
An algorithm for implementing and generating test cases from a minimal stream X-

Machine

Authors Name/s per 1st Affiliation (Author)

dept. name of organization

City, Country

Email: name@xyz.com

Authors Name/s per 2nd Affiliation (Author)

dept. name of organization

City, Country

Email: name@xyz.com

Abstract—The rapid change of requirements has made software

more complex and harder to maintain. Software testing tools

play an important role in the Software Development Life Cycle.

However, many technology companies have employed fast

paced development of software to meet the demands of their

markets. Early released software tends to contain serious bugs

and errors because they have not been tested properly during

the testing process. Many current available testing tools are

capable of detecting these faults; however, some of which are

either outdated or cannot catch up with the constantly changing

demands. Also, these testing tools concentrate more on

generating efficient test sets while ignoring their effectiveness.

This paper introduces an algorithm called T-SXM which is

developed using the Java programming language based on the

stream X-Machines theory which is an intuitive and powerful

technique for modelling real world problems formally. The T-

SXM algorithm is designed to provide developers with a tool to

test the correctness of their implemented systems which can

potentially resolve the problem of effectiveness that the other

testing tools are facing.

Keywords-component; T-SXM; testing strategy; transform;

model; specification; correctness; effectiveness

I. INTRODUCTION

In Software Development Life Cycle (SDLC), software
testing plays an essential role with the intention of finding out
all the bugs in the program ([1], [2], [3], [4]). Initially, the
tester does the manual testing - a prolonged and tedious
process that requires more time to execute [5]. Subsequently,
automated testing is carried out in the software development
process. However, according to [6], it is still a challenge to
have a fully automated software. There are two types of
software testing: Black box testing, also known as functional
testing ([7], [8]), and White box testing. In White box testing,
search-based testing (SBT) and model-based testing (MBT)
are both relevant approaches [9] in which the source code is
necessary. In SBT, early fault detection in the specification is
not possible ([10], [11]). MBT, on the other hand, is essential
in finding errors earlier than SBT ([7], [12], [13]).

For object-oriented systems, especially the Java
programming language (JPL), the use of formal methods to
automatically generate test suites have been extensively
studied ([14], [15], [16], [17], [18]). However, most of these
approaches concentrated on generating efficient test sets and
nothing is said about their effectiveness. Therefore, it implies
that these approaches focus more on testing how well the

system’s functions perform, but not on the correctness of the
whole system.

Furthermore, according to Kumar et al. [19], software
faults can arise in any phase of the SDLC including
requirements gathering and specifications, designs, code, or
maintenance. Therefore, the lure of early fault detection and
improving the system quality has attracted a considerable
attention from research community [19] with a wide range of
statistical and machine learning techniques that has been
applied to construct the fault prediction models ([20], [21],
[22]). Furthermore, the availability of open-source and
publicly accessible software fault dataset repositories such as
NASA Metrics Data Program and PROMIS has enabled
researchers to further investigate on this new area of
application [19]. The early fault detection can help software
testers or developers to narrow down the risky areas to
optimize and prioritize the testing efforts and resources.

In order to resolve the problem of effectiveness and
correctness, this research aims to develop an algorithm that
can transform an implemented system, especially systems
written in the Java programming language, into a stream X-
Machine model based on its specifications so that the system
can be tested as a whole. This approach can ensure the system
behaves correctly and the faults in the system can be
discovered early in the development stage.

This paper is structured as follows; section II provides
research and background information about the concepts of X-
Machines and stream X-Machines. Also, within this section,
different software testing tools are reviewed to analyse their
strengths and weaknesses. Section III is where we propose the
T-SXM algorithm. Section IV describes how the T-SXM
algorithm is designed. Section V is where a case study is
provided to demonstrate how the T-SXM algorithm works in
practice. Section VI is the evaluation of the proposed solution.
The future work and conclusion sections are stated the end of
this paper.

II. BACKGROUND

A. The theory of X-Machine and stream X-Machine

1) Concepts

According to Ipate et al. [23], the problem of test
effectiveness mentioned in the Introduction section can be
best addressed if the generated test set is able to find all faults
in the system under test (SUT). In order to do this, algebraic
objects (one is the specification, and the other is the

implementation) need considering, each of which is
characterized by an input/output behaviour. If these objects
behave in the same way for any input in the test set, they will
coincide with any input in the domain. Therefore, it can be
concluded that the specification and the implementation
behave identically when supplied with the inputs in the test
set. This approach has been applied in generating test set for
software modelled by finite state machines (FSM) (i.e. [24],
[25], [26], [27]). Here, the control aspects of the software are
assumed to be separated from the system data and can be
modelled by an FSM. However, it is difficult to completely
separate the system controls from their data, therefore, a more
complex specification model that can integrate both of these
two aspects is needed.

Such a model is the X-Machine, an enhanced version of
FSMs, with data structures and processing functions. In
general, an X-Machine is similar to an FSM but with a basic
data set, X, and a set of processing functions, Φ, which operate
on X. Each arrow in the FSM diagram is then labelled by a
function from Φ. In the machine, the sequences of state
transitions determine the processing of the data set and
therefore, the function or relation is computed. An X-Machine
can potentially model very general systems as the data set X
can contain information about the system internal memory as
well as different output behaviours. Since introduced in 1974
by Eilenberg [28], the X-Machine has been demonstrated to
be an intuitive and easy to use model through a number of
investigations and research ([27], [29], [30]).

According to Ipate et al. [23], a number of classes of X-
Machines have been identified and studied by restricting on
the underlying data set X, and the set of processing functions
Φ, of the machines. Among these classes, the stream X-
Machine (SXM) has received the most attention. The SXM is
supposed to resolve a problem that exists in the original X-
Machine which is the lack of the ability to process sequences
of inputs and outputs. Also, the SXM models have been
modified so that they can simulate real world dynamic
environments such as object-oriented specifications or
deterministic or non-deterministic systems [31].

In SXMs, input and output sets are streams of symbols.
The input stream is processed in symbol by symbol from left
to right, producing, in turn, a stream of outputs and a regularly
updated internal memory. Each processing function processes
a memory value and an input to produce an output and a new
memory value [23].

An SXM is a tuple Z = (Σ, Γ, Q, M, Φ, F, q0, m0) where:

 Σ is a finite set of input symbols
 Γ is a finite set of output symbols
 Q is a finite set of states
 M is a (possibly) infinite set called memory
 Φ is a finite set of partial functions φ (processing

functions) that map memory-input pairs to output-
memory pairs, φ: M × Σ → Γ × M

 F is the next-state partial function, F: Q × Φ → Q
 q0 ∈ Q and m0 ∈ M are the initial state and initial

memory respectively.

For an SXM Z as defined above, the associated FSM,
which is also called the associated finite state automaton (FA),
is: Az = (Φ, Q, F, q0).

Figure 1 is an example of a stream X-Machine model.
used to construct the T-SXM.

2) Minimal stream X-Machine

According to Ipate [38], an essential problem that arises in
the specification process is the capability of finding a
“minimal” specification for a required functionality. This
problem has been investigated for the FSMs and several types
of minimality have been identified such as minimal FSMs,
minimal cover-automata, minimal sequential machines, etc.

In this paper, we will focus on investigating the minimality
issue in the context of stream X-Machines and only addressing
the state-minimal SXM with respect to Φ. A state-minimal
SXM is machine with as few states and arcs as possible for a
given behaviour. In short, an SXM is minimal if and only if it
is accessible and reduced [38]. In order to make a specified
machine minimal, we must show its uniqueness up to a re-
labelling of its state space. This means that all the inaccessible
states can be removed along with all arcs emerge from or
arrive to them without affecting the function computed by the
machine. Making an SXM minimal is highly important when
it comes to testing because it helps to construct the “smallest”
model for a required functionality using the set of processing
functions Φ [38].

B. Software testing tools

Chin et al. [32] defined software testing as a process of
ensuring a program is free of bugs and performs its intended
functions. Software testing tools are used to test systems
during SDLC and in post release. The range of available
testing tools is vast, each of which has its own advantages and
disadvantages. Testing tools help development teams evaluate
the correctness, consistency, completeness and quality of a
system. In this section, we will be reviewing some of the
current software testing tools to analyse their advantages and
disadvantages.

Figure 1. A three-state stream X-Machine

1) JUnit

According to Louridas [33], JUnit is a Java-based
framework for writing and running tests. Developers use this
framework to ensure that the software works as expected and
the changes in the implementation do not negatively affect the
other features in the SUT.

TABLE I. ADVANTAGES AND DISADVANTAGES OF JUNIT

Advantages Disadvantages

Can ensure full test coverage by

inferring required test cases.

There are no options to write

assertions [34].

Useful when the source code is

subjected to rapid changes as test
cases are generated and inferred

automatically.

Has difficulties in performing

exhaustive tests [34].

Can test compiled codes. Cannot tell if a raised exception is

an actual fault from the program or

its expected behaviour [35].

Can perform systematic testing by

executing all transitions between

states [34].

Can be run as a standalone

application or an added plugin in
IDEs by calling its provided API

[35].

2) JWalk

JWalk is a testing tool that utilizes the lazy specification
which is derived from the source, analysis and hints provided
by the developers.

TABLE II. ADVANTAGES AND DISADVANTAGES OF JWALK

Advantages Disadvantages

Can ensure the function output is
as expected [33].

Focuses primarily on individual
function testing rather than whole

system testing.

Can verify if the system performs

as expected with minimal

disruptions when changes happen.

Operates on the source code, not on

the production system.

Has Test Driven Development

support and can relatively fit into

the SDLC.

Requires some extra libraries such

as Mockito, PowerMock, and JUnit

to effectively test more complex

systems.

Can be used at the integration
testing stage.

Can have side effects for other tests
when database testing is included

[36].

 Is not human readable to non-

technical people. However, this can

be resolved with the help of
external libraries such as Hamcrest.

 Does not automate documentation

fully.

 Depends on developers’ discretion

for what should be tested.

3) JCrasher

JCrasher is a tool that is used to test the robustness of Java
systems. While other tools such as JUnit concentrate on
testing the system’s functionalities and expected outputs from
the functions, according to Csallner and Smaragdakis [37],
JCrasher generates random, well-formed inputs to test the
system in order to identify crashes.

TABLE III. ADVANTAGES AND DISADVANTAGES OF JCRASHER

Advantages Disadvantages

Can collaborate well with JUnit

when it is able to produce test files
for JUnit [37].

Requires classes to be set manually

to initialize test sets, which
increases the time and effort to use

the tool when comparing with other

tools which automatically identify

classes.

Can be used as an add-on for

Eclipse IDE to help it fit into the

SDLC.

Can potentially generate false

positives [37] which leads to an

increase in the amount of effort

required to interpret the results

since these will need to be
distinguished from actual system

bugs.

Can be able to distinguish

between actual program bugs and

violations of program
preconditions [37].

Can be fully automated which

helps reduce testing time for

developers.

4) Summary
As can be seen in the analysis, the three reviewed tools

have their own strengths and weaknesses. However, all of
them tend to focus on testing individual functions rather than
testing the SUT as a whole. This implies that they cannot tell
if an SUT behaves correctly as it is expected to. Also, these
tools have difficulties in producing exhaustive tests which
leads to an increase in the amount of time and effort for the
developers to perform some extra manual interpretations.
Finally, these tools do not strictly follow the X-Machine
theory.

III. PROPOSED SOLUTION

This paper proposes an algorithm called T-SXM to
develop a generic model of stream X-Machine that can be
used to test an SUT using its formal specification. With T-
SXM, the developers can:

• Determine the formal specification (also called the
specification SXM) of the SUT using the Java
programming language (see example in section
V.A).

• Test the correctness of the SUT by determining
different paths for the specification SXM to execute.
By doing this, the developers can have a good
overview of how well the system is handling
unexpected inputs. Once the SXM has processed all
the input values, it will produce a sequence of
outputs that correspond to the outputs of individual
functions which helps the developers to track the
behaviours of the functions within the system (see
example in section V.B).

The T-SXM will be suited for agile developers as they will
benefit with:

• The ability to input specifications to inform the
algorithm about the expected states and transitions.

• The ability to test the SUT in different scenarios by
simply changing the transition diagram or the input
values.

• The ability to test the system as a whole to ensure the
correctness is maintained while still knowing which
individual function behaves as expected.

IV. THE T-SXM ALGORITHM

A. The package and class diagram

Figure 2 depicts the class diagram which is the design
solution for the T-SXM algorithm, where:

• SXM: the class containing the generic SXM model.

• InputSequence: input alphabet of the SXM.

• OutputSequence: output alphabet of the SXM.

• ErrorCode: a Java enum object containing a number
of errors that can happen while the SXM is running.
The error codes are as follows:

o None: the SXM has no error while running.
o NoProcessingFunctionFound: the SXM

tries to execute a processing function that
does not exist in the specification.

o NoTransitionFound: the SXM tries to
move a new state from a given state and
processing function, but it cannot find any
matched transition.

o IllegalArgumentForProcessingFunction:
the SXM tries to execute a processing
function with invalid arguments.

o ErrorExecutingProcessingFunction: the
SXM tries to execute a processing function
but error happens.

• States: state set of the SXM.

• Memory: memory of the SXM.

• ProcessingFunctions: processing function set of the
SXM. Each processing function consists of one
actual method from the system and the context of the
class to which the method belongs.

• Transitions: transition set of the SXM which maps
one state and processing function to the next state.

B. The related algorithms

This section demonstrates the related algorithms that are
used to construct the T-SXM.

1) Algorithm for checking if an SXM is accessible

As discussed in section II.A.2, a minimal SXM must be
accessible, which means all the states in the machine can be
reached from the initial state. Therefore, it is essential to have
a dedicated algorithm to check if all the states in a specified
SXM are reachable.

2) Algorithm for making an SXM minimal

As stated in section II.A.2, it is essential to check the
minimality of the SXM; therefore, we design a specific
algorithm to turn a non-minimal SXM into a minimal SXM.

3) Algorithm for executing a processing function
The T-SXM algorithm allows developers to define the

system specification in the Java programming language.
Therefore, the system’s functions will be executed when the
machine runs.

4) Algorithm for the next-state function

The generic model of the SXM has a next-state function
which moves the machine from the current state to the next
state by invoking the corresponding processing function. In

Figure 4. T-SXM class diagram

Figure 2. Algorithm for checking if an SXM is accessible

Figure 3. Algorithm for making an SXM minimal

Figure 5. Algorithm for executing a processing function

the T-SXM algorithm, this next-state function is considered as
a function within the SXM.

V. CASE STUDY

A. The vending machine system

To show how the T-SXM algorithm works in practice, we
consider the implementation of a simple vending machine
system written as a standalone Java class. To test the
correctness of the implemented vending machine system, we
first need to model it as an SXM model with memory, states,
transitions, and processing functions. Then, we will use the T-
SXM algorithm to transform the vending machine
implementation into an SXM specification called X-Vending
Machine. After the transformation, the behaviours of the
original vending machine system can be tested via the X-
Vending Machine.

The vending machine system can be described as follow:
the machine is initially at the idle state waiting for a customer.
When a customer comes, a product will be selected to start the
purchase process. The machine will then confirm the price of
the selected product and prompt the customer to insert money.
Assuming that the money inserted is a positive integer with
unlimited value. Once the amount of money inserted is
sufficient, the machine will issue the product and do the
calculation to check if change needs issuing. After that, the
machine goes back to the idle state. Figure 7 illustrates the
implementation of this vending machine system in the Java
programming language.

With the above description, the vending machine system

can be modelled as an SXM with three states:

• Idle State (initial state): in which the machine is
awaiting a customer.

• Awaiting Payment State: in which the machine is
awaiting money from the customer.

• Complete State: in which the machine issues the
product and change (if has) for the customer.

The memory of the X-Vending Machine is a list of four
elements which also map correspondingly with the variables
used in the implementation showed in Figure 7:

• prices: a list of integers representing the prices of the
products that the machine has.

• selectedIndex: an integer that holds the index of the
product the customer has selected. The initial value
is -1 which means that no product has been selected.

• amountInserted: an integer that keeps track of the
amount of money inserted.

• change: an integer that is updated every time a new
amount of money is inserted.

In the implementation showed in Figure 7, the vending
machine has four functions; therefore, the X-Vending
Machine also has four functions with identical logics:

• selectProduct(int index)

• insertMoney(int amount)

• issueProduct()

• terminateProcess()

Figure 6. Algorithm for the next-state function

Figure 7. Vending machine implementation

Figure 8 shows the state diagram of the X-Vending
Machine.

Based on the above description, specifications, and state

diagram, we used the T-SXM algorithm to transform the
implementation showed in Figure 7 into an SXM model which
is the X-Vending Machine implementation. In the next
section, we will use the T-SXM algorithm to specify the input
sequence which will be used to test the behaviours of the X-
Vending Machine.

B. Testing with the T-SXM algorithm

In this section, we explain how the T-SXM algorithm
works by testing the X-Vending Machine with different input
values. At the moment, the T-SXM is just an algorithm
implemented as a Java class; therefore, it does not have a
dedicated user interface and also, the test cases have to be
inferred manually by the developers. However, the T-SXM
algorithm allows the developers to test the system as a whole
by specifying the input values and the transitions in the SXM.

From the implementation in Figure 7, the X-Vending
Machine should have three products with the prices of 90, 150,
and 200 respectively. Let us consider a scenario when a
customer comes and wants to purchase the first product which
has the price of 90. The machine is initially at the Idle State.
When the customer chooses the product, it will invoke the
selectProduct(int index) processing function which will
update the selectedIndex in the memory to 0 and moves the
machine to the Awaiting Payment State. The customer will
then insert an amount of money of 100. Thus, while staying in
the same state, the machine invokes the insertMoney(int
amount) processing function with the input value is 100. As
the amount of money is sufficient, we need to tell the machine
to invoke the issueProduct() processing function and move to
the Complete State. Once the product and change are issued,
we also need to tell the machine execute the
terminateProcess() processing function to reset its memory
and move back to the Idle State.

With the above scenario, the X-Vending Machine should
work properly by issuing the product and a change of 10 to the
customer. Figure 9 demonstrates the input sequence described
in the scenario while Figure 10 shows the output results when
the X-Vending Machine executes inputs.

Figure 8. X-Vending Machine state diagram

Figure 9. Input sequence for the described scenario

Figure 10. Outputs from the X-Vending Machine

VI. EVALUATION

The T-SXM algorithm is not a complete tool that can be
used in practice. It does not have a user interface and it cannot
generate test cases automatically like the other testing tools
analysed in section II.B. However, the T-SXM algorithm has
demonstrated the potential of using SXM models to test the
SUT as a whole, which enables the developers to test the
correctness of their implemented systems and thus, resolves
the problem of effectiveness discussed in the Introduction
section. Also, with the example showed in section V, the T-
SXM algorithm has proved the capability of transforming any
implemented systems into SXM models which can be used to
generate test cases.

By researching and applying the theory of X-Machine and
SXM to create the T-SXM algorithm, we realized some
limitations that could potentially affect the testing process. As
we noted earlier, the X-Vending Machine could not process
the inputs and move to the next state automatically. Therefore,
we had to explicitly tell the machine what to do with an input
value. This can have both advantages and disadvantages. The
only advantage is that the developers can test the behaviours
of individual functions in the system by telling the machine to
do what it should not do. By doing that, the functions have to
do their jobs to prevent unexpected inputs and the developers
can have a good view of how well the functions are
performing. On the contrary, as agile developers, we
understand the importance of automatic testing and how other
agile developers favour it. Therefore, without the automatic
generation of test cases, the T-SXM algorithm would not
stand a chance against the other testing tools. The reason why
the T-SXM algorithm could not generate test cases
automatically based on the inputs is that the current theory of
the X-Machine and SXM does not have a mechanism to define
the pre-conditions for the machine to process the inputs and
determine which processing function it should invoke and
which state it should move to.

Furthermore, the T-SXM algorithm cannot interpret an
implemented system (e.g., a Java class) and automatically
transform it into an SXM model. In the example showed in
section V, the X-Vending Machine was manually
implemented by the researchers using the T-SXM algorithm.
This leaves a big disadvantage for the approach as it will take
a significant amount of time for the developers to transform
their already implemented system into SXM models. Also,
currently, the T-SXM algorithm can only work with
standalone Java classes, which means if a system consists of
multiple classes, the algorithm can only treat each class as a
standalone SXM and test them separately.

VII. FUTURE RESEARCH

With the limitations pointed out in section VI, we will
continue researching to improve the T-SXM algorithm. The
first aspect we will research is to find out a way to define the
pre-conditions in the SXM model so that it can automatically
make transitions and invoke processing functions when
receiving an input. Also, we will further investigate
communicating stream X-Machines which will allow the T-
SXM algorithm to model a complex system as multiple SXMs

that can communicate with each other. Finally, we will make
the algorithm to interpret and transform an implemented
system into SXM models automatically so that the developers
will not need to do all the hard work themselves.

VIII. CONCLUSION

In general, this paper has presented the T-SXM algorithm
which has demonstrated the capability of automated testing by
transforming any implemented system into SXM models
using their specifications. Although the algorithm has a
number of limitations, it has its own novelty in improving the
testing process for agile developers. As main researchers in
this project, we consider that this T-SXM algorithm is the first
successful milestone in a long-term progress. We will do
further research to improve the tool and make more effective
for testing object-oriented systems, especially the Java
programming language.

REFERENCES

[1] Sharma, A., Misra, P.K. (2017) Aspects of enhancing security in
software development life cycle. Adv. Comp. Sci. Technol. 10 (2),
203–210.

[2] Aljawarneh, S.A., Alawneh, A., Jaradat, R. (2017) Cloud security
engineering: early stages of SDLC. Future Gener. Comp. Syst. 74,
385–392.

[3] Mall, R. (2018) Fundamentals of Software Engineering. PHI Learning
Pvt. Ltd..

[4] Fitzgerald, B., Stol, K.J. (2017) Continuous software engineering: a
roadmap and agenda. J. Syst. Softw. 123, 176–189.

[5] Pradhan, S., Ray, M. and Swain, S.K. (2019) Transition coverage based
test case generation from state chart diagram. Journal of King Saud
University-Computer and Information Sciences.

[6] Mathur, A.P. (2013) Foundations of Software Testing, 2/e. Pearson
Education India.

[7] Bohme, M., Pham, V.T., Roychoudhury, A. (2017) Coverage-based
greybox fuzzing as Markov chain. IEEE Trans. Software Eng.

[8] Zhou, Z.Q., Sinaga, A., Susilo, W., Zhao, L., Cai, K.Y. (2018) A cost-
effective software testing strategy employing online feedback
information. Inf. Sci. 422, 318–335.

[9] Boussaid, I., Siarry, P. and Ahmed-Nacer, M. (2017) A survey on
search-based model-driven engineering. Automated Software
Engineering, 24(2), pp.233-294.

[10] Mostowski, W. (2019) Model-based fault injection for testing gray-box
systems. J. Logical Algebraic Methods Programm. 103, 31–45.

[11] Da Silva, A.R. (2015) Model-driven engineering: a survey supported
by the unified conceptual model. Comp. Languages, Syst. Struct. 43,
139–155.

[12] Pradhan, S., Ray, M., Patnaik, S. (2019) Coverage criteria for state-
based testing: a systematic review. Int. J. Inf. Technol. Project Manage.
(IJITPM) 10 (1), 1–20.

[13] Utting, M., Legeard, B., Bouquet, F., Fourneret, E., Peureux, F.,
Vernotte, A. (2016) Recent advances in model-based testing. Advances
in Computers 101, 53–120.

[14] Bonifacio, A.L., Moura, A.V., Simao, A.S. (2008) A generalized
model-based test generation method. 6th IEEE International
Conferences on Software Engineering and Formal Methods, Cape
Town, South Africa; 139–148.

[15] Dorofeeva, R., El-Fakih, K., Yevtushenko, N. (2005) An improved
conformance testing method. Formal Techniques for Networked and
Distributed Systems, Taipei, Taiwan; 204–218.

[16] Dorofeeva, R., El-Fakih, K., Maag, S., Cavalli, A.R., Yevtushenko, N.
(2010) FSM-based conformance testing methods: a survey annotated

with experimental evaluation. Information and Software Technology;
52(12):1286–1297.

[17] Simao AS, Petrenko A, Yevtushenko N. (2009) Generating reduced
tests for FSMs with extra states. In Testing of Software and
Communication Systems, Vol. 5826. Springer: Berlin / Heidelberg;
129–145.

[18] Chaves Pedrosa, L.L. and Vieira Moura, A., (2013). Incremental
testing of finite state machines. Software Testing, Verification and
Reliability, 23(8), pp.585-612.

[19] Kumar, S., Rathore, S.S. and SpringerLink (Online service)
(2018) Software Fault Prediction: A Road Map, Springer Singapore,
Singapore.

[20] Catal, C. and Diri, B. (2009) Investigating the effect of dataset size,
metrics sets, and feature selection techniques on software fault
prediction problem. Information Sciences, 179(8), pp.1040-1058.

[21] Kalsoom, A., Maqsood, M., Ghazanfar, M.A., Aadil, F. and Rho, S.
(2018) A dimensionality reduction-based efficient software fault
prediction using Fisher linear discriminant analysis (FLDA). The
Journal of Supercomputing, 74(9), pp.4568-4602.

[22] Nasrabadi, M.Z., Parsa, S. and Kalaee, A. (2018) Format-aware
Learn&Fuzz: Deep Test Data Generation for Efficient Fuzzing. arXiv
preprint arXiv:1812.09961.

[23] Ipate, F., Gheorghe, M. and Holcombe, M. (2003) Testing (Stream) X-
machines. Applicable Algebra in Engineering, Communication and
Computing, 14(3), pp.217-237.

[24] Chow, T. S. (1978) Testing Software Design Modelled by Finite State
Machines. IEEE Transactions on Software Engineering, 4(3), 178-187.

[25] Fujiwara, S., Bochmann, G.v., Khendek, F., Amalou, M., Ghedamsi,
A. (1990) Test selection based on finite state models. Publication #716,
Departement d’informatique et de recherche operationnelle, University
of Montreal.

[26] Fujiwara, S. and Bochmann, G.v. (1991) Testing non-deterministic
finite state machines. Publication #758, Departement d’informatique et
de recherche operationnelle, University of Montreal.

[27] Holcombe, M. and Ipate, F. (1998) Correct Systems: Building a
Business Process Solution. Berlin: Springer.

[28] Eilenberg, S. (1974) Automata, languages and machines. Vol. A,
Academic Press.

[29] Ipate, F. and Holcombe, M. (1998) A method for refining and testing
generalized machine specifications. Intern. J. Computer Math. 68,
197–219.

[30] Ipate, F. and Holcombe, M. (1998) Specification and testing using
generalized machines: a presentation and a case study. J. Software
Testing, Verification and Reliability 8, 61–81.

[31] Ipate, F. and Gheorghe, M. (2009) Testing non-deterministic stream X-
machine models and P systems. Electronic Notes in Theoretical
Computer Science, 227, pp.113-126.

[32] Chin, L.S., Worth, D.J. and Greenough, C. (2007) A survey of software
testing tools for computational science. Software Engineering Group
Computational Science & Engineering Department.

[33] Louridas, P. (2005) Junit: Unit Testing and Coding in Tandem. IEEE
Software. 22 (4), pp. 12-15. Merayo, M.G., Núñez, M. and Hierons,
R.M. (2009) Testing timed systems modelled by stream x- machines.
Software & Systems Modeling. 10(2), pp. 201–217.

[34] Smeets, N, Simons, A.J.H (2009) Comparing the Effectiveness of
Automatically Generated Tests by Randoop, JWalk and μJava with
jUnit Tests. Research report, University of Sheffield/University of
Antwerp.

[35] Simons, A.J.H., Bogdanov, K. and Holcombe, M. (2014) Complete
Functional Testing using Object Machines. [online]. Report Number:
CS -01 -18. University of Sheffield. Available from:
http://www.dcs.shef.ac.uk/intranet/research/public/resmes/CS0204.pd
f [Accessed 12 June 2020].

[36] Schneider, A. (2000) Junit best practices. Available from:
http://www.javaworld.com/article/2076265/testing-debugging/junit-
best-practices.html [Accessed 12 June 2020].

[37] Csallner, C. and Smaragdakis, Y. (2004) JCrasher: An automatic
robustness tester for java. Software - Practice and Experience. 34 (11),
pp. 1025-1050.

[38] Ipate, F. (2003) "On the Minimality of Stream X-machines", The
Computer Journal, vol. 46, no. 3, pp. 295-306.

	I. Introduction
	II. Background
	A. The theory of X-Machine and stream X-Machine
	1) Concepts
	2) Minimal stream X-Machine

	B. Software testing tools
	1) JUnit
	2) JWalk
	3) JCrasher
	4) Summary

	III. Proposed solution
	IV. The T-SXM algorithm
	A. The package and class diagram
	B. The related algorithms
	1) Algorithm for checking if an SXM is accessible
	2) Algorithm for making an SXM minimal
	3) Algorithm for executing a processing function
	4) Algorithm for the next-state function

	V. Case study
	A. The vending machine system
	B. Testing with the T-SXM algorithm

	VI. Evaluation
	VII. Future research
	VIII. Conclusion
	References

