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Abstract—The rapid change of requirements has made software 

more complex and harder to maintain. Software testing tools 

play an important role in the Software Development Life Cycle. 

However, many technology companies have employed fast 

paced development of software to meet the demands of their 

markets. Early released software tends to contain serious bugs 

and errors because they have not been tested properly during 

the testing process. Many current available testing tools are 

capable of detecting these faults; however, some of which are 

either outdated or cannot catch up with the constantly changing 

demands. Also, these testing tools concentrate more on 

generating efficient test sets while ignoring their effectiveness.  

This paper introduces an algorithm called T-SXM which is 

developed using the Java programming language based on the 

stream X-Machines theory which is an intuitive and powerful 

technique for modelling real world problems formally. The T-

SXM algorithm is designed to provide developers with a tool to 

test the correctness of their implemented systems which can 

potentially resolve the problem of effectiveness that the other 

testing tools are facing. 

Keywords-component; T-SXM; testing strategy; transform; 

model; specification; correctness; effectiveness 

I. INTRODUCTION 

In Software Development Life Cycle (SDLC), software 
testing plays an essential role with the intention of finding out 
all the bugs in the program ([1], [2], [3], [4]). Initially, the 
tester does the manual testing - a prolonged and tedious 
process that requires more time to execute [5]. Subsequently, 
automated testing is carried out in the software development 
process. However, according to [6], it is still a challenge to 
have a fully automated software. There are two types of 
software testing: Black box testing, also known as functional 
testing ([7], [8]), and White box testing. In White box testing, 
search-based testing (SBT) and model-based testing (MBT) 
are both relevant approaches [9] in which the source code is 
necessary. In SBT, early fault detection in the specification is 
not possible ([10], [11]). MBT, on the other hand, is essential 
in finding errors earlier than SBT ([7], [12], [13]).  

For object-oriented systems, especially the Java 
programming language (JPL), the use of formal methods to 
automatically generate test suites have been extensively 
studied ([14], [15], [16], [17], [18]). However, most of these 
approaches concentrated on generating efficient test sets and 
nothing is said about their effectiveness. Therefore, it implies 
that these approaches focus more on testing how well the 

system’s functions perform, but not on the correctness of the 
whole system. 

Furthermore, according to Kumar et al. [19], software 
faults can arise in any phase of the SDLC including 
requirements gathering and specifications, designs, code, or 
maintenance. Therefore, the lure of early fault detection and 
improving the system quality has attracted a considerable 
attention from research community [19] with a wide range of 
statistical and machine learning techniques that has been 
applied to construct the fault prediction models ([20], [21], 
[22]). Furthermore, the availability of open-source and 
publicly accessible software fault dataset repositories such as 
NASA Metrics Data Program and PROMIS has enabled 
researchers to further investigate on this new area of 
application [19]. The early fault detection can help software 
testers or developers to narrow down the risky areas to 
optimize and prioritize the testing efforts and resources.  

In order to resolve the problem of effectiveness and 
correctness, this research aims to develop an algorithm that 
can transform an implemented system, especially systems 
written in the Java programming language, into a stream X-
Machine model based on its specifications so that the system 
can be tested as a whole. This approach can ensure the system 
behaves correctly and the faults in the system can be 
discovered early in the development stage. 

This paper is structured as follows; section II provides 
research and background information about the concepts of X-
Machines and stream X-Machines. Also, within this section, 
different software testing tools are reviewed to analyse their 
strengths and weaknesses. Section III is where we propose the 
T-SXM algorithm. Section IV describes how the T-SXM 
algorithm is designed. Section V is where a case study is 
provided to demonstrate how the T-SXM algorithm works in 
practice. Section VI is the evaluation of the proposed solution. 
The future work and conclusion sections are stated the end of 
this paper. 

II. BACKGROUND 

A. The theory of X-Machine and stream X-Machine 

1) Concepts 

According to Ipate et al. [23], the problem of test 
effectiveness mentioned in the Introduction section can be 
best addressed if the generated test set is able to find all faults 
in the system under test (SUT). In order to do this, algebraic 
objects (one is the specification, and the other is the 



implementation) need considering, each of which is 
characterized by an input/output behaviour. If these objects 
behave in the same way for any input in the test set, they will 
coincide with any input in the domain. Therefore, it can be 
concluded that the specification and the implementation 
behave identically when supplied with the inputs in the test 
set. This approach has been applied in generating test set for 
software modelled by finite state machines (FSM) (i.e. [24], 
[25], [26], [27]). Here, the control aspects of the software are 
assumed to be separated from the system data and can be 
modelled by an FSM. However, it is difficult to completely 
separate the system controls from their data, therefore, a more 
complex specification model that can integrate both of these 
two aspects is needed. 

Such a model is the X-Machine, an enhanced version of 
FSMs, with data structures and processing functions. In 
general, an X-Machine is similar to an FSM but with a basic 
data set, X, and a set of processing functions, Φ, which operate 
on X. Each arrow in the FSM diagram is then labelled by a 
function from Φ. In the machine, the sequences of state 
transitions determine the processing of the data set and 
therefore, the function or relation is computed. An X-Machine 
can potentially model very general systems as the data set X 
can contain information about the system internal memory as 
well as different output behaviours. Since introduced in 1974 
by Eilenberg [28], the X-Machine has been demonstrated to 
be an intuitive and easy to use model through a number of 
investigations and research ([27], [29], [30]). 

According to Ipate et al. [23], a number of classes of X-
Machines have been identified and studied by restricting on 
the underlying data set X, and the set of processing functions 
Φ, of the machines. Among these classes, the stream X-
Machine (SXM) has received the most attention. The SXM is 
supposed to resolve a problem that exists in the original X-
Machine which is the lack of the ability to process sequences 
of inputs and outputs. Also, the SXM models have been 
modified so that they can simulate real world dynamic 
environments such as object-oriented specifications or 
deterministic or non-deterministic systems [31]. 

In SXMs, input and output sets are streams of symbols. 
The input stream is processed in symbol by symbol from left 
to right, producing, in turn, a stream of outputs and a regularly 
updated internal memory. Each processing function processes 
a memory value and an input to produce an output and a new 
memory value [23].  

 
An SXM is a tuple Z = (Σ, Γ, Q, M, Φ, F, q0, m0) where:  

 Σ is a finite set of input symbols 
 Γ is a finite set of output symbols 
 Q is a finite set of states 
 M is a (possibly) infinite set called memory 
 Φ is a finite set of partial functions φ (processing 

functions) that map memory-input pairs to output-
memory pairs, φ: M × Σ → Γ × M 

 F is the next-state partial function, F: Q × Φ → Q 
 q0 ∈ Q and m0 ∈ M are the initial state and initial 

memory respectively.  
 

For an SXM Z as defined above, the associated FSM, 
which is also called the associated finite state automaton (FA), 
is: Az = (Φ, Q, F, q0).  

 
Figure 1 is an example of a stream X-Machine model. 
used to construct the T-SXM. 

 

2) Minimal stream X-Machine 

According to Ipate [38], an essential problem that arises in 
the specification process is the capability of finding a 
“minimal” specification for a required functionality. This 
problem has been investigated for the FSMs and several types 
of minimality have been identified such as minimal FSMs, 
minimal cover-automata, minimal sequential machines, etc. 

In this paper, we will focus on investigating the minimality 
issue in the context of stream X-Machines and only addressing 
the state-minimal SXM with respect to Φ. A state-minimal 
SXM is machine with as few states and arcs as possible for a 
given behaviour. In short, an SXM is minimal if and only if it 
is accessible and reduced [38]. In order to make a specified 
machine minimal, we must show its uniqueness up to a re-
labelling of its state space. This means that all the inaccessible 
states can be removed along with all arcs emerge from or 
arrive to them without affecting the function computed by the 
machine. Making an SXM minimal is highly important when 
it comes to testing because it helps to construct the “smallest” 
model for a required functionality using the set of processing 
functions Φ [38].  

B. Software testing tools 

Chin et al. [32] defined software testing as a process of 
ensuring a program is free of bugs and performs its intended 
functions. Software testing tools are used to test systems 
during SDLC and in post release. The range of available 
testing tools is vast, each of which has its own advantages and 
disadvantages. Testing tools help development teams evaluate 
the correctness, consistency, completeness and quality of a 
system. In this section, we will be reviewing some of the 
current software testing tools to analyse their advantages and 
disadvantages. 

 
 

Figure 1. A three-state stream X-Machine 



1) JUnit 

According to Louridas [33], JUnit is a Java-based 
framework for writing and running tests. Developers use this 
framework to ensure that the software works as expected and 
the changes in the implementation do not negatively affect the 
other features in the SUT. 

TABLE I.  ADVANTAGES AND DISADVANTAGES OF JUNIT 

Advantages Disadvantages 

Can ensure full test coverage by 

inferring required test cases. 

There are no options to write 

assertions [34]. 

Useful when the source code is 

subjected to rapid changes as test 
cases are generated and inferred 

automatically. 

Has difficulties in performing 

exhaustive tests [34]. 

Can test compiled codes. Cannot tell if a raised exception is 

an actual fault from the program or 

its expected behaviour [35]. 

Can perform systematic testing by 

executing all transitions between 

states [34]. 

 

Can be run as a standalone 

application or an added plugin in 
IDEs by calling its provided API 

[35]. 

 

 

2) JWalk 

JWalk is a testing tool that utilizes the lazy specification 
which is derived from the source, analysis and hints provided 
by the developers.  

TABLE II.  ADVANTAGES AND DISADVANTAGES OF JWALK 

Advantages Disadvantages 

Can ensure the function output is 
as expected [33]. 

Focuses primarily on individual 
function testing rather than whole 

system testing. 

Can verify if the system performs 

as expected with minimal 

disruptions when changes happen. 

Operates on the source code, not on 

the production system. 

Has Test Driven Development 

support and can relatively fit into 

the SDLC. 

Requires some extra libraries such 

as Mockito, PowerMock, and JUnit 

to effectively test more complex 

systems. 

Can be used at the integration 
testing stage. 

Can have side effects for other tests 
when database testing is included 

[36]. 

 Is not human readable to non-

technical people. However, this can 

be resolved with the help of 
external libraries such as Hamcrest. 

 Does not automate documentation 

fully. 

 Depends on developers’ discretion 

for what should be tested. 

 

3) JCrasher 

JCrasher is a tool that is used to test the robustness of Java 
systems. While other tools such as JUnit concentrate on 
testing the system’s functionalities and expected outputs from 
the functions, according to Csallner and Smaragdakis [37], 
JCrasher generates random, well-formed inputs to test the 
system in order to identify crashes. 

 

TABLE III.  ADVANTAGES AND DISADVANTAGES OF JCRASHER 

Advantages Disadvantages 

Can collaborate well with JUnit 

when it is able to produce test files 
for JUnit [37]. 

Requires classes to be set manually 

to initialize test sets, which 
increases the time and effort to use 

the tool when comparing with other 

tools which automatically identify 

classes.  

Can be used as an add-on for 

Eclipse IDE to help it fit into the 

SDLC. 

Can potentially generate false 

positives [37] which leads to an 

increase in the amount of effort 

required to interpret the results 

since these will need to be 
distinguished from actual system 

bugs. 

Can be able to distinguish 

between actual program bugs and 

violations of program 
preconditions [37]. 

 

Can be fully automated which 

helps reduce testing time for 

developers. 

 

 

4) Summary 
As can be seen in the analysis, the three reviewed tools 

have their own strengths and weaknesses. However, all of 
them tend to focus on testing individual functions rather than 
testing the SUT as a whole. This implies that they cannot tell 
if an SUT behaves correctly as it is expected to. Also, these 
tools have difficulties in producing exhaustive tests which 
leads to an increase in the amount of time and effort for the 
developers to perform some extra manual interpretations. 
Finally, these tools do not strictly follow the X-Machine 
theory. 

III. PROPOSED SOLUTION 

This paper proposes an algorithm called T-SXM to 
develop a generic model of stream X-Machine that can be 
used to test an SUT using its formal specification. With T-
SXM, the developers can: 

• Determine the formal specification (also called the 
specification SXM) of the SUT using the Java 
programming language (see example in section 
V.A). 

• Test the correctness of the SUT by determining 
different paths for the specification SXM to execute. 
By doing this, the developers can have a good 
overview of how well the system is handling 
unexpected inputs. Once the SXM has processed all 
the input values, it will produce a sequence of 
outputs that correspond to the outputs of individual 
functions which helps the developers to track the 
behaviours of the functions within the system (see 
example in section V.B). 

The T-SXM will be suited for agile developers as they will 
benefit with: 

• The ability to input specifications to inform the 
algorithm about the expected states and transitions. 

• The ability to test the SUT in different scenarios by 
simply changing the transition diagram or the input 
values. 



• The ability to test the system as a whole to ensure the 
correctness is maintained while still knowing which 
individual function behaves as expected. 

IV. THE T-SXM ALGORITHM 

A. The package and class diagram 

Figure 2 depicts the class diagram which is the design 
solution for the T-SXM algorithm, where: 

• SXM: the class containing the generic SXM model.  

• InputSequence: input alphabet of the SXM. 

• OutputSequence: output alphabet of the SXM. 

• ErrorCode: a Java enum object containing a number 
of errors that can happen while the SXM is running. 
The error codes are as follows: 

o None: the SXM has no error while running. 
o NoProcessingFunctionFound: the SXM 

tries to execute a processing function that 
does not exist in the specification. 

o NoTransitionFound: the SXM tries to 
move a new state from a given state and 
processing function, but it cannot find any 
matched transition. 

o IllegalArgumentForProcessingFunction: 
the SXM tries to execute a processing 
function with invalid arguments. 

o ErrorExecutingProcessingFunction: the 
SXM tries to execute a processing function 
but error happens.  

• States: state set of the SXM. 

• Memory: memory of the SXM. 

• ProcessingFunctions: processing function set of the 
SXM. Each processing function consists of one 
actual method from the system and the context of the 
class to which the method belongs.  

• Transitions: transition set of the SXM which maps 
one state and processing function to the next state. 

 

B. The related algorithms 

This section demonstrates the related algorithms that are 
used to construct the T-SXM. 

1) Algorithm for checking if an SXM is accessible 

As discussed in section II.A.2, a minimal SXM must be 
accessible, which means all the states in the machine can be 
reached from the initial state. Therefore, it is essential to have 
a dedicated algorithm to check if all the states in a specified 
SXM are reachable. 

 

2) Algorithm for making an SXM minimal 

As stated in section II.A.2, it is essential to check the 
minimality of the SXM; therefore, we design a specific 
algorithm to turn a non-minimal SXM into a minimal SXM.  

 

3) Algorithm for executing a processing function 
The T-SXM algorithm allows developers to define the 

system specification in the Java programming language. 
Therefore, the system’s functions will be executed when the 
machine runs. 

 

4) Algorithm for the next-state function 

The generic model of the SXM has a next-state function 
which moves the machine from the current state to the next 
state by invoking the corresponding processing function. In 

Figure 4. T-SXM class diagram 

Figure 2. Algorithm for checking if an SXM is accessible 

Figure 3. Algorithm for making an SXM minimal 

Figure 5. Algorithm for executing a processing function 



the T-SXM algorithm, this next-state function is considered as 
a function within the SXM.  

 

V. CASE STUDY 

A. The vending machine system 

To show how the T-SXM algorithm works in practice, we 
consider the implementation of a simple vending machine 
system written as a standalone Java class. To test the 
correctness of the implemented vending machine system, we 
first need to model it as an SXM model with memory, states, 
transitions, and processing functions. Then, we will use the T-
SXM algorithm to transform the vending machine 
implementation into an SXM specification called X-Vending 
Machine. After the transformation, the behaviours of the 
original vending machine system can be tested via the X-
Vending Machine.  

The vending machine system can be described as follow: 
the machine is initially at the idle state waiting for a customer. 
When a customer comes, a product will be selected to start the 
purchase process. The machine will then confirm the price of 
the selected product and prompt the customer to insert money. 
Assuming that the money inserted is a positive integer with 
unlimited value. Once the amount of money inserted is 
sufficient, the machine will issue the product and do the 
calculation to check if change needs issuing. After that, the 
machine goes back to the idle state. Figure 7 illustrates the 
implementation of this vending machine system in the Java 
programming language. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
With the above description, the vending machine system 

can be modelled as an SXM with three states: 

• Idle State (initial state): in which the machine is 
awaiting a customer. 

• Awaiting Payment State: in which the machine is 
awaiting money from the customer. 

• Complete State: in which the machine issues the 
product and change (if has) for the customer. 

The memory of the X-Vending Machine is a list of four 
elements which also map correspondingly with the variables 
used in the implementation showed in Figure 7:  

• prices: a list of integers representing the prices of the 
products that the machine has. 

• selectedIndex: an integer that holds the index of the 
product the customer has selected. The initial value 
is -1 which means that no product has been selected. 

• amountInserted: an integer that keeps track of the 
amount of money inserted. 

• change: an integer that is updated every time a new 
amount of money is inserted.  

In the implementation showed in Figure 7, the vending 
machine has four functions; therefore, the X-Vending 
Machine also has four functions with identical logics:  

• selectProduct(int index) 

• insertMoney(int amount) 

• issueProduct() 

• terminateProcess() 

Figure 6. Algorithm for the next-state function 

Figure 7. Vending machine implementation 



Figure 8 shows the state diagram of the X-Vending 
Machine. 

 
Based on the above description, specifications, and state 

diagram, we used the T-SXM algorithm to transform the 
implementation showed in Figure 7 into an SXM model which 
is the X-Vending Machine implementation. In the next 
section, we will use the T-SXM algorithm to specify the input 
sequence which will be used to test the behaviours of the X-
Vending Machine.  

B. Testing with the T-SXM algorithm 

In this section, we explain how the T-SXM algorithm 
works by testing the X-Vending Machine with different input 
values. At the moment, the T-SXM is just an algorithm 
implemented as a Java class; therefore, it does not have a 
dedicated user interface and also, the test cases have to be 
inferred manually by the developers. However, the T-SXM 
algorithm allows the developers to test the system as a whole 
by specifying the input values and the transitions in the SXM. 

From the implementation in Figure 7, the X-Vending 
Machine should have three products with the prices of 90, 150, 
and 200 respectively. Let us consider a scenario when a 
customer comes and wants to purchase the first product which 
has the price of 90. The machine is initially at the Idle State. 
When the customer chooses the product, it will invoke the 
selectProduct(int index) processing function which will 
update the selectedIndex in the memory to 0 and moves the 
machine to the Awaiting Payment State. The customer will 
then insert an amount of money of 100. Thus, while staying in 
the same state, the machine invokes the insertMoney(int 
amount) processing function with the input value is 100. As 
the amount of money is sufficient, we need to tell the machine 
to invoke the issueProduct() processing function and move to 
the Complete State. Once the product and change are issued, 
we also need to tell the machine execute the 
terminateProcess() processing function to reset its memory 
and move back to the Idle State. 

With the above scenario, the X-Vending Machine should 
work properly by issuing the product and a change of 10 to the 
customer. Figure 9 demonstrates the input sequence described 
in the scenario while Figure 10 shows the output results when 
the X-Vending Machine executes inputs. 

 

 

 

 

Figure 8. X-Vending Machine state diagram 

Figure 9. Input sequence for the described scenario 

Figure 10. Outputs from the X-Vending Machine 



VI. EVALUATION 

The T-SXM algorithm is not a complete tool that can be 
used in practice. It does not have a user interface and it cannot 
generate test cases automatically like the other testing tools 
analysed in section II.B. However, the T-SXM algorithm has 
demonstrated the potential of using SXM models to test the 
SUT as a whole, which enables the developers to test the 
correctness of their implemented systems and thus, resolves 
the problem of effectiveness discussed in the Introduction 
section. Also, with the example showed in section V, the T-
SXM algorithm has proved the capability of transforming any 
implemented systems into SXM models which can be used to 
generate test cases.  

By researching and applying the theory of X-Machine and 
SXM to create the T-SXM algorithm, we realized some 
limitations that could potentially affect the testing process. As 
we noted earlier, the X-Vending Machine could not process 
the inputs and move to the next state automatically. Therefore, 
we had to explicitly tell the machine what to do with an input 
value. This can have both advantages and disadvantages. The 
only advantage is that the developers can test the behaviours 
of individual functions in the system by telling the machine to 
do what it should not do. By doing that, the functions have to 
do their jobs to prevent unexpected inputs and the developers 
can have a good view of how well the functions are 
performing. On the contrary, as agile developers, we 
understand the importance of automatic testing and how other 
agile developers favour it. Therefore, without the automatic 
generation of test cases, the T-SXM algorithm would not 
stand a chance against the other testing tools. The reason why 
the T-SXM algorithm could not generate test cases 
automatically based on the inputs is that the current theory of 
the X-Machine and SXM does not have a mechanism to define 
the pre-conditions for the machine to process the inputs and 
determine which processing function it should invoke and 
which state it should move to. 

Furthermore, the T-SXM algorithm cannot interpret an 
implemented system (e.g., a Java class) and automatically 
transform it into an SXM model. In the example showed in 
section V, the X-Vending Machine was manually 
implemented by the researchers using the T-SXM algorithm. 
This leaves a big disadvantage for the approach as it will take 
a significant amount of time for the developers to transform 
their already implemented system into SXM models. Also, 
currently, the T-SXM algorithm can only work with 
standalone Java classes, which means if a system consists of 
multiple classes, the algorithm can only treat each class as a 
standalone SXM and test them separately. 

VII. FUTURE RESEARCH 

With the limitations pointed out in section VI, we will 
continue researching to improve the T-SXM algorithm. The 
first aspect we will research is to find out a way to define the 
pre-conditions in the SXM model so that it can automatically 
make transitions and invoke processing functions when 
receiving an input. Also, we will further investigate 
communicating stream X-Machines which will allow the T-
SXM algorithm to model a complex system as multiple SXMs 

that can communicate with each other. Finally, we will make 
the algorithm to interpret and transform an implemented 
system into SXM models automatically so that the developers 
will not need to do all the hard work themselves. 

VIII. CONCLUSION 

In general, this paper has presented the T-SXM algorithm 
which has demonstrated the capability of automated testing by 
transforming any implemented system into SXM models 
using their specifications. Although the algorithm has a 
number of limitations, it has its own novelty in improving the 
testing process for agile developers. As main researchers in 
this project, we consider that this T-SXM algorithm is the first 
successful milestone in a long-term progress. We will do 
further research to improve the tool and make more effective 
for testing object-oriented systems, especially the Java 
programming language. 
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