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Abstract 

 

To accurately predict hourly day-ahead building cooling demand, year-round historical weather profile 

needs to be evaluated. The daily weather profiles among different time periods result in various features 

of historical datasets. The different appropriate structure and parameters of artificial neural network 

models may be identified for training datasets with different features. In this study, a novel clustering-

enhanced adaptive artificial neural network (C-ANN) model is proposed to forecast 24h-ahead building 

cooling demand in subtropical areas. The uniqueness of the proposed adaptive model is that k-means 

clustering is implemented to recognise representative patterns of daily weather profile and thus 

categorize the annual datasets into featuring clusters. Each cluster of the weather profile, along with the 

corresponding time variables and cooling demand, is adopted to train one ANN sub-model. The optimal 

structure and parameters of each ANN sub-model are selected according to its featuring training datasets; 

thus the ANN sub-models are adaptive. The proposed C-ANN model is tested on a representative office 

building in Hong Kong. It is found that the mean absolute percentage error of the training and testing 

cases of the proposed predictive model is 3.59% and 4.71%, which has 4.2% and 3.1% improvement 

compared to conventional ANN model with a fixed structure. The proposed adaptive predictive model 

can be applied in building energy management system to accurately predict day-ahead building cooling 

demand using the latest forecast weather profile. 
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1. Introduction 

 

The emergence of energy crisis and the increase in energy demand has forced people to use energy in 

a more efficient and effective way. Buildings have become the largest energy consumer worldwide 

since most people spend over 90% of their daily lives indoors. Generally, building energy demands 

include cooling, heating and electricity demands. Long-term forecasting is crucial in building design 

evaluation, while short-term prediction is important in effective building energy management [1-4]. 

There are a variety of factors affecting building energy demands, such as physical properties, energy 

devices, weather conditions and occupant behaviours. Due to the nonlinear and complex relationship 

between these affecting factors and building energy demands, it is challenging to predict day-ahead 

hourly building energy demands accurately.  

 

1.1 Related works 

 

Analytical thermal models and machine learning techniques are two categories of approaches in 

building energy demands prediction [5-7]. Fundamental thermodynamic equations are usually used to 

construct the analytical thermal models of different types of buildings. The cooling and heating 

demands are estimated based on the detailed building and environmental parameters, including building 

envelop information, climatic weather profile and internal operating schedules. However, such 

information is generally difficult to obtain. Commercial energy simulation software, such as TRNSYS 

[8], EnergyPlus [9] and ESP-r [10] are generally adopted for developing such analytical thermal models. 

The complicated building envelopes, especially in high-rise buildings, will make the analytical thermal 

models computationally expensive [5].  

 

On the other hand, machine learning techniques, especially artificial neural network (ANN) models, are 

widely used in investigating the complex relationship between affecting factors and energy demands. 

Historical measurement is usually adopted to train the data-driven models. The training process of ANN 

models is to determine its structure and parameters, thus to reveal the nonlinear relationship between 

various output and input datasets. In [11], four single-hidden-layer ANN predictive models were 

developed to forecast the daily average heating and cooling demands in buildings for four different 

seasons, respectively. To represent the daily weather patterns, the mean, standard deviation, maximum, 

and minimum values of daily outdoor air dry-bulb temperature and humidity ratio were adopted as 

inputs to the proposed ANN predictive models. It was pointed out by the authors that seasonal effects 

might highly influence the parameters of the predictive model. Therefore, the manual approach was 

adopted to split and select data, which is based on pre-determined time periods and daily average dry-

bulb temperature. In [12], various single-hidden-layer ANN models were ensembled to predict the daily 

heating energy consumption of a university campus. The ANN models included feed-forward 
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backpropagation neural network, radial basis function network and adaptive neuro-fuzzy interference 

system. The whole year was manually divided into three periods: cold, mild and warm periods, while 

only the cold period was studied. In [13], the single-hidden-layer ANN predictive models were 

constructed for daily cooling demand in institutional buildings. To overcome the problem of high 

variation in one-year measurement data, the energy consumption values were assigned to five different 

groups through manual classification: very low, low, medium, high and very high. Each group of the 

database was adopted to train one ANN predictive model.  

 

In [14], a single-hidden-layer  ANN predictive model with fixed structure was developed to predict the 

hourly building energy consumption. The inputs to the ANN model were outdoor air dry-bulb and wet-

bulb temperatures, while the output was the electrical energy consumption. Several months’ simulation 

data was adopted to train the ANN predictive model. In [15, 16], a single-hidden-layer   ANN predictive 

model with fixed structure was developed to predict the hourly building cooling demand using the 

simulation data from a week. In [17], a single-hidden-layer  ANN model was ensembled with other 

data-mining methods to predict the building cooling demand using one-month’s simulation data. In [18], 

a support vector machine model and a single-hidden-layer  ANN model was used to predict office 

cooling demand using one month’s measurement data. In [19], a hybrid teaching-learning optimization 

based-ANN predictive model with the fixed structure was developed for building electrical energy 

consumption using several months’ measurement. In [20], the single-hidden-layer ANN models with 

several different fixed structures for building energy consumption were trained using 3 years’ 

measurement data collected from the building management system of a specific building. 

 

1.2 Limitation of existing approaches 

 

In terms of daily energy demand prediction, Jovanovic et al. [12] implicated that higher accuracy could 

be obtained through using separate data-driven models for each period compared to adopting one model 

for the whole year. However, in previous research works, the year-round weather profile database was 

generally divided into different groups according to natural seasons or outdoor air dry-bulb temperature 

range. Since there exist different features of weather profile during the same season, those manual 

classification approaches were actually not accurate enough to adequately distinguish the featuring 

patterns of weather profile. Moreover, for hourly energy demand prediction, most of the previous 

research studies used one week’s [15, 16] one month’s [17, 18] or several months’ [14, 19] 

meteorological weather profile to train the ANN predictive model with a fixed structure.  However, 

data within a short period was not sufficient to represent the variation of building energy demands. 

Although the building operating pattern might be similar year-round, the meteorological weather profile 

varies [1]. It is not appropriate to use several months’ historical data to train ANN predictive models 

and then adopt them for building energy demand prediction in other months. 
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Clustering approach is an effective tool in pattern recognition [21]. Through clustering, the datasets 

within the same cluster are similar to each other, while the datasets among different clusters have little 

similarity. Panagiota et al. [22] used the k-means clustering algorithm to identify the typical daily load 

profiles from 8293 Danish single-family households in Aarhus. It was found that Danish district heating 

customers could be segmented into five clusters with regards to the energy consumption intensity. 

Samira et al. [23] used the k-means clustering algorithm to group the year-round energy demand profile 

into several typical periods, while the featuring characteristics of the annual energy demand were 

adequately observed. Schiefelbein et al. [24] adopted the k-means clustering algorithm to identify the 

typical daily energy demands profile, thus to reduce computational time in the design and optimization 

of thermal energy systems.  Fernando et al. [25] used the k-means clustering algorithm to reduce the 

whole year energy demands profile into a few representative days, while the unique characteristics, 

including the peak demands, the demand duration curves, and the temporal inter-relationship among 

heating, cooling and electricity demands, were retained. Luo et al. [26] proposed the Gaussian mixture 

model-based clustering method to identify representative building cooling load. Adesoji et al. [27] 

developed a hybrid clustering and multi-linear regression model to identify the representative 

archetypes. 

 

However, as far as it is concerned, the clustering approach was seldom hybrid with machine learning 

models for building energy demands prediction. Only Chen et al. [28] proposed a hybrid support vector 

regression model to predict the day-ahead hourly electric demand based on feature identification and 

better organization of training samples. The training samples were clustered into different groups 

according to the daily trend of electric consumption. However, it did not mention how to implement 

such clustering in future energy consumption prediction since its trend would be unknown.  

 

1.3 Contribution 

 

In the above-mentioned literature review, most of the ANN-based predictive models used only several 

months’ historical data as training samples. Although the entire-year weather profile was adopted in 

some of the prediction models, the year-round weather profile was generally divided into different 

groups according to natural seasons or outdoor air dry-bulb temperature range. Since there exist 

different features of weather profile during the same season, these manual classification approaches 

were actually not accurate enough to adequately distinguish the featuring patterns of annual weather 

profile. On the other hand, k-means clustering analysis is effective in pattern recognition of different 

energy profiles. The gap in knowledge inspires the idea of using clustering-enhanced adaptive artificial 

neural network (C-ANN) model for predicting cooling energy demand in building applications. 
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The most distinctive feature of the proposed predictive model is that clustering analysis is firstly used 

to detect the featuring patterns of one-day weather profile and group the yearly weather profile into 

several different clusters. After that, each sub-ANN predictive model with its distinctive structure and 

parameters is trained by the datasets which share the same featuring pattern. It is expected that the 

proposed C-ANN predictive model will serve as an effective and accurate prediction approach for 

various building energy demands in practical application. 

 

The rest of the paper is structured like this: The next section illustrates the proposed clustering-enhanced 

adaptive artificial neural network model; the following section illustrates the generation of the historical 

weather data profile and corresponding cooling demand database; the fourth section discusses the 

prediction results; the fifth section details the implication for practice and future study while the last 

section points out the conclusion. 

 
2. Proposed clustering-enhanced adaptive artificial neural network model 

 

The proposed clustering-enhanced adaptive artificial neural network model consists of four key 

procedures: data pre-processing, data clustering, data training and data post-processing. The outline of 

the proposed predictive model is illustrated in Fig. 1. Outdoor air dry-bulb temperature and relative 

humidity play an important role in determining convective heat gain from walls and windows, 

infiltration heat gain and ventilation heat gain; Total horizontal radiation and horizontal beam radiation 

decide the solar heat gain; Building operating schedules are decisive in various internal heat gains. 

Therefore, weather data profile and time variables are consolidated as input datasets to the clustering-

enhanced adaptive artificial neural network model.  

• The outdoor weather condition mainly includes outdoor air dry-bulb temperature 𝑇!", outdoor 

air relative humidity 𝑅𝐻, total horizontal radiation 𝑇𝐻𝑅 and horizontal beam radiation 𝐻𝐵𝑅. 

Therefore, at the kth hour on the ith day: 𝑥#,%,&' = 𝑇!",#,& , 𝑥#,(,&' = 𝑅𝐻#,& , 𝑥#,),&' = 𝑇𝐻𝑅#,& , 𝑥#,*,&' =

𝐻𝐵𝑅#,&.    

• In office buildings, the operating schedules (i.e. occupants, office equipment, lighting and lifts) 

are relatively constant during weekdays and weekends, respectively. Thus, time variables 

mainly consist of hour of the day hd and day of the week dw, and 𝑡#,%,& = ℎ𝑑, 𝑡#,(,& = 𝑑𝑤. 
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Fig. 1. Outline of the proposed clustering-enhanced adaptive artificial neural network model. 

 

2.1  Data pre-processing 

 

Since the value range of each parameter 𝑥#,+,&'  in the weather profile is quite different, min-max 

normalization is conducted to ensure that the training process of the ANN model does not suffer from 

numerical round-off effects [29]. Therefore, all the values in the historical database are normalized to 

values between 0 and 1.  

 

𝑥#,+,& =
,!,#,$
% - ./0

&'!'(),&'$'(*		
,!,#,$
%

.12
&'!'(),&'$'(*		

,!,#,$
% - ./0

&'!'(),&'$'(*	
,!,#,$
%                  (1) 

 

where, 

𝑥′#,+,&:  the original value of the jth type of weather data at the kth hour on the ith day; 
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𝑥#,+,&:   the normalized value; 

𝑁3:  total hours of the day, and 𝑁3 = 24; 

𝑁!:  total days of the year, and 𝑁! = 365. 

 

2.2  Data clustering 

 

The year-round weather profile 𝐗 consists of the daily weather profile of 𝑁! = 365 days and 𝐗 =

[𝑿%; 	𝑿(; …𝑿#; … ; 𝑿4)] ; 𝑿#  is the daily profile of various weather data, and 𝑿# =

[𝑋#,%	𝑋#,(…𝑋#,+ …	𝑋#,4,] ; 𝑋#,+  is the daily profile of the jth type of weather data, and 𝑋#,+ =

[𝑥#,+,%	𝑥#,+,(…	𝑥#,+,4*]. 𝑁5 is the total quantity of weather data types, and 𝑁5 = 4.  

 

By using the k-means clustering algorithm, the daily profile 𝑿# (i = 1, 2, …, 𝑁!) is classified into certain 

number (m) of clusters (m = 1, 2, …, Nc). Therefore, the dataset of cluster centroids Cm in each cluster 

is determined by minimizing the total Euclidian distance between each dataset to its corresponding 

cluster centroid as described in Eq. (2)  

 

	𝐽 = ∑ 	∑ =∑𝑢#,6‖𝑿# − 𝐶6‖B
4)
#7%

48
67%                     (2) 

 

where, 

‖	‖: Euclidean distance between two data points; 

m:  cluster number; 

NC: total quantity of clusters; 

ui,m: clustering factor, ui,m = 1 indicates the ith day belonging to the mth cluster, ui,m = 0 otherwise. 

 

The cluster centroid dataset 𝐶6 = {𝑐6,+,&|𝑗 = 1,2, … ,𝑁5; 	𝑘 = 1,2, … ,𝑁3} is determined by Eq. (3): 

 

𝐶6 	= 	
∑ (𝑿!	=!,-)!.()
!.&
∑ =!,-!.()
!.&

                          (3) 

 

The optimum quantity of clusters Nopt is decided through the lowest Davies-Bouldin index evaluation 

value [30]. 

 

 𝐷𝐵4/ 	= 	𝑚𝑎𝑥
?
∑ (2!,-&.& |𝑿!56-&|7|𝑿!56-8|)

(-&
@

|B-&-B-8|
                   (4) 
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Hence the cluster centroid database C can be formulated as C = [C1; C2; …;𝐶6;… ;𝐶4:,;]. According 

to clustering factor ui,m, the historical database 𝐗 are grouped into Nopt clusters: 𝐘%, 𝐘(, … , 𝐘6, … , 𝐘4:,;, 

and 𝐗 = 𝐘% ∪ 𝐘( ∪ …𝐘6 …∪ 𝐘4:,;. The procedure of the data clustering is shown in Fig. 2. 

 

 
Fig. 2. Procedure of weather profile clustering. 

 
Thus, in the mth cluster, 𝐘𝐦 = N𝒀6,%; 𝒀6,(; … ; 𝒀6,#%; … ; 𝒀6,4-P, 	𝒀6,#% = {𝑦6,#%,+,&|𝑗 =

1, 2, … ,𝑁5; 	𝑘 = 1,2, …𝑁3}, and  𝑁6  is the total quantity of days in the mth cluster. Based on the 

clustering result ui,m from weather profile clustering, the year-round time variables 𝐓 = {𝑡#,+,&|𝑖 =

1,2, …𝑁!; 𝑗 = 1,2; 	𝑘 = 1,2, …𝑁3}  and cooling demand profile 𝐃 = {𝑑#,&|𝑖 = 1,2, …𝑁!; 	𝑘 =

1,2, …𝑁3} are assigned into corresponding groups according to its number of days, as shown in Fig. 3. 

 

 
Fig. 3. Procedure for grouping time variables and cooling demands. 
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Therefore, in the mth cluster, 𝑫𝒎 = {𝐷6,#%,&|𝑖' = 1,2, … ,𝑁6; 𝑘 = 1,2, … ,𝑁3} , 𝑻𝒎 = {𝑇6,#%,+,&|𝑖' =

1,2, … ,𝑁6; 𝑗 = 1,2; 𝑘 = 1,2, … ,𝑁3}. 

 

2.3  Data training 
 

Each cluster of the weather profile 𝐘𝐦, along with the corresponding time variables 𝑻𝒎	and cooling 

demand 𝑫𝒎, is adopted to train one ANN sub-model. To facilitate the training of sub-ANN models, the 

𝑁6 × =𝑁3 × 𝑁5B matrix 𝐘6  is transformed into the (𝑁6 × 𝑁3) × 𝑁5  matrix 𝐙6 . The transforming 

process is shown in Fig. 4. 

 

 
Fig. 4. Transforming process of 𝐘6 into 𝐙6. 

 
Thus, the training database 𝐙6  is formulated as 𝐙𝐦 = {𝑧6,#%,+,&|𝑖' = 1,2, … ,𝑁6; 𝑗 = 1,2, … ,𝑁5; 𝑘 =

1,2, … ,𝑁3}. In summary, in each cluster m, there are 𝑁6 × 𝑁3 time steps, and thus 𝑁6 × 𝑁3 samples 

of data for ANN training. At each time step, for example, the kth h hour of the 𝑖'th day, the training 

sample is represented as:𝑣% = 𝑧6,#%,%,& , 𝑣( = 𝑧6,#%,(,& , 𝑣) = 𝑧6,#%,),& , 𝑣* = 𝑧6,#%,*,& , 𝑣E = 𝑇6,#%,%,& , 𝑣F =

𝑇6,#%,(,&. 

 

ANN algorithm was first introduced by McCulloch and Pitts [31], which is based on mimicking the 

function of the human brain. Similar to the central nervous system of mammals, the ANN attempts to 

simulate the nonlinear and nonstationary multivariate dataset through the networks. The schematic 

diagram of the ANN algorithm is shown in Fig. 5.  

 

The representative ANN model constitutes of an input layer, a hidden layer and an output layer. The 

essential component in the ANN model is the neuron, which is affiliated in layers while tied to neurons 

in other layers through synaptic weights. The values of these weights are determined during the training 

process. The quantity of neurons in the input and output layers are determined by the total types of input 

datasets and output datasets, respectively. The hidden layer plays an important role in determining the 

accuracy and effectiveness of the predictive model. The neurons in the hidden layer allow the neural 
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networks to detect the feature, to capture the pattern in the dataset, and to perform the complicated 

nonlinear mapping between input and output variables. According to [11-20], the single hidden layer is 

sufficient for the ANN models to approximate any complex nonlinear function with satisfactory 

accuracy. Therefore, one hidden layer is adopted in each of the ANN sub-models in this study. The 

optimal quantity of neurons in the hidden layer is chosen according to its prediction performance (i.e. 

mean absolute percentage error between the predicted and actual result); thus each ANN sub-model is 

configured with the unique feature of the weather database 𝐙6.  

 

 
Fig. 5. Schematic diagram of the ANN algorithm. 

 

The lth neuron Hm,l in the hidden layer of the mth ANN sub-model is defined as: 

 

𝐻6,G = 𝑓(∑ (𝑤6,+,G 	𝑣+))
+7F
+7%                                (5) 

 

where 𝑤6,+,G 	 is the connection weighting factor between the jth input and the lth neuron, while Rectified 

Linear Unit is adopted as the activation function f: 

 

𝑓(𝑡) = _0		𝑓𝑜𝑟	𝑡 < 0
𝑡	𝑓𝑜𝑟	𝑡 ≥ 0                           (6) 

 

The cooling demand dataset 𝑫𝒎 is considered as the only neuron in the output layer: 

 

𝑫e𝒎 = 	𝑓=∑ (𝑤6,G𝐻6,G)
G74*!
G7% B                       (7)

  

where 𝑫e𝒎 = f𝐷e6,#%,&g	𝑖' = 1,2, … ,𝑁6; 𝑘 = 1, 2, … ,𝑁3} is the predicted cooling demand through the 

mth ANN sub-model. The aim of the training process of each ANN sub-model is to minimize the squared 

error Em between 𝑫e𝒎 and 𝑫𝒎. Both Levenberg-Marquardt (LM) and Bayesian Regularization (BR) 
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approaches are adopted to minimize Em. Therefore, the weighting factor database 𝐖 = {𝑊6|𝑚 =

1, 2, … ,𝑁H5I}, and 𝑊6 = {𝑤6,+,G; 𝑤6,G|𝑗 = 1,2, … ,6; 𝑙 = 1,2, … ,𝑁3#} can be determined for each ANN 

sub-model.  

 

𝐸6 =	∑(𝑫𝒎 −𝑫e𝒎)(                         (8) 

 

2.4  Data post-processing 

 

After obtaining the predicted cooling demand from each cluster, 𝑫e𝒎 is regrouped to formulate yearly 

predicted cooling demand 𝐃e , as illustrated in Fig. 6. 

 

 
Fig. 6. Process of data post-process. 

 

After obtaining the cluster centroid database C and weighting factor database W, the proposed C-ANN 

predictive model can be adopted to predict future building cooling demand. The day-ahead weather 

profile forecasted by the local weather station would be assigned to the appropriate cluster according to 

its Euclidean distance to the centroid dataset 𝐶6. Thus, the weighting factor dataset 𝑊6 of the mth sub-

ANN model can be adopted to determine the day-ahead cooling demand. 

 

2.5  Performance evaluation index  

 

Overestimating the cooling demand will result in extra energy consumption, while underestimation may 

cause thermal comfort problems. Mean absolute percentage error (MAPE) is a scale-independent metric 

which proficiently reflects the relative prediction error. To evaluate the performance of the mth cluster 

and the overall year, Eq. (8) and Eq. (9) is adopted, respectively: 

 

𝑀𝐴𝑃𝐸6 =	 %
4-×4*

∑ ∑ o
KL-,!%,$-K-,!%,$

K-,!%,$
o&74*

&7%
#%74-
#%7% × 100%              (9) 
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𝑀𝐴𝑃𝐸H =	
%

4)×4*
∑ ∑ o!

M!,$-!!,$
!!,$

o&74*
&7%

#74)
#7% × 100%                  (10) 

 

3. Generation of the historical database using synthetic data 

 

To assess the performance of the proposed C-ANN model, it was implemented on a representative 

office building in Hong Kong. To obtain the year-round cooling demand, the validated simulation 

platform TRNSYS 18 was adopted to develop the analytical building model. The building description, 

the TRNSYS simulation model and the structure of the database are discussed in each sub-section. 

 

3.1  Building description 

 

The representative office building in Hong Kong as detailed in the guidelines from Electrical and 

Mechanical Services Department [32, 33] is selected as the case study. It is a typical high-rise 30-floor 

office building while each floor has the same layout, as shown in Fig. 7. The floor area is 40.8 ´ 40.8 

m2 with a floor-to-floor distance of 3.6 m. Each floor is divided into three zones: the exterior zone, the 

interior zone and the lift lobby. The exterior zone is defined as the region within 4 m from the building 

external wall. Since the thickness of the external wall is 0.2 m, the area of an exterior zone is 556 m2. 

The area of the lift lobby is based on the approximation of dividing the non-office region into a 7 ´ 7 

grid sections and the total area of lift lobby measured 17 sections. Thus, the area of the lift lobby is 150 

m2. The area of the interior zone is 926 m2, which is calculated as the total area minus those for the 

exterior zone and lift lobby. The building operating schedules are based on the local design practice [32, 

33]. The operating schedules of the occupant, lighting air conditioning and lift of a weekday are 

presented in Fig. 8, while the schedules during the weekend are kept consistent as the off-peak hours 

(i.e. 1-5 h, 23-24 h). Meanwhile, the indoor design guideline of the office building is summarized in 

Table 1. 

 

Table 1. Indoor design guideline. 
Items Value Unit 
Area per occupancy  8  m²/person 
Lighting power intensity  15  W/m2 
Office equipment power intensity  10  W/m2 
Indoor dry-bulb temperature  24  °C 
Indoor relative humidity  50 % 
Fresh air requisite  8  L/s/person 
Occupant sensible heat gain  75  W/person 
Occupant latent heat gain  75  W/person 
Infiltration 0.0408 ACH  
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3.2  TRNSYS simulation model   
 

In this study, the historical database is obtained through synthetic data. Owing to the yearly changing 

weather profile and building operating schedules, transient simulation is required to get the year-round 

hourly building cooling demand. Hence, TRNSYS 18 is implemented as the dynamic simulation 

platform, while Type 56 is adopted to construct the analytical thermal model of the representative office 

building.  

 

The TRNSYS program has been continuously developed and improved by the Solar Energy Laboratory 

at the University of Wisconsin since 1975, and is widely adopted to simulate the transient performance 

of thermal energy systems. The Multi-zone Building model Type 56 can calculate the interaction among 

different zones through solving various coupled differential equations. In Type 56, ASHRAE transfer 

function approach is adopted to simulate the thermal performance of building envelopes [34]. TRNSYS 

program and Type 56 have been verified as a reliable approach for calculating various building energy 

demands in previous studies [35-42]. Moreover, in [43], the performance comparison of modelling 

building thermal behaviour was conducted through various popular simulation software, including 

EnergyPlus, DOE-2.1E and TRNSYS, the mean absolute percentage error from the experiment is found 

to be 9.0%, 7.7% and 6.6%, respectively. Therefore, the TRNSYS simulation gives the results with the 

most satisfactory accuracy. 

 

To further validate the developed analytical building model, relative errors between the simulated peak 

cooling demand in each zone and those from [44] are calculated as shown in Table 2. [44] is also a 

simulation study with the same building. It is found that the relative error of the peak cooling demand 

 
Fig. 7. Floor layout of the reference office building. 

 
Fig. 8. Building operating schedules. 

 

Lift lobby 

Lift lobby 
Lift  

Lift 

Exterior zone 
Interior zone 

40.8m 

6m 4m 
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in each zone is smaller than 6%. Hence the TRNSYS simulation model for the office building is 

reckoned to be validated.  

 
Table 2. Validation of the simulation model 

Zone Simulated peak cooling demand (kW) Relative error 
[44] TRNSYS simulation model 

Exterior  82.79 77.94 5.86% 
Interior 84.39 80.00 5.20% 
Lift lobby 18.88 19.97 5.77% 

 

3.3  Structure of the generated historical database  

 

For training and testing purposes of the proposed clustering-enhanced C-ANN model, two sets of 

historical databases are generated. The typical meteorological year weather profiles from Hong Kong 

Observatory Station are used for training purpose while the ones from Hong Kong King’s Park are used 

for testing purpose, respectively. The two year-round weather profile are shown in Fig. 9, while the 

maximum, minimum and average value of Tdb and RH, along with the maximum and total value of THR 

and HBR in each month are summarized in Table 3.  

 

The outdoor air dry-bulb temperature has the largest variation among these four types of weather 

profiles, which reaches about 34 ℃ in summer, while drops to 6 ℃ in winter. During most of the time, 

the range of outdoor air relative humidity is between 65-90% among the four different seasons, although 

it drops to 40% at a certain period. Total horizontal radiation and horizontal beam radiation have the 

largest values in summer while the smallest values in winter. Overall speaking, the weather profiles, 

including outdoor air dry-bulb temperature, relative humidity, total horizontal radiation and horizontal 

beam radiation, vary all over the year.  

 

On the other hand, the two weather data profiles share similar average, minimum and maximum outdoor 

air dry-bulb temperature and relative humidity in the same months. Meanwhile, the maximum and total 

horizontal radiation and horizontal beam radiation are also similar among these two weather profiles. 

Therefore, these two sets of weather profiles can be served as training and testing databases, 

respectively.  
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(a) Dry-bulb temperature, Hong Kong Observatory 

 

 
(b) Dry-bulb temperature, Hong Kong King’s Park 

 

 
(c) Relative humidity, Hong Kong Observatory 

 
(d) Relative humidity, Hong Kong King’s Park 



16 
 

 
(e) Total horizontal radiation, Hong Kong Observatory 

 

 
(f) Total horizontal radiation, Hong Kong King’s Park 

 

 
(g) Horizontal beam radiation, Hong Kong Observatory 

 

 
(h) Horizontal beam radiation, Hong Kong King’s Park  

 
Fig. 9. Year-round weather profiles. 
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Table 3. Brief comparison weather condition in each month. 
Weather variables Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sept. Oct. Nov. Dec. 
Tdb  Maximum 

(°C) 
O 23.5 26.2 26.7 30.2 32.3 32.3 34.6 34.4 33.6 30.9 28.0 27.0 
K 24.2 25.0 28.2 29.7 32.9 32.5 34.8 34.1 33.4 31.5 31.5 28.6 

Minimum 
(°C) 

O 7.1 5.4 10.5 14.4 18.5 21.9 20.5 20.9 19.4 18.4 14.7 9.7 
K 7.2 6.1 11.0 14.6 18.7 22.3 20.5 20.7 19.7 17.9 14.8 9.7 

Average 
(°C) 

O 15.8 15.8 18.6 21.9 26.0 27.4 28.8 28.4 27.3 25.3 21.1 17.7 
K 16.0 16.1 18.9 22.2 26.3 27.6 29.0 28.7 27.5 25.4 21.3 17.9 

RH  Maximum 
(%) 

O 94 94 98.5 100 100 99.5 95.5 100 95.5 96 94 93 
K 98 95.5 98.0 100 98 99 100 100 97 90 90 92 

Minimum 
(%) 

O 40 36.5 39 47.5 52.5 61 58 58 55 49 46 40.5 
K 42.5 53.5 37.5 45.0 50.0 56.5 55.0 54.5 50.0 46.0 40.0 39.0 

Average 
(%) 

O 70.0 77.3 79.3 82.2 81.0 82.4 78.9 80.2 78.3 72.3 69.4 66.3 
K 71.4 77.2 79.2 81.2 79.3 81.8 78.2 78.5 76.8 70.2 66.7 66.4 

Rg Maximum 
(kJ·h-1 m-2) 

O 2.89 3.24 3.32 3.36 3.42 3.56 3.67 3.62 3.53 3.27 3.05 2.73 
K 2.93 2.83 3.50 3.40 3.42 3.52 3.58 3.55 3.56 3.15 2.95 2.76 

Total 
(kJ· m-2) 

O 37.7 23.0 28.1 33.9 46.9 52.8 60.5 56.8 49.5 47.1 39.1 37.4 
K 33.5 23.5 25.7 32.4 44.5 46.7 56.5 50.9 44.8 42.5 36.2 34.5 

Rh  Maximum 
(kJ·h-1 m-2) 

O 2.59 2.74 2.62 2.28 2.38 2.89 2.96 2.95 2.89 2.55 2.61 2.40 
K 2.62 1.81 3.02 2.55 2.19 2.50 2.79 2.79 2.94 2.60 2.60 2.48 

Total 
(kJ· m-2) 

O 17.6 8.4 7.2 8.5 15.6 20.7 26.3 26.2 22.9 22.9 20.0 19.6 
K 13.0 4.8 7.4 8.0 13.0 16.2 25.4 18.4 18.4 17.8 16.4 16.1 

O: Hong Kong Observatory Station     K: Hong Kong King’s Park 
 

The two sets of year-round weather profiles, along with the time variables, are used in the TRNSYS 

simulation model to obtain two sets of cooling demand profiles. The detailed information regarding the 

inputs and output datasets is summarized in Table 4. 

 

Table 4. Input and output datasets to the proposed C-ANN. 
Historical database Train Test 

Input 
datasets 

Weather 
profile 

Outdoor air dry-bulb 
temperature 

Typical 
meteorological year 
weather profile from 

Hong Kong 
Observatory Station  

Typical 
meteorological 
year weather 

profile from Hong 
Kong King’s Park  

Outdoor air relative humidity 
Global horizontal radiation 
Horizontal beam radiation 

Time 
variables 

Hour of the day Simulation calendar Day of the week 

Output 
datasets Simulated cooling demand 

Simulation results 
from TRNSYS model 

based on weather 
profile from Hong 
Kong Observatory 

Station 

Simulation results 
from TRNSYS 
model based on 
weather profile 

from Hong Kong 
King’s Park 
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4. Results and discussion 

 

So as to assess the accuracy and effectiveness of the proposed C-ANN predictive model, a deep insight 

into the clustering results of the daily weather data profiles is taken. After that, the MAPE values of 

each ANN sub-model and the year-round MAPE are assessed, while its improvement in prediction 

accuracy is investigated. Finally, the predicted cooling demands of the four representative days in each 

season are evaluated.  

 
4.1. Clustering result of weather data profiles 
 

As the lowest value of DB is obtained when Nc = 6, thus Nopt = 6. The year-round database X is divided 

into 6 clusters, while the datasets in each cluster is adopted to train one ANN sub-model. In order to 

evaluate the representative patterns of the daily weather data profiles, the normalized values of outdoor 

air dry-bulb temperature, relative humidity, total horizontal radiation and horizontal beam radiation at 

each hour during the 24-hour duration are summarized in Figs. 10-13, along with the corresponding 

centroid values. The black square markers in Figs. 10-13 represent the centroid value, while the colorful 

round ones stand for the values from each dataset 	𝒀6,#%. Through k-means clustering, representative 

patterns are identified in each cluster, covering the lowest and highest value occurring hour, as well as 

the most concentrated or scatted distribution.  

 

Generally, the outdoor air dry-bulb temperature decreases during the first 6th or 7th h, then increases till 

the 15th or 16th h, and finally decreased till the end of the day. It is found that the lowest value of dry-

bulb temperature happened at the 7th h in Clusters 1-3, while at the 6th h in Clusters 4-6. The highest 

value occurs at the 14th, 15th, 15th, 16th, 15th and 16th h in Clusters 1, 2, 3, 4, 5 and 6, respectively. The 

largest daily temperature difference and the most concentrated points distribution is found in Cluster 6, 

while the smallest daily temperature difference and the most scatted points distribution is identified in 

Cluster 2.  
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(a) Cluster 1 

 
(b) Cluster 2 

 
(c) Cluster 3 

 
(d) Cluster 4 

 
(e) Cluster 5 

 
(f) Cluster 6 

Fig. 10. Clustering result of outdoor air dry-bulb temperature. 

 

 
(a) Cluster 1 

 
(b) Cluster 2 

 
(c) Cluster 3 

 
(d) Cluster 4 

 
(e) Cluster 5 

 
(f) Cluster 6 

Fig. 11. Clustering result of outdoor air relative humidity. 

 

The daily variation of outdoor air relative humidity is roughly inverse to that of outdoor air dry-bulb 

temperature: it increases during the first 6th or 7th h, then decreases till the 15th or 16th h, and increases 

at the end of the day. Although the highest value happens at the 7th h in each cluster, different 

representative patterns are identified in each cluster. The lowest value happens at the 14th, 15th, 15th, 

16th, 15th and 15th h in Clusters 1, 2, 3, 4, 5 and 6, respectively. Similar to the phenomenon found in 

outdoor air dry-bulb temperature, the largest daily relative humidity difference and the most 
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concentrated points distribution is detected in Cluster 6, while the smallest daily relative humidity 

difference and the most scatted points distribution is spotted in Cluster 2.  

 

 
(a) Cluster 1 

 
(b) Cluster 2 

 
(c) Cluster 3 

 
(d) Cluster 4 

 
(e) Cluster 5 

 
(f) Cluster 6 

Fig. 12. Clustering result of total horizontal radiation. 

 

 
(a) Cluster 1 

 
(b) Cluster 2 

 
(c) Cluster 3 

 
(d) Cluster 4 

 
(e) Cluster 5 

 
(f) Cluster 6 

Fig. 13. Clustering result of horizontal beam radiation. 

 

In Hong Kong, sunrise usually happens at around the 6th h, while sunset is at about the 19th h each day. 

There is no solar radiation during the 1-6th h and 20-24th h each day. The highest value of total horizontal 

radiation is found at the 12th, 14th, 13th, 13th, 11th and 13th h in Clusters 1, 2, 3, 4, 5 and 6, respectively. 
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The most concentrated distribution is found in Cluster 6, while the most scatted distribution is identified 

in Cluster 4. 

 

Similarly, the horizontal beam radiation is 0 during the 1-6th h and the 20-24th h in each day. The highest 

value of horizontal beam radiation locates at the 12th, 14th, 13th, 15th, 10th and 14th h in Clusters 1, 2, 3, 

4, 5 and 6, respectively. The most concentrated distribution is found in Cluster 6 while the most scatted 

distribution is identified in Cluster 5. 

 

To summarize the above discussion, the featuring pattern identified in each cluster is summarized in 

Table 5.  

 

Table 5. Summary of featuring patterns in each cluster. 
 Cluster 

1 
Cluster 

2 
Cluster 

3 
Cluster 

4 
Cluster 

5 
Cluster 

6 

Dry-bulb 
temperature 

Lowest value occurred time  7 7 7 6 6 6 
Highest value occurred time  14 15 15 16 15 16 
Most concentrated       
Most scatted       

Relative 
humidity 

Lowest value occurred time  14 15 15 16 15 16 
Highest value occurred time  7 7 7 7 7 7 
Most concentrated       
Most scatted       

Global 
horizontal 
radiation 

Highest value occurred time  12 14 13 13 11 13 
Most concentrated       
Most scatted       

Horizontal 
beam 

radiation 

Highest value occurred time  12 14 13 15 10 14 
Most concentrated       
Most scatted       

 

4.2  Evaluation of MAPE  

 

As sub-ANN models 1-6 are trained using different featuring datasets in clusters 1-6 respectively, the 

different optimal quantity of neurons in the single hidden layer Nhi is identified. The variation between 

MAPE and Nhi in each sub-ANN model is illustrated in Fig. 15, along with the conventional ANN model. 

The reference conventional ANN model is trained using the datasets from one entire year. For LM 

optimization, the optimal quantity of neurons for ANN sub-models 1-6 are 20, 19, 9, 11, 10 and 6, 

respectively, while the optimal quantity for the reference conventional ANN model is 15; For BR 

optimization, the optimal quantity of neurons for ANN sub-models 1-6 are 13, 14 12, 19, 15 and 18, 

respectively,  while the optimal quantity for the reference conventional ANN model is 20. 
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(a) Levenberg-Marquardt optimization 

 
(b) Bayesian Regularization optimization 

Fig. 15. Variation between MAPE and Nhi in conventional ANN model and proposed sub-ANN 
models. 

 

According to the clustering result, there are 42, 29, 74, 77, 61 and 82 days in clusters 1-6 for the training 

case, respectively; while there are 43, 31, 73, 79, 59 and 80 days in clusters 1-6 for the testing case, 

respectively. The MAPE values of the conventional ANN model and the proposed C-ANN predictive 

models are summarized in Table 6. For training case of the LM optimization-based C-ANN, the MAPE 

value from sub-models 1, 4, 5 and 6 are smaller those from the conventional ANN model; For testing 

case of the LM optimization-based C-ANN, the MAPE value from sub-models 1, 2, 4 and 6 are smaller 

those from the conventional ANN model; For training case of the BR optimization-based C-ANN, the 

MAPE value from sub-models 1, 2, 5 and 6 are smaller those from the conventional ANN model; For 

testing case of the BR optimization-based C-ANN, the MAPE value from sub-models 1, 2 and 6 are 

smaller those from the conventional ANN model. Therefore, in training cases, the reduction of overall 

MAPE value is 12.1% and 4.2% when using LM and BR optimization, respectively. In testing cases, 

the reduction of annual average MAPE value is 4.2% and 3.1% when using LM and BR optimization, 

respectively. Overall, the BR optimization resulted in the best performance, with the MAPE value of 

3.59% and 4.71% at training and testing cases, respectively. 
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Table 6. MAPE of conventional ANN and proposed C-ANN predictive models. 
Predictive models Quantity of 

days in 
each cluster 

Quantity of 
days in 

each cluster 

LM optimization BR optimization 
MAPE (%) 

Training Testing Training Testing 
Conventional 
ANN model 

N.A. N.A. 4.75 4.98 3.75 4.86 

C-ANN sub-
models 

1 42 43 3.86 4.71 3.22 4.51 
2 29 31 6.43 4.02 3.27 2.34 
3 74 73 4.94 5.06 4.47 5.16 
4 77 79 4.52 4.89 4.25 5.20 
5 61 59 3.61 5.42 3.61 5.10 
6 82 80 2.95 4.07 2.47 4.56 

Overall 4.16 4.73 3.59 4.71 
Reduction 12.1% 4.9% 4.2% 3.1% 

 
In addition, a two-hidden-layer C-ANN model trained by BR optimization is adopted as reference. The 

same quantity of neurons is adopted in the first and second layer in each of the C-ANN sub-models. 

According to the result in Fig. 15(b), the quantity is designed as 7, 7, 6, 10, 8 and 9 for sub-models 1-

6, respectively. The overall performance and the MAPE value of each sub-model is summarized in 

Table 7. Although the MAPE value of each ANN sub-model and the overall MAPE in training case is 

smaller than the proposed C-ANN model with a single hidden layer, the overall MAPE value from the 

testing case is similar. It might be due to the over-fitting of the ANN training. Therefore, it is concluded 

that the proposed single-hidden-layer C-ANN model is sufficient and accurate enough for building 

cooling demand prediction. 

 

Table 7. MAPE of the reference 2-hidden-layer C-ANN predictive model. 
MAPE 
(%) 

C-ANN sub-models Overall 1 2 3 4 5 6 
Training 3.14 3.20 4.41 4.18 3.54 2.41 3.45 
Testing 4.54 2.32 5.25 5.14 5.03 4.61 4.73 

 

4.3  Cooling demand prediction 

 

To take a deep look into the day-ahead prediction performance, the cooling demand prediction results 

from 4 representative days in each season are presented in Fig. 14 and Fig. 15, for training and testing 

cases, respectively. Compared to the conventional single ANN predictive model, it is found that the 

predicted cooling demand of proposed predictive model, no matter through LM and BR optimization, 

is closer to the simulated cooling demand from TRNSYS model. This is consistent with the discussion 

in Section 4.2. 
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(a) Spring 

 
(b) Summer 

 
(c) Autumn 

 
(d) Winter 

 
Fig. 13. Training result of cooling demand prediction. 

 

 
(a) Spring 

 
(b) Summer 

 
(c) Autumn 

 
(d) Winter 

 
Fig. 14. Testing result of cooling demand prediction. 
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5. Implication for practice and future direction 

 

In this study, to generate the historical database for training and testing cases for the proposed C-ANN 

predictive model, the year-round weather profile is assumed to be the same as those of the typical 

meteorological year from Hong Kong Observatory and Hong Kong King’s Park; the building operating 

schedules are assumed to follow the local guidelines; while the cooling demand is calculated using the 

TRNSYS simulation model. In practical application, the historical outdoor air dry-bulb temperature, 

relative humidity, total horizontal radiation and horizontal beam radiation should be obtained from the 

local weather station. The cooling demand should be estimated from the operating parameters of the 

chilled water system in the building management system. After training the C-ANN model using past 

year’s historical data, the day-ahead building cooling demand can be predicted using the latest forecast 

of weather profile acquired from the weather reporting website [45]. It can be adopted in the building 

management system in predicting the day-ahead cooling demand, thus determining the operating 

schedules of various equipment units such as chilled water system and air handling units.  

 

Compared to practical measurement data which may have sensor or equipment faults, the simulated 

data from TRNSYS 18 is noise-free. Since the simulation data is generated from the well-validated 

model, it provides an ideal scenario under which the variation of the cooling demand is more predictable. 

It can serve as the first step towards the understanding, developing and testing the proposed C-ANN 

model. In the future study, the performance evaluation of the proposed C-ANN model should be tested 

on real measurement data. The predictive model should be further refined to tackle the problem caused 

by the probable faulty data owing to sensor and equipment faults. 

 

Moreover, k-means clustering analysis is hybrid with ANN predictive model. It remains to be seen 

whether it will result in better prediction performance when k-means clustering is integrated with 

support vector regression, long-short term method and other data-driven predictive models. Moreover, 

the performance of other types of clustering algorithms in pattern identification, such as density-based, 

distribution-based, connectivity-based and hierarchical-based clustering algorithm should be 

investigated.  

 

6. Conclusion 

 

To improve the accuracy, effectiveness and robustness of cooling demand prediction, a novel 

clustering-enhanced adaptive artificial neural network predictive model is proposed in this study. The 

major contribution of this study is the unique adaptability feature of the proposed model. To be more 

specific, k-means clustering analysis is firstly used to recognise the representative patterns of daily 

weather data profile and group the year-round working days’ profiles into different clusters. After that, 
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datasets in each cluster are used to train one specific adaptive ANN sub-model. The optimal structure 

and parameters are determined for each ANN sub-model based on the distinctive pattern of daily 

weather profile in each cluster. Since each ANN sub-model is adaptive to the features of database of 

input variables, the prediction performance of the proposed clustering-enhanced adaptive artificial 

neural network predictive model is improved compared to the conventional ANN predictive model with 

a fixed structure.  

 

To evaluate the performance of the clustering-enhanced adaptive artificial neural network predictive 

model, the whole-year typical weather data profiles from two different locations, along with building 

the corresponding cooling demand profile, are established as two databases for training and testing 

purposes, respectively. In training cases, the reduction of annual MAPE value from the proposed 

adaptive model is 12.1% and 4.2% when using LM and BR optimization, respectively, compared to the 

conventional fixed predictive model; In testing cases, the reduction of annual average MAPE value is 

4.9% and 3.1% when using LM and BR optimization, respectively, compared to the conventional fixed 

predictive model. It is also found that the proposed adaptive C-ANN model with BR optimization has 

the best prediction performance, with MAPE value of 3.59% and 4.71% at training and testing cases, 

respectively. Through comparison with the C-ANN model with two hidden layers, it is also 

demonstrated that the single-layer is sufficient enough.  

 

Different consumption patterns result in different energy sequences. In general office buildings, the 

similar operating schedules of lighting, office equipment, air conditioner and lift can be identified on 

each weekday. Therefore, time variables can be adopted to represent those operating schedules. The 

representative high-rise office building is tested in this study, and it is expected that the proposed C-

ANN model is general and can be adopted in other office buildings. However, for special office 

buildings such as event venues, the operating schedule is not consistent. Thus, time variables cannot 

simply represent complicated operating schedules. The cooling demand prediction lies in the 

comprehensive effects of both exogenous parameters (weather conditions) and endogenous parameters 

(stochastic events). The schedules of the stochastic events should be adopted to train the ANN model 

instead of general time variables. 

 

Nomenclature 

c  Data point of cluster centroid 
C  Dataset of cluster centroid 
C  Database of cluster centroid 
d  Data element in output database D 
dw  Day of the week 
𝑑q  Predicted data element in output database 𝐃e  
D  Dataset in database D 
𝐷e  Predicted dataset in output database 𝐃e  
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D  Cooling demand database 
𝐃e   Predicted cooling demand database  
E  Squared error 
hd  Hour of the day 
l  Number of the neuron in the hidden layer of sub-ANN model 
m  Number of the cluster  
N  Quantity  
u  Clustering result 
w  Weight of the connection in ANN 
x'  Original data in database 
x  Normalized data in database 
X  Daily profile of a certain type of weather data 
X  Daily profile of weather data 
X  Historical database of weather profile before clustering 
y  Data element in database Y 
Y  Dataset in each group 
Y  Database in each group 
Z  Dataset in database Z 
Z  Database for ANN  
‖	‖  Euclidean distance 
 

Subscripts 
c  Cluster 
d  Day 
h  Hour 
hi  Hidden layer of ANN model 
i  Number of working days 
in  Input layer of ANN model 
j  Type of weather data 
k  Hour of the day 
m  Cluster number 
opt  Optimal quantity of clusters 
 
Abbreviations 
 
ANN  Artificial neural network 
BR  Bayesian Regularization 
C-ANN Clustering enhanced artificial neural network 
LM  Levenberg-Marquardt 
MAPE Mean absolute percentage error 
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