Error 426 

(MAE) and R-squared were used to evaluate the performance of the DNN models. MAE and 427 

R-squared are scale-dependent metrics that provide reliable ways to quantify prediction error 428 

(Fan et al., 2017). The target is to minimise these metrics to obtain the highest prediction 429 

accuracy for the model. These metrics are defined in equations (8) and (9), where ti denotes 430 

target i, yi denotes prediction i and N is the number of testing observations.  431 

𝑀𝑀𝑀𝑀𝐸𝐸 =
1
𝑁𝑁
�|𝑖𝑖𝑖𝑖 − 𝑅𝑅𝑖𝑖|
𝑁𝑁

𝑖𝑖=1

                                            (8) 432 

 433 

𝑅𝑅𝑀𝑀𝑅𝑅𝐸𝐸 = �
1
𝑁𝑁
�(𝑖𝑖𝑖𝑖 − 𝑅𝑅𝑖𝑖)2
𝑁𝑁

𝑖𝑖=1

                                       (9) 434 

The DNN models’ complexity was determined by computing the time spent on training each 435 

model. The computational tool on which the simulation was carried out was a MacBook Pro 436 

(Intel Core i7 processor of 2.5 GHz and random-access memory of 16 GB), and the models 437 

were developed in the R language.  438 

4.5 Model Testing and Evaluation 439 

The accuracy of the three DNN models is tested with the use of R-Squared metrics. The use of R-440 

Squared, as a performance metric for regression problems, shows the level of closeness of the predicted 441 

values to the actual values. The accuracies of the three DNN models, i.e. recyclable, reusable and 442 
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landfill models, are presented in table 5. On the average, the DNN model for recyclable materials 443 

achieved 94.75% prediction accuracy, the DNN model for reusable materials achieved 97.89%, and the 444 

DNN model for landfill materials achieved 99.44% prediction accuracy. The overall average 445 

performance of the three models based on the R-squared performance metrics is 97.00%. This 446 

performance accuracy is in line with results obtained in similar construction related studies e.g. (Geyer 447 

and Singaravel, 2018; Singaravel et al., 2018). In Singaravel et al., (2018),  deep learning based 448 

neural network models were used to predict the heating and cooling energy requirement of 449 

building designs. The R-squared values obtained ranged from 0.993 to 0.999. The component 450 

based neural network model developed in Geyer and Singaravel (2018) for building 451 

performance prediction achieved R-squared values that ranged from 0.848 to 0.999. A sample 452 

actual, predicted and absolute error values by the three DNN models are presented in tables 6 - 8. The 453 

three models’ performance show an absolute error of less than 1.00 across all the testing dataset. The 454 

average absolute error from the evaluation results presented in figures 6 – 8 is 0.2116, an indication of 455 

a good generalisation capability of the three DNN models with no underfitting or overfitting of the 456 

training dataset.  457 

Table 5: DNN Models Performance Accuracies 458 

DNN model (Recyclable) DNN model (Reusable) DNN model (Landfill) 
Dataset %accuracy 

(R2) 
Dataset %accuracy 

(R2) 
Dataset %accuracy 

(R2) 

training 0.9508 training 0.9737 training 0.9935 
testing 0.9616 testing 0.9818 testing 0.9947 
validation 0.9302 validation 0.9812 validation 0.9949 

Average 0.9475 Average 0.9789 Average 0.9944 

 459 
 460 
 461 
 462 
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Table 6: Actual and Predicted Values from Recyclable DNN Model - test data sample 463 

Actual Prediction Absolute error 

077.1742 077.2259 0.0517 
114.8829 114.7919 0.0910 
077.8434 077.7482 0.0952 
011.4497 011.6348 0.1851 
008.7131 008.9901 0.2770 
077.1048 077.4129 0.3081 
389.2500 389.7038 0.4538 
378.0900 378.5168 0.4268 
111.4478 111.8412 0.3934 
389.2500 389.7038 0.4538 

 464 

Table 7: Actual and Predicted Values from Reusable DNN Model based - test data sample 465 

Actual Prediction Absolute error 
22.1530 22.1276 0.0254 
22.0569 22.1191 0.0622 
22.2522 22.1458 0.1064 
22.3512 22.1592 0.1920 
21.8897 22.0844 0.1947 
39.9520 39.7254 0.2266 
21.8309 22.0581 0.2272 
01.3981 01.1438 0.2543 
10.3712 10.7135 0.3423 
22.3141 22.0597 0.2544 

 466 

 467 
 468 
 469 
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Table 8: Actual and Predicted Values from Landfill DNN Model based - test data sample 470 

Actual Prediction Absolute error 

01.1043 01.1525 0.0482 
12.6600 12.6110 0.0490 
12.6600 12.6110 0.0490 
68.3400 68.1930 0.1470 
04.9700 04.7793 0.1907 
01.0687 01.2613 0.1926 
01.1683 00.9552 0.2131 
01.0705 01.3510 0.2805 
01.1813 00.8881 0.2932 
00.1838 00.4474 0.2636 

 471 

4.6 Model Evaluation with Case Study 472 

Having evaluated the DNN models based on their accuracy measured with R-squared 473 

and mean absolute error. Next, we evaluate the models on the real-life use case. The DNN 474 

models were evaluated with a use case building while considering four scenarios of the 475 

structural components of the building. The four scenarios are: (i) concrete, (ii) steel, (iii) 476 

masonry, and (iv) timber. Table 9 shows the features of the case study building. The gross floor 477 

area of the building was derived from the summation of the floor areas of the three floors in 478 

the building while the volume of the building was calculated by multiplying the gross floor 479 

area with the height of the building.   480 

 481 

 482 

 483 
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Table 9: Design Features of the Case Study Building 484 

Feature Value 

Building usage type Education - Office 

Number of floors 0003.00 

Area of the ground floor  0492.00m2 

Area of the 1st floor  0351.00m2 

Area of the 2nd floor  0351.00m2 

Height of the floor to ceiling (h) 0002.80m 

Gross floor area (gfa) 1194.00m2 

Volume of the building (gfa x h) 3343.20m3  

 485 

Table 10 shows the results of the evaluation of the DNN models on the case study 486 

building. Four combinations of the building features are used for the evaluation to realise four 487 

possible architypes that a building could have. In table 11, the analysis of the predicted end-of-488 

life arisings are presented. The analysis shows that the building with concrete has 73.61% 489 

recyclable, 11.31% reusable (direct reuse) and 15.08% dispose to landfill materials. While, the 490 

building with masonry has 56.98% recyclable, 39.44% reusable and 3.58% landfill materials. 491 

The building with steel generates 33.33%, 65.71, and 0.96% of recyclable, reusable and landfill 492 

materials. The building with timber frame produces recyclable, reusable and landfill arisings 493 

in the ratio of 16.12%, 83.37%, and 0.51%.  From the results, the building with timber frame 494 

generates the highest reusable end-of-life arisings followed by the building with steel frame. 495 

The building with the concrete frame generates the least reusable arisings followed by the 496 

building with the masonry frame. Similarly, the timber frame building generates the least waste 497 

to landfill followed by steel frame building.  498 

  499 
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Table 10: Result of Evaluation of the DNN Models with Case Study 500 

Building Features Predicted Outputs Values (tons) 
Architype Usage GFA Volume Floors Recyclable Reusable Landfill Total 
Concrete Education 1194.00m2 3343.20m3 0003 0595.68 0091.56 0122.02 0809.26 
Masonry Education 1194.00m2 3343.20m3 0003 0653.20 0452.18 0041.00 1146.39 
Steel Education 1194.00m2 3343.20m3 0003 0955.58 1884.32 0027.39 2867.29 
Timber Education 1194.00m2 3343.20m3 0003 0223.35 1155.27 0007.10 1385.72 

 501 
 502 

Table 11: Analysis of the predicted end-of-life arisings 503 

Architype Recyclable Reusable Landfill 

Concrete 73.61% 11.31% 15.08% 

Masonry 56.98% 39.44% 03.58% 

Steel 33.33% 65.71% 00.96% 

Timber 16.12% 83.37% 00.51% 

 504 

The distribution of the end-of-life arisings and their use cases as shown from the evaluation 505 

of the DNN models are consistent with results in previous studies (Akanbi et al., 2018; Akinade 506 

et al., 2015). Noticeably, there are slight variations in the distribution of the arisings for the 507 

different frame types when compare with the previous studies. For example, in Akanbi et al., 508 

(2018), timber frame building generates arisings in the ratio of 0.65 of reusable and 0.35 of 509 

recyclable whereas in the present study, the ratio is 0.83 reusable and 0.16 recyclable. The 510 

increase in the amount of reusable timber is due to factors such as the existence of the need for 511 

timber materials, enough time to carry out onsite sorting etc. at the time of demolition.  512 

 513 

5 Discussion 514 

The deep learning models developed in this work take advantage of the advancement in 515 

big data and machine learning algorithms to establish a meaningful relationship between the 516 
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independent variables, (i.e. building architypes, building usage, building’s gross floor area, 517 

number of floors and volume) and corresponding dependent variables (recyclable materials, 518 

reusable materials and landfill materials). The three DNN models developed have an average 519 

accuracy of 97% when R-squared is used as the performance metric. The independent variables 520 

contribute to the three DNN models’ performance differently, for the recyclability DNN model, 521 

building usage type has the highest level of importance i.e.1.00 followed by gross floor area 522 

(0.95), number of floor (0.91), architype (0.76) and lastly volume (0.62) as shown in figure 9.  523 

In the reusability DNN model, the number of floors in a building is a major determinant with 524 

1.00 level of importance, the least important variable is the volume with 0.64 level of 525 

importance. Figure 10 shows the variable importance levels of the independent variables for 526 

the reusability DNN model. In figure 11, the variable importance levels of the independent 527 

variables for the landfill DNN model is presented. The number of floors in a building has the 528 

highest level of importance (1.00), followed by the gross floor area with 0.87 level of 529 

importance. The least variable that contributes to the model is the volume with 0.23 level of 530 

importance.  531 

The analysis of the variable importance shows that out of the five independent variables, 532 

the number of floors has the highest level of importance across the three models while the 533 

volume has the least level of importance across the three models. The architype (frame type) 534 

is the next least important consistently across the three models. The volume and architype 535 

consistently contribute less to the performance of the models, their level of importance across 536 

the three model ranges from 0.23 to 0.77 which justify their inclusion in the variables that 537 

determine the output of a demolition. Our choice of the building features used for training the 538 

DNN models was guided by the experts (i.e. demolition engineers, and refurbishment & 539 

demolition surveyor), the level of significance of these variables to the models’ high 540 

performance justify their choice.  541 
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 542 

Figure 9: Variable Importance Plot for Recyclable DNN Model 543 

 544 

Figure 10: Variable Importance Plot for Reusable DNN Model 545 

 546 

Figure 11: Variable Importance Plot for Landfill DNN Model 547 

NO_OF_FLOOR 

NO_OF_FLOOR 

NO_OF_FLOOR 

Level of Significance of Input Variables to Model Performance 

Level of Significance of Input Variables to Model Performance 

Level of Significance of Input Variables to Model Performance 



30 
 

The results from the evaluation of the DNN models with different scenarios of the case 548 

study building confirm the conclusion of previous studies (Akanbi et al., 2019, 2018; Akinade 549 

et al., 2015) that timber and steel based buildings produce end-of-life materials that are mostly 550 

reusable through either direct reuse or recycling. The present study also shows the end-of-life 551 

performance of the masonry-based building. The masonry-based building generates end-of-life 552 

arising that is 56.98% recyclable, 39.44% reusable and 3.58% waste materials to landfill. The 553 

masonry-based building performs more than three times better than concrete-based building in 554 

terms of materials reusability. The reason for the masonry performance is not farfetched, bricks 555 

and blocks which are the basic components of a masonry building come in standard sizes, 556 

which makes them readily usable in other projects without any modification.  557 

While the current results are in line with results from previous studies, the present study 558 

establishes the possibility of using basic information about building to predict the end-of-life 559 

arisings. Previous works depend on the availability of a well-defined federated building BIM 560 

of the building to estimate the end-of-life arisings. The prediction functionality provided by the 561 

DNN models in this study is particularly useful in the situation where there little or no 562 

information about a building that is meant to be deconstructed/demolished. This is the situation 563 

with the most buildings that are due to be demolished in the UK. When integrated with our 564 

BIM based system for evaluating the end-of-life performance of building design (Akanbi et al., 565 

2019), the present work will provide the Pre-Deconstruction Analytics functionality. This 566 

functionality is required to provide the whole-life building performance analytics to support 567 

decision making at various point in the life cycle of building from design to deconstruction.  568 

 Considering the theories of AI and the tragedy of the commons that underpinned this 569 

study, the results have demonstrated the possibility of leveraging recent development in the 570 

field of machine learning (i.e. deep learning) which is a subfield of AI to facilitate responsible 571 

use of the limited common resources. The common resources in this case include the natural 572 



31 
 

environment where virgin materials are extracted, building materials and landfill sites. Using 573 

an AI technique, the study provides a decision support tool to facilitate the end-of-life 574 

management of materials. Some of the decisions that require timely access to information about 575 

the building materials include adequate planning for skips to convey the materials, 576 

identification of supply chain for expected materials prior to actual demolition and timely 577 

identification of the storage requirements for safekeeping of the material for a later use.  578 

6 Conclusion 579 

Ensuring an effective circular economy in the construction industry requires the ability to 580 

accurately estimate the amount (in tons) of materials and wastes from deconstruction and 581 

demolition work. Determining the actual amount of materials from demolition and 582 

deconstruction work will facilitate adequate planning for materials reuse. Current strategies for 583 

estimating end-of-life arisings are largely manual and time consuming, which mostly lead to 584 

an increase in the eventual cost of disposal. Demolition data containing information about the 585 

features of buildings and various materials outputs in tons were used to develop deep neural 586 

networks for predicting building materials outputs based on selected building features. Using 587 

R-squared as a performance metric, the deep learning models developed achieved an overall 588 

average accuracy of 0.97 on all the dataset.  The model for recyclable materials achieved 0.95 589 

accuracy, while the model for reusable materials achieved 0.98 accuracy, and the model for 590 

landfill materials achieved 0.99 accuracy. The study shows that the number of floors in 591 

buildings contributes most to the performance levels achieved by the three models while the 592 

volume of the building contributes less to the performance.  593 

This study has implications for both academic and practice. The academic implication of 594 

this study brought to the bare the application of machine learning algorithms for estimating the 595 

amount of recyclable, reusable and waste materials obtainable from buildings when 596 

demolished.  The implication of this study for practice in the C&D industry is its provision of 597 
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decision support functionality to demolition engineers, refurbishment & demolition surveyor 598 

and planners at the end-of-life of building prior to eventual demolition. Being able to easily 599 

and timely estimate the amount of materials that would arise from building demolition will lead 600 

to efficient planning for equipment and manpower requirements for the actual demolition 601 

process. It will also enable construction organisations’ pursuit of materials circularity in their 602 

delivery of construction projects thereby contributing to the UK circular economy agenda. 603 

Further work will be required to integrate the deep learning models developed into the 604 

existing BIM software such as Revit, AutoCAD, Bentley etc. where the required building 605 

feature for predicting end-of-life materials will be captured automatically from the BIM model 606 

to eliminate manual data entry which is usually prone to errors. The integration of the deep 607 

learning models with BIM software will increase the usability of the models among the 608 

construction industry stakeholders. Other features of the building such as the number of rooms, 609 

building elements, building components etc. will be considered in the future refinement of the 610 

models. 611 

The limitation of the present work is that the deep learning models developed are based on 612 

data from the UK’s Institute of Demolition Engineer and NFDC. The dataset contains 613 

information about the UK building stock only. Efforts will be made in the future to obtain 614 

building demolition data from the other part of the world to improve the robustness of the 615 

models. 616 

 617 
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