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Abstract 

Background and Aims: β-cells share many similarities and features with neuronal 

cells, including the expression of proteins specialised for synaptic transmission. 

Glutamate receptors (GluRs) are key players in cellular communication throughout 

the central nervous system (CNS) and are activated by the major excitatory 

neurotransmitter glutamate. GluRs are also thought to be present in pancreatic β-

cells, where they modulate insulin secretion, however there are many conflicting 

reports over the presence and function of GluRs particularly in human β-cells. 

Furthermore, autoantibodies to various GluRs have been associated with diseases 

of the CNS such as autoimmune encephalitis and epilepsy. It is unclear whether 

these receptors are also targets on β-cells in patients with Type 1 Diabetes (T1D). 

The aims of this project were (i) to identify GluRs, specifically Kainate receptor 

(KAR) subunits, expressed in the human β-cell line, EndoC- βh1; (ii) to elucidate 

their role in insulin secretion and (iii) to identify if GluR subunits on the β-cell surface 

are targeted by the immune system in T1D. 

Materials and Methods: GluR expression was investigated in EndoC-βh1 human 

β-cells, both at the mRNA and protein levels using RT-PCR and immunoblotting, 

respectively. To measure the cell surface targeting of KARs in response to glucose 

stimulation, biotinylation experiments were carried out using EndoC- βh1 cells. 

Autoantibodies to KAR subunits were detected in sera from T1D patients (n=40) and 

aged-matched controls (n=40) using immunocytochemistry. The effect of KAR 

activation on insulin secretion was measured in the presence of kainate and various 

GluR agonists/antagonists using the Mercodia human insulin ELISA kit. To 

investigate if the KAR subunit GluK2 is specifically involved in glucose-stimulated 

insulin secretion (GSIS) a GluK2 knockdown using GluK2 shRNA lentivirus was 

attempted. 

Results and Conclusions: KAR subunits Gluk2 and Gluk5 and the supporting 

auxiliary subunits Neto1 and Neto2 are expressed in EndoC-βh1 cells. The 

presence of GluK2 protein in EndoC-βH1 cells was confirmed using immunoblots, 

suggesting that functional kainate receptors can be formed. However, neither 

GluK2, GluK5, GluN1 nor GluN1 plus GluN2B are antigenic targets in T1D patients. 

The subcellular localisation of KAR was observed to be dynamically regulated as 

glucose stimulation significantly increased the cell surface targeting of GluK2. 

Lentiviral knock-down of GluK2 was unsuccessful in both INS-1 and EndoC-βH1 

cells and it was therefore not possible to assess of GluK2 was specifically involved 

in GSIS. However, high glucose and kainate significantly increased insulin secretion 

compared to high glucose alone. Furthermore, high glucose and kainate induced 

insulin secretion from EndoC-βH1 cells was significantly reduced by the kainate 

receptor antagonist, NBQX, suggesting a functional role for KARs in insulin 

secretion and that KAR activation augments insulin secretion in human β-cells.  
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1. Introduction 

1.1. The Islet of Langerhans 

The endocrine pancreas accounts for 1 – 2 % of pancreas mass, which is 

comprised of the Islet of Langerhans, named after Paul Langerhans (1847 – 

1888) who first distinguished the cluster of cells that make up the Islet of 

Langerhans. Pancreatic islets are made up of five different cell types; glucagon 

secreting α-cells make up 30% of the islet, insulin secreting β-cells account for 

60% and the remaining 10 % are made up of δ-cells which produce somatostatin, 

PP (gamma) cells which secrete pancreatic polypeptide and epsilon cells which 

produce ghrelin (Da Silva Xavier, 2018).  

The structure and composition of cells within islets has been shown to differ 

between species (Cabrera et al., 2006; Rorsman and Ashcroft, 2018). Human 

islets are considered to have a more random distribution of the different islet cell 

types (Cabrera et al., 2006; Da Silva Xavier, 2018) (Figure 1.1a). Whereas, in 

rodent islets there is a highly ordered structure, with β-cells being the 

predominant cell type making up the core of the islet and smaller numbers of α, 

δ, PP and epsilon cells surrounding the periphery, creating a ‘mantle’ structure 

(Pfeifer et al., 2015; Steiner et al., 2010) (Figure 1.1c). However, Bonner-Weir et 

al., 2015, have demonstrated that the majority human islets do resemble the 

rodent mantle-core arrangement, but there is a much bigger variability between 

islets from human pancreas than there is between islets from rodents. Despite 

islet architecture showing variation between different species, the cell 

composition remains the same and always includes α-, β- and δ-cells (Figure 

1.1). 
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The pancreas is well vascularised and despite the Islets of Langerhans only 

accounting for 1 – 2 % of the pancreas, it receives roughly 10 % of the total 

pancreatic blood supply and the number of fenestrae is approximately ten times 

higher in islets than in the exocrine capillaries (Henderson and Moss, 1985; 

Jansson et al., 2016). Vascularisation of the islets of Langerhans is essential to 

allow β-cells and α-cells to respond quickly to changes in blood glucose levels 

and maintain glucose homeostasis (Diez et al., 2017). Studies also report 

differences between human and rodent vascularisation and innervation, both of 

which being less dense in humans (Brissova et al., 2015; Hart and Powers, 2019; 

Pfeifer et al., 2015; Rodriguez-Diaz et al., 2011).  
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Figure 1.1. The architecture of the islets of Langerhans varies between 

different mammalian species. Architectural differences in the islets of 

Langerhans can be seen from immunostained pancreatic sections taken from A) 

human, B) monkey, C) mouse and D) pig. Immunoreactive antibodies towards 

insulin (produced by β-cells, shown in red), glucagon (produced by α-cells, shown 

in green) and somatostatin (produced by δ-cells, shown in blue) were used 

identify the different cell types in the islet of Langerhans. The scale bare 

represents 50 µM. Image is taken from Cabrera et al., 2006. 
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1.2. Glucose Homeostasis 

The primary role of the endocrine pancreas is to regulate glucose levels in the 

blood and to keep it maintained within 4 – 6 mM (Röder et al., 2016). Variation 

outside of the normal glucose range can have catastrophic effects on the body. 

If blood glucose levels fall below 3.9 mM then an individual is described as being 

hypoglycaemic and left in this condition it can result in seizures or coma 

(Pawaskar et al., 2018). It is now known that even a short period of energy 

depletion in the brain can result in irreversible damage, highlighting the 

importance of maintaining blood glucose levels (Nirmalan and Nirmalan, 2017). 

Conversely, if glucose levels become too high, resulting in hyperglycaemia, the 

body can begin to breakdown fat as an energy source, leading to the production 

of ketone bodies and metabolic acidosis, resulting in changes in blood pH, 

eventually leading to coma (Fayfman et al., 2017). Both hyper- and 

hypoglycaemia if left untreated are fatal.  

The body is able to maintain glucose homeostasis primarily through the actions 

of hormones secreted by the islets of Langerhans. The two most significant 

hormones in this process are glucagon and insulin. 

1.2.1. The role of insulin in glucose homeostasis 

Insulin is produced by β-cells in the islets of Langerhans and has the opposite 

effect of glucagon. When blood glucose levels are raised insulin is released by β-

cells and results in glucose uptake by skeletal muscles, liver and adipose tissue 

and the conversion of glucose to glycogen (Nirmalan and Nirmalan, 2017) (Figure 

1.2.). 
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1.2.2. The role of glucagon in glucose homoestasis 

Glucagon is produced by the α-cells of the islets of Langerhans and its effects 

are primarily exerted on the liver. Glucagon is released by α-cells when blood 

glucose levels are low and results in glycogenolysis (glycogen breakdown into 

glucose) and gluconeogenesis (formation of new glucose) in the liver (Briant et 

al., 2016; Wendt and Eliasson, 2020). As a result, glucagon causes an increase 

in blood glucose levels (Figure 1.2). 
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Figure 1.2. The hormonal control of glucose homeostasis. Blood glucose 

control is achieved through the balance of insulin and glucose secretion in 

response to high or low glucose. When blood glucose levels rise the β-cells of 

the pancreas are stimulated to produce insulin, resulting in glucose conversion to 

glycogen by the liver and glucose uptake by muscle tissue. Thus, allowing blood 

glucose levels to return to normal range. If blood glucose levels decline then the 

α-cells of the pancreas are stimulated to produce glucagon, which causes 

glycogen to be converted to glucose by the liver, resulting in blood glucose levels 

to rise and return to the normal range. Image taken from Nirmalan and Nirmalan, 

2017. 
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1.3. Insulin secretion from pancreatic β-cells and mode of action 

Upon ingestion of food, blood glucose levels begin to rise, creating a 

concentration gradient between the blood and the inside of β-cells. Glucose can 

then be transported via facilitated diffusion into the β-cell. This diffusion occurs 

via glucose transporters (Gluts) located on the plasma membrane of the β-cell. 

In humans, the predominant Glut used for glucose transport across the β-cell 

membrane is Glut1, whereas Glut2 is primarily used in rodents (Rorsman and 

Ashcroft, 2018). Once inside the cell, glucose is phosphorylated by glucokinase 

and undergoes glycolysis to yield pyruvate, which is utilised by the mitochondria 

in the tricarboxylic acid cycle (TCA cycle) to produce adenosine triphosphate 

(ATP) (Figure 1.3). Increased ATP within the cell then results in the closure of 

ATP-sensitive K+ channels, depolarisation of the membrane and activation of 

voltage-dependent Ca2+ channels (VDCCs). Activation of VDCCs causes an 

influx of Ca2+ and triggers the exocytosis of insulin via secretory granules 

(Nirmalan and Nirmalan, 2017) (Figure 1.3).  
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Figure 1.3. Mechanism of glucose-stimulated insulin secretion from a 

pancreatic β-cell. Glucose is transported into the β-cell via the glucose 

transporter (Glut) (1). Once inside the cell, glucose undergoes glycolysis to 

produce pyruvate which can be utilised by the mitochondria in the tricarboxylic 

acid (TCA) cycle (2). The TCA cycle causes increased levels of adenosine 

triphosphate (ATP) (3). Increased ATP then causes ATP-sensitive K+ channels 

to close (4), resulting in a decreased membrane potential (Ψ) and activation of 

voltage-dependent Ca2+ channels (VDCCs) (5). Open VDCCs allow the influx of 

Ca2+ and triggers the formation of insulin containing secretory granules (SG) (6). 

Finally, insulin is released from the β-cell via exocytosis of SGs (7). Figure 

adapted from Rorsman and Ashcroft, 2018. 
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Glucose-stimulated insulin secretion (GSIS) from β-cells is a biphasic mechanism 

(Pedersen et al., 2019). The first phase lasts less than 10 minutes and results 

from the release of insulin from the readily releasable pool (RRP), which includes 

granules that are biochemically ready for release from the membrane as soon as 

depolarisation occurs. Roughly only 1 – 2 % of all β-cell insulin granules make up 

the RRP and are depleted following depolarisation (Rorsman and Ashcroft, 

2018). The second phase occurs much more slowly, over approximately 60 

minutes, where the reserve pool (RP) of insulin are trafficked to the plasma 

membrane for release (Rorsman and Braun, 2013) (Figure 1.4). 

Once insulin has been released from β-cells it binds to insulin receptors on 

skeletal muscle, liver and adipose tissues. Binding of insulin to the insulin 

receptor results in a downstream signalling cascade which leads to translocation 

of Glut4 to the cell membrane. As a result, glucose can enter the cells via 

facilitated diffusion and be utilised by the cells for ATP production (Nirmalan and 

Nirmalan, 2017; Richter and Hargreaves, 2013). 
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Figure 1.4. Biphasic insulin secretion from pancreatic β-cells. Insulin is 

released from β-cells in a biphasic manner where during the first phase (red line), 

insulin is released from the readily releasable pool (RRP), which is comprised of 

insulin granules which are fused to the membrane and are ready for immediate 

release. The first phase lasts less than 10 minutes and depletes the RRP. The 

second phase of insulin release occurs when the reserve pool (RP) of insulin is 

trafficked to the plasma membrane fusion site for release or replenishes the RRP. 

The second phase occurs over approximately 60 minutes. Image taken from 

Aizawa and Komatsu, 2005. 
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1.4. Diabetes Mellitus 

1.4.1. Definition and Prevalence of Diabetes Mellitus  

Diabetes mellitus is a group of chronic metabolic conditions that occur due to 

defects in either insulin secretion, insulin action or both. The lack of insulin action 

or secretion results in the body being unable to process glucose, leading to 

hyperglycaemia (Saberzadeh-Ardestani et al., 2018, IDF Diabetes Atlas, 2017). 

Diabetes can result in numerous complications such as, cardiovascular disease 

(Raghavan et al., 2019), kidney disease (Alicic et al., 2017), retinopathy (Selvaraj 

et al., 2017) bone fragility (Ferrari et al., 2018) and if left untreated can result in 

death. As well as physical complications, individuals with diabetes have been 

shown to have an increased risk of depression compared to the general 

population (Chireh et al., 2019), highlighting the difficulties faced by those living 

with the disease. 

According to the IDF Diabetes Atlas, 2017 there are currently 425 million people 

affected by diabetes and this figure could rise to as many as 629 million by 2045. 

Globally, cases of diabetes are set to rise substantially across all continents 

(Figure 1.5). Diabetes treatment and care has become a major global burden with 

reported healthcare costs to have reached USD 727 billion. In the UK, 1 in 15 

people have diabetes and the number of people with diabetes has risen from 1.4 

million in 1996 to 3.8 million in 2018 (NHS Digital, 2018) and costs the NHS £192 

million per week (Hex et al., 2012). 
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Figure 1.5. Number of people with diabetes worldwide and per region in 

2017 and 2045 (20-79 years). The number of cases of diabetes is growing 

worldwide, with low and middle income countries showing the biggest increase. 

Figure available from International Diabetes Federation 

(https://diabetesatlas.org/ , last accessed 25/04/2019).  
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1.4.2. Classification of Diabetes Mellitus 

Diabetes mellitus describes a group of metabolic diseases which can be 

classified into four general categories; 1) type 1 diabetes (T1D), 2) type 2 

diabetes (T2D), 3) gestational diabetes mellitus (GDM) and 4) diabetes due to 

other causes, such as; neonatal diabetes (NDM), maturity-onset diabetes of the 

young (MODY) and diseases of the pancreas (American Diabetes Association, 

2018).  

The majority of people with diabetes have T2D and account for 90% of all 

diabetes cases (NHS Digital, National Diabetes Audit, 2017/2018). Individuals 

with T2D are still able to produce insulin, but the insulin they produce is 

insufficient to maintain glucose homeostasis. T1D accounts for 8% of diabetes 

cases in the UK and results from the destruction of insulin producing β-cells in 

the pancreas (Saberzadeh-Ardestani et al., 2018). The remaining 2% of diabetes 

cases arise from GDM or diabetes due to other causes. GDM is diabetes which 

occurs in pregnant woman at the second or third trimester, causing 

hyperglycaemia of varying severity (Chiefari et al., 2017). GDM prevalence is 

rising and has been found to reflect the prevalence of T2D within a population 

(Zhu and Zhang, 2016), adding to the current diabetes pandemic. In the majority 

of GDM cases, diabetes disappears after birth. However, it has been shown that 

women with a history of GDM are seven times more likely to develop T2D later 

on in life, with women who develop GDM in their first and second pregnancies 

being three times as likely of early T2D onset within three years of the second 

delivery (Bellamy et al., 2009; Bernstein et al., 2019). 

MODY and NDM are both monogenic forms of diabetes. MODY has a higher 

occurrence compared to NDM and results from a genetic defect in insulin 
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producing β-cells and limits the cells ability to produce insulin (Firdous et al., 

2018). There are currently 14 different genes known in which mutations could 

lead to the development of MODY and diagnosis of the condition is reliant on 

genetic screening (Firdous et al., 2018). NDM is diabetes which presents in the 

first 6 months of life and has more than 20 known genetic causes, with prognosis 

dependent on which gene is affected (Lemelman et al., 2018).  

As a whole diabetes presents with vast heterogeneity, making correct diagnosis 

and classification of diabetes challenging. However, treatment management 

varies depending on which type of diabetes a patient has, so ensuring correct 

classification is essential for patient outcomes. 

1.4.3. Type 1 Diabetes 

T1D is a life-long and if left untreated, a life-threatening disease which is caused 

by the mass destruction of insulin producing β-cells in the islet of Langerhans 

(Saberzadeh-Ardestani et al., 2018). Patients with T1D are unable to convert 

glucose into glycogen and as a result enter a hyperglycaemic state and in severe 

cases ketoacidosis (Siller et al., 2016). T1D was formally known as juvenile 

diabetes as it was thought to only present itself in the young. However, research 

now indicates that incidences of adult-onset T1D are becoming more common 

(Lee et al., 2019; Thomas et al., 2018; Weng et al., 2018). This highlights the 

increasing difficulty in diagnosing T1D as many cases maybe misdiagnosed as 

T2D due to the age of onset. There is an estimated 40 million people living with 

T1D worldwide and recent research has shown that this figure is set to rise, as a 

3.4% increase per annum in incidence rate has been noted across European 

countries (Patterson et al., 2019; Tuomilehto, 2013) (Figure 1.6). 
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Figure 1.6. Estimated rates of annual increase of Type 1 Diabetes across 26 

European centres. Data from 26 European centres shows an increase in T1D 

across all countries, with a ranging increase from 0.5 % in Spain to 6.6 % in 

Poland. The overall pooled increase across all 26 centres is 3.4 %. Figure taken 

from Patterson et al., 2019. 
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The cause of T1D is currently unknown, however, it is thought that it results from 

an interplay of genetic and environmental factors resulting in an uncontrolled 

immune response and autoimmunity (Saberzadeh-Ardestani et al., 2018) (Figure 

1.7). There is evidence that the environment plays a role in T1D as the incidence 

and prevalence of T1D varies globally, ranging from more than 60 cases per 

100,000 reported each year in Finland to only 0.1 per 100,000 cases per year in 

China (Atkinson et al., 2014). Studies have also indicated a seasonal link 

between incidences of T1D, further supporting the role of an environmental 

trigger for T1D (Rogers et al., 2017). There have been many studies suggesting 

numerous environmental risk factors which could be associated with T1D, such 

as gut microbiota reduction and the “hygiene hypothesis” (Toniolo et al., 2019). 

In support of this, children born by caesarean section have been shown to have 

an increased risk of developing T1D later in life (Magne et al., 2017; Peters et al., 

2018), with a recent paper identifying shared molecular changes between 

children born by caesarean section and children who developed T1D 

(Laimighofer et al., 2019). Numerous dietary factors have also been associated 

with T1D, such as; cow’s milk (Chia et al., 2018), breast feeding (Frederiksen et 

al., 2013; Lund-Blix et al., 2017) and gluten intake (Antvorskov et al., 2018; 

Gorelick et al., 2017). Further to this, excess BMI has been reported to accelerate 

autoimmunity and may lead to earlier onset of T1D in children (Ferrara-Cook et 

al., 2020). A study has even suggested that reduced natural selection may be 

involved in the increased rates of T1D (You and Henneberg, 2016). Epigentics is 

also suggested to be involved, with T1D patients having increased DNA 

methylation variability compared to their healthy twin siblings and healthy 
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unrelated individuals (Paul et al., 2016). Despite all the environmental evidence, 

no one exposure has been proven as the cause of T1D. 

Through the use of genome-wide association studies (GWAS) over 60 

susceptibility loci have been identified which are thought to explain roughly 80% 

of the heritability of T1D (Pociot, 2017). The most significant genetic association 

is with changes in the human leukocyte antigen (HLA), accounting for more than 

50% of the genetic risk in T1D (Nakayama et al., 2015). HLA class II molecules 

present exogenous antigens to T lymphocytes, initiating the immune response. 

Alterations in genes encoding HLA molecules may predispose individuals to 

triggering autoimmunity, destroying β-cells and ultimately developing T1D 

(Regnell and Lernmark, 2017).  Other non-HLA genes affecting T1D susceptibility 

are often genes associated with the immune system and even β-cell function. 

Some of the most notable of these are; INS, PTPN22 and IL2RA. PTPN22 codes 

for protein tyrosine phosphatase and is expressed in high levels in neutrophils 

and natural killer cells (Tizaoui et al., 2019). Interleukin 2 (IL2) has an essential 

role in maintaining the function of CD4+ regulatory T cells, which help to regulate 

autoimmunity. IL2RA encodes the α subunit of the IL2 receptor and alterations in 

this gene are thought to lead to reduced IL2 signalling in regulatory T cells of T1D 

patients (Andreone et al., 2018). Finally, INS has the strongest association to T1D 

of all the non-HLA susceptibility genes and codes for preproinsulin. It is of note 

that this is the only susceptibility gene that also codes for a known T1D 

autoantigen (Regnell and Lernmark, 2017). Through the identification of genetic 

susceptibility loci researchers are beginning to be able to stratify the risk of 

individuals to go on to develop β-cell autoimmunity and eventually T1D (Bonifacio 

et al., 2018). However, genetic risk alone is not enough to account for or predict 
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all cases of T1D. An overview of the genetic and environmental aetiologies which 

may be involved in T1Ds is shown in Figure 1.7. 
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Figure 1.7. Representation of the genetic and environmental factors 

associated with T1D. The outer green ring represents environmental factors 

associated with T1D, whilst the middle blue ring displays genetic susceptibility 

alleles associated with T1D. The central circle indicates the mechanism of action 

for each of the environmental and genetic factors on causing T1D. Figure taken 

from Saberzadeh-Ardestani et al., 2018. 
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1.4.4. Autoantibodies and Type 1 Diabetes Mellitus 

As discussed, it is now considered that islet autoimmunity is the first stage of 

disease in T1D (Insel et al., 2015; Rewers and Ludvigsson, 2016). There are 

currently four significant known autoantibodies associated with T1D which target 

β-cell proteins. The target proteins are: glutamate decarboxylase (GAD), insulin 

(IAA), islet-autoantigen-2 (IA-2) and zinc transporter 8 (ZnT8) (Jacobsen et al., 

2018). It has been known for many years that detection of any of these 

autoantibodies in an individual’s serum is predictive of T1D onset, especially if 

the individual is positive for more than one autoantibody (Bingley et al., 1994). 

Further to this, a study recruited new-borns with increased risk of developing T1D 

and measured their autoantibody levels regularly over many years. It was found 

that by age 15, 12.7% of children with a single autoantibody had developed 

diabetes, compared to 61.6% who had two autoantibodies and 79.1% for those 

who had three autoantibodies (Ziegler et al., 2013); highlighting the predictive 

value of autoantibodies in T1D.  

Although they can act as a predictor, it is unlikely that any of these autoantibodies 

are the cause of T1D. All of the currently known autoantibody targets are 

intracellular β-cell proteins, as shown in Figure 1.8. Therefore, they will probably 

only be targeted by the immune system after the β-cell has already been 

destroyed and are unlikely to be the ‘primary antigens’ in triggering β-cell 

destruction at the early stages of T1D. Autoantibodies for these intracellular β-

cell proteins are more likely to be as a result of “epitope spreading”, which is when 

there is an increase in the number of islet autoantigens as the disease progresses 

into a more chronic state (McLaughlin et al., 2015). The antibodies produced as 

a result of epitope spreading are distinct from and non-crossreactive with the 
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disease-causing epitope. Epitope spreading is thought to occur by an initial 

activation of T cells, which leads to B cell activation and heightened antigen 

presentation. This heightened antigen presentation leads to antigen expansion 

beyond the initial disease causing antigen (Cornaby et al., 2015; Didona and Di 

Zenzo, 2018). However, it is likely that there are more autoantibodies to be 

discovered as there are some individuals whose sera are positive for islet cell 

autoantigen (ICA) but do not show immunoreactivity with any of the currently 

identified autoantibodies (Wenzlau and Hutton, 2013). Recently numerous other 

autoantibodies have been discovered which may also be associated with T1D, 

however, none so far appear act as the primary trigger of disease (Shi et al., 

2019; So et al., 2018). It is possible that a currently unknown surface antigen is 

the first target for the immune system, leading to β-cell death and presentation of 

the already known intracellular autoantigens. Identifying the primary antigen 

target in T1D is vital as it would allow for the development of new therapies which 

could help to treat and prevent the disease. 
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Figure 1.8. Pancreatic β cell and the location of known autoantibody targets 

in Type 1 Diabetes. All known autoantibodies associated with T1D have 

intracellular β-cell targets, as a result none of them are thought to be the “primary 

trigger” for the disease. The figure also shows the extracellular location of a 

potential antibody target which may be the initial target for the immune system in 

T1D. The figure is adapted from: http://www.bristol.ac.uk/clinical-

sciences/research/diabetes/research/autoantibodies/, last accessed 25/04/2019. 
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1.5.  Models of Type 1 Diabetes and pancreatic β-cells 

The study of T1D is notoriously difficult for many reasons. First of all, the majority 

of patients remain undiagnosed until most functional β-cells have been 

destroyed; allowing for the onset of clinical symptoms to occur (Rojas et al., 2018) 

(Figure 1.9). As a result of this, any form of prevention that could be used, such 

as immunosuppressant therapy, may no longer be as effective as the majority of 

β-cells which have been targeted by the immune system have already been 

wiped out. To aid this the Juvenile Diabetes Research Foundation (JDRF), the 

Endocrine Society and the American Diabetes Association have proposed that 

T1D actually starts with islet autoimmunity, rather than when clinical symptoms 

and hyperglycaemia occur (Insel et al., 2015). Furthermore, there is an argument 

that T1D clinical trials are targeting patients at the wrong time and they should be 

receiving treatment as soon as autoimmune markers in T1D are present or even 

before (Bonifacio et al., 2017; Coppieters and von Herrath, 2018). However, this 

is controversial and raises ethical and safety questions in providing treatment to 

otherwise clinically healthy individuals. New research is now aiming to utilise β-

cell regeneration to one day cure T1D and replace the β-cells destroyed by the 

immune system (Kuljanin et al., 2019; Mahdipour et al., 2019; Yi et al., 2020; 

Zhong and Jiang, 2019). While studies on non-obese diabetic (NOD) mice 

demonstrated if autoimmunity and islet inflammation are stopped it is possible for 

new β-cells to be formed (Akirav et al., 2008). This suggests that if the primary 

target of the autoimmune system in T1D can be identified and haulted, patients 

with T1D may have the potential to recover from the disease and regain β cell 

function.  
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The use of human islets for research purposes poses numerous problems as they 

can only be obtained from cadavers and require a specialist to properly excise 

the islets. Human islets have also been found to have very high variability from 

both one person to another and even between islets from the same individual 

(Bonner-Weir et al., 2015). For this reason, many researchers chose to use 

animal models as the islets are easier to acquire and in rodents show much less 

heterogeneity between samples. However, as described previously there are 

differences between human and other species islets, so they are still not the 

perfect model. There are many β-cell lines which can be used to study β-cell 

function, however, none exactly replicate a human β-cell so multiple models are 

sometimes required (Green et al., 2018). Many T1D breakthroughs and 

discoveries have been made using these research models, however, there is still 

a need for a consistent human model β-cell.   
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Figure 1.9. Timeline of Type 1 Diabetes disease initiation and progression. Prior to clinical diagnosis of T1D a genetic predisposition 

increases the chances of an individual developing T1D (stage 1). It is thought that some form of environmental trigger (virus, dietary 

trigger, microbiome etc.) then causes activation of the immune system and signals β-cell death and formation of autoantibodies (stage 

2). The β-cell mass of T1D patients decreases over time until there are no longer enough cells to maintain glucose homeostasis through 

insulin secretion and clinical symptoms begin to be presented (stage 3).  Figure has been adapted from https://www.diapedia.org/type-

1-diabetes-mellitus/2104328117/natural-history-of-pre-type-1-diabetes , last accessed 30/04/19.
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1.6. EndoC-βH1 cell line – human beta-cell line 

As discussed in section 1.5, the study of pancreatic cells and their physiology has 

been difficult due to a lack of human pancreatic samples and no functional human 

cell lines. However, a human pancreatic β cell line produced from human foetal 

pancreatic buds which have been transduced with a lentiviral vector expressing 

SV40LT (an oncoprotein derived from polyomavirus SV40), under the control of 

the insulin promoter; named EndoC-βH1 has now been produced (Ravassard et 

al., 2011). The EndoC-βH1 cell line was shown to express the β-cell transcription 

factors PDX1, MAFA, NKX6-1, PAX6 and NEUROD1 (Ravassard et al., 2011). 

These cells also express mRNA for other important β cell markers, for example; 

glucokinase (GCK) which acts as a glucose sensor and SLC2A2, a glucose 

transporter (Ravassard et al., 2011). More recent studies have also shown that 

EndoC-βH1 cells show commonality of gene expression when compared to 

human islets and primary β-cells (Lawlor et al., 2019). Importantly, it has been 

shown that EndoC-βH1 cells respond to glucose-stimulated insulin secretion 

(GSIS), with publications reporting a roughly two or three-fold increase in insulin 

secretion in the presence of high glucose, compared to low glucose conditions 

(Andersson et al., 2015; Fred et al., 2015; Hastoy et al., 2018; Tsonkova et al., 

2018). 

Characterisation of EndoC-βH1 cells revealed their physiological response to 

glucose is controlled in the same way as is seen in human β-cells, which was 

described previously in section 1.3. Gurgul-Convey et al., 2016 found that, much 

like human β-cells, EndoC-βH1 cells use Glut1 and Glut2 glucose transporters to 

internalise glucose from outside of the cell. EndoC-βH1 cells then uses 

glucokinase to phosphorylate glucose, leading to glycolysis and pyruvate 
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production. Pyruvate can then be used by the mitochondria in TCA cycle to 

produce ATP from ADP. The subsequent increase in intracellular ATP then 

triggers the exocytosis of insulin via secretory granules by closure of ATP-

sensitive K+ channels and opening of VDCC’s (Figure 1.3) (Gurgul-Convey et al., 

2016). These cells are therefore ideally suited for use as a human β-cell model 

to investigate glucose-sensitive hormone secretion. 

Numerous studies have already begun to use the EndoC-βH1 cell line as a model 

of human β-cells to uncover new susceptibility genes (Ndiaye et al., 2017), 

understand β-cell dedifferentiation (Diedisheim et al., 2018), as well as 

identification of novel drug targets (Tsonkova et al., 2018). As a result, these cells 

have the potential to be used to elucidate some of the conflicting data on β-cell 

function and physiology in humans. 
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1.7. Glutamate receptors 

L-glutamate is the major excitatory neurotransmitter in the mammalian central 

nervous system (CNS). In the CNS, glutamate is produced in the brain as the 

blood-brain-barrier prevents the majority of blood-borne glutamate from entering 

the CNS (Mahan, 2019). Glutamate acts as a neurotransmitter through its actions 

on Glutamate receptors (GluRs), which initiates numerous neuronal functions 

such as; fast synaptic transmission, learning and memory, motor processing and 

autonomic sensing (Mahan, 2019). There are two classes of GluRs; ionotropic 

(iGluR) and metabotropic (mGluR). iGluRs are glutamate-gated ion channels and 

mGluRs are G-protein coupled receptors (Ribeiro et al., 2017; Zhu and Gouaux, 

2017). GluRs are located on the cell surface of neuronal cells and as a result of 

their conformation can only be activated by glutamate found in the extracellular 

fluid (Zhou and Danbolt, 2014). Glutamate homeostasis is required in the CNS, 

as concentrations which are too low or too high can be very damaging for 

neuronal cells. Glutamate is therefore actively taken up by glutamate transporters 

located predominantly on glial cells and released at nerve terminals to allow 

balance within the CNS (O’Donovan et al., 2017). The essential role of glutamate 

transporters to take in glutamate is highlighted as there is no known enzyme 

which is able to degrade glutamate in the extracellular space (Mahan, 2019). It is 

therefore necessary for neuronal cells to be able to detect when to release and 

when to take up glutamate and maintain homeostasis. Too much glutamate and 

neuronal cells begin to die and despite it being an important neurotransmitter, it 

is now known that it is also a neurotoxin. Neuronal cell death due to excessive 

GluR activation has been termed ‘excitotoxicity’ and is thought to lead to seizures 

and be the primary cause of neuronal cell death in neurological disorders such 
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as; Alzheimer’s disease, traumatic brain injury and motor neurone disease (Magi 

et al., 2019; Vishnoi et al., 2016). On the other hand, too little glutamate has been 

associated with psychosis and schizophrenia (Hernaus and Amelsvoort, 2018), 

further emphasising the importance of glutamate and its regulation. 

1.7.1. Ionotropic Glutamate Receptors (iGluRs) 

Activation of iGluRs within the CNS results in basal excitatory synaptic 

transmission and synaptic plasticity (Zhu and Gouaux, 2017). iGluRs can be 

further subdivided based on their sequence homology, electrophysiological 

properties and pharmacological selectivity into three main subtypes; AMPA (α-

amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid), kainate and NMDA (N-

methyl-D-aspartate) receptors (Hogan-Cann and Anderson, 2016). Within the 

CNS iGluRs are located at the synaptic cleft, where upon binding of glutamate to 

the ligand-binding domain (LDM), allow the influx of Ca2+ and Na+ , resulting in 

excitatory synaptic transmission (Mayer, 2017; Zhu and Gouaux, 2017). iGluRs 

share some sequence homology and architecture, despite having large 

differences in their gating kinetics and pharmacology (Twomey and Sobolevsky, 

2018). All are composed of four protein subunits, 3 of which are transmembrane 

spanning, and form a central ion channel pore (Mayer, 2017). iGluRs can be 

divided into four layered domains; the amino terminal domain (ATD), which is 

required for receptor trafficking and assembly, the ligand binding domain (LBD), 

the transmembrane domain (TMD) which forms pores to allow the influx of Ca2+ 

and Na+ through the postsynaptic membrane and the intracellular C-terminal 

domain (CTD) (Twomey and Sobolevsky, 2018). The basic structure of iGluRs 

when at rest, activated and desensitised is shown in Figure 1.10.



30 
 

 

 

 

 

 

 

 

Figure 1.10. Structural overview of iGluRs at rest, activated and desensitised. iGluRs can are formed of a transmembrane domain 

(TMD), ligand-binding domain (LBD) and amino terminal domain (ATD). Upon iGluR activation via binding of glutamate to the LBD, 

iGluRs undergo a conformational change, creating a pore in the TMD and allowing the passage of ions through the post-synaptic 

membrane. Following activation, iGluRs become desensitised and the pore in the TMD is closed to prevent over-stimulation of neuronal 

synapses. Figure is modified from Smart and Paoletti, 2012. 
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1.8. Kainate Receptors (KARs) 

1.8.1. KAR subunit classification and receptor organisation 

Kainate receptors (KARs) are composed of five different subunits; GluK1, GluK2, 

GluK3, GluK4 and GluK5, encoded by the genes GRIK1 – 5, and assemble as 

either homo- or heterotetrameric receptors (Evans et al., 2019). Similar to the 

other iGluRs, KAR subunits come together form a functional receptor made up of 

a transmembrane domain (TMD), ligand-binding domain (LBD), amino terminal 

domain (ATD) and an intracellular C-terminal domain (CTD) (Twomey and 

Sobolevsky, 2018) (Figure 1.10). KAR subunits have been split into two groups; 

low affinity subunits and high affinity subunits based on their affinity to kainate. 

Low affinity subunits comprise GluK1 – 3 and have an affinity to kainate in the 

range of 50 – 100 nM. Whereas the high affinity subunits have an affinity to 

kainate in the 5 – 15 nM range and are made up GluK4 or GluK5 (Hadzic et al., 

2017). Studies have shown that low affinity subunits are able to form both 

homomeric and heteromeric receptors, whereas high affinity subunits can only 

form functional receptors when in combination with GluK1 – 3 subunits.  

1.8.2. KAR localisation in the CNS 

In comparison to the other iGluRs, KAR localisation in the CNS is less well 

studied. This is likely to be due to a number of factors including; inadequate 

pharmacological tools, poor antibody quality, fewer mRNA copies per cell and 

low amounts of receptor proteins (Hadzic et al., 2017). However, it has been 

established that the most predominant subunit combination in the brain is GluK2 

and GluK5 receptors (Mahan, 2019); which is supported by evidence that GluK2 

and GluK5 subunits form the most stable receptors compared to any other KAR 

subunit combinations (Zhao et al., 2017). In adult mouse hippocampus and 
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cerebellum it has been shown that GluK2 and GluK3 were the major KAR 

subunits expressed, along with GluK5. Whereas, GluK4 and GluK1 expression 

levels were either very low or below the detection threshold (Watanabe-Iida et 

al., 2016). However, species differences between mouse and human GluK4 

expression have been observed, with GluK4 being more abundant in the human 

cortex compared to mouse (Zeng et al., 2012). KAR subunits are thought to have 

differing roles within the CNS, for example, GluK2 is thought to play a role in 

synaptic incorporation, whereas synapse specificity in the hippocampus is reliant 

on GluK4 and GluK5 subunits (Evans et al., 2019). On top of this, studies have 

suggested that KARs play a role in neuronal development as they are expressed 

in the embryonic brain (Hadzic et al., 2017) and KAR overexpression promotes 

dendritic growth in pyramidal cells and interneurons (Jack et al., 2018), 

highlighting the importance of KARs in the CNS. 

1.8.3. KAR Auxiliary Proteins 

Research has shown that proteins interact with KARs to influence their function, 

trafficking and surface expression (Evans et al., 2017, 2019) and are termed 

auxiliary subunits. Some of the proteins which have been shown to interact with 

KARs are; PSD-95, N-Cadherin and C1q-like proteins (Falcón-Moya1 et al., 

2018; Fièvre et al., 2016; Kilinc, 2018; Suzuki and Kamiya, 2016). However, by 

far the most extensively researched KAR auxiliary proteins are Neto1 and Neto2, 

which associate with KARs through binding to the GluK1 – 3 subunits (Evans et 

al., 2019). Recent studies have demonstrated that Neto1 may be involved in 

dendritic growth and differentiation when expressed with GluK1 (Jack et al., 

2018). Neto1 has also been shown to be necessary for the formation of KAR-

containing synapses in interneurons, as Neto1 deficient interneurons have 
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significantly impaired dendritic and axonal targeting (Orav et al., 2019). It has 

been demonstrated that expression of GluK2 in HEK293 cells is enhanced by the 

co-expression of Neto1 or Neto2 auxiliary subunits, suggesting a further role for 

these proteins in KAR trafficking (Palacios-Filardo et al., 2016). Importantly, it has 

been revealed that the Neto proteins slow the deactivation and desensitisation of 

KARs which explains the differing gating kinetics of KARs in vivo compared to 

studies in vitro which over express KAR subunits without Neto auxiliary proteins 

(Evans et al., 2019; Sheng et al., 2017). This strengthens the importance of Neto 

subunits in KAR function. 

1.8.4. Role of KARs in the CNS 

KARs are a unique subgroup of iGluRs as they not only have functional roles at 

the pre- and post-synaptic terminus, but they are also able to exert metabotropic 

mechanisms of action (Negrete-Díaz et al., 2018). Despite being present post-

synaptically, they do not exert much excitatory post-synaptic potential (EPSC) in 

comparison to AMPA receptors. In CA1 pyramidal cells KARs exert virtually no 

EPSCs at all (Sheng et al., 2017), however, studies have shown that they have 

some control over AMPA receptors to induce LTP through metabotropic 

mechanisms when they are activated at post-synaptic terminals (Petrovic et al., 

2017).  Pre-synaptically, KARs appear to exert bidirectional control over 

glutamate release and are therefore able to regulate both excitatory and inhibitory 

control over neurotransmitter release (Hadzic et al., 2017). In the cerebellum, pre-

synaptic KARs have been shown to facilitate glutamate release and enhance 

synaptic transmission via activation of PKA signalling (Falcón-Moya et al., 2018). 

KARs are also able to downregulate GABA release from interneurons to reduce 

inhibitory post-synaptic currents (IPSCs) (Evans et al., 2017; Hadzic et al., 2017). 
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On the other hand, a recent study has shown that activation of KARs in the 

hippocampus results in fast synaptic inhibition, with activation of KARs being 

proposed as a method to reduce glutamatergic activity during hyperexcitability 

(Garand et al., 2019). The role of KARs within the CNS still remains to be fully 

elucidated, however, research has shown that KARs are complex iGluRs with 

roles in both inhibition and excitation (Blakemore et al., 2018) at neuronal 

synapses and further studies are still needed to uncover KAR function.  

1.9. NMDA and AMPA Receptors 

1.9.1. NMDA Receptors 

NMDA receptors consist of seven subunits; GluN1, GluN2A – D and GluN3A – 

B. NDMA receptors form from heterotetrameric assembly of the different subunits 

(Hansen et al., 2018). GluN1 is an obligatory subunit and is present in all 

functional NMDA receptors as it contains an essential glycine binding site (Spitzer 

et al., 2016). NMDA receptors differ to AMPA and kainate receptors because they 

act as coincidence detectors and need both glutamate and glycine binding to 

allow the opening of the ion pore (Hansen et al., 2018). NMDA receptors are also 

under the control of a voltage-dependent Mg2+ block, which when the receptor is 

at rest prevents ion channel opening (Hansen et al., 2018; Spitzer et al., 2016). 

Studies have also shown that NMDA receptors mediate slow synaptic 

transmission compared to AMPA and kainate receptors. When activated NMDA 

receptors have a much slower desensitisation rate, producing longer synaptic 

currents which aid long term synaptic potentiation and depression (Granger et 

al., 2011; Iacobucci and Popescu, 2018; Zhu and Gouaux, 2017).  
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1.9.2. AMPA Receptors 

AMPA receptors consist of four subunits; GluA1 – 4 and are able to form both 

homo- and heterotetrameric receptors, but preferentially form heterotetrameric 

receptors in the brain (Kamalova and Nakagawa, 2020; Zhao et al., 2017). AMPA 

receptors regulate fast excitatory transmission in the CNS and unlike NMDA 

receptors, exhibit extremely fast channel kinetics in the sub-millisecond timescale 

(Greger et al., 2017). AMPA receptors are the main regulators of synaptic 

plasticity in the CNS, which is controlled by their trafficking in and out of synapses, 

subunit composition and phosphorylation state (Greger et al., 2017). Trafficking 

of AMPA receptors away from the synapse, thus reducing synaptic strength, 

results in long-term depression which is essential for specific types of learning 

and memory (Migues et al., 2016; Opendak et al., 2018).  

1.10. Glutamate receptors in Pancreatic Islets 

Neuronal cells and the cells of the islet of Langerhans have been shown to have 

many common features and traits including expression of neuropeptides (Rodnoi 

et al., 2017), RNA splicing regulators (Juan-Mateu et al., 2017) and shared gene 

expression (Atouf et al., 1997; Perillo et al., 2018). It has also been observed that 

insulin storage and secretion by β-cells is achieved by the same mechanisms as 

neuronal cells to secrete neurotransmitters (Arntfield and van der Kooy, 2011; 

Eberhard, 2013). It is therefore not surprising to note that islet cells have been 

shown to express neuronal cell surface receptors and are able to release 

neurotransmitters (Korol et al., 2018; Otter and Lammert, 2016). One such 

receptor which has been identified in islet cells are GluRs. The expression of the 

different GluRs in islet cells is summarised in Tables 1.1 – 1.3. 
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Although the presence of GluRs in pancreatic islets has been established, there 

are numerous conflicting reports regarding the involvement of these receptors in 

endocrine regulation and which GluR subtypes are expressed by which islet cells. 

Additionally, the molecular composition and characteristics of GluRs have not yet 

been established in pancreatic islet cells. However, it is expected that their 

composition will be similar to that seen in the CNS (Figure 1.10). 

Previous studies on rat pancreatic islets found evidence of AMPA and kainate 

receptor mRNAs but failed to find the presence of any NMDA receptors (Inagaki 

et al., 1995). In contrast, other studies have demonstrated the presence of NMDA 

receptors in pancreatic islets and that pancreas-specific deletion of GluN1 

resulted in an increase in glucose stimulated insulin secretion both in vitro and in 

vivo (Marquard et al., 2015). Further studies have also identified a role for NMDA 

receptors in regulating β-cell excitability and reducing insulin secretion (Patterson 

et al., 2016; Wu et al., 2017).  This provides evidence that NMDA receptors are 

present in islet cells and do play a role in insulin secretion within these cells. 

However, it may be that NMDA receptors act to suppress insulin release rather 

than increase it. In support of this, a clinical trial with T2D patients used the NMDA 

receptor antagonist dextromethorphan to treat participants and showed that 

individuals who had received the drug had lower blood glucose and increased 

insulin secretion compared with patients who received a placebo (Marquard et 

al., 2015). Dextromethorphan acts as a non-competitive receptor antagonist 

which binds to an allosteric site on the NMDA receptor to prevent it’s activation 

by the ligand (Pechnick and Poland, 2004). 

Similarly, contradictory evidence has been found for the presence of AMPA 

receptors in pancreatic islets. Some studies have reported that functional AMPA 
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receptors can only be found exclusively in α-cells and not in β-cells in human, 

mouse and monkey islets (Cabrera et al., 2008; Cho et al., 2010). It has also been 

reported that AMPA receptor expression on α-cells is significantly increased in 

fasting mouse islets and that they contribute to increased glucagon secretion 

when exposed to long-term high glucose concentrations (Zhang et al., 2016). 

However, other data has shown functional AMPA receptors in mouse islets that 

are able to increase intracellular calcium and ultimately increase insulin secretion 

(Tönnes et al., 1999). In addition, AMPA and kainate receptor agonists, but not 

NMDA, increased insulin release from rat islets and perfused pancreas (Bertrand 

et al., 1992; Inagaki et al., 1995). Whilst a more recent study has identified 

AMPAR receptors in rat β-cells, which in a streptozotocin-induced diabetic model 

show altered expression compared to healthy controls and prevented the release 

of insulin from the cells (Jayanarayanan et al., 2015). 

In contrast to NMDA and AMPA receptors, very few studies have identified a role 

for kainate receptors and islet cell function and as shown in Table 1.2 there are 

mixed reports of successfully identifying kainate receptors in islet cells. Some 

studies have shown that human α-cells respond to 100 µM kainate, however, the 

response in rat α-cells was less evident (Köhler et al., 2012). Similar to this, 

Molnár et al., 1995, found no significant increase in insulin secretion in rat islets 

treated with 0.5 mM kainate, suggesting that there may be a species difference 

between human and murine responses to kainate receptor agonists. Further 

studies on human β-cells are required to fully elucidate kainate receptors role in 

insulin secretion and regulation. 
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Table 1.1. AMPA receptor subunit mRNA and protein found in pancreatic islets and cell lines. References from which the data 

were obtained are listed below. [1] (Bramswig et al., 2013) [2] (Cabrera et al., 2008) [3] (Nica et al., 2013) [4] (Huang et al., 2017) [5] 

(Wu et al., 2012) [6] (Inagaki et al., 1995) [7] (Kutlu et al., 2009) [8] (Dorrell et al., 2011) [9] (Eizirik et al., 2012) [10] (Benner et al., 2014) 

[11] (Gonoi et al., 1994) [12] (Weaver et al., 1996) [13] (Molnár et al., 1995) [14] (Zhang et al., 2016) [15] (Jayanarayanan et al., 2015). 

Empty boxes represent no data.  

 

 

 

 

 

 

 



39 
 

Table 1.2. Kainate receptor subunit mRNA and protein found in pancreatic islets and cell lines. References from which the data 

were obtained are listed below. [1] (Bramswig et al., 2013) [2] (Cabrera et al., 2008) [3] (Nica et al., 2013) [4] (Huang et al., 2017) [5] 

(Wu et al., 2012) [6] (Inagaki et al., 1995) [7] (Kutlu et al., 2009) [8] (Dorrell et al., 2011) [9] (Eizirik et al., 2012) [10] (Benner et al., 2014) 

[11] (Gonoi et al., 1994) [12] (Weaver et al., 1996) [13] (Molnár et al., 1995). Empty boxes represent no data.  

 

 

 

 

 

 

 

 



40 
 

Table 1.3. NMDA receptor subunit mRNA and protein found in pancreatic islets and cell lines. References from which the data 

were obtained are listed below. [1] (Bramswig et al., 2013) [2] (Nica et al., 2013) [3] (Huang et al., 2017) [4] (Inagaki et al., 1995) [5] 

(Kutlu et al., 2009) [6] (Dorrell et al., 2011) [7] (Eizirik et al., 2012) [8] (Benner et al., 2014) [9] (Gonoi et al., 1994) [10] (Weaver et al., 

1996) [11] (Molnár et al., 1995) [12] (Wu et al., 2017) [13] (Atouf et al., 1997) [14] (Patterson et al., 2016). Empty boxes represent no 

data.  
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1.11. Glutamate receptor autoimmunity and excitotoxicity in disease 

Previous studies have already shown autoantibodies to GluRs are associated with 

numerous autoimmune diseases of the CNS such as; limbic encephalitis (Lai et al., 

2009), paraneoplastic cerebella ataxia (Sillevis Smitt et al., 2000), anti-NMDA 

receptor encephalitis (Gresa-Arribas et al., 2014), Rasmussen encephalitis 

(Fukuyama et al., 2015) and in up to 30% of epilepsy patients (Levite, 2014). In such 

diseases the immune system predominantly targets NMDA and AMPA receptors, 

with some cases showing targeting of mGluR subunits (Dalmau et al., 2017).  

1.11.1. NMDA Receptors as autoantigen targets in autoimmune diseases of the 

CNS 

The main syndrome associated with NMDA receptor autoantibodies is anti-NMDA 

receptor encephalitis in which the GluN1 subunit is targeted (Dalmau et al., 2017). 

Detection of these autoantibodies relies on assays which maintain the original 

receptor confirmation, such as cell-based assays (Dalmau et al., 2017). Anti-NMDA 

receptor encephalitis patients usually present with memory deficits, psychiatric 

dysfunctions, epilepsy, autonomic dysfunction and in the early stages prodromal 

headache (Balu et al., 2019; Ma et al., 2019). Autoantibodies targeted against NMDA 

receptors in autoimmune encephalitis have been shown to alter the distribution and 

number of NMDA receptors found on the cell surface of synapses (Ladépêche et al., 

2018), which is thought to result in NMDA-related excitotoxity and interference with 

glutamatergic transmission (Manto et al., 2010). Patient outcome and recovery is 

often dependant on fast treatment with immunotherapy (Balu et al., 2019) and 

provided treatment is received 80% of patients recover or substantially improve 
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(Dalmau et al., 2017). Interestingly, it has been shown that viral infection of Herpes 

Simplex Virus can lead to anti-NMDA receptor encephalitis if it enters the CNS, thus 

representing a link between viral infection and autoimmunity (Duarte et al., 2019). 

Autoantibodies which target GluN2A and GluN2B subunits have also been 

associated with systemic lupus erythematosus (SLE), which is potentially fatal and 

causes brain atrophy and neuropsychiatric manifestations (Arinuma, 2018). Studies 

have been able to demonstrate that introduction of autoantibodies from SLE patient 

cerebral spinal fluid (CSF) into mice caused olfactory dysfunction, changes in 

learning and memory and behaviour (Kapadia et al., 2017; Levite, 2014). Kapadia et 

al., 2017 was also able to show that administration of SLE patient CSF on neurons 

resulted in a rapid influx of extracellular Ca2+ which is thought to also lead to neuron 

excitotoxicity and cell death. 

1.11.2. AMPA Receptors as autoantigen targets in autoimmune diseases of the CNS 

Autoantibodies against AMPA receptors have been associated with CNS diseases 

such as limbic encephalitis, epilepsy and even dementia (Borroni et al., 2017; 

Dalmau et al., 2017; Geis et al., 2019; Levite, 2014). It has been reported that up 

30% of patients with epilepsy have anti-AMPAR-GluR3 antibodies in their serum 

(Levite, 2014). One study reported that individuals with epilepsy who were anti-

AMPAR-GluR3 positive were much more likely to have learning, attention and 

psychiatric problems compared to individuals who also suffered from epilepsy but 

were antibody negative (Goldberg-Stern et al., 2014). It thought that the presence of 

autoantibodies leads to the disruption of the normal cycling of AMPA receptors to 
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and from the cell surface, resulting in fewer AMPA receptors on the neuronal surface 

and increased intrinsic excitability (Fang et al., 2017; Peng et al., 2015).  

More recently, anti-AMPA receptor autoantibodies have been linked with 

frontotemporal dementia (FTD) (Benussi et al., 2019). One study has reported that 

23% of FTD patient sera was positive for anti-GluR3 antibodies and of those there 

was an inverse correlation between anti-GluR3 titre and age of onset; the higher the 

antibody titre, the younger the age of onset (Borroni et al., 2017). 

As of now, there have been no reported cases of autoimmune CNS diseases 

involving kainate receptor autoantibodies. 

1.12. Possible role of GluRs in T1D 

Research has shown over-activation of GluRs kills neurons by excitotoxicity 

(Goldberg-Stern et al., 2014; Levite, 2014). As mentioned previously it has been 

shown that dextromethorphan, a NMDA receptor antagonist, not only results in 

higher glucose-stimulated insulin release, but also decreases cell death in T2D islets 

(Marquard et al., 2015). A study has also concluded that over-activation of NMDA 

receptors in β-cells when exposed to chronic high glucose reduced cell viability, but 

GluN1 knockdown eliminated these effects, reduced inflammatory cytokines and 

improved β-cell function (Huang et al., 2017). It is hypothesised that GluRs are 

overstimulated by the presence of autoantibodies, causing excitotoxicity in the 

pancreatic -cells, leading to their death.  

There is also growing evidence that glutamate receptors could play a role in T1D. Di 

Cairano et al., 2011 used human islets and β- and α-cell lines to show that chronic 
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exposure to glutamate resulted in cytotoxicity and cell death in β cells, while  α cells 

remained unaffected. On top of this, a study used Wistar rats to explore the effects 

of dietary consumption of monosodium glutamate (MSG) on glucose metabolism and 

pancreatic islet morphology (Boonnate et al., 2015). They showed that rats which 

consumed MSG had a significanlty lower β-cell mass, but their glucose tolerance 

and serum insulin stayed the same as that seen in the control group (Boonnate et 

al., 2015) and could be representative of the early stages of T1D. Whilst a 

longitudinal study, with children who later progressed to T1D,  found that 9-18 

months prior to seroconversion serum levels of glutamic acid were 32-fold higher 

than those seen in healthy controls (Oresic et al., 2008) and further stuides have 

indicated that plasma glutamate levels are significantly higher in diabetics than in 

healthy controls (Huang et al., 2017). Preliminary studies have identified 

autoantibodies to recombinant GluR proteins in sera obtained from T1D patients, 

suggesting that GluRs are a promising potential target for the immune system in 

T1D. Taken together, this suggests that glutamate and over activation of it’s receptor 

by autoantibodies could play a novel role in T1D pathogenesis (Figure 1.11).  
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Figure 1.11. Proposed mechanism of β-cell damage through overactivation of GluRs in T1D. GluRs on the β-cell surface 

are targeted by the immune system via GluR autoantibodies (1.a.) or are overactivated by excess dietary glutamate (1.b.), 

which leads to excitotoxicity and β-cell damage (2). Following β-cell damage the immune system is exposed to intracellular β-

cell proteins and produces autoantibodies which are associated with T1D (GAD, IAA, IA-2 and ZnT8 autoantibodies) as a result 

of epitope spreading (3). 
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1.13. Aims and objectives of the project 

This project aims to investigate GluRs and their role in hormone secretion in human 

pancreatic β-cells, as well as their potential involvement in T1D pathogenesis. 

Specifically, there are three main objectives for this project: 

1. To identify GluRs, specifically KAR subunits, expressed in the human β-cell 

line, EndoC-βH1. This will be investigated by using RT-PCR to identify KAR 

subunit mRNA and western blotting to elucidate if KAR subunits are 

expressed as protein by EndoC-βH1 cells. 

2. To elucidate what role KARs play in insulin secretion by developing a 

lentivirus which can knockdown GluK2 subunit protein production in EndoC-

βH1 cells and characterising glucose-stimulated insulin secretion in β-cells 

following GluK2 knockdown or by blocking GluR function by GluR 

antagonists. 

3. To identify if GluR subunits on the β-cell surface are targeted by the immune 

system in T1D. The project aims to develop an autoantibody assay to detect 

GluR autoantibodies which can be used to identify the presence or absence 

of GluR autoantibodies in T1D patient serum samples and healthy control 

serum. 
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2. Glutamate receptors in human β-cells and their role in 

insulin secretion 

2.1 Background 

Although there have been several studies which aimed to establish the presence of 

glutamate receptor (GluR) subunit mRNA and protein, there have been numerous 

conflicting reports of successful and unsuccessful identification of iGluRs in β-cells 

(outlined in Tables 1.1 – 1.3). In particular, Kainate receptors have been largely 

understudied in both the CNS and in pancreatic β-cells. However, as described in 

section 1.7.4 KARs role in the CNS is beginning to be elucidated and they are now 

thought to play a significant roles in both neurotransmitter excitation and inhibition 

(Blakemore et al., 2018). It is therefore important to establish if KARs are present in 

human β-cells and if so, do they also play a significant role in hormone secretion and 

homeostasis within β-cells. 

As discussed in section 1.4 there is not yet a consistent model for the study of human 

β-cells and their function. However, EndoC-βH1 is a human β-cell line which has 

been shown to have functional glucose stimulated insulin secretion (GSIS), as well 

as expressing many β-cell markers (Hastoy et al., 2018; Jahan et al., 2018; Kracht 

et al., 2018; Lawlor et al., 2019; Tyka et al., 2019). The EndoC-βH1 cell line is 

emerging as an important tool for investigating β-cell characterisation and function. 

Thus, this current study aims to use the human β-cell line, EndoC-βH1, to investigate 

the presence of various iGluRs, in particular KARs, and establish their role in insulin 

secretion. 
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2.2 Materials and Methods 

2.2.1 Materials 

Table 2.1. List of materials. Complete list of materials and suppliers which were 

used for the current study. 

Material Supplier 

(S)-3,5-dihydroxyphenylglycine (DHPG, 
0805) 

Tocris, Bristol, UK. 

1,10-Phenanthroline (131377) Sigma-Aldrich, Poole, UK 

2,3-dihydroxy-6-nitro-7-sulfamoyl-
benzon[f]quinoxaline-2,3-dione (NBQX, 
0373) 

Tocris, Bristol, UK. 

2S,3S,4S)-Carboxy-4-(1-
methylethenyl)-3-pyrrolidineacetic acid 
(kainate, 0222) 

Tocris, Bristol, UK. 

3,4-Dichloroisocoumarin (DCI, D7910) Sigma-Aldrich, Poole, UK 

3-isobutyl-1-methylxanthine (IBMX, 
2845) 

Tocris, Bristol, UK. 

Acetic acid (A6283) Sigma-Aldrich, Poole, UK 

Agarose (BIO-41025) Bioline, London, UK. 

Ammonium persulphate (A3678) Sigma-Aldrich, Poole, UK 

Antibiotic-antimycotic (A5955) Sigma-Aldrich, Poole, UK 

Anti-CaV2.1 (PA5-77295) Thermo Fisher Scientific Inc, Rockford, 
USA 

Anti-GluK2 (ab124702) Abcam®, Cambridge, UK. 

Anti-GluR6/7 antibody (04-921) Merck Millipore, Watford, UK 

Anti-Grik5 antibody (ab67408) Abcam®, Cambridge, UK. 

Anti-Human Alexa Flour 488 
(10226402) 

Fisher Scientific, Loughborough, UK 

Anti-KA2/GRIK5 antibody (06-315) Merck Millipore, Watford, UK 

Anti-Na, K-ATPase (#3010) Cell Signaling Technology®, Danvers, 
MA, USA. 

Anti-NR2A (AB1555P) Merck Millipore, Watford, UK 

Anti-NR2A antibody (07-632) Merck Millipore, Watford, UK 

Anti-NR2B antibody (06-600) antibody Merck Millipore, Watford, UK 

Anti-PAN-AMPAR antibody University of Bristol, Bristol, UK 

Anti-Rabbit Alexa Flour 568 
(10032302) 

Fisher Scientific, Loughborough, UK 

Anti-β-tubulin antibody (T8328) Sigma-Aldrich, Poole, UK 

Atto Horiz Blot semi-dry blotter 
(2322413) 

Atto, Tokyo, Japan 
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beta-2-mercaptoethanol (M3148) Sigma-Aldrich, Poole, UK 

BIOTAQ™ DNA polymerase (BIO-
21040) 

BioRad®, Hertfordshire, UK. 

Bovine serum albumin fraction V 
(10775835001) 

Sigma-Aldrich, Poole, UK 

Calcium Chloride Dihydrate (CaCl2-
2H2O) (C3306) 

Sigma-Aldrich, Poole, UK 

Chloroform (C7559) Sigma-Aldrich, Poole, UK 

cOmplete™ Mini EDTA-free Protease 
Inhibitor Cocktail (04693159001) 

Sigma-Aldrich, Poole, UK 

CutSmart® buffer New England BioLabs®, Hitchin, UK 

DAKO fluorescence mounting medium 
(S3023) 

Agilent Technologies LDA, Stockport, 
UK 

DEPC-treated water (95284) Sigma-Aldrich, Poole, UK 

DH5α competent cells (18265017) Thermo Fisher Scientific Inc, Rockford, 
USA 

Dimethyl sulphoxide (DMSO) Sigma-Aldrich, Poole, UK 

DMEM High glucose (41965039) Thermo Fisher Scientific Inc, Rockford, 
USA 

DMEM no glucose (11966-025) Thermo Fisher Scientific Inc, Rockford, 
USA 

DNA Engine Dyad® thermal cycler 
system (PTC-0220) 

BioRad®, Hertfordshire, UK. 

Dulbecco’s phosphate buffered saline 
(D8537) 

Sigma-Aldrich, Poole, UK 

E64 (E3132) Sigma-Aldrich, Poole, UK 

EndoC-βH1 cell line EndoCells, Paris, France. 

Ethanol (02860) Sigma-Aldrich, Poole, UK 

Ethylene glycol-bis(2-aminoethylether)-
N,N,N′,N′-tetraacetic acid (EGTA) 
(E3889) 

Sigma-Aldrich, Poole, UK 

Ethylenediaminetetraacetic acid 
(EDTA) (EDS) 

Sigma-Aldrich, Poole, UK 

extra-thick blot filter paper (1703966)  BioRad®, Hertfordshire, UK. 

Fetal bovine serum (F6178) Sigma-Aldrich, Poole, UK 

Fibronectin from bovine plasma 
(F1141) 

Sigma-Aldrich, Poole, UK 

FluoroChem® Q System Alpha Innotech, Devon, UK. 

GeneJET Gel Extraction and DNA 
Cleanup Micro Kit (K0831) 

Thermo Fisher Scientific Inc, Rockford, 
USA 

GeneJET Plasmid Miniprep Kit (K0502) Thermo Fisher Scientific Inc, Rockford, 
USA 

Glycerol (G5516) Sigma-Aldrich, Poole, UK 

Glycine (G8898) Sigma-Aldrich, Poole, UK 
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Goat anti-human secondary antibody 
(A0170) 

Sigma-Aldrich, Poole, UK 

Goat anti-rabbit secondary antibody 
(A0545) 

Sigma-Aldrich, Poole, UK 

Gyki-hydrochloride (Gyki-52466, 1454) Tocris, Bristol, UK. 

HEK293T (Human Embryonic Kidney 
cell line) cells 

American Type Culture Collection, 
Manassas, VA, USA. 

Hepes sodium salt (H3784) Sigma-Aldrich, Poole, UK 

Human Insulin ELISA Kit (10-1113-10) Mercodia, Uppsala, Sweden. 

Human transferrin (T8158) Sigma-Aldrich, Poole, UK 

Immobilon Western Chemiluminescent 
HRP Substrate (WBKLS0500) 

Merck Millipore, Watford, UK 

Immobilon®-P PVDF (IPVH00010) Merck Millipore, Watford, UK 

INS-1 cell line University of Bristol, Bristol, UK 

IRDye© 800CW Anti-Mouse IgG (926-
32210) 

Li-Cor Biosciences, Cambridge, UK 

Isopropanol (I9516) Sigma-Aldrich, Poole, UK 

L-glutamine (25030081) Thermo Fisher Scientific Inc, Rockford, 
USA 

Ligase I New England BioLabs®, Hitchin, UK 

Marvel original dried skimmed milk <1 
% fat 

Chivers Ireland Ltd, Dublin, IR. 

Methanol (322415) Sigma-Aldrich, Poole, UK 

Mini-PROTEAN® short plates 
(1653308) 

BioRad®, Hertfordshire, UK. 

Mini-PROTEAN® Spacer Plates with 
1.5 mm Integrated Spacers (1653312) 

BioRad®, Hertfordshire, UK. 

Mini-PROTEAN® Tetra Vertical 
Electrophoresis Cell (1658006) 

BioRad®, Hertfordshire, UK. 

Mini-sub® cell GT system (1704406) BioRad®, Hertfordshire, UK. 

MISSION® lentiviral packing mix 
(SHP001) 

Sigma-Aldrich, Poole, UK 

MK-801 (0924) Tocris, Bristol, UK. 

Mr Frosty (5100 0001) Thermo Fisher Scientific Inc, Rockford, 
USA 

NanoDrop™ 1000 spectrophotometer Thermo Fisher Scientific Inc, Rockford, 
USA 

Nicotinamide (481907) VWR, Radnor, USA 

NMDAR1 (D65B7) antibody (5704) Cell Signaling Technology®, Danvers, 
MA, USA. 

Odessy® Fc Imaging System Li-Cor Biosciences, Cambridge, UK 

Opti-MEM® (31985070) Thermo Fisher Scientific Inc, Rockford, 
USA 

Phenylmethlysulfonyl fluoride (PMSF) 
(PMSF-RO) 

Sigma-Aldrich, Poole, UK 
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Pierce™ BCA Protein Assay Kit 
(23225) 

Thermo Fisher Scientific Inc, Rockford, 
USA 

Polyethylenimine (PEI), poly-l-lysine 
(P8920) 

Sigma-Aldrich, Poole, UK 

Potter-Elvehjem Tissue Grinder 
(14231-384) 

VWR, Radnor, USA 

precision plus protein™ dual colour 
(1610374) 

BioRad®, Hertfordshire, UK. 

Restriction enzymes (BamHI, HindIII, 
PacI, xhoI) 

New England BioLabs®, Hitchin, UK 

RQ1 RNase-Free DNase (M6101) Promega, Southampton, UK 

Sodium Bicarbonate (NaHCO3) 
(S5761) 

Sigma-Aldrich, Poole, UK 

Sodium deoxycholate (D6750) Sigma-Aldrich, Poole, UK 

Sodium dodecyl sulfate (L3771) Sigma-Aldrich, Poole, UK 

Sodium orthovanadate (S6508) Sigma-Aldrich, Poole, UK 

Sodium selenite (S1382) Sigma-Aldrich, Poole, UK 

Streptavidin agarose beads (S1638) Sigma-Aldrich, Poole, UK 

Sulfo-NHS-Biotin (21217) Thermo Fisher Scientific Inc, Rockford, 
USA 

tetro cDNA synthesis kit (BIO-65043) BioRad®, Hertfordshire, UK. 

Tri-reagent® (93289) Sigma-Aldrich, Poole, UK 

Triton X-100 (93443) Sigma-Aldrich, Poole, UK 

Trizma® Base (T1503) Sigma-Aldrich, Poole, UK 

Trypsin-EDTA solution (59417C) Sigma-Aldrich, Poole, UK 

TWEEN®20 (P1379) Sigma-Aldrich, Poole, UK 

Wide mini-sub® cell GT system 
(1704405EDU) 

BioRad®, Hertfordshire, UK. 
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2.2.2 Cell Culture 

EndoC-βH1 

EndoC-βH1 cells (EndoCells, Paris, France) produced from human foetal pancreatic 

buds, is a human pancreatic β cell line which has been transduced with a lentiviral 

vector expressing SV40LT (an oncoprotein derived from polyomavirus SV40), under 

the control of the insulin promoter (Ravassard et al., 2011). Before the EndoC-βH1 

cells were seeded flasks were coated with coating medium (DMEM 25 mM glucose, 

2 µg/ml fibronectin (Sigma-Aldrich, Poole, UK) and 1 % ECM gel from Engelbreth-

Holm-Swarm murine sarcoma (Sigma-Aldrich, Poole, UK)) and incubated at 37°C 

between 1 and 24 hours. EndoC-βH1 cells were maintained in coated flasks with 

culture medium consisting of DMEM 5.6 mM glucose supplemented with 2 w/v % 

BSA fraction V (Roche Diagnostics, Mannheim, Germany), 10 mM nicotinamide 

(VWR, Radnor, USA), 50 µM 2-mercaptoethanol (Sigma-Aldrich, Poole, UK), 5.5 

µg/ml transferrin (Sigma-Aldrich, Poole, UK) and 6.7 ng/ml sodium selenite (Sigma-

Aldrich, Poole, UK). Cells were seeded at an initial density of 7.5 x 104 /cm2 at 37°C 

in humidified air and 5 % CO2.  

At 90 % confluency the cells were washed with phosphate buffered saline (PBS) and 

then detached with 0.2 5% Trypsin-EDTA at 37°C in humidified air and 5 % CO2. 

Once the cells were detached an equal volume of neutralising medium (80 % 

phosphate buffered saline [PBS] and 20 % foetal calf serum FCS) was added to the 

cell suspension, transferred to a sterile universal tube and centrifuged at 1000 x g 

for 3 minutes. The supernatant was then discarded, and the cells were sub-cultured 

into either T75 or T25 flasks. Cells were used between passages 45 and 76. 
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HEK293T cell line 

HEK293T (American Type Culture Collection, Manassas, VA, USA) human 

embryonic kidney cells, have been transformed with sheared fragments of 

adenovirus type 5 DNA (Graham et al., 1977). The cells were maintained in growth 

medium consisting of Dulbecco’s modified Eagle’s medium (DMEM), supplemented 

with 10 % foetal bovine serum (FBS), 1 % antibiotic-antimycotic and 1 % L-

glutamate. Cells were seeded at an initial density of 2.8 x 104/cm2 at 37°C in 

humidified air and 5 % CO2. HEK293T cells were passaged as described under 

EndoC-βH1 cells, except HEK293T growth medium is used in place of neutralising 

medium. Cells were used between passages 9 and 30. For the purpose of this study 

HEK293T cells were used for the production of GluR subunit protein via transient 

transfection of GluR subunit plasmids (Method section 2.2.7) as they have been 

shown to have good transfection efficiency and protein yield (Longo et al., 2013). 

The GluR subunit protein was then used as GluR subunit positive control protein 

samples (Method section 2.2.9) and for detection of GluR autoantibodies (Method 

section 3.2.4). 

2.2.2 Thawing and establishing stored cells 

Cells were removed from liquid nitrogen and placed immediately into a 37°C water 

bath for 1 to 2 minutes. Thawed cells were then pipetted aseptically into a sterile 

universal tube containing 9 ml of cell line specific culture medium (see section 2.1.1) 

and centrifuged for 5 minutes at 700 x g at room temperature. The supernatant was 

then removed, and cells were re-suspended with 5 ml culture medium for EndoC-

βH1 or 10 ml culture medium for HEK293T and put into 75cm2 flasks. 
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2.2.3 Storing cell lines in liquid nitrogen 

Confluent cells were washed with PBS, trypsinised and re-suspended in neutralising 

medium for EndoC-βH1 cells or culture medium for HEK293T cells. The cell 

suspension was then centrifuged for 5 minutes at 700 x g and the supernatant 

discarded before re-suspending in freezing medium, containing 10 % dimethyl 

sulphoxide (DMSO) and 90 % fetal calf serum (FCS) for EndoC-βH1 and DMEM (25 

mM glucose) 10 % FBS, 10 % DMSO and 2 mM glutamine for HEK293T. The cell 

suspensions were aliquoted into 1 ml cryovials and placed in a Mr Frosty (Thermo 

Fisher Scientific Inc, Rockford, USA) in a -80°C freezer overnight. The next day the 

cryovials were moved into liquid nitrogen for long term storage. 

2.2.4 Preparation of total cell lysates 

Confluent T25 flask or 60 cm2 dishes were washed three times with ice cold PBS 

and then incubated on ice for 10 minutes with 500 µl cold lysis buffer containing 0.5 

% sodium deoxycholate, 1 % Triton X-100, 0.1 % SDS, 25 mM Tris (pH 7.5), 150 

mM NaCl, 0.1 mM EDTA, 1x complete mini EDTA free protease inhibitor (Sigma-

Aldrich, Poole, UK), 200 mM sodium orthovanadate and 100 mM 

phenylmethysulfonyl fluoride. The cells were then scrapped and transferred to 

Eppendorf tubes, and incubated at 4°C on a rotator for 30 minutes. Cell lysates were 

centrifuged at 13,000 x g at 4°C for 15 minutes. The supernatant was removed and 

then aliquoted and stored at -80° until further use. 
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2.2.5 Preparation of total cell lysates using Sodium Bicarbonate (NaHCO3) for 

immunochemical detection of NMDA and AMPA receptors 

Confluent T25 flasks were washed three times with PBS before adding 1 ml ice cold 

10 mM NaHCO3 with 1 x complete mini EDTA free protease inhibitor (Sigma-Aldrich, 

Poole, UK). The cells were then scraped from the flask and transferred to an 

Eppendorf tube on ice. The cells were then passed through a 21G x 1.5” (0.8 x 38 

mm) needle approximately 30 times, aliquoted and stored at -80oC until future use.  

2.2.6 Determination of protein concentration 

The protein concentration of the samples was then quantified according to the 

manufacturer’s instructions using the Pierce™ BCA Protein Assay Kit (Thermo 

Fisher Scientific Inc, Rockford, USA).  

2.2.7 HEK293T cell transfection for immunoblotting 

HEK293T cells were seeded as described above onto 60 cm2 dishes with seeding 

density of 1.6 x 103 /cm2 and incubated at 37 °C in humidified air and 5 % CO2 for 

24 hours.  

Cells were then transiently transfected with plasmids encoding KAR subunit DNA 

(GluK2 or GluK5) as described previously (Gallyas et al., 2003; Pickard et al., 2000). 

4 µg DNA and 14 µg polyethylenimine (PEI) transfection agent (Sigma-Aldrich, 

Poole, UK) was mixed in 500 µl Opti-MEM and incubated at room temperature for 

20 minutes. Following the incubation, the DNA-PEI-Opti-MEM solution was added 

onto the HEK293T cells. The cells were then incubated at 37 °C in humidified air and 

5 % CO2 for 48-72 hours before cells were lysed for use in immunoblotting.  



56 
 

2.2.8 Separation of proteins on SDS-PAGE 

The protein samples (10 µg – 50 µg) were mixed with sample loading buffer (10 % 

β-mercaptoethanol, 10 % glycerol, 2 % sodium dodecyl sulfate (SDS) and 62.5 mM 

Tris(hydroxymethyl)aminomethane (Tris-)-HCl, pH6.8 om deionised water) at a 1:1 

ratio. Samples were then centrifuged at 13,000 x g for 30 seconds and boiled for 5 

minutes at 95 °C and centrifuged briefly. Samples were kept at room temperature 

before loading onto a pre-prepared 10 well acrylamide gel consisting of a 10 % 

running gel (10 % acrylamide/Bis-acrylamide, 0.375 M Tris-HCl pH8.8, 1 % SDS, 1 

% ammonium persulphate (APS), 0.04 % TEMED in sterile water) and a 5 % stacking 

gel (5 % acrylamide/Bis-acrylamide, 0.125M Tris-HCl pH6.8, 1 % SDS, 1 % 

ammonium persulfate APS and 0.01 % TEMED in sterile water) made using 1.5 mm 

BioRad® gel plates. A precision plus protein™ dual colour (BioRad®, Hertfordshire, 

UK) standard weight marker was used. The BioRad® plates containing the gel were 

then assembled into the BioRad® gel tank according to the manufacturer’s 

instructions (BioRad® Hertfordshire, UK). The tank was then filled with SDS-PAGE 

running buffer (25 mM Tris, 192 mM glycine and 0.1 % SDS). The gel was then run 

for 20 minutes at 90 V, then at 130 V for 30 minutes to 1 hour.  

2.2.9 Immunochemical detection of proteins  

Proteins were transferred on to an Immobilon®-P PVDF membrane, which had been 

activated with absolute methanol for 10 minutes, using an Atto Horizblot (Atto, 

Tokyo, Japan) dry blotter with transfer buffer (10 % 10 x SDS-PAGE running buffer 

20 % absolute methanol and 70 % ddH2O) for 110 minutes at 9 V. 
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2.2.10 Blocking and immunochemical probing of the membrane 

After the transfer, the membrane was blocked in 5 % dried, fat free milk in TBS (50 

mM Tris and 150 mM NaCl with deionised water, pH7.4) supplemented with 0.1 % 

TWEEN®20 (TBST) for one hour. The membrane was then incubated at 4°C 

overnight on a shaker with the appropriate primary antibody (Table 2.2) or serum 

sample from patients with Type 1 diabetes or healthy controls (all serum samples 

diluted 1:200) diluted in TBST containing 5 % dried, fat free milk. 

The membrane was then washed 6 times for 5 minutes with TBST and incubated at 

room temperature with a goat anti-rabbit secondary antibody (Sigma-Aldrich, Poole, 

UK) or if using human serum a goat anti-human secondary antibody (Sigma-Aldrich, 

Poole, UK) for 1 hour. The membrane was washed 6 times for 5 minute each with 

TBST. The bound antibody membrane was then developed with Immobilon Western 

Chemiluminescent HRP Substrate as per the manufacturer’s instructions (Merck 

Millipore, Watford, UK) and imaged using Odessy® Fc (Li-Cor Biosciences, 

Cambridge, UK) Imaging System.  
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Table 2.2. Table of primary and secondary antibodies used for immunoblot. B 

= bovine, H = human, R = rat, Rb = rabbit, F = fish, M = mouse, Hm = hamster, Mk 

= monkey, Z = zebra 

Antibody 
Species 

Specificity 
Source Concentration Supplier 

Anti-GluR6/7 (aka 
GluK2/3) 
(04-921) 

H, R Rabbit 0.125 µg/ml 
Merck 

Millipore 

Anti-GluK2 
(ab124702) 

M, R, H Rabbit 0.085 µg/ml Abcam 

Anti-GRIK5 (06-315) R, Rb Rabbit 1 µg/ml 
Merck 

Millipore 

Anti-GRIK5 
(ab67408) 

M, R, H Rabbit 1 µg/ml Abcam® 

Anti-NMDAR1 
(#5704) (aka GluN1) 

H, M, R Rabbit 0.295µg/ml 
Cell 

Signalling 
Technology® 

Anti-NMDAR2A (07-
632) (aka GluN2A) 

M, R Rabbit 1µg/ml 
Merck 

Millipore 

Anti-NMDAR2A 
(AB1555P) (aka 

GluN2A) 
H, M, R, F Rabbit 0.2 µg/ml 

Merck 
Millipore 

Anti-NMDAR2B 
(AB1557P) (aka 

GluN2B) 
H, R Rabbit 0.2 µg/ml 

Merck 
Millipore 

Anti-Pan-AMPAR R, H Rabbit 0.075 µg/ml 
University of 

Bristol 

Anti-CaV2.1 (PA5-
77295) 

H, M, R Rabbit 0.8 µg/ml 
Thermo 
Fisher 

Scientific 

Anti-Na, K-ATPase 
(#3010) 

H, M, R, 
Hm, Mk, Z 

Rabbit 0.031 µg/ml 
Cell 

Signalling 
Technology® 

Anti-β-tubulin 
(T8328) 

B, H, M, R Mouse 0.67 µg/ml 
Sigma-

Aldrich® 

Anti-Human IgG H Goat 0.22 µg/ml 
Sigma-

Aldrich® 

Anti-Rabbit IgG 
(AQ132P) 

R Goat 0.08 µg/ml 
Sigma-

Aldrich® 

IRDye© 800CW 
Anti-Mouse IgG 

(926-32210) 
M Goat 0.05 µg/ml 

Li-Cor 
Biosciences 
UK Limited 
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2.2.11 RNA extraction from EndoC-βH1 monolayer cells and rat brain tissue 

Confluent EndoC-βH1 cells were washed with PBS at 37oC, trypsinised and re-

suspended in neutralising medium. The cell suspension was then centrifuged for 5 

minutes at 700 x g in a sterile Eppendorf tube and the supernatant discarded. Tri-

reagent® (Sigma-Aldrich, Poole, UK) was then added to the cells and homogenised 

with a Potter-Elvehjem Tissue Grinder (VWR, Radnor, USA). The EndoC-βH1-Tri-

reagent® solution was then left at room temperature for 10 minutes before adding 

200 µl chloroform and shaken vigorously for 15 seconds. The tubes were then left at 

room temperature for a further 10 minutes before being centrifuged at 18,000 x g for 

15 minutes. Following centrifugation, the clear aqueous layer containing the RNA 

was transferred to a sterile Eppendorf and 500 µl 100 % isopropanol was added, 

mixed and left to stand for 10 minutes.  The samples were then spun again at 13 

500 x g for 10 minutes to reveal the RNA pellet, which was mixed with 300 µl 75 % 

ethanol and centrifuged at 5 000 x g for 5 min. Finally, the ethanol was removed, 

and the pellet re-suspended in Diethylpyrocarbonate (DEPC)-treated water.  

Samples were quantified using a NanoDrop™ 1000 spectrophotometer (Thermo 

Scientific, Runcorn, UK). Each sample was read as wavelengths 260 nm and 280 

nm to calculate the RNA quantity and purity.  

The same procedure was then carried out using 200 mg rat brain tissue beginning 

with homogenisation of the tissue with 3ml Tri-reagent®. 

2.2.12 Genomic DNA removal from RNA samples using DNase treatment 

RNA samples were treated with RQ1 RNase-Free DNase following the 

manufacturer’s instructions (Promega, Southampton, UK). The samples were then 
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quantified again using the NanoDrop™ 1000 spectrophotometer (Thermo Scientific, 

Runcorn, UK). Each sample was read at wavelengths 260 nm and 280 nm to 

calculate the RNA quantity and purity, only samples with a 260/280 reading between 

1.8 and 2 were used. All RNA samples were kept at -80°C.  

2.2.13 cDNA synthesis from EndoC-βH1 and rat brain RNA 

cDNA was produced from 3000 ng EndoC-βH1 and rat brain RNA using the tetro 

cDNA synthesis kit, following the manufacturer’s instructions (Bioline, London, UK). 

cDNA was then stored at -20°C. 

2.2.14 PCR amplification of iGluR subunit mRNA from EndoC-βH1 and rat brain 

cDNA 

EndoC-βH1 and rat brain cDNA was used for PCR to amplify kainate receptor 

subunit mRNA. All primers were designed using National Centre for Biotechnology 

Information (NCBI) Primer Blast (website: http://www.ncbi.nlm.nih.gov/tools/primer-

blast/) and were optimised using a temperature gradient PCR (range of temperatures 

from 50°C to 65°C) with varying MgCl2 concentrations (1 mM to 4 mM). Primers used 

are shown in Table 2.3. All reactions were carried out with 2.5 µl 10x NH4 reaction 

buffer (Bioline, London, UK) 2 mM dNTP, 0.5 µl BIOTAQ™ DNA polymerase 

(Bioline, London, UK), 0.8 pmol/µl forward and reverse primers, cDNA (2 µl – 10 µl) 

and MgCl2 (1 mM to 3 mM) and ddH2O to a final volume of 25 µl. A range of cDNA 

volumes was used to allow detection of low abundance mRNA. PCR was carried out 

using a DNA Engine Dyad® thermal cycler system (BioRad®, Hertfordshire, UK). 

 

http://www.ncbi.nlm.nih.gov/tools/primer-blast/
http://www.ncbi.nlm.nih.gov/tools/primer-blast/
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Table 2.3. Table showing all primer sequences and their targets, along with the product size, temperature and MgCl2 

concentration used for RT-PCR. 

Subunit 
Name 

Gene and 
accession 

number  

Specificity  Forward Primer (5’-3’) Reverse Primer (5’-3’) Size 
(bp) 

Annealing 
Temperature 

(°C) 

MgCl2  

(mM) 

Gluk1 Grik1  
 (NM_010348) 

Mus musculus, 
Homo sapiens and 
Rattus norvegicus 

TCAGACTCGCTGGAA
ACACC 

(Position: 949-968) 

TGCTTCAGTTGTCATC
ACGC 

(Position: 1519-1500) 

571 60 2.0 

Gluk2 Grik2  
(NM_021956.4) 

Homo sapiens and 

Rattus norvegicus 

CATGCAGCAAGGTTC

TGAGC 

(Position: 2150-2169) 

GTTTGCCTTCCTCTTG
CAGC 

(Position: 2664-2645) 

515 58.4 1.5 

Gluk3 Grik3  
(NM_181373) 

Rattus norvegicus 
and Homo sapiens   

CCGAGGTCCTAATGT
CACCG 

(Position: 1397-1416) 

AGGGCTGAATCTGGC
AATGA 

(Position: 1895-1876) 

499 56 2.0 

Gluk4 Grik4  
(NM_012572) 

Rattus norvegicus 

and Homo sapiens   

CCACCATCCTGGAAA

ACCCA 

(Position: 1338-1357) 

CCAGGTTGGCTGTGT
ACGAT 

(Position: 1997-1978) 

660 56 2.0 

Gluk5 Grik5 
(NM_001301030.

1) 

Rattus norvegicus 

and Homo sapiens   

AGAACCAACTACACC

CTGCG 

(Position: 1153-1172) 

GTCTGCCTTCCGGTT
GATGA 

(Position: 1527-1508) 

375 57.4 3.0 

Neto1 Neto1   
(NM_001201465) 

Rattus norvegicus 
and Homo sapiens   

CACCAGTGGGACTGT
CATTG 

(Positions 1304-1323) 

TCTGCCACATCTGCA
AAGTC 

(Position:1525-1505) 

216 50.2 2.0 

Neto2 Neto2 
(NM_001201477) 

Rattus norvegicus 
and Homo sapiens   

TTTGCTTCGCCAAATT
ATCC 

(Position:582-601) 

TTAATGGAGGGCTTTT
CACG 

(Position: 801-782) 

220 50.2 2.0 

Beta-
actin 

ACTB 
(NM_001101.3) 

Rattus norvegicus 
and Homo sapiens   

CATGGATGATGATATC
GC 

(Position: 83-101) 

CCACACGCAGCTCAT
TGT 

(Position: 373-355) 

290 60 2.0 

Beta-
actin 

 ACTB 
(NM_007393.5) 

Mus musculus, 
Homo sapiens and 
Rattus norvegicus 

GCCTTCCTTCTTGGG
TATGGAA 

(Position: 897-919) 

CAGCTCAGTAACAGT
CCGCC 

(Position: 1256-1236) 

359 60 2.0 
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2.2.15 Agarose Gel Electrophoresis of amplified iGluR subunit mRNA 

PCR samples were mixed and loaded with DNA loading buffer (Bioline, London, 

UK) onto a premade 2 % agarose gel submerged in TAE (40 mM Tris, 20 mM 

acetic acid and 1 mM ethylenediaminetetraacetic acid [EDTA]). The samples 

were then run in either a mini-sub® cell GT or wide mini-sub® cell GT system 

(BioRad®, Hertfordshire, UK) at 100V for 30 minutes to an hour. The gel was 

then imaged using a FluoroChem® Q (Alpha Innotech, Devon, UK) imaging 

system. 

2.2.16 Small hairpin RNA (shRNA) lenti-viral knock-down of GluK2 

shRNAs primers were designed using the GRIK2 mRNA sequence 

(NM_021956.2). shRNAs primers consisted of a 21-nucleotide sense and 

antisense sequence separated with a 9 nucleotide loop structure (TTCAAGAGA), 

a 5’ AAAAA overhang and Bg1II or Xho1 restriction sites (Figure 2.1). Primers 

corresponding to the shRNA sequence were then synthesised (Table 2.4). 
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Figure 2.1. GluK2 targeting shRNA annealed primers. Primers constructed with short interfering RNA (siRNA) sense and antisense 

sequencing matching to GRIK2 and a containing a hairpin loop sequence, as well as the restriction sites Bg1II and XhoI.  

 

 

 

 

 

5 GATCCCCCCCAATACTACCCTTACCTATTTCAAGAGAATAGGTAAGGGTAGTATTGGGTTTTTC 3’  

3     GGGGGGTTATGATGGGAATGGATAAAGTTCTCTTATCCATTCCCATCATAACCCAAAAAGAGCT 5 

Bg1II 
GRIK2 Target Sequence 

(sense) 

GRIK2 Target Sequence 
(anti-sense) Hairpin 

XhoI 

Termination 
signal 
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Table 2.4. Table showing all shRNA primer sequences and their target species.

Gene and 
accession 

number 

Target 
species 

Sequence 
number 

Forward Primer 5’ – 3’ Reverse Primer 5’ – 3’ 

GRIK2 
(NM_021956.2) 

Homo 
sapiens 

1 

GATCCCCCCCAATACT 
ACCCTTACCTATTTCA 

AGAGAATAGGTAAGGG 
TAGTATTGGGTTTTTC 

TCGAGAAAAACCCAAT 
ACTACCCTTACCTATT 
CTCTTGAAATAGGTAA 

GGGTAGTATTGGGGGG 

2 

GATCCCCCCTCTGATT 
ATGCTTTCCTAATTCA 

AGAGATTAGGAAAGCA 
TAATCAGAGGTTTTTC 

TCGAGAAAAACCTCTG 
ATTATGCTTTCCTAA 

TCTCTTGAATTAGGAA 
AGCATAATCAGAGGGGG 

3 

GATCCCCCCAATCGTT 
CTTTGATTGTTACTCG 
AGTAACAATCAAAGAA 

CGATTGGTTTTTC 

TCGAGAAAAACCAATC 
GTTCTTTGATTGTTAC 
TCGAGTAACAATCAAA 

GAACGATTGGGGG 
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2.2.17 Cloning shRNA oligonucleotides into pSUPER-neo-GFP 

shRNA primers were mixed to a concentration of 100 µM in TE buffer. 2 µl of the 

forward primer and 2 µl of the reverse primer were mixed and heated at 95 oC for 

4 minutes, before leaving at room temperature for 2 hours to cool and anneal the 

primers. After 1 h 250 µl H2O was added and vortexed briefly. 1 µl primer mix was 

then ligated with 1 µl cut pSUPER-neo-GFP vector and 2 µl ligase (New England 

BioLabs®, Hitchin, UK) for 10 minutes at room temperature. The ligated primers 

and pSUPER-neo-GFP were then added to DH5α competent cells on ice for 30 

minutes and transformed by heat shock at 42 oC for 45 seconds. The cells were 

then left on ice for a further 2 minutes and plated onto 100 µg/ml ampicillin agar 

plates and incubated at 37 oC overnight. The following day colonies were picked 

and grown in 3 ml LB Broth with 100 µg/ml ampicillin overnight at 37oC. Plasmid 

DNA was then extracted using the Thermo Scientific GeneJET Plasmid Miniprep 

Kit (Thermo Scientific, Runcorn, UK). All plasmids were screened by performing 

a restriction digest with HindIII and BamHI. 1 µl HindIII, 1 µl BamHI, 3 µl 10 x 

CutSmart® buffer (New England BioLabs®, Hitchin, UK), 20 µl H2O and 5 µl 

plasmid were mixed and incubated at 37oC for 2 hours, before loading and 

separating on a 0.8% agarose gel for 1 hour at 100 V. Plasmids which were 

successfully ligated with annealed shRNA primers resulted in the removal of the 

HindIII restriction site and were therefore only cut by BamHI and appeared as 

one band. Unsuccessful ligations have the HindIII restriction site intact so were 

cut by both BamHI and HindIII and appeared as two bands. Positive plasmids 

were sent for sequencing to confirm the successful integration of the GRIK2 

shRNA sequence into pSUPER-neo-GFP (Source Bioscience, Nottingham, UK; 

Appendix I). 
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2.2.18 Cloning shRNA and the H1 promoter from pSUPER-neo-GFP into pXLG3-

PX-GFP-IRES-WPRE vector 

Using the pSUPER-neo-GFP vector containing the shRNA sequence as a 

template,  a PCR was performed using a forward primer which contains the PacI 

restriction site and corresponds to the beginning H1 promoter in pSUPER-neo-

GFP (5’-CACTTAATTAAGAACGCTGACGTCATCAACCC-3’) and a reverse 

primer which corresponds to M13 Rev (5’-GTCATAGCTGTTTCCTG-3’) (Figure 

2.2a). The PCR was carried out using an annealing temperature of 55 oC, 10 % 

10x NH4 reaction buffer (Bioline, London, UK) 2 mM dNTP, 2 % BIOTAQ™ DNA 

polymerase (Bioline, London, UK), 0.8 pmol/µl forward and reverse primers, 8 % 

cDNA and 2 mM MgCl2. PCR was carried out using a DNA Engine Dyad® thermal 

cycler system (BioRad®, Hertfordshire, UK). 

A PCR clean-up was then done using GeneJET Gel Extraction and DNA Cleanup 

Micro Kit (Thermo Scientific, Runcorn, UK), followed by a restriction digest with 

50 µl PCR product, 2 µl pacI , 2 µl xhoI and 10 µl 10  x CutSmart® buffer (New 

England BioLabs®, Hitchin, UK) and 36 µl H2O at 37 oC for 2 hours. A second 

PCR cleanup was carried out using the entire restriction digested PCR product 

with GeneJET Gel Extraction and DNA Cleanup Micro Kit (Thermo Scientific, 

Runcorn, UK). The eluted insert (Figure 2.2b) was then diluted 1:5 with ddH2O 

and ligated in a 1:1:2 ratio with cut pXLG3-PX-GFP-IRES-WPRE vector and 

ligase I (Bioline, London, UK) for 10 minutes at room temperature. The ligated 

vector was then added to XL1-blue competent cells on ice for 30 minutes and 

transformed by heat shock at 42 oC for 45 seconds. The cells were then left on 

ice for a further 2 minutes and plated onto 100 µg/ml ampicillin agar plates and 

incubated at 37 oC overnight. The following day colonies were picked and grown 
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in 3 ml LB Broth with 100 µg/ml ampicillin overnight at 37 oC. Plasmid DNA was 

then extracted using the Thermo Scientific GeneJET Plasmid Miniprep Kit 

(Thermo Scientific, Runcorn, UK). All plasmids were sequenced to confirm the 

presence of shRNA in the vector (Source Bioscience, Nottingham, UK; Appendix 

I). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



68 
 

 

 

 

 

 

 

 

 

 

Figure 2.2. PCR primers to isolate GRIK2 shRNA sequence and H1 promoter 

from pSUPER-neo-GFP plasmid. A) pSUPER-neo-GFP plasmids containing 

GRIK2 shRNA sequence was used as template DNA to amplify the GRIK2 

shRNA sequence as well as the H1 promoter required for shRNA expression.  

Forward and reverse primers (FP and RP) were used which amplify from the 

multiple cloning site M13 Reverse and from the beginning of the H1 promoter in 

pSUPER-neo-GFP. B.) Linear structure of the PCR product generated, H1 

promoter controls GRIK2 shRNA expression and PacI and XhoI restriction sites 

are required to insert the sequence into the pXLG3-PX-GFP-IRES-WPRE 

plasmid used for virus production.  

 

 

 

FP: 5’-CACTTAATTAAGAACGCTGACGTCATCAACCC-3’  
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2.2.19 Production of GRIK2 shRNA Lentivirus  

HEK293T cells were split and seeded with 1 x 106 cells in T25 flasks as described 

in section 1.2.1. The following day cells were washed twice with 3 ml PBS at 37 

oC. 2 µg pXLG3-PX-GFP-IRES-WPRE vector containing shRNA, 2 µg 

MISSION® lentiviral packing mix (Sigma-Aldrich, Poole, UK) and 12 µg PEI 

transfection reagent were mixed in 2 ml DMEM (25 mM glucose), supplemented 

with 10 % foetal bovine serum (FBS), 1 % antibiotic-antimycotic and 1 % L-

glutamate and incubated at room temperature for 30 minutes. Cells were washed 

with 3 ml of warm DMEM and then incubated with the transfection reagent and 

plasmid mix for 4h. The media was then removed and replaced with 4 ml fresh 

media. 48 hours post-transfection, the virus-containing media was removed from 

the flask, sterilised by passing it through a 0.45 µm filter, aliquoted into cryovials 

and stored at -80 oC for future use. 

2.2.20 Viral infection of EndoC-βH1 or INS-1 cells to knock-down GluK2 

EndoC-βH1 cells were grown in 6 well plates for 24 hours and treated with 100 

µl GRIK2 shRNA lentivirus or 100 µl non-specific shRNA control lentivirus, which 

was used as a viral control. Cells with virus were incubated at 37 oC in humidified 

air and 5 % CO2 for 72 hours. Successful viral infection was confirmed by the 

observation of GFP fluorescence from the cells.  Cells were then washed 3 times 

with PBS and twice with EndoC-βH1 complete media, both at 37 oC, and 

incubated for a further 24 hours. The total cell lysate was then collected every 24 

hours over 4 days. Total cell lysates were then separated by SDS-PAGE and 

immunoblotted with a GluK2/3 antibody (method section 2.2.8 – 2.2.10) to 

determine if the virus had successfully knocked down GRIK2. 
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Plasmids encoding rat targeting GRIK2 shRNA for virus production were gifted 

by University of Bristol and were used with rat INS-1 cells in the same method as 

used with EndoC-βH1 cells, described above. 

2.2.21 Glucose-stimulated insulin secretion (GSIS) assay  

EndoC-βH1 cells were seeded as described in section 2.1.1 onto 96 well plates 

at a seeding density of 70 x 103 cells per well. The cells were incubated at 37°C 

in humidified air and 5 % CO2 for 48 hours. After two days the medium was 

changed to glucose starving medium (glucose free DMEM, 2.8 mM glucose, 2 % 

albumin from bovine serum fraction V, 50 µM 2-mercaptoethanol, 10 mM 

nicotinamide, 5.5 µg/ml transferrin, 6.7 ng/ml sodium selenite) and incubated 

overnight for 12 - 18 hours. The glucose starving medium was removed and 

Krebs-Ringer solution (115 mM NaCl, 24 mM NaHCO3, 5 mM KCl, 1 mM MgCl2, 

1 mM CaCl2-2H2O, 0.2 % BSA, 10 mM Hepes, made up to volume with sterile 

H2O) supplemented with 2.8 mM glucose was added and cells were incubated 

for an hour and then replaced with Krebs-Ringer buffer supplemented with 0.5 

mM glucose or 20 mM glucose containing the appropriate treatments for 1 hour 

(Figure 2.3). All experiments were conducted in triplicate. For the treatments the 

following drugs were used: 2S,3S,4S)-Carboxy-4-(1-methylethenyl)-3-

pyrrolidineacetic acid (kainate); 2,3-dihydroxy-6-nitro-7-sulfamoyl-

benzon[f]quinoxaline-2,3-dione (NBQX) (kainate and AMPA receptor antagonist 

(Yu and Miller, 1995)); Gyki-hydrochloride (Gyki-52466) (AMPA receptor 

antagonist (Rzeski et al., 2001)); (S)-3,5-dihydroxyphenylglycine (DHPG) (Group 

1 mGluR agonist (Wiśniewski and Car, 2002)) and 3-isobutyl-1-methylxanthine 

(IBMX) (phosphodiesterase inhibitor which raises intracellular cAMP (Parsons et 

al., 1988)). 
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The supernatant was then removed and centrifuged at 700 x g for 5 minutes at 

4°C, the resulting supernatant was recovered and stored at -20°C for up to four 

weeks before measuring the amount of secreted insulin.  

50 µl cell lysis solution (1 ml 1 M Tris (pH 8.0), 500 µl Triton X-100, 5 ml Glycerol, 

1.37 ml 5 M NaCl, 500 µl 0.2 M EGTA, 41.63 ml H2O with 1x protease inhibitor 

cocktail tablet (Roche complete mini EDTA-free per 10ml) was added to each 

well and centrifuged at 700 x g for 5 minutes at 4°C. Samples were then also 

stored at -20 °C for up to four weeks before measuring retained insulin. 
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Figure 2.3. Summary of the treatments and drug combinations used for the GSIS assay. EndoC-βH1 cells were grown in glucose-

starving medium containing 2.8 mM glucose for 12 – 18 hours.  Cells were incubated in KREB-Ringer solution supplemented with 0.5 

mM glucose for 1 hour and then pre-incubated with 20 mM glucose or 0.5 mM glucose (these were the controls). The treated cells were 

incubated with 20 mM glucose or 0.5 mM glucose and NBQX; GYKI or DHPG for five minutes. Cells were then incubated with 20 mM 

glucose, 0.5 mM glucose, 20 mM glucose or 0.5 mM glucose and glutamate receptor agonists and antagonists for a further 1 hour.
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2.2.22 Quantification of secreted and retained insulin 

Insulin was determined by using a human insulin Enzyme-Linked Immunosorbent 

Assay (ELISA) Kit (Mercodia, Uppsala, Sweden). ELISA was carried out following 

the manufacturers’ instructions (Mercodia, Uppsala, Sweden). Samples 

containing secreted insulin and retained insulin were diluted in 1:10 and 1:1000 

with H2O, respectively, with the exception of IBMX and KCl treated cells which 

were diluted 1:40 for secreted insulin. Insulin values for both secreted and 

retained insulin were then calculated using a standard curve derived from known 

standards (Mercodia, Uppsala, Sweden).   

2.2.23 Statistical analysis 

Statistical analysis of GSIS data was carried out using one-way ANOVA with 

Bonferroni correction using IBM® SPSS® Statistics 23 software (IBM®, 

Portsmouth, UK). Differences between means were considered statistically 

significant if the p value was less than 0.05. Results were analysed from 5 – 10 

independent experiments conducted in triplicate. 

2.2.24 Cell-surface Biotinylation of EndoC-βH1 protein 

EndoC-βH1 cells were grown in T25 flasks to confluency. The cells were washed 

two times with PBS at room temperature, followed by two washes with 10 mM 

Na-Borate (pH 8.2), 0.15 M NaCl. Excess liquid was removed from the flask and 

2 ml 10 mM Na-Borate (pH 8.2), 0.15 M NaCl was added, along with 50 µg/ml 

sulfo-NHS-Biotin (Thermo Fisher Scientific Inc, Rockford, USA). The cells were 

then left at room temperature for 5 minutes and then all liquid was removed and 

a further 2 ml 10 mM Na-Borate (pH8.2), 0.15 M NaCl was added with 50 µg/ml 

sulfo-NHS-Biotin (Thermo Fisher Scientific Inc, Rockford, USA). The cells were 
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left for a further 10 minutes at room temperature, after which, 30 µl 1 M NH4Cl 

was added to the flask for 5 minutes. The cells were then washed three times 

with TBS and lysed with 1 ml TBS containing 1 % Triton X-100, 93 µM 3,4-

Dichloroisocoumarin (DCI), 50 µM E64 and 122 µM 1,10-Phenanthroline and 

moved to an Eppendorf tube and kept on ice for 15 minutes. The sample was 

centrifuged for 10 minutes at 700 x g at 4 oC, supernatant removed and 

transferred to a fresh Eppendorf tube. 100 µl of sample was put into a separate 

Eppendorf tube and 500 µl cold acetone was added and left at -20 oC until 

flocculated. The sample was then centrifuged at 700 x g at 4 oC for 15 minutes, 

the acetone was removed and the pellet resuspended in 50 µl sample loading 

buffer (10 % β-mercaptoethanol, 10 % glycerol, 2 % sodium dodecyl sulfate 

(SDS) and 62.5 mM Tris(hydroxymethyl)aminomethane (Tris-)-HCl, pH6.8 om 

deionised water), heated for 5 minutes at 95 oC, then frozen at -80 oC until 

electrophoresis. This sample is the total cell content. The remaining supernatant 

was then mixed with 50 µl of a 1:1 suspension of streptavidin agarose in TBS, 1 

% Triton X-100 for 1 hour at 4 oC with mixing by rotation. The beads were then 

washed three times with TBS, 1 % Triton X-100 and once with 50 mM Tris-HCl 

(pH7.5). The membrane proteins were eluted by heating at 95 oC with 50 µl 

sample loading buffer for 2 minutes. The stripped beads were pelleted by 

centrifugation at 700 x g for 2 minutes. The supernatant was then snap frozen in 

liquid nitrogen and stored at -80 oC until electrophoresis. 
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2.3 Results  

2.3.1 Kainate receptor subunit mRNA is expressed in EndoC-βH1  

To assess if EndoC-βH1 cells express glutamate receptors (GluRs), specifically 

kainate receptors (KARs), and could be used as a model to investigate the role 

of GluRs in insulin secretion, RT-PCR was carried out using EndoC-βH1 cDNA 

(as described in section 2.2.14 of Methods). Primers for kainate receptor subunits 

(GluK1-5) and the auxiliary subunits (Neto1 and Neto2) were designed using the 

National Centre for Biotechnology Information (NCBI) Primer Blast software and 

are shown in Table 2.3 (Methods section 2.2.14) with expected PCR product size, 

annealing temperatures and MgCl2 concentrations used.   

GluK2 and GluK5 mRNA was amplified and produced visible bands of 516 bp 

and 375 bp, respectively (Fig. 2.4). The KAR auxiliary subunits Neto1 and Neto2 

are also expressed in both EndoC-βH1 cells and rat brain, PCR amplification 

producing products with the expected size (Fig. 2.5). Sequencing of the GluK2, 

GluK5, Neto1 and Neto2 PCR products confirmed their identity (Source 

Bioscience, PLC, Nottingham, UK).  

In contrast, KAR subunit mRNA for GluK1, GluK3 and GluK4 was not detected 

by RT-PCR from EndoC-βH1 cell but all five KAR subunits were detected in rat 

brain. The house keeping gene β-actin was amplified in all samples tested which 

ensured the integrity of the cDNA used and that the steps of the PCR reaction 

worked. Control samples containing cDNA in the absence of reverse 

transcriptase were used to detect the presence of genomic DNA contamination. 

A sample without cDNA template was used as a negative control to check for any 

PCR contamination. Neither negative controls resulted in any PCR products.  



76 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.4. RT-PCR analysis of kainate receptor subunit (GluK1-5) mRNA 

expression in EndoC-βH1 cells and rat brain (RB). Kainate receptor (KAR) 

subunit specific primers were used (Table 2.3) to amplify each subunit.  cDNA 

was synthesised using 3 µg total RNA (Method section 2.2.13). β-actin was 

amplified as a positive control and produced 280 bp and 359 bp bands in human 

and rodent samples, respectively.  Samples excluding reverse trancriptase in the 

RT reaction (EndoC-βH1 RT(-) and RB RT(-)) were used to detect the presence 

of genomic DNA contamination.  A sample without cDNA template was used as 

a control for PCR (cDNA (-)) contamination. The size of the DNA marker 

(BioRad®, Hertfordshire, UK) is indicated on the left in base pairs (bp) and the 

expected PCR product size for each reaction is indicated on the right. Figure is 

representative of three independent experiments. 

300 
400 
500 
600 

bp 

En
d

o
C

-β
H

1
 

R
B
 

En
d

o
C

-β
H

1
 

R
B
 

En
d

o
C

-β
H

1
 R

T(
-)

 

R
B

 R
T(

-)
 

cD
N

A
 (

-)
 

516 (Gluk2) 

359 (M β-actin) 
280 (H β-actin) 

bp 

300 
400 
500 
600 

571 (Gluk1) 

359 (M β-actin) 
280 (H β-actin) 

300 
400 
500 
600 

499 (Gluk3) 

359 (M β-actin) 
280 (H β-actin) 

300 
400 
500 
600 
700 660 (Gluk4) 

359 (M β-actin) 
280 (H β-actin) 

375 (Gluk5) 
359 (M β-actin) 
280 (H β-actin) 300 

400 
500 
600 



77 
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.5. RT-PCR analysis of kainate receptor auxiliary subunits Neto1 

and Neto2 mRNA expression in EndoC-βH1 cells and rat brain (RB). Neto1 

and Neto2 subunit specific primers were used (Table 2.3) to amplify each subunit.  

cDNA was synthetised using 3 µg total RNA (Method section 2.2.13). β-actin was 

amplified as a positive control and produced 280 bp and 359 bp bands in human 

and rodent samples, respectively.  Samples excluding reverse trancriptase in the 

RT reaction (EndoC-βH1 RT(-) and RB RT(-)) were used to detect the presence 

of genomic DNA contamination.  A sample without cDNA template was used as 

a control for PCR (cDNA (-)) contamination. The size of the DNA marker 

(BioRad®, Hertfordshire, UK) is indicated on the left in base pairs (bp) and the 

expected PCR product size for each reaction is indicated on the right. Figure is 

representative of three independent experiments. 
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2.3.2 EndoC-βH1 cells produce kainate receptor subunit proteins 

Immunoblots were carried out using EndoC-βH1 protein lysate to access if any 

of the mRNA detected in the cells is translated into protein and therefore, 

potentially form a functional KAR. GluK2/3 and GluK5 specific commercial 

antibodies were used as described in section 2.2.10 of the Methods. HEK293T 

cells which had been transfected with GluK2 or GluK5 plasmids (section 2.2.7 of 

Methods) and rat brain protein homogenate were used as positive controls. 

Protein homogenate from untransfected HEK293T cells was used as a negative 

control. 

EndoC-βH1 cells produce GluK2/3 protein, as a clear band was detected at the 

expected molecular weight (115 kDa, Fig. 2.6). All positive controls also showed 

a band at 115 kDa, which was absent in the negative control. For GluK5, two 

different antibodies were used to try and detect this subunit in EndoC-βH1 cells. 

No GluK5 protein was detectable in EndoC-βH1 cells (Fig. 2.7), but this antibody 

was not specific for the human GluK5 (Appendix II), which may explain the 

absence of a specific band. A second anti-GluK5 antibody, which was specific for 

human GluK5 was then used (Figure 2.8) and a strong band at the correct size 

was clearly seen.  However, the negative control also showed a much weaker 

band with a similar molecular weight. Furthermore, many non-specific protein 

bands were also detected. Based on the results, it is not clear whether GluK5 

protein is produced in this cell line. 
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Figure 2.6. Immunoblot analysis of GluK2 proteins in EndoC-βH1, MIN6 and 

INS-1 pancreatic β-cells. Homogenates from human EndoC-βH1, mouse MIN6 

and rat INS-1 cells were prepared. Proteins (50 µg per lane) were separated by 

SDS-PAGE and transferred to immobilon membranes (Method section 2.2.10). 

Homogenates from rat brain (RB; 25 µg) and HEK293T cells overexpressing 

GluK2 (25 µg; (+) control) were used as positive controls. HEK293T cell 

homogenate (50 µg; (-) control) was used as a negative control. Immunoblots 

were probed with a rabbit polyclonal anti-GluK2/3 antibody (0.125 µg/ml; Millipore 

UK Limited) overnight at 4oC. Immunoblots were then probed with a secondary 

anti-rabbit IgG antibody (0.08 µg/ml; Sigma-Aldrich®) for 1 hour. Immunoblots 

were imaged by chemiluminescence using the Odessy® Fc (Li-Cor Biosciences) 

Imaging System. The molecular weight markers (Bio-Rad®) are shown on the left 

in kilodaltons (kDa). The expected size of GluK2 is indicated on the right. Figure 

is representative of three independent experiments. 
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Figure 2.7. Immunoblot analysis of GluK5 proteins in EndoC-βH1, MIN6 and 

INS-1 pancreatic β-cells. Homogenates from human EndoC-βH1, mouse MIN6 

and rat INS-1 cells were prepared. Proteins (50 µg per lane) were separated by 

SDS-PAGE and transferred to immobilon membranes (Method section 2.2.10). 

Homogenates from rat brain (RB; 25 µg) and HEK293T cells overexpressing 

GluK5 (25 µg; (+) control) were used as positive controls. HEK293T cell 

homogenate (50 µg; (-) control) was used as a negative control. Immunoblots 

were probed with a rabbit polyclonal anti-GRIK5 antibody (1 µg/ml; Millipore UK 

Limited) overnight at 4oC. Immunoblots were then probed with a secondary anti-

rabbit IgG antibody (0.08 µg/ml; Sigma-Aldrich®) for 1 hour. Immunoblots were 

imaged by chemiluminescence using the Odessy® Fc (Li-Cor Biosciences) 

Imaging System. The molecular weight markers (Bio-Rad®) are shown on the left 

in kilodaltons (kDa). The expected size of GluK5 is indicated on the right. Figure 

is representative of four independent experiments. 
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Figure 2.8. Immunoblot analysis of GluK5 proteins in EndoC-βH1, MIN6 and 

INS-1 pancreatic β-cells. Homogenates from the human EndoC-βH1, mouse 

MIN6 and rat INS-1 cells were prepared. Proteins (50 µg per lane) were 

separated by SDS-PAGE and transferred to immobilon membranes (Method 

section 2.2.10). Rat brain homogenate (RB; 25 µg) was used as a positive control. 

HEK293T cell homogenate (50 µg; (-) control) was used as a negative control. 

Immunoblots were probed with a rabbit polyclonal anti-GRIK5 antibody (1 µg/ml; 

Abcam®) overnight at 4oC. Immunoblots were then probed with a secondary anti-

rabbit IgG antibody (0.08 µg/ml; Sigma-Aldrich®) for 1 hour. Immunoblots were 

imaged by chemiluminescence using the Odessy® Fc (Li-Cor Biosciences) 

Imaging System. The molecular weight markers (Bio-Rad®) are shown on the left 

in kilodaltons (kDa). The expected size of GRIK5 is indicated on the right. Figure 

is representative of six independent experiments. 
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2.3.3 Detection of NMDA and AMPA receptor subunit proteins in EndoC-βH1 

and INS-1 cells 

To investigate if EndoC-βH1 and INS-1 cells express any other ionotropic 

glutamate receptor subunits, protein homogenate from a crude protein extraction, 

using sodium bicarbonate, was obtained (Methods section 2.2.5). This method of 

obtaining protein from EndoC-βH1 and INS-1 cells ensured no protein was lost 

through centrifugation. Specific antibodies for GluN1, GluN2A, GluN2B and 

AMPAR subunits were used as described in section 2.2.10 of the Methods. Rat 

brain homogenate was used as a positive control for all immunoblots. 

EndoC-βH1 cells only produced protein for the NMDA receptor subunit GluN2B 

(Fig. 2.9, D) and not for either of the other two NMDA receptor subunits (Fig 2.9, 

B and C). INS-1 cells did not show any expression for any of the NMDA receptor 

subunits tested. AMPA receptors were not detected in either EndoC-βH1 or INS-

1 cells (Figure 1.6 A.). The rat brain positive control was detected in all blots whilst 

the HEK293T negative control showed no specific bands. 
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Figure 2.9. Immunoblot analysis of AMPA and NMDA receptor subunit 

proteins in EndoC-βH1 and INS-1 pancreatic β-cells. Crude protein 

homogenates from the human EndoC-βH1 and rat INS-1 cells were prepared. 

Proteins (50 µg per lane) were separated by SDS-PAGE and transferred to 

immobilon membranes (Method section 2.2.10). Rat brain homogenate (RB; 25 

µg) was used as a positive control for all immunoblots. HEK293T cell homogenate 

((-) Control; 50 µg) was used as a negative control. Immunoblots were probed 

with; A) a rabbit anti-PAN-AMPAR antibody (0.075 µg/ml; University of Bristol); 

B) rabbit anti-NMDAR1 antibody (0.295µg/ml; Cell Signalling Technology®); C) a 

rabbit anti-NMDAR2A antibody (0.2 µg/ml; Millipore UK Limited) or D) a rabbit 

anti-NMDAR2B antibody (0.2 µg/ml; Millipore UK Limited)  overnight at 4oC. 

Immunoblots were then probed with a secondary anti-rabbit IgG antibody (0.08 

µg/ml; Sigma-Aldrich®) for 1 hour. Immunoblots were imaged by 

chemiluminescence using the Odessy® Fc (Li-Cor Biosciences) Imaging System. 

The molecular weight markers (Bio-Rad®) are shown on the left in kilodaltons 

(kDa). The expected size of AMPAR (A.); NMDAR1 (B.); NMDAR2B (C.) and 
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NMDAR2B (D.) is indicated on the right. Figure is representative of three 

independent experiments. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



85 
 

2.3.4 GluK2 protein production was unchanged following shRNA lentivirus 

treatment  

In order to investigate if the KARs, specifically GluK2, are involved in GSIS a 

GluK2 knockdown using GluK2 shRNA lentivirus was attempted. 

GluK2 shRNA virus was successfully made with sequence 2 (Table 2.4 Methods 

section). GluK2 shRNA virus infected 81 % (± 3.1%, calculated from three 

separate images) of EndoC-βH1 cells when treated with 50 µl of supernatant 

containing virus (Method section 2.2.20), as indicated by EndoC-βH1 cells 

producing green fluorescent protein (GFP) (Figure 2.10). However, 

immunblotting of protein homogenate from days 4 – 7 post-viral infection revealed 

no reduction in GluK2 protein detected compared to cells which were not exposed 

to 50 µl or 100 µl virus containing supernatant (Figure 2.11a). Similarly, and as 

expected, EndoC-βH1 cells which were infected with non-specific shRNA control 

virus showed no difference in GluK2 protein production compared to cells not 

exposed to virus (Figure 2.11b).   

EndoC-βH1 cell is a slow growing cell line, it was therefore possible that GluK2 

was recycled by the cells at a rate too slow to allow efficient knockdown of GluK2 

by the virus. To encourage GluK2 protein recycling EndoC-βH1 cells were treated 

with 25 µM, 50 µM or 100 µM kainate at the time of viral infection and then again 

72 hours after infection. Treatment of EndoC-βH1 cells with kainate and GluK2 

shRNA virus did not result in knockdown of GluK2 (Figure 2.12). 

Two rat specific GluK2 shRNA virus were then used to infect INS-1 cells. Both 

viruses infected INS-1 cells, indicated by the cells producing GFP (51% ± 9.1% 

for virus 1 and 61.7% ± 17% for virus, calculated from three separate images) 
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(Figure 2.13). However, immunoblotting of protein homogenate from days 4 – 8 

post-viral infection again showed no reduction in GluK2 protein production 

compared to cells which were not exposed to GluK shRNA virus or cells treated 

with a non-specific shRNA virus control (Figure 2.14). 

GluK2 production was not reduced in either human EndoC-βH1 cells or rat INS-

1 cells. 
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Figure 2.10. GRIK2 shRNA lentivirus effectively infected EndoC-βH1 cells. EndoC-βH1 cells were infected with 50 µl GRIK2 shRNA 

lentivirus per well in a 6-well plate and incubated for 72 hours. A) Bright-field (BF) of EndoC-βH1 cells. B) EndoC-βH1 successfully 

infected with GRIK2 shRNA lentivirus expressing GFP. C) Merge image of BF and GFP showing successful infection of EndoC-βH1 

cells following 72 hour incubation with GRIK2 shRNA lentivirus. Images taken with Nikon Eclipse Inverted Fluorescence Microscope 20x 

objective.

A. B. C. A. B. C. 
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Figure 2.11. Exposure to GluK2 shRNA or non-specific shRNA lentivirus did 

not reduce GRIK2 production in EndoC-βH1 cells. A lentivirus which 

contained either A) GluK2 shRNA or B) non-specific shRNA did not reduce GluK2 

protein production. EndoC-βH1 cells were grown in 6 well plates and treated with 

50 µl or 100 µl of GluK2 or non-specific shRNA lentivirus for 72 hours. Cells were 

then washed 3 x with PBS and incubated with fresh media. On days 4, 5 and 6 
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post lentiviral infection protein lysate was collected as described in the Methods 

section. The protein lysate was then separated by SDS-PAGE and proteins 

transferred to immobilon membranes (Methods section). Immunoblots were 

probed with a rabbit polyclonal anti-GluK2/3 antibody (0.125 µg/ml; Millipore UK 

Limited) overnight at 4 oC. Immunoblots were then probed with a secondary anti-

rabbit IgG antibody (0.08 µg/ml; Sigma-Aldrich®) for 1 hour. Immunoblots were 

imaged by chemiluminescence using the Odessy® Fc (Li-Cor Biosciences) 

Imaging System. Immunoblots were also probed with mouse anti-β-tubulin (0.67 

µg/ml; Sigma-Aldrich®), followed by a secondary IRDye© 800CW Anti-Mouse 

IgG antibody to assess total protein loading. The molecular weight markers (Bio-

Rad) are shown on the left in kilodaltons (kDa). The expected size of GluK2 and 

β-tubulin is indicated on the right. Images are representative of two independent 

experiments. 
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Figure 2.12. Exposure to GRIK2 shRNA lentivirus and Kainate did not 

reduce GRIK2 production in EndoC-βH1 cells. EndoC-βH1 cells were grown 

in 6 well plates and treated with 100 µl of GRIK2 shRNA lentivirus and 25 µM, 50 

µM or 100 µM Kainate (KA + Virus) for 72 hours. Cells were then washed 3 x with 

PBS and incubated with fresh media or media containing 25 µM, 50 µM or 100 

µM Kainate (KA x2 + Virus). 7 days post lentiviral infection protein lysate was 

collected as described in the Methods section. EndoC-βH1 cells not exposed to 

any lentivirus and were used as controls for normal GluK2 protein production and 

protein lysate was collected at the same time as infected cell protein lysate. The 

protein lysate was then separated by SDS-PAGE and proteins transferred to 

immobilon membranes (Methods section). Immunoblots were probed with a 

rabbit polyclonal anti-GluK2/3 antibody (0.125 µg/ml; Millipore UK Limited) 

overnight at 4oC. Immunoblots were then probed with a secondary anti-rabbit IgG 

antibody (0.08 µg/ml; Sigma-Aldrich®) for 1 hour. Immunoblots were imaged by 

chemiluminescence using the Odessy® Fc (Li-Cor Biosciences) Imaging System. 

Immunoblots were also probed with mouse anti-β-tubulin (0.67 µg/ml; Sigma-

150 

100 
GluK2 (115 kDa) 
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Aldrich®), followed by a secondary IRDye© 800CW Anti-Mouse IgG antibody to 

assess total protein loading. The molecular weight markers (Bio-Rad) are shown 

on the left in kilodaltons (kDa). The expected size of GluK2 and β-tubulin is 

indicated on the right. Image is representative of one experiment. 
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Figure 2.13. Rat GluK2 shRNA lentivirus (1) and (2) effectively infected INS-1 cells. INS-1 cells were infected with 100 µl rat GRIK2 

shRNA lentivirus (1) or (2) per well in a 6-well plate and incubated for 72 hours. A) Bright-field (BF) of INS-1 cells. B) INS-1 successfully 

infected with GRIK2 shRNA lentivirus expressing GFP. C) Merge image of BF and GFP showing infection of INS-1 cells following 72 

hour incubation with rat GRIK2 shRNA lentivirus. Images taken with Nikon Eclipse Inverted Fluorescence Microscope 20x objective. 
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Figure 2.14. Exposure to GluK2 shRNA virus 1, 2 or non-specific shRNA 

lentivirus did not reduce GRIK2 production in INS-1 cells. A lentivirus which 

contained either A) GluK2 shRNA virus 1 or non-specific shRNA virus or B) GluK2 

shRNA virus 2 did not reduce GluK2 protein production. INS-1 cells were grown 

in 6 well plates and treated with 100 µl of GluK2 shRNA virus 1, 2 or non-specific 

shRNA lentivirus for 72 hours. Cells were then washed 3 x with PBS and 

incubated with fresh media. On days 4, 5, 6, 7 and 8 post lentiviral infection 

protein lysate was collected as described in the Methods section. The protein 
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lysate was then separated by SDS-PAGE and proteins transferred to immobilon 

membranes (Methods section). Immunoblots were probed with a rabbit 

monoclonal anti-GluK2 antibody (0.085 µg/ml; Abcam) overnight at 4oC. 

Immunoblots were then probed with a secondary anti-rabbit IgG antibody (0.08 

µg/ml; Sigma-Aldrich®) for 1 hour. Immunoblots were imaged by 

chemiluminescence using the Odessy® Fc (Li-Cor Biosciences) Imaging System. 

Immunoblots were also probed with mouse anti-β-tubulin (0.67 µg/ml; Sigma-

Aldrich®), followed by a secondary IRDye© 800CW Anti-Mouse IgG antibody to 

assess total protein loading. The expected size of GluK2 and β-tubulin is 

indicated on the right in kilodaltons (kDa). Images are representative of two 

individual experiments. 
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2.3.5 Glutamate receptor activation increases glucose stimulated insulin 

secretion (GSIS) in EndoC-βH1 cells 

Following the unsuccessful knock down of KAR subunits using shRNA lentivirus, 

it was then decided to use various GluR agonists and antagonists to elucidate 

GluRs role in insulin secretion from human β-cells. The human β-cell’s primary 

function is to secrete insulin in response to maintain blood-glucose homeostasis 

(Da Silva Xavier, 2018). To establish if EndoC-βH1 cells respond to glucose, a 

glucose-stimulated insulin secretion (GSIS) assay was performed (Methods 

section 2.2.21). Retained and secreted insulin were measured using Human 

Insulin ELISA (Mercodia, Uppsala, Sweden). A calibration curve using known 

standards was also obtained from the ELISA (Figure 2.15). The optical density of 

the test samples was inserted into the equation (y = mx + c) from the calibration 

curve. Calibration curves were only used to quantify data if they had an R2 value 

great than 0.95. Following treatments (described in Methods section 2.2.21), the 

retained and secreted insulin from EndoC-βH1 cells was measured and the 

percentage of insulin secreted from the total insulin (retained insulin plus secreted 

insulin) was calculated. 

EndoC-βH1 cells showed a significant two-fold increase in insulin secretion when 

treated with 20 mM glucose, compared with cells treated with 0.5 mM glucose (p 

= 0.000385; Figure 2.16). EndoC-βH1 cells also responded to increased 

intracellular cyclic AMP (cAMP), as demonstrated with the phosphodiesterase 

inhibitor IBMX (Komatsu et al., 2002). Cells treated with 20 mM glucose and 0.5 

mM IBMX showed a more than five-fold increase in insulin secretion compared 

to cells treated with 20 mM glucose alone (p = 0.000014; Figure 2.17).  



97 
 

Results from PCR and immune blotting have shown that KARs are found in 

EndoC-βH1 cells (Sections 2.3.1 and 2.3.2). To establish if these KARs affect β-

cell insulin secretion various GluR agonists and antagonists were used during 

GSIS (as described in Method section 2.2.21).  

Kainate and 20 mM glucose induced a 1.3 fold increase in insulin secretion 

compared to cells treated with 20 mM glucose alone (p = 0.034; Figure 2.18). 

Cells which were pre-incubated with the KAR and AMPAR antagonist, NBQX, 

before treatment with high glucose and kainate blocked kainate induced insulin 

secretion, indicating that KAR activation increases GSIS.  

When GSIS was conducted in low glucose (0.5 mM) there was no significant 

increase in insulin secretion between low glucose alone and low glucose plus 

kainate. There was also no significant difference in insulin secretion between low 

glucose alone and cells pre-treated with NBQX before treatment with low glucose 

and kainate (Figure 2.19).  

To ensure the effect of NBQX was due to KARs and not AMPAR antagonism, 

EndoC-βH1 cells were also pre-incubated with GYKI-52466, an AMPAR-specific 

antagonist (Rzeski et al., 2001). Pre-treatment with GYKI-52466 did not block the 

effects of kainate on insulin secretion and there was no significant difference 

between cells treated with high glucose and kainate compared to those pre-

treated with GYKI-52466 (Figure 2.18).  

KARs can exert both ionotropic and metabotropic functions involving G-proteins 

and second messengers (Marshall et al., 2018; Petrovic et al., 2017). To 

investigate if KAR effect on insulin secretion could be potentiated by metabotropic 

receptor activation, the mGluR1 receptor agonist, DHPG (Wiśniewski and Car, 
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2002), was used during GSIS. EndoC-βH1 cells which were incubated with 

DHPG before treatment with 20 mM glucose and kainate showed no significant 

difference in insulin secretion compared to cells which were only treated with 20 

mM glucose and kainate (Fig.2.18). 
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Figure 2.15. Example calibration curve of human insulin ELISA standards 

with optical density (450 nm) plotted against concentration of insulin 

(mU/L). An equation for the R2 value was calculated using the curve, which was 

then used to calculate the concentration of insulin produced from the EndoC-βH1 

cells after treatments. Figure is representative example of the calibration curves 

used to calculate insulin secretion. 
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Figure 2.16. Effect of non-stimulatory and stimulatory glucose on insulin 

secretion in EndoC-βH1 cells. EndoC-βH1 cells were grown in glucose-starving 

medium containing 2.8 mM glucose for 12 – 18 hours.  Cells were incubated in 

KREB-Ringer solution supplemented with 0.5 mM glucose for 1 hour and were 

then incubated with 0.5 mM glucose or 20 mM glucose for a further 1 hour. Total 

and released insulin were quantified by Human Insulin ELISA (Mercodia) as 

described in the Methods section. Results are shown as the percentage insulin 

secretion in relation to the total insulin content ± SEM from 10 separate 

experiments conducted in triplicate. Means were compared by students t-test. 
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Figure 2.17. Effect of stimulatory glucose and IBMX on insulin secretion in 

EndoC-βH1 cells. EndoC-βH1 cells were grown in glucose-starving medium 

containing 2.8 mM glucose for 12 – 18 hours.  Cells were incubated in KREB-

Ringer solution supplemented with 0.5 mM glucose for 1 hour and were then 

incubated with 20 mM glucose or 20 mM glucose and IBMX for a further 1 hour. 

Total and released insulin were quantified by Human Insulin ELISA (Mercodia) 

as described in the Methods section. Results are shown as the percentage insulin 

secretion in relation to the total insulin content ± SEM from 11 separate 

experiments conducted in triplicate. Means were compared by students t-test. 

***p<0.001. 
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Figure 2.18. Effect of glutamate receptor agonists and antagonists on glucose-stimulated insulin secretion in EndoC-βH1 cells. 

EndoC-βH1 cells were grown in glucose-starving medium containing 2.8 mM glucose for 12 – 18 hours.  Cells were incubated in KREB-

Ringer solution supplemented with 0.5 mM glucose for 1 hour and then pre- incubated with 20 mM glucose or 20 mM glucose and 

NBQX; GYKI or DHPG for five minutes. Cells were then incubated with 20 mM glucose, 20 mM glucose and glutamate receptor agonists 

and antagonists for a further 1 hour. Total and released insulin were quantified by Human Insulin ELISA (Mercodia) as described in the 

Methods section. Results are shown as the mean fold change compared to 20 mM glucose ± SEM from 5 - 11 separate experiments 

conducted in triplicate. Means were compared by One-Way ANOVA followed by Bonferroni correction. * p<0.05 compared to 20 mM 

glucose, # p<0.05 compared to 20 mM glucose plus kainate.   
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Figure 2.19. Effect of Kainate receptor agonists and antagonists on insulin secretion in EndoC-βH1 cells in non-stimulatory 

glucose. EndoC-βH1 cells were grown in glucose-starving medium containing 2.8 mM glucose for 12 – 18 hours.  Cells were incubated 

in KREB-Ringer solution supplemented with 0.5 mM glucose for 1 hour and then pre- incubated with 0.5 mM glucose or 0.5 mM glucose 

and NBQX. Cells were then incubated with 0.5 mM glucose, 0.5 mM glucose and Kainate receptor agonists and antagonists for a further 

1 hour. Total and released insulin were quantified by Human Insulin ELISA (Mercodia) as described in the Methods section. Results are 

shown as the mean fold change compared to 0.5 mM glucose ± SEM from 5 separate experiments conducted in triplicate. Means were 

compared by One-way ANOVA followed by Bonferroni correction. *p<0.05 
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2.3.6 Exposure to high glucose induces surface translocation of GluK2 in 

EndoC-βH1 cells. 

To investigate if KAR membrane localisation was affected by different glucose 

concentrations EndoC-βH1 cells were treated with 0.5 mM glucose or 20 mM 

glucose for 1 hour, after which membrane protein fractions were obtained 

(Methods section 2.2.24). GluK2 protein was then visualised via immunoblotting 

(Methods section 2.2.8 – 2.210). Within neuronal cells protein kinase A (PKA) 

pathway activation influences KAR activity (Andrade-Talavera et al., 2013; 

Falcón-Moya et al., 2018), however, KAR trafficking is thought to be independent 

of this pathway (Sun et al., 2014). To investigate if this was also true in human β-

cells, EndoC-βH1 cells were also treated with IBMX, which rises intracellular 

cAMP and activates PKA. (Komatsu et al., 2002). 

Immunoblot detection of cell surface and total GluK2 protein revealed that surface 

expression of GluK2 is variable between blots (Figure 2.20). However, 

normalisation of the blots shows that cell surface expression of GluK2 is 

significantly increased when EndoC-βH1 cells are treated with 20 mM glucose, 

compared to cells which are treated with 0.5 mM glucose (Figure 2.21a). The total 

GluK2 in 0.5 mM glucose was not significantly different to that in 20 mM glucose 

(Figure 2.21b). 

There was no significant difference seen between either surface expressed or 

total GluK2 protein when cells were treated with 20 mM glucose or 20 mM 

glucose and IBMX (Figure 2.22). 

Immobilon® PVDF membranes containing cell surface and total proteins were re-

probed with an anti-CaV2.1 (Life Technologies Limited, Paisley, UK) and anti-
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Na,K-ATPase (Cell Signalling Technology®, Leiden, UK) antibodies, however, 

surface expressed protein was unable to be detected with either antibody (Figure 

2.23). 
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Figure 2.20. Surface expression of GluK2 in EndoC-βH1 pancreatic β-cells. 

EndoC-βH1 cells were grown in glucose-starving medium containing 2.8 mM 

glucose for 12 – 18 hours.  Cells were incubated in KREB-Ringer solution 

supplemented with 0.5 mM glucose for 1 hour. Cells were then incubated with 

KREB-Ringer solution supplemented with 0.5 mM glucose, 20 mM glucose or 20 
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mM glucose and IBMX (500 µM) for a further 1 hour. The surface proteins were 

separated from the total cell protein by cell surface biotinylation assay (as 

described in Methods section). Surface and total protein samples were then 

separated by SDS-PAGE and proteins transferred to immobilon membranes 

(Methods section). Immunoblots were probed with a rabbit polyclonal anti-

GluR6/7 antibody (0.125 µg/ml; Millipore UK Limited) overnight at 4oC. 

Immunoblots were then probed with a secondary anti-rabbit IgG antibody (0.08 

µg/ml; Sigma-Aldrich®) for 1 hour. Immunoblots were imaged by 

chemiluminescence using the Odessy® Fc (Li-Cor Biosciences) Imaging System. 

Immunoblots were also probed with mouse anti-β-tubulin (0.67 µg/ml; Sigma-

Aldrich®), followed by a secondary IRDye© 800CW Anti-Mouse IgG antibody to 

assess total protein loading. The molecular weight markers (Bio-Rad) are shown 

on the left in kilodaltons (kDa). The expected size of GluK2 is indicated on the 

right. Lysates were loaded in duplicate. The experiment was conducted 5 times 

and the results of each immunoblot are shown. 
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Figure 2.21. Effect of non-stimulatory glucose (0.5 mM) and stimulatory 

glucose (20 mM) GluK2 protein production. A) Chart showing the surface 

expression of GluK2 normalised against total GluK2 signal for each immunoblot. 

B) Chart showing the total expression of GluK2 normalised against β-tubulin 

signal for each immunoblot. Immunoblots were analysed using Image Studio™ 

Lite software. The black line represents the mean ± SEM from the 5 individual 

experiments conducted. Means were compared by students t-test. ** p <0.01 
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Figure 2.22. Effect of stimulatory glucose (20 mM) and stimulatory glucose 

(20 mM) with IBMX (500 µM) on GluK2 expression. A) Chart showing the 

surface expression of GluK2 normalised against total GluK2 signal for each 

immunoblot. B) Chart showing the total expression of GluK2 normalised against 

β-tubulin signal for each immunoblot. Immunoblots were analysed using Image 

Studio™ Lite software. The black line represents the mean ± SEM from the 5 

individual experiments conducted. Means were compared by students t-test.  
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Figure 2.23. CaV2.1 and Na, K-ATPase surface protein was undetectable 

EndoC-βH1 pancreatic β-cells. EndoC-βH1 cells were grown in glucose-

starving medium containing 2.8 mM glucose for 12 – 18 hours.  Cells were 

incubated in KREB-Ringer solution supplemented with 0.5 mM glucose for 1 hour. 

Cells were then incubated with KREB-Ringer solution supplemented with 0.5 mM 

glucose, 20 mM glucose or 20 mM glucose and IBMX (500 µM) for a further 1 

hour. The surface proteins were separated from the total cell protein by cell 

surface biotinylation assay (as described in Methods section). Surface and total 
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protein samples were then separated by SDS-PAGE and proteins transferred to 

immobilon membranes (Methods section). Immunoblots were probed with either 

A) rabbit polyclonal anti-CaV2.1 (0.8 µg/ml; Life Technologies Limited, Paisley, 

UK) or B) rabbit polyclonal anti-Na,K-ATPase (0.031 µg/ml; Cell Signalling 

Technology®, Leiden, UK) overnight at 4oC. Immunoblots were then probed with 

a secondary anti-rabbit IgG antibody (0.08 µg/ml; Sigma-Aldrich®) for 1 hour. 

Immunoblots were imaged by chemiluminescence using the Odessy® Fc (Li-Cor 

Biosciences) Imaging System. Immunoblots were also probed with mouse anti-

β-tubulin (0.67 µg/ml; Sigma-Aldrich®), followed by a secondary IRDye© 800CW 

Anti-Mouse IgG antibody to assess total protein loading. The molecular weight 

markers (Bio-Rad) are shown on the left in kilodaltons (kDa). The expected size 

of CaV2.1 and Na, K-ATPase is indicated on the right. Lysates were loaded in 

duplicate. Figure is representative of four independent experiments. 
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2.4 Discussion 

Comparatively to AMPAR and NMDARs, very little is known about KARs in both 

the CNS and in pancreatic β-cells. Within β-cells there has been conflicting 

reports on the presence and function of KARs between human islets and murine 

cell lines (Table 1.2 and section 1.10). However, the development of the human 

β-cell line, EndoC-βH1, has provided the opportunity to investigate KAR 

molecular composition and their role in insulin secretion.  

2.4.1 KAR subunits are present in the human β-cell line EndoC-βH1 

RT-PCR analysis in this study successfully identified GluK2 and GluK5 mRNA 

from EndoC-βH1 cells (Figure 2.4). The identification of GluK2 and GluK5 mRNA 

is very significant as it suggests that functional receptors could be formed in 

EndoC-βH1 cells. It is also important to note that because of the presence of 

GluK2, it is possible for the formation of either homomeric, low-affinity KARs or 

heteromeric, high-affinity KARs when in combination with GluK5 (Hadzic et al., 

2017). Previous studies have reported the presence of GluK2 and GluK5 subunit 

specific mRNA from β-cells isolated from human islets (Bramswig et al., 2013; 

Dorrell et al., 2011; Eizirik et al., 2012; Nica et al., 2013), however these studies 

also identified other KAR subunits (GluK1, GluK3 and GluK4) which were not 

found in EndoC-βH1 cells. These results may therefore infer a difference in the 

molecular composition of KARs in β-cells isolated from human islets and that 

seen in the human β-cell line EndoC-βH1. However, this may be explained in part 

due to the heterogenic nature of β-cells isolated from human islets which have 

been shown to display a diverse genetic profile from one β-cell to another (Bader 

et al., 2016; Dorrell et al., 2016). The islet cell isolation Methods used in previous 

studies can also result in cell types other than β-cells being mixed together and 
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could include other islet cell types and not just a pure β-cell sample, as is seen 

when using the EndoC-βH1 β-cell line (Dorrell et al., 2008; Prasad and Groop, 

2016). The current study therefore identifies for the first time the KAR subunit 

molecular composition of pure human β-cells. 

Up until now the only study to identify KAR subunit proteins in β-cells is Molnar 

et al., 1995, who successfully identified GluK5 protein from rat islets and the 

rat/mouse cell lines RINm5F, MIN6 and HIT T15. However, Molnar et al., 1995 

did not test human β-cells and GluK5 is cannot to form a functional receptor 

alone. It was therefore essential to investigate if both GluK2 and GluK5 proteins 

are produced in human EndoC-βH1 cells to establish if functional KARs can be 

formed. The current study showed that EndoC-βH1 cells do produce GluK2 

protein (Figure 2.6) but was could not to confirm if GluK5 protein is produced. 

Two different anti-GluK5 antibodies were used. The first anti-GluK5 antibody was 

not specific for human GluK5 and could not be detected using EndoC-βH1 protein 

homogenate (Figure 2.7). Indeed, when the epitope sequence for the antibody 

was compared to the complimentary sequence for human GluK5, it revealed two 

amino acid changes (Appendix II). Both amino acid changes were threonine to 

alanine; threonine is a hydrophilic amino acid and so will likely lie on the outside 

of the structure, whereas alanine is hydrophobic so will be buried inside the 

structure (Barnes and Gray, 2003). It is likely that these amino acid changes 

would have affected the epitopes tertiary structure and prevented binding of the 

antibody to the human GluK5. A second antibody which was specific for human 

GluK5 was then used to overcome this, however, the specificity of the antibody 

was poor and positive bands were seen even in the negative control (Figure 2.8). 

Therefore, the presence of GluK5 protein in EndoC-βH1 cells could not be 
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confirmed. The identification of GluK2 protein is important because as stated 

previously, GluK2 can form functional KARs without any other KAR subunits, 

meaning that even if GluK5 protein is not produced by the cells, functional 

homomeric GluK2 containing KARs can still be produced. However, the 

identification of GluK5 mRNA suggests that the EndoC-βH1 cell line is likely to 

produce GluK5 proteins, which in turn allow the formation of both homo- and 

heteromeric KARs with low and high affinity to kainite. Within β-cells this would 

suggest that much lower levels of extracellular glutamate are required to activate 

KARs than if only homomeric GluK2 containing KARs were present due to 

GluK5’s higher affinity for glutamate (Hadzic et al., 2017).  This is the first study 

to identify KAR subunit mRNA and protein in the EndoC-βH1 cell line. Table 1.2 

has been updated to highlight the KAR subunits which have been identified in 

EndoC-βH1 cells from the current study and are shown in Table 2.5.  
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Table 2.5. Kainate receptor subunit mRNA and protein found in pancreatic islets and cell lines. References from which the data 

were obtained are listed below. [1] (Bramswig et al., 2013) [2] (Cabrera et al., 2008) [3] (Nica et al., 2013) [4] (Huang et al., 2017) [5] 

(Wu et al., 2012) [6] (Inagaki et al., 1995) [7] (Kutlu et al., 2009) [8] (Dorrell et al., 2011) [9] (Eizirik et al., 2012) [10] (Benner et al., 2014) 

[11] (Gonoi et al., 1994) [12] (Weaver et al., 1996) [13] (Molnár et al., 1995). Data obtained from the current study is shown in red and 

empty boxes represent no data. 
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2.4.2 KAR auxiliary subunits Neto1 and Neto2 are expressed in EndoC-βH1 

cells 

Neto1 and Neto2 auxiliary proteins have been shown to play a significant role in 

KAR expression and function within the CNS (section 1.8.3). Specifically Neto 

subunits have been shown to enhance the expression of GluK2 in HEK293 cells 

(Palacios-Filardo et al., 2016). The current study identified transcripts for both 

Neto1 and Neto2 subunits (Figure 2.5) from EndoC-βH1 cells and aligns well with 

previous studies which have reported expression of Neto1 and Neto2 mRNA in 

human β-cells (Bramswig et al., 2013; Eizirik et al., 2012; Kutlu et al., 2009; Nica 

et al., 2013). This suggests that as seen in the CNS, Neto subunits may be used 

in β-cells to modulate KAR expression and function, as is seen in neuronal cells 

(Evans et al., 2017, 2019).  

2.4.3 GluN2B protein is produced by EndoC-βH1 cells, but no other NMDAR or 

AMPAR subunit proteins could be identified 

In the current study only protein for the NMDAR subunit GluN2B was found to be 

produced by EndoC-βH1 cells, no other iGluR subunits were detected (Figure 

2.9). INS-1 cell protein homogenate was tested simultaneously with EndoC-βH1 

cells and was not found to produce any NMDAR or AMPAR subunit proteins. 

However, another study using INS-1 cells has reported that NMDAR subunit 

proteins are produced (Wu et al., 2017). There have also been other studies 

which report AMPAR and NMDAR subunit proteins in various other β-cell lines 

(Gonoi et al., 1994; Patterson et al., 2016; Weaver et al., 1996). However, it 

should be noted that due to time limitations, the immunoblots for NMDAR and 

AMPAR receptor subunits were not checked with a house-keeping antibody to 

ensure the integrity of the protein samples. It is therefore possible that there was 
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an issue with the samples used for immunoblotting of NMDAR and AMPAR 

subunits. In addition to this, the positive control used was rat brain and was 

processed separately to the EndoC-βH1 and INS-1 homogenate and therefore 

cannot be used to infer the integrity of the other samples. It is also interesting that 

Wu et al., 2017 observed that only 43 % of INS-1 cells express detectable levels 

of GluN1 protein and most of these cells express GluN1 at low levels. Due to this, 

it is possible that a larger amount of protein is necessary to be loaded in order to 

detect NDMAR subunits for immunoblotting.  If time was not limiting, I would 

repeat these immunoblots with a larger protein sample (60 µg or more) whilst 

simultaneously probing for a house-keeping protein, such as β-tubulin, to act as 

a further positive control to check the integrity of the samples being used. Since 

NMDARs and AMPARs are membrane spanning proteins it may also be that 

some receptors were not properly extracted from the membrane and linearised 

by the SDS in the lysis buffer. Rath et al., 2009, demonstrated that incomplete 

denaturation of membrane proteins by SDS can alter the proteins ability to travel 

through SDS-Page gels. If NMDARs protein is not expressed by all β-cells, as is 

seen by Wu et al., 2017, then incomplete denaturation will further reduce the 

amount of protein which can bind to the antibody. One possible solution to this 

could be to use a native gel so that linearization of the protein is not necessary to 

detect the presence of the subunits, avoiding a reduction in viable protein for 

antibody binding. 

2.4.4 GluK2 shRNA lentivirus did not to reduce production of GluK2 in EndoC-

βH1 or INS-1 cells 

GluK2 shRNA lentiviral knock down of GluK2 was attempted in both EndoC-βH1 

and INS-1 cell lines. Despite successfully producing viruses which infected both 
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cell lines (Figure 2.10 and Figure 2.13) there was no reduction in GluK2 

production in either cell line (Figure 2.11 and Figure 2.14). The EndoC-βH1 cell 

line is very slow growing and has a doubling time of 174 hours (Andersson et al., 

2015). It was therefore possible that the GluK2 shRNA virus could not reduce 

protein production of GluK2 because GluK2 was trafficked back into the cell at a 

much slower rate than in other cell lines. Proteins which have a slow turnover will 

not be affected by shRNA targeted knockdown as quickly and effectively as 

higher turnover proteins (Wu et al., 2004). To encourage GluK2 protein recycling 

and clear GluK2 receptors which had formed on the cell-surface before lentivirus 

infection, EndoC-βH1 cells were treated with 25 µM, 50 µM or 100 µM kainate at 

the time of viral infection and then again 72 hours after infection. However, this 

did not result in any changes in GluK2 protein production (Figure 2.12). It is also 

possible that the GluK2 shRNA virus designed for targeting of EndoC-βH1 cells 

had a problem with the H1 promoter region, which is responsible for driving RNA 

polymerase III to transcribe the shRNA sequence inside the cell. If the H1 

promoter region was ineffective then the virus cannot induce the production of 

GluK2 targeted shRNA and a reduction in GluK2 protein would not be possible. 

One study recommended that multiple promoters are used to produce more 

reliable and effective gene silencing (Lambeth et al., 2010) and would be utilised 

in future experiments to try to improve GluK2 knock down. It should also be noted 

that out of the three shRNA sequences attempted only one virus was successfully 

made to target GluK2 in EndoC-βH1 cells. The literature recommends that a 

minimum of two different viruses be used to try and improve the chances of a 

successful knock down (Moore et al., 2010), but due to time constraints it was not 

possible design and try a fourth sequence.  
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Designing shRNA for protein knockdown is difficult as there is no guarantee of 

gene silencing for a given shRNA sequence until it has been experimentally 

tested and proven, as such it can be a very time consuming process, which 

despite using multiple shRNA sequences can still result in failure to knockdown 

the protein target. It was therefore hoped that using GluK2 shRNA viruses which 

were a gift from the University of Bristol and had previously been shown to 

effectively reduce GluK2 protein production in rodent neuronal cells (Appendix 

III) would be similarly effective in INS-1 cells. However, as previously noted the 

two viruses used in INS-1 cells showed no reduction in GluK2 protein production. 

This may have been due to the different cell types which were used as one study 

has reported that the target gene abundance is a determining factor on the 

efficiency of the knockdown (Hong et al., 2014). It is possible that GluK2 protein 

is more abundant in neurons compared to INS-1 cells and may explain why 

successful shRNA knockdown of GluK2 in neuronal cells may not be translated 

in the INS-1 cell line. 

2.4.5 EndoC-βH1 cells show increased insulin secretion in response to 

stimulatory glucose 

After numerous unsuccessful attempts to knock down GluK2 using shRNA 

lentivirus, it was decided instead to use various GluR agonists and antagonists, 

to determine GluRs role in insulin secretion. Before using EndoC-βH1 cells to 

assess KAR function in relation to insulin secretion it was important to establish 

that EndoC-βH1 cells were responding to glucose. EndoC-βH1 cells showed a 

significant two-fold increase in insulin secretion when treated with 20 mM 

glucose, compared with cells treated with 0.5 mM glucose (Fig.2.16). This is 

comparable to other published data which observe between 2- and 3-fold 
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increase in insulin secretion after high glucose treatment (Giorgio et al., 2019; 

Hastoy et al., 2018; Tsonkova et al., 2018). However, other studies have reported 

a smaller response to glucose with only a roughly 1.5 fold increase in insulin 

secretion when treated with stimulatory glucose concentrations (Krizhanovskii et 

al., 2017; Oleson et al., 2015). During the study it was observed that the EndoC-

βH1 cells did not consistently respond to glucose and as such any experiments 

conducted where there was a less than 1.3-fold increase in insulin secretion at a 

stimulatory glucose level compared to non-stimulatory glucose level were not 

included. As a result, any future studies conducted with this cell line should have 

a successful GSIS prior to any experiments being carried out. This is to ensure 

that the EndoC-βH1 cells have a phenotype which is appropriate for studies using 

human β-cells and can secrete insulin in response to stimulatory glucose 

concentrations. Some recent studies have suggested that changes in media and 

growing EndoC-βH1 cells as pseudoislets improves their GSIS (Krizhanovskii et 

al., 2017; Teraoku and Lenzen, 2017) and should therefore also be taken into 

consideration when planning future experiments with this cell line. EndoC-βH1 

cells did, however, consistently respond to treatment with stimulatory glucose and 

IBMX, showing a five-fold increase in insulin secretion compared to 0.5 mM 

glucose (Figure 2.17).  

2.4.6 KAR activation increases GSIS in EndoC-βH1 cells  

The present study has demonstrated for the first time that GSIS from EndoC-βH1 

cells is enhanced by 25 µM kainate in combination with 20 mM glucose and 

resulted in a significant increase in insulin secretion compared to cells treated 

with 20 mM glucose alone (p = 0.034; Figure 2.18). There was, however, no 

significant differences in insulin secretion when cells were treated with 25 µM 
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kainate and 0.5 mM glucose (Figure 2.19), compared to cells treated with 0.5 mM 

glucose only. These results are comparable to studies which demonstrated that 

extracellular glutamate can enhance GSIS when murine pancreatic islets are 

treated with stimulatory glucose, but has no effect on basal insulin secretion 

(Bertrand et al., 1992; Wu et al., 2012). A further study observed that isolated rat 

islets showed increased insulin secretion when treated with kainite at varying 

concentrations (0.01, 0.1 and 1 mM) and 8.3 mM glucose (Inagaki et al., 1995). 

Conversely to the current study, Gonoi et al., 1994, observed that kainate 

stimulated insulin secretion in MIN6 cells at non-stimulatory glucose levels. 

However, Gonoi et al., 1994,  used 0.5 mM kainate and at this concentration is 

known to activate AMPARs (Lee et al., 2004) as well as KARs, so it may be that 

the increased insulin secretion observed was due to AMPAR activation and not 

KARs. Another conflicting study reported that kainate (0.5 mM) resulted in no 

significant increase in GSIS in rat islets in the presence of either 3.3 mM, 8.3 mM 

or 16.7 mM glucose (Molnár et al., 1995), demonstrating the variability of results 

seen in rat islets and murine cell lines. The current study has importantly 

elucidated the response of human β-cells to kainate.  

Pre-incubation of EndoC-βH1 with the AMPAR and KAR specific antagonist, 

NBQX, blocked kainate induced insulin secretion in the presence of stimulatory 

glucose concentrations (Figure 2.18), confirming that activation of GluRs 

potentiates insulin secretion. To ensure that increased insulin secretion was as a 

result of KAR activation and not AMPARs, EndoC-βH1 cells were also pre-

incubated with the AMPAR specific antagonist GYKI-52466 before treatment with 

kainate and stimulatory glucose concentrations. Blocking of AMPARs with GYKI-

52466 did not prevent kainate induced insulin secretion (Figure 2.18), thus 
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confirming that increased insulin secretion was as a result of KAR activation and 

not AMPARs.  

In the CNS, KARs can exert both ionotropic and metabotropic functions involving 

G-proteins and second messengers (Marshall et al., 2018; Petrovic et al., 2017). 

The current study therefore investigated if insulin secretion in EndoC-βH1 cells 

could be potentiated further by pre-treating cells with the mGluR1 receptor 

agonist, DHPG. However, no significant change was observed between cells pre-

treated with DHPG prior to treatment with kainate and 20 mM glucose compared 

to cells treated with kainate and 20 mM glucose alone. This result is similar to 

that seen in a study which treated MIN6 cells with DHPG and 25 mM glucose and 

found no difference in insulin secretion compared to control (Brice et al., 2002). 

However, the Brice et al., 2002 also reported that DHPG did cause a significant 

increase in insulin secretion when the cells were in the presence of non-

stimulatory glucose. It has been shown that mGluR activation can potentiate 

iGluR activity (Wallis et al., 2015), however, in neuronal cells both mGluRs and 

iGluRs exert their effects on many of the same downstream targets such as Ca2+ 

influx and PKA (Reiner and Levitz, 2018). It may therefore, be that pre-treatment 

of EndoC-βH1 cells with DHPG to activate mGluR1 does not enhance insulin 

secretion compared to treatment with stimulatory glucose concentrations and 

kainate alone because mGluR1 and KARs are acting upon the same downstream 

targets which are already exerting a physiologically saturated response by the 

effects of DHPG and cannot be exacerbated further by activation of KARs. Future 

experiments using a range of glucose levels and DHPG treatment without kainate 

could be done to confirm if mGluR activation can increase insulin secretion. 
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As discussed in section 1.3, insulin secretion is triggered by the depolarisation of 

the β-cell through the influx of Ca2+ through VDCC’s (Nirmalan and Nirmalan, 

2017). Within neurons, activation of KARs similarly allows the influx of Ca2+ ions 

to induce excitatory synaptic transmission (Falcón-Moya et al., 2018; Mayer, 

2017; Zhu and Gouaux, 2017). KARs may therefore potentiate GSIS by being 

activated by an increase in extracellular glutamate in the blood following a 

glutamate-rich meal and consequently allow further influx of Ca2+ ions (Figure 

2.24). Several studies have also found that activation of iGluRs regulates glucose 

import through enabling the trafficking of Gluts to the cell surface of neuronal cells 

(Ferreira et al., 2011; Saab et al., 2016) and therefore may aid insulin secretion 

via a similar manner in pancreatic β-cells. Finally, KARs are known to exert 

mGluR effects in neuronal cells by activating PKA, leading to increased glutamate 

release (Falcón-Moya et al., 2018). If KARs within β-cells can activate PKA it 

would also explain how activation of KARs leads to increased insulin secretion 

as PKA activation is directly linked to insulin secretion (Tomas et al., 2019) 

(Figure 2.24).  
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Figure 2.24. Mechanism of potentiated glucose-stimulated insulin secretion 

from a pancreatic β-cell by KAR activation. Glucose is transported into the β-

cell via the glucose transporter (Glut). Once inside the cell, glucose undergoes 

glycolysis to produce pyruvate which can be utilised by the mitochondria in the 

tricarboxylic acid (TCA) cycle. The TCA cycle causes increased levels of 

adenosine triphosphate (ATP) and decreased adenosine diphosphate (ADP). 
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Increased ATP then causes ATP-sensitive K+ channels to close, resulting in a 

decreased membrane potential (Ψ) and activation of voltage-dependent Ca2+ 

channels (VDCCs), allowing the influx of Ca2+. Simultaneously extracellular 

glutamate from the blood activates KARs, resulting in a further influx of Ca2+ and 

a further decrease in membrane potential.  Membrane depolarisation triggers the 

formation of insulin containing secretory granules (SG) from the RRP and the RP. 

KARs exert metabotropic effects by increasing cAMP which in turn activates PKA. 

PKA then further perpetuates the formation of insulin containing SGs. 

Simultaneously KAR activation promotes the trafficking of Gluts to the cell 

surface. Finally, insulin is released from the β-cell via SGs. KARs proposed 

ionotropic effects on insulin secretion are shown by green arrows and 

metabotropic effects are shown by red arrows. 
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2.4.7 High glucose induces cell surface translocation of GluK2 in EndoC-βH1 

cells 

Cell surface biotinylation experiments in the current study have established that 

the surface expression of GluK2 is significantly increased in EndoC-βH1 cells in 

response to glucose stimulation (Figure 2.20 and 2.21a). However, the total 

GluK2 level showed no significant difference between stimulatory and non-

stimulatory glucose conditions (Figure 2.21b). Figure 2.20 demonstrates that in 

non-stimulatory glucose conditions KAR surface expression is very low and as a 

result of this, it would be expected that activation of KARs by agonists would have 

very little physiological effects as there are few KARs being expressed on the 

surface for the agonist to interact with. These results therefore further support the 

current studies finding that EndoC-βH1 cells in non-stimulatory glucose treated 

with kainate are unable to induce increased insulin secretion (Figure 2.19) and it 

is unsurprising that kainate and non-stimulatory glucose was unable to induce 

insulin secretion as there are so few surface KARs being expressed. It may be 

that EndoC-βH1 cells only express KARs in stimulatory glucose conditions in 

order to prevent unwanted activation of the β-cells and subsequent release of 

insulin, helping to maintain glucose homeostasis by only allowing insulin 

secretion when blood glucose levels are high. A further study using kidney cells 

also observed that high glucose caused an increase in iGluR expression 

(Roshanravan et al., 2016). However, a study using a diabetic rat model resulting 

in hyperglycaemia resulted in a significant reduction in GluK2/3 protein levels in 

the retina after 12 weeks of diabetes (Santiago et al., 2009), suggesting that 

chronic exposure to stimulatory glucose may results in reduced iGluR expression. 

Further studies exposing EndoC-βH1 cells to stimulatory glucose over varied time 
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points to show both chronic and short incubation would help to elucidate how over 

long periods stimulatory glucose can affect GluK2 expression. 

Treating EndoC-βH1 cells with high glucose and IBMX did not result in any 

significant changes in either surface or total expression of GluK2 (Figure 2.20 

and 2.22). This result was surprising as it was expected that IBMX would further 

increase GluK2 surface expression as it activates PKA to induce insulin secretion, 

a pathway which is hypothesised to be associated with KAR metabotropic activity 

within β-cells (Figure 2.24). However, despite having downstream effects on the 

PKA pathway, within neuronal cells KAR trafficking to the cell surface is 

independent of the PKA pathway (Martin and Henley, 2004; Sun et al., 2014). If 

KARs in β-cells behave in a similar manner to neuronal KARs then induction of 

the PKA pathway will not induce KARs to be exocytosed to the β-cell surface and 

it is therefore not surprising that there was no difference in GluK2 surface 

expression between β-cells treated with 20 mM glucose and cells treated with 20 

mM and IBMX. Other studies have also noted that KAR expression and activation 

are dependent upon the strength of the stimulus used and have shown that low 

to moderate stimulation increased KAR synaptic transmission but strong 

stimulation decreased synaptic transmission (González-González and Henley, 

2013; Schmitz et al., 2003). β-cells treated with IBMX induces a response which 

is much larger than is physiologically normal for the cells, as such it may have 

the effect of preventing KAR surface expression, rather than increasing it, as is 

seen with neuronal cells when given a strong stimulus. This may further explain 

why IBMX failed to cause an increase in GluK2 surface expression.  

To ensure that high glucose didn’t cause upregulation of all β-cell surface 

proteins, the membranes used were attempted to be re-probed with either anti-
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Cav2.1 or anti-Na,K-ATPase antibodies. Both Cav2.1 and Na, K-ATPase surface 

expression has previously been shown to be unaffected by changes in glucose 

concentrations (Huang et al., 2017). However, neither antibodies detected the 

proteins in the membrane fraction and therefore it could not be established if high 

glucose resulted specifically in upregulation of GluK2 or if it affected all surface 

proteins (Figure 2.23). Cav2.1 and Na, K-ATPase may not have been detected 

in the membrane fraction because the process of stripping membranes of the 

original primary and secondary antibody can result in loss of antigen for antibody 

to bind to (Bass et al., 2017). Due to the slow growing nature of the EndoC-βH1 

cell line used the number of cells and therefore amount of membrane 

homogenate available to use was limited, as such the current study could not use 

a larger quantity of membrane protein to try and prevent total loss of Cav2.1 and 

Na, K-ATPase antigen in the membrane homogenate after stripping.  
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3 Detecting autoantibodies to iGluRs in serum from 

newly diagnosed patients with Type 1 Diabetes (T1D) 

3.1 Background 

As discussed in section 1.4.4, all currently known autoantibodies associated with 

T1D target intracellular proteins and are more likely to be a result of epitope 

spreading than a primary cause of the disease (McLaughlin et al., 2015). It is 

likely that there are more autoantibodies to be discovered which are associated 

with T1D, as some individuals have been shown to be islet cell autoantigen 

positive, but do not demonstrated immunoreactivity with any of the currently 

known T1D associated autoantibodies (Wenzlau and Hutton, 2013). It is possible 

that a currently unknown surface antigen is the first target for the immune system, 

leading to β-cell death and presentation of the already known intracellular 

autoantigens. Identification of novel cell surface immune targets could help to 

identify a trigger for the disease. One such immune target is GluRs, as they are 

transmembrane proteins with extracellular domains which could be the initial 

antigen targeted by the immune system in T1D. Furthermore, numerous 

autoantibodies targeting GluRs have already been associated with diseases of 

the CNS (section 1.11), providing evidence that targeting of these receptors can 

lead to and initiate disease (Dalmau et al., 2017; Geis et al., 2019). The current 

study therefore aimed to identify autoantibodies which target GluR subunits from 

T1D patient serum.  

There are multiple methodologies for autoantibody detection, such as the 

previously recognised ‘gold standard’ in T1D research, radio-binding assays 

(RBA), which are both highly sensitive and specific (Lampasona et al., 2019).  

However, RBAs come with legislative and logistically issues due to the 
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unavoidable use of radiation for the assay. More traditional methods such as 

immunoblotting can be useful for screening of autoantibodies as the SDS-Page 

gel separates all proteins based on size and positive bands produced from serum 

autoantibodies can be directly analysed to see if they bind to proteins of a similar 

molecular weight as the proposed antigen target (Zampieri et al., 2000). 

Immunoblotting is frequently used for autoantibody detection (Banjara et al., 

2017; Mørkholt et al., 2018) and is a cheap and simple method. Enzyme-linked 

immunosorbent assay (ELISA) is also commonly used as it allows high efficiency 

and high through-put of samples, however, developing new ELISAs can be 

arduous and time-consuming. ELISAs are also susceptible to reporting false 

positives (Sakamoto et al., 2018). Finally, cell-based immunofluorescent assays 

can be used to allow for the screening of confirmation-dependent autoantibodies 

and helps to prevent potential epitope sites from being altered or blocked by 

previous sample preparation (Gastaldi et al., 2017; Ricken et al., 2018). However, 

this method does not give any information on the size of the protein being 

targeted so any positive results need to be tested and confirmed using another 

technique, such as immunoblotting. The current study utilised both 

immunoblotting and cell-based assays to detect autoantibodies which target 

GluRs. 
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3.2 Materials and Methods 

3.2.1 Materials 

All materials can be found in section 2.2.1. 

3.2.2 Methods 

Culture of HEK293T cells is discussed in section 2.2.1, preparation of total cell 

lysates in section 2.2.4, separation of proteins on SDS-PAGE and 

immunoblotting are outlined in sections 2.2.8 – 2.2.10. 

3.2.3 HEK293T transient transfection for immunocytochemistry 

Before plating the HEK293T cells 13 mm round glass coverslips were placed into 

24 well plates and coated with 100 µl poly-l-lysine (Sigma-Aldrich, Poole, UK) in 

PBS for 30 minutes. The coverslips were washed three times with PBS and 

HEK293T cells were seeded as described in section 2.2.1 onto the coverslips at 

a density of 1.25 x 105 cells per well and incubated at 37oC in humidified air and 

5 % CO2 for 24 hours. 

Cells were then transiently transfected with GluK2, GluK5 (same as described in 

section 2.2.7), GluN1 or GluN1 plus GluN2B plasmids, as described previously 

(Köhr et al., 1994). For single transfections 500 ng DNA and 1.75 µg 

polyethylenimine (PEI) (Sigma-Aldrich, Poole, UK) was mixed in 100 µl Opti-

MEM™ and incubated at room temperature for 20 minutes. For the co-

transfection of GluN1 plus GluN2B, 100 ng GluN1 plasmid DNA and 400 ng 

GluN2B plasmid DNA was mixed with 1.75 µg PEI in 100 µl Opti-MEM. Following 

the incubation, the DNA-PEI-Opti-MEM solution was pipetted onto the HEK293 

cells. Cells transfected with NMDAR subunits were also incubated with the 

NMDAR non-competitive antagonist, MK-801 (10 µM) (Bio-Techne, Abingdon, 
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UK) which was added to the media prior to transfection. Cells were incubated at 

37°C in humidified air and 5 % CO2 for 48 hours before cells were fixed for 

immunocytochemistry. 

3.2.4 Immunocytochemistry of HEK293T cells  

Forty-eight hours after transfection the cells were washed three times with 500 µl 

sterile PBS and then fixed with 250 µl ice cold 100 % methanol for 5 – 10 minutes. 

Next, the cells were washed again with PBS for 5 minutes, followed by incubation 

with 100 mM Glycine in PBS (pH8.5) for 5 minutes and finally with 10 % FBS in 

PBS for 5 minutes. After which the cells were washed twice with PBS. The 

HEK293T cells were then permeabilised with 0.2 % Triton X-100 in PBS for 20 

minutes at room temperature. Cells were washed three times with PBS and 

blocked in 3 % BSA in PBS for 15 minutes. Primary antibodies were added to 3 

% BSA, at dilutions shown in Table 3.1 and incubated with the cells for 1 hour at 

room temperature. Cells were then washed three times with PBS before 

incubating for 30 minutes in darkness with the fluorescent secondary antibody 

diluted in 3 % BSA (dilutions used in Table 3.1). Finally, cells were washed three 

times with PBS, ensuring the cells remained in the dark. The coverslips were then 

mounted onto slides using DAKO fluorescence mounting medium (Agilent 

Technologies LDA, Stockport, UK) containing 300 nM DAPI. 
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Table 3.1. Table of Antibodies used for immunohistochemistry detection 

of GluR subunit autoantibodies from patient serum. 

 

Antibody 
Species 

Specificity 
Source 

Concentration/ 
Dilution 

Supplier 
Secondary 
Antibody 

Anti-
GluR6/7 

(aka 
GluK2/3) 
(04-921) 

H, R Rabbit 0.025 µg/ml 
Millipore UK 

Limited 

0.4 µg/ml Anti-
Rabbit Alexa 

Fluor 568 
(10032302, 

Fisher 
Scientific, 

Loughborough, 
UK) 

Anti-
GRIK5 

(06-315) 
R, Rb Rabbit 0.1 µg/ml 

Millipore UK 
Limited 

0.4 µg/ml Anti-
Rabbit Alexa 

Fluor 568 
(10032302, 

Fisher 
Scientific, 

Loughborough, 
UK) 

Anti-
NMDAR1 
(#5704) 

(aka 
GluN1) 

H, M, R Rabbit 0.295 µg/ml 

Cell 
Signalling 

Technology
® 

0.4 µg/ml Anti-
Rabbit Alexa 

Fluor 568 
(10032302, 

Fisher 
Scientific, 

Loughborough, 
UK) 

Anti-
NMDAR2

B 
(AB1557P

) (aka 
GluN2B) 

H, R Rabbit 0.2 µg/ml 
Millipore UK 

Limited 

0.4 µg/ml Anti-
Rabbit Alexa 

Fluor 568 
(10032302, 

Fisher 
Scientific, 

Loughborough, 
UK) 

Human 
Serum 

- - 1:100 
Gifted by 
Cardiff 

University 

0.04 µg/ml 
Anti-Human 
Alexa Fluor 

488 
(10226402, 

Fisher 
Scientific, 

Loughborough, 
UK) 
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3.2.5 Details of T1D patients and healthy controls 

Forty newly diagnosed T1D patient serum and forty age-matched healthy control 

serum were obtained by University Hospital of Wales (Wales, UK). All T1D patient 

serum were positive for at least one T1D associated autoantibody. Details of the 

T1D patients and age-matched healthy controls is shown in Table 3.2. 
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Table 3.2. Patient serum sample ID, gender and age of serum samples used 

for GluR autoantibody detection.     40 newly diagnosed T1D patient serum 

were obtained by University Hospital of Wales (Wales, UK), along with 40 gender 

and age-matched healthy control serum samples to be used for GluR 

autoantibody detection. 

T1D Patient Serum Healthy Control Serum 

Sample ID Gender Age Sample ID Gender Age 

ND603 F 39 1 F 39 
ND604 M 38 2 M 38 
ND605 M 44 3 M 44 
ND607 F 40 4 F 40 
ND609 F 47 5 F 47 
ND614 F 29 6 F 29 
ND615 F 37 7 F 37 
ND637 F 45 8 F 45 
ND638 F 43 9 F 43 
ND650 M 46 10 M 46 
ND662 F 48 11 F 48 
ND674 M 47 12 M 47 
ND675 F 38 13 F 38 
ND490 M 46 14 M 46 
ND488 F 29 15 F 29 
ND450 M 50 16 M 50 
ND419 F 50 17 F 50 
ND517 M 40 18 M 40 
ND522 F 42 19 F 42 
ND530 M 29 20 M 29 
ND534 M 35 21 M 35 
ND548 F 30 22 F 30 
ND568 M 48 23 M 48 
ND398 M 47 24 M 47 
ND358 F 42 25 F 42 
ND397 M 48 26 M 48 
ND557 M 43 27 M 43 
ND456 M 39 28 M 39 
ND455 M 45 29 M 45 
ND365 F 52 30 F 52 
ND667 M 44 31 M 44 
ND512 F 46 32 F 46 
ND596 F 42 33 F 42 
ND494 F 47 34 F 47 
ND507 M 51 35 M 51 
ND480 M 50 36 M 50 
ND533 M 42 37 M 42 
ND609 F 47 38 F 47 
ND366 F 47 39 F 47 
ND541 M 50 40 M 50 
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3.2.6 Fluorescence imaging 

GluK2 and GluK5 slides were imaged on Nikon Eclipse TE300 inverted 

microscope and GluN1 and GluN1/GluN2B slides were imaged on Nikon E80i 

Fluorescence Photomicroscope. Five representative images were taken of each 

slide and autoantibody staining was scored from 0 to 4, as described previously 

(Leite et al., 2008). Table 3.3 outlines the scoring system used. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



137 
 

Table 3.3. Outline of autoantibody scoring system used with patient serum 

samples, adapted from Leite et al., 2008. 

Score Description 

0 
No labelling of GluR subunit 

expressing cells by serum samples. 

0.5 

Very weak labelling of very few GluR 

subunit expressing cells with no co-

localisation with the commercial GluR 

subunit antibody staining. 

1 

Weak labelling of some of the GluR 

subunit expressing cells with co-

localisation with the commercial GluR 

subunit antibody staining. 

2 

Moderate labelling of some (~20 – 50 

%) of GluR subunit expressing cells, 

with precise co-localisation with the 

commercial GluR subunit antibody 

staining. 

3 

Moderate/strong labelling of ~50 – 80 

% of GluR subunit expressing cells, 

with perfect co-localisation with the 

commercial GluR subunit antibody 

staining. 

4 

Strong labelling of virtually all GluR 

subunit expressing cells, with perfect 

co-localisation with the commercial 

GluR subunit antibody staining. 
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3.3 Results 

3.3.1 Detection of autoantibodies using immunoblots 

Ionotropic glutamate receptors (iGluRs) could be extracellular targets for the 

immune system in T1D, leading to destruction of insulin producing β-cells. To 

investigate this HEK293T cells over expressing iGluR subunits cell lysate was 

run on SDS-PAGE gel (Methods section 3.2.2). Sera from newly diagnosed T1D 

patients and healthy controls (Table 3.2) were then used to detect GluK2 or 

GluK5 autoantibodies with the HEK293T cell system, described above (Methods 

section 3.2.2). To ensure that HEK293T cells were overexpressing GluK2/GluK5 

and GluK2 or GluK5 protein was produced, immunoblot analysis was carried out 

using commercial GluK5 and GluK2/3 specific primary antibodies (Merck 

Millipore, Watford, UK; Figure 3.1). This sample was used as a positive control to 

ensure that the cell lysate contained GluK2 or GluK5 protein which could be 

detected by antibodies. In total, 27 serum samples were tested, 14 from T1D 

patients and 13 from healthy controls (Figure 3.2 and 3.3).  All serum samples 

tested showed many non-specific bands, which did not allow identification of 

positive reactions. Serum samples which appeared to show immuno-reactivity at 

the expected size also showed the same bands in the non-transfected HEK293T 

cell lysate used as a negative control. In conclusion, it was not possible to 

establish if T1D serum contained GluK2 or GluK5 autoantibodies using this 

approach.  
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Figure 3.1. GluK2 and GluK5 proteins produced by HEK293T cells following 

transient transfection. Total cell homogenates from HEK293T cells 

overexpressing GluK5 (A) or GluK2 (B) were prepared. Proteins (40 µg per lane) 

were separated by SDS-PAGE and transferred to immobilon membranes 

(Method section 3.2.2). Untransfected HEK293T cell homogenate was used as a 

negative control (- Control). Immunoblots were probed with a commercial rabbit 

polyclonal anti-GluR6/7 antibody (0.125 µg/ml; Millipore UK Limited) to detect 

GluK2 protein or a commercial rabbit polyclonal anti-GRIK5 antibody (1 µg/ml; 

Millipore UK Limited) to detect GluK5 protien overnight at 4oC. Immunoblots were 

then probed with a secondary anti-rabbit IgG antibody (0.08 µg/ml; Sigma-

Aldrich®) for 1 hour. Immunoblots were imaged by chemiluminescence using the 

Odessy® Fc (Li-Cor Biosciences, Cambridge, UK) Imaging System. The 

molecular weight markers (Bio-Rad®) are shown on the left in kilodaltons (kDa). 

The expected size of the overexpressed GluK2 and GluK5 is indicated on the 

right. Figure is representative of three independent experiments. 
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Figure 3.2. Detection of GluK2 and Gluk5 using healthy control serum by immunoblots. Homogenates from HEK293T cells 

producing GluK2 or GluK5 proteins were prepared. Proteins (40 µg per lane) were separated by SDS-PAGE and transferred to 

immobilon membranes (Method section 3.2.2). Cell homogenates from untrasfected HEK293T cells were used as a negative control ((-

) control). Immunoblots were probed with healthy control serum (1:200 dilution) overnight at 4oC. Immunoblots were then probed with a 

commercial secondary anti-human IgG antibody (0.55 µg/ml; Sigma-Aldrich®) for 1 hour. Immunoblots were imaged by the enhanced 

chemiluminescence detection system and Syngene gel imaging and analysis system (Syngene, Cambridge, UK). The serum sample ID 

is indicated on the let (Table 3.2 for sample details), along with the molecular weight markers (Bio-Rad®) in kilodaltons (kDa). The 

expected size of GluK2 and GluK5 is indicated on the right. Figure is representative of one independent experiment. 
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Figure 3.3. Detection of GluK2 and Gluk5 using T1D patient serum by immunoblots. Homogenates from HEK293T cells producing 

GluK2 or GluK5 proteins were prepared. Proteins (40 µg per lane) were separated by SDS-PAGE and transferred to immobilon 

membranes (Method section 3.2.2). Cell homogenates from untrasfected HEK293T cells were used as a negative control ((-) Control). 

Immunoblots were probed with T1D patient serum serum (1:200 dilution) overnight at 4oC. Immunoblots were then probed with a 

commercial secondary anti-human IgG antibody (0.55 µg/ml; Sigma-Aldrich®) for 1 hour. Immunoblots were imaged by the enhanced 

chemiluminescence detection system and Syngene gel imaging and analysis system (Syngene, Cambridge, UK). The serum sample ID 

is indicated on the let (Table 3.2 for sample details), along with the molecular weight markers (Bio-Rad®) in kilodaltons (kDa). The 

expected size of GluK2 and GluK5 is indicated on the right. Figure is representative of one independent experiment. 
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3.3.2 Glutamate receptor autoantibodies are not more frequently observed in 

T1D patient serum than in healthy controls  

Cell-based assays have been shown to be an effective method to detect 

glutamate receptor autoantibodies from patient serum (van Coevorden-Hameete 

et al., 2016; Park et al., 2018). In addition, cell-based assays allow for screening 

of conformation-dependent antibodies and helps to prevent potential epitope 

sites from being altered or obscured by sample preparation (Gastaldi et al., 2017; 

Ricken et al., 2018). It was therefore decided to perform a cell-based assay to 

detect GluR autoantibodies. 

To ensure that transfected HEK293T cells were over-expressing GluK2, GluK5, 

GluN1 or GluN1 and GluN2B (Methods section 3.2.2), cells were incubated with 

anti-GluK2 (Figure 3.4), anti-GluK5 (Figure 3.5), anti-GluN1 (Figure 3.6) or both 

anti-GluN1 and anti-GluN2B (Figure 3.5) commercial antibodies and probed with 

anti-rabbit IgG Alexa Flour 488 antibody (Sigma-Aldrich), as described in the 

Methods section 3.2.4. The transfection efficiency was then calculated from 4 

randomly selected areas. GluK2, GluK5 and GluN1 transiently transfected cells 

had a transfection efficiency of 44% (±10.7% SD), 39% (±24.7% SD) and 36% 

(±14.4% SD), respectively. Finally, GluN1 and GluN2B co-transfected cells had 

a transfection efficiency of 31% (±9% SD) for GluN1 and 26% (±4.5% SD) for 

GluN2B (Figure 3.7). 

To optimise the assay and evaluate the dilution of secondary antibody used, 

HEK293T were incubated with human serum (1:20 or 1:100 dilution) for 1 hour 

and probed with an anti-human IgG Alexa Flour 488 antibody in a range of 

dilutions (Sigma-Aldrich, Poole, UK; 2.67 – 0.04 µg/ml) (Methods section 3.2.3). 

There was minimal background fluorescence when 0.04 µg/ml secondary 
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antibody was used and still allowed visualisation of any serum autoantibody 

staining (Figure 3.8. and 3.9). All of the other dilutions produced very high 

background which would make it impossible to detect specific autoantibody 

staining. It was therefore decided to use 0.04 µg/ml of the secondary anti-human 

IgG Alex Flour 488 antibody (Sigma-Aldrich, Poole, UK). Previous studies have 

detected autoantibodies with patient sera diluted 1:100 (Irani et al., 2010; Vincent 

et al., 2018) and a further study recommended that 1:100 dilution of serum is the 

minimum dilution used for a similar cell-based assay (Chen and Chang, 2018) 

hence, this dilution was used for the current study. 
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Figure 3.4. HEK293T cells over-express GluK2 protein when transiently transfected with GluK2 plasmid DNA. HEK293T cells 

were grown in 24 well plates on coverslips for 24 hours and then transfected with 500 ng GluK2 plasmids (Methods section 3.2.3) and 

incubated for a further 48 hours. Transfected HEK293T cells were then fixed with 100 % methanol and permeabilised with 0.2 % Triton 

X-100 in PBS. A rabbit polyclonal anti-GluK2/3 antibody (0.025 µg/ml; Millipore UK Limited) in 0.3 % BSA in PBS was incubated with 

the transfected HEK293T cells for 1 hour. After 1 hour the cells were washed with PBS and probed with Anti-Rabbit Alexa Flour 568 

(0.4 µg/ml; Fisher Scientific, Loughborough, UK) 0.3 % BSA for 30 minutes. The slides were then mounted with DAKO fluorescence 

mounting medium (Agilent Technologies LDA, Stockport, UK) with 300 nM DAPI and visualised with Nikon Eclipse TE300 inverted 

microscope (magnification x 40) and scored (Methods section 3.2.6). GluK2 transfected HEK293T cells are shown in green and cell 

nucleus DAPI staining is shown in blue. Transfection efficiency was calculated from 4 randomly selected regions. Scale bar represents 

15 µM.  

GluK2 DAPI Merge 
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Figure 3.5. HEK293T cells over-express GluK5 protein when transiently transfected with GluK5 plasmid DNA. HEK293T cells 

were grown in 24 well plates on coverslips for 24 hours and then transfected with 500 ng GluK5 plasmid (Methods section 3.2.3) and 

incubated for a further 48 hours. Transfected HEK293T cells were then fixed with 100 % methanol and permeabilised with 0.2 % Triton 

X-100 in PBS. A rabbit polyclonal anti-GRIK5 antibody (0.1 µg/ml; Millipore UK Limited) in 0.3 % BSA in PBS was incubated with the 

transfected HEK293T cells for 1 hour. After 1 hour the cells were washed with PBS and probed with Anti-Rabbit Alexa Flour 568 (0.4 

µg/ml; Fisher Scientific, Loughborough, UK) for 30 minutes. The slides were then mounted with DAKO fluorescence mounting medium 

(Agilent Technologies LDA, Stockport, UK) with 300 nM DAPI and visualised with Nikon Eclipse TE300 inverted microscope 

(magnification x 40) and scored (Methods section 3.2.6). GluK5 transfected HEK293T cells are shown in green and cell nucleus DAPI 

staining is shown in blue. Transfection efficiency was calculated from 4 randomly selected regions. Scale bar represents 15 µM.   

GluK5 DAPI Merge 
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Figure 3.6. HEK293T cells over-express GluN1 protein when transiently transfected with GluN1 plasmid DNA. HEK293T cells 

were grown in 24 well plates on coverslips for 24 hours and then transfected with 500 ng GluN1 plasmid (Methods section 3.2.3) and 

incubated for a further 48 hours. Transfected HEK293T cells were then fixed with 100 % methanol and permeabilised with 0.2 % Triton 

X-100 in PBS. A rabbit polyclonal anti-NMDAR1 antibody (0.295µg/ml; Cell Signalling Technology®) in 0.3 % BSA in PBS was incubated 

with the transfected HEK293T cells for 1 hour. After 1 hour the cells were washed with PBS and probed with Anti-Rabbit Alexa Flour 

568 (0.4 µg/ml; Fisher Scientific, Loughborough, UK) for 30 minutes. The slides were then mounted with DAKO fluorescence mounting 

medium (Agilent Technologies LDA, Stockport, UK) with 300 nM DAPI and visualised with Nikon Eclipse TE300 inverted microscope 

(magnification x 40) and scored (Method section 3.2.6). GluN1 transfected HEK293T cells are shown in green and cell nucleus DAPI 

staining is shown in blue. Transfection efficiency was calculated from 4 randomly selected regions. Scale bar represents 15 µM.   

GluN1 DAPI Merge 
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Figure 3.7. HEK293T cells over-express GluN1 and GluN2B protein when transiently transfected with GluN1 and GluN2B 

plasmid DNA. HEK293T cells were grown in 24 well plates on coverslips for 24 hours and then transfected with 100 ng GluN1 plasmid 

GluN1 DAPI Merge 

GluN2B DAPI Merge 
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and 400 ng GluN2B plasmid (Methods section 3.2.3) and incubated for a further 48 hours. Transfected HEK293T cells were then fixed 

with 100 % methanol and permeabilised with 0.2 % Triton X-100 in PBS. A) A rabbit polyclonal anti-NMDAR1 antibody (0.295µg/ml; Cell 

Signalling Technology®) or B) a rabbit polyclonal anti-NMDAR2B (0.2 µg/ml; Merck Millipore) in 0.3 % BSA in PBS was incubated with 

the transfected HEK293T cells for 1 hour. After 1 hour the cells were washed with PBS and probed with Anti-Rabbit Alexa Flour 488 

(0.4 µg/ml; Fisher Scientific, Loughborough, UK) for 30 minutes. The slides were then mounted with DAKO fluorescence mounting 

medium (Agilent Technologies LDA, Stockport, UK) with 300 nM DAPI and visualised with Nikon Eclipse TE300 inverted microscope 

(magnification x 40) and scored (Method section 3.2.6). GluN1 or GluN2B transfected HEK293T cells are shown in green and cell 

nucleus DAPI staining is shown in blue. Transfection efficiency was calculated from 4 randomly selected regions. Scale bar represents 

15 µM.   
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Figure 3.8. Optimisation of secondary anti-human IgG antibody used to 

detect positive staining from primary human serum antibodies (1:20 

dilution). HEK293T cells were grown in 24 well plates on coverslips for 72 hours. 

Cells were then fixed with 100 % methanol and permeabilised with 0.2 % Triton 

X-100 in PBS. Human serum (1:20 dilution) in 0.3 % BSA in PBS was incubated 

with the cells for 1 hour. After 1 hour, cells were washed with PBS and probed 

with Anti-Human IgG Alexa Flour 488 (Fisher Scientific, Loughborough, UK) in 

PBS with 0.3 % BSA at varying dilutions (2.67 – 0.04 µg/ml) for 30 minutes. The 
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slides were then mounted with DAKO fluorescence mounting medium (Agilent 

Technologies LDA, Stockport, UK) containing 300 nM DAPI and visualised with 

Nikon Eclipse TE300 inverted microscope (magnification x 40). Human antibody 

binding is shown in green and cell nucleus DAPI staining is shown in blue. Anti-

Human IgG antibody dilution used is indicated on the left. Scale bar represents 

15 µM. Figure is representative of three separate images from one individual 

experiment. 
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Figure 3.9. Optimisation of secondary anti-human IgG antibody used to 

detect positive staining from primary human serum antibodies (1:100 

dilution). HEK293T cells were grown in 24 well plates on coverslips for 72 hours. 

Cells were then fixed with 100 % methanol and permeabilised with 0.2 % Triton 

X-100 in PBS. Human serum (1:100 dilution) in 0.3 % BSA in PBS was incubated 

with the cells for 1 hour. After 1 hour, cells were washed with PBS and probed 

with Anti-Human IgG Alexa Flour 488 (Fisher Scientific, Loughborough, UK) in 

PBS with 0.3 % BSA at varying dilutions (2.67 – 0.04 µg/ml) for 30 minutes. The 
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slides were then mounted with DAKO fluorescence mounting medium (Agilent 

Technologies LDA, Stockport, UK) containing 300 nM DAPI and visualised with 

Nikon Eclipse TE300 inverted microscope (magnification x 40). Human antibody 

binding is shown in green and cell nucleus DAPI staining is shown in blue. Anti-

Human IgG antibody dilution used is indicated on the left. Scale bar represents 

15 µM. Figure is representative of three separate images from one individual 

experiment. 
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All serum samples were tested in duplicate with one slide probed simultaneously 

with a commercial GluK2, GluK5 or GluN1 antibody (Methods section Table 3.1). 

This allowed visualisation of GluR subunit over-expressing HEK293T cells and 

scoring for co-localisation of positive serum autoantibody staining to GluR 

subunits. The second slide was probed with serum only and acted as a control to 

ensure the commercial antibody binding to GluR subunits was not affecting serum 

sample autoantibody binding; thus, preventing visualisation of positive samples. 

Serum samples were only scored positively if autoantibody staining was seen on 

both slides. The scoring for the serum samples were carried out as described by 

Leite et al., 2008 (Methods section 3.2.6, Table 3.3). In the current study the 

highest score observed was 3 and any scores above 1 were considered positive. 

Of the 40 T1D patient serum samples tested for GluK2 autoantibodies, 3 were 

positive (7.5%), which was not statistically significant compared to healthy control 

serum (p = 0.337), in which 2 samples were positive (5%). Representative 

examples of the serum samples are shown in Figure 3.10 and the scores are 

shown in Figure 3.11. Similarly, GluK5 autoantibodies were detected in 2 T1D 

patient samples (5%) and in 1 healthy control sample (3%) and no significant 

difference (p = 0.704) was found between groups (Figures 3.12 and 3.13). For 

both GluK2 and GluK5 the median score was 0. 

T1D Samples tested for GluN1 autoantibodies revealed a higher number of 

positives compared to GluK2 and GluK5, however, this was also seen in the 

healthy control samples. From the T1D patient serum, 7 samples were found to 

be positive (18%), compared to 10 healthy control samples (28%), but there was 

no significant difference between groups (p = 0.238) (Figures 3.14 and 3.15).  
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Some studies have found that autoantibodies to NMDA receptors are only 

detectable when there is expression of functional heteromers and expression of 

single subunits alone did not allow autoantibody binding from serum samples 

(Dalmau et al., 2007). Previous studies have reported that co-transfection of 

GluN1 and GluN2B plasmid DNA at a 1:4 ratio, results in successful co-

expression of GluN1 and GluN2B protein and formation of functional 

GluN1/GluN2B receptors (Domingues et al., 2006, 2007; Fan et al., 2009; Guo et 

al., 2017). Therefore, HEK293T cells in the current study were co-transfected with 

GluN1 and GluN2B plasmids at a 1:4 ratio, respectively. The current study has 

shown that HEK293T cells co-transfected with GluN1 and GluN2B plasmids over-

express GluN1 or GluN2B subunit protein (Figure 3.7). The serum samples were 

then tested, as described in Methods section 3.2.4 with the co-transfected cells. 

From T1D serum there were 5 positive GluN1:GluN2B samples (13%), compared 

to 3 positive samples from healthy control serum (8%) (Figures 3.16 and 3.17). 

There was no significant difference between T1D serum and control serum (p = 

0.063). 

Overall, there was no significant difference observed between T1D and healthy 

control serum for any of the GluR subunits tested (Table 3.4, Figure 3.18). 
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Figure 3.10. Detection of autoantibodies to GluK2 receptor subunit. HEK293T cells were grown in 24 well plates on coverslips for 

24 hours and then transfected with 500 ng GluK2 plasmids (Methods section 3.2.3) and incubated for a further 48 hours. Transfected 

HEK293T cells were then fixed with 100 % methanol and permeabilised with 0.2 % Triton X-100 in PBS. A rabbit polyclonal anti-GluK2/3 

antibody (0.025 µg/ml; Millipore UK Limited) and human serum (1:100 dilution) in 0.3 % BSA in PBS was incubated with the transfected 

HEK293T cells for 1 hour. After 1 hour the cells were washed with PBS and probed with Anti-Rabbit Alexa Flour 568 (0.4 µg/ml; Fisher 

Scientific, Loughborough, UK) and Anti-Human Alexa Flour 488 (0.04 µg/ml; Fisher Scientific, Loughborough, UK) in PBS and 0.3 % 

BSA for 30 minutes. The slides were then mounted with DAKO fluorescence mounting medium (Agilent Technologies LDA, Stockport, 

UK) with 300 nM DAPI and visualised with Nikon Eclipse TE300 inverted microscope (magnification x 40) and scored (Method section 

3.2.4). Autoantibody binding of serum samples from T1D patient serum or control serum is shown in green, GluK2 transfected HEK293T 

cells are shown in red and cell nucleus DAPI staining is shown in blue. IgG binding score to GluK2 is indicated on the right. Scale bar 

represents 15 µM. Images are representative of the different scoring of autoantibody staining for GluK2 subunits from one independent 

experiment carried out in duplicate (one stained with human serum and anti-GluK2/3, the second with human serum only), in which 5 

randomly selected regions were imaged and scored as outlined in Table 3.3. 
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Figure 3.11. Autoantibody binding scores to GluK2. All serum samples were scored between 0 and 4 (as described in Methods 

section 3.2.4) from five separate images per serum sample tested in duplicate. The red line shown indicates the median values and the 

number of samples tested is in brackets. Serum samples were considered positive if they achieved a score of 1 or above, represented 

by the dotted line. 
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Figure 3.12. Detection of autoantibodies to GluK5 receptor subunits. HEK293T cells were grown in 24 well plates on coverslips for 

24 hours and then transfected with 500 ng GluK5 plasmid (Methods section 3.2.3) and incubated for a further 48 hours. Transfected 
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HEK293T cells were then fixed with 100 % methanol and permeabolised with 0.2 % Triton X-100 in PBS. A rabbit polyclonal anti-GRIK5 

antibody (0.1 µg/ml; Millipore UK Limited) and human serum (1:100 dilution) in 0.3 % BSA in PBS was incubated with the transfected 

HEK293T cells for 1 hour. After 1 hour the cells were washed with PBS and probed with Anti-Rabbit Alexa Flour 568 (0.4 µg/ml; Fisher 

Scientific, Loughborough, UK) and Anti-Human Alexa Flour 488 (0.04 µg/ml; Fisher Scientific, Loughborough, UK) for 30 minutes. The 

slides were then mounted with DAKO fluorescence mounting medium (Agilent Technologies LDA, Stockport, UK) with 300 nM DAPI 

and visualised with Nikon Eclipse TE300 inverted microscope (magnification x 40) and scored (Method section 3.2.4). Autoantibody 

binding of serum samples from T1D patient serum or control serum is shown in green, GluK5 transfected HEK293T cells are shown in 

red and cell nucleus DAPI staining is shown in blue. Scale bar represents 15 µM. Images are representative of the different scoring of 

autoantibody staining for GluK5 subunits from one independent experiment carried out in duplicate (one stained with human serum and 

anti-GluK5, the second with human serum only), in which 5 randomly selected regions were imaged and scored as outlined in Table 

3.3. 
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Figure 3.13. Autoantibody binding scores to GluK5. All serum samples were scored between 0 and 4 (as described in Methods 

section 3.2.4) from five separate images per serum sample tested in duplicate. The red line shown indicates the median values and the 

number of samples tested is in brackets. Serum samples were considered positive if they achieved a score of 1 or above, represented 

by the dotted line. 
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Figure 3.14. Detection of autoantibodies to GluN1 receptor subunit. HEK293T cells were grown in 24 well plates on coverslips for 

24 hours and then transfected with 500 ng GluN1 plasmid (Methods section 3.2.3) and incubated for a further 48 hours. Transfected 

HEK293T cells were then fixed with 100 % methanol and permeabolised with 0.2 % Triton X-100 in PBS. A rabbit polyclonal anti-

NMDAR1 antibody (0.295 µg/ml; Cell Signalling Technology®) and human serum (1:100 dilution) in 0.3 % BSA in PBS was incubated 

with the transfected HEK293T cells for 1 hour. After 1 hour the cells were washed with PBS and probed with Anti-Rabbit Alexa Flour 

568 (0.4 µg/ml; Fisher Scientific, Loughborough, UK) and Anti-Human Alexa Flour 488 (0.04 µg/ml; Fisher Scientific, Loughborough, 

UK) for 30 minutes. The slides were then mounted with DAKO fluorescence mounting medium (Agilent Technologies LDA, Stockport, 

UK) with 300 nM DAPI and visualised with Nikon E80i Fluorescence Photomicroscope (magnification x 40) and scored (Methods section 

3.2.6). Autoantibody binding of serum samples from T1D patient serum or control serum is shown in green, GluN1 transfected HEK293T 

cells are shown in red and cell nucleus DAPI staining is shown in blue. Scale bar represents 15 µM. Images are representative of the 

different scoring of autoantibody staining for GluN1 subunits from one independent experiment carried out in duplicate (one stained with 

human serum and anti-NMDAR1, the second with human serum only), in which 5 randomly selected regions were imaged and scored 

as outlined in Table 3.3. 
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Figure 3.15. Autoantibody binding scores to GluN1. All serum samples were scored between 0 and 4 (as described in Methods 

section 3.2.6) from five separate images per serum sample tested in duplicate. The red line shown indicates the median values and the 

number of samples tested is in brackets. Serum samples were considered positive if they achieved a score of 1 or above, represented 

by the dotted line. 
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Figure 3.16. Detection of autoantibodies to GluN1 receptor subunit from HEK293T cells which have been co-transfected with 

GluN1 and GluN2B plasmids. HEK293T cells were grown in 24 well plates on coverslips for 24 hours and then transfected with 100 

ng GluN1 plasmid and 400 ng GluN2B plasmid (Methods section 3.2.3) and incubated for a further 48 hours. Transfected HEK293T 

cells were then fixed with 100 % methanol and permeabolised with 0.2 % Triton X-100 in PBS. A rabbit polyclonal anti-NMDAR1 antibody 

(0.295 µg/ml; Cell Signalling Technology®) and human serum (1:100 dilution) in 0.3 % BSA in PBS was incubated with the transfected 

HEK293T cells for 1 hour. After 1 hour the cells were washed with PBS and probed with Anti-Rabbit Alexa Flour 568 (0.4 µg/ml; Fisher 

Scientific, Loughborough, UK) and Anti-Human Alexa Flour 488 (0.04 µg/ml; Fisher Scientific, Loughborough, UK) for 30 minutes. The 

slides were then mounted with DAKO fluorescence mounting medium (Agilent Technologies LDA, Stockport, UK) with 300 nM DAPI 

and visualised with Nikon E80i Fluorescence Photomicroscope (magnification x 40) and scored (Methods section 3.2.6). Autoantibody 

binding of serum samples from T1D patient serum or control serum is shown in green, GluN1 transfected HEK293T cells are shown in 

red and cell nucleus DAPI staining is shown in blue. Scale bar represents 15 µM. Images are representative of the different scoring of 

autoantibody staining for GluN1 subunits from one independent experiment carried out in duplicate (one stained with human serum and 

anti-NMDAR1, the second with human serum only), in which 5 randomly selected regions were imaged and scored as outlined in Table 

3.3. 

 



168 
 

 

 

 

 

 

 

 

 

 

 

Figure 3.17. Autoantibody binding scores to GluN1 receptor subunit from HEK293T cells which have been co-transfected with 

GluN1 and GluN2B plasmids. All serum samples were scored between 0 and 4 (as described in Methods section 3.2.6) from five 

separate images per serum sample tested in duplicate. The red line shown indicates the median values and the number of samples 

tested is in brackets. Serum samples were considered positive if they achieved a score of 1 or above, represented by the dotted line. 
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Table 3.4. Results of GluR autoantibody detection from Type 1 Diabetic patient serum and healthy control serum. Results were 

compared by two-way Mann-Whitney U Test. NS = not significant. 

 

 

 

 

 

 

 

 

 

 

 
No. controls 

tested 

% Control sera 

positives 

No. T1D sera 

tested 

% T1D sera 

positive 

Statistical 

significance 

GluN1 38 29% 39 18% NS (p = 0.0.238) 

GluN1:GluN2B 36 8% 39 13% NS (p = 0.063) 

GluK2 39 5% 40 8% NS (p = 0.337) 

GluK5 39 3% 39 5% NS (p = 0.704) 
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Figure 3.18. Autoantibody binding scores to GluR subunits. All serum samples were scored between 0 and 4 (as described in 

Methods section 3.2.6) from five separate images per serum sample tested in duplicate. The number of samples tested is in brackets 

and serum samples were considered positive if they achieved a score of 1 or above, represented by the dotted line.
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3.4 Discussion 

As previously discussed in section 1.4.4 several autoantibodies are already 

known to be associated with T1D and are successfully used as a predictor of 

disease (Jacobsen et al., 2018). Autoantibody testing has become an essential 

part in the diagnosis of T1D by health professionals, as well as being the corner 

stone of numerous studies investigating the prediction of T1D (Krischer et al., 

2019; Uusitalo et al., 2018). Despite being an essential clinical tool, none of the 

currently known autoantibodies associated with T1D are thought to be the cause 

of disease and have so far not been able to aid in the prevention of T1D. It has 

been shown that some T1D sera which is immunoreactive to islet cells do not 

contain any of the currently known T1D associated autoantibodies (Wenzlau and 

Hutton, 2013). This, therefore, suggests that there are more autoantibodies 

associated with T1D yet to be discovered. Identifying the remaining autoantibody 

targets in T1D is essential as it will provide a fuller picture of the immune process 

in the disease and potentially identify the cause of the disease. Autoantibodies 

which target GluRs have already been shown to initiate disease within the CNS  

(Dalmau et al., 2017; Geis et al., 2019) and is discussed further in section 1.10. 

Numerous studies have also suggested indirect links with glutamate and GluRs 

and the pathogenesis of T1D as chronic exposure to glutamate resulted in 

cytotoxicity and β-cell  death (Di Cairano et al., 2011; Boonnate et al., 2015; 

Oresic et al., 2008). Whilst a further study demonstrated that β-cell damage 

initiated by chronic glucose exposure was alleviated when GluN1 was knocked 

out (Huang et al., 2017). It was therefore decided to investigate if autoantibodies 

which target GluRs were present in the serum of newly diagnosed T1D patients 

and confirm a direct link between GluRs and T1D. 
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3.4.1 Immunoblotting is not an appropriate method for the detection of GluR 

autoantibodies from sera from T1D patients 

It has been shown that HEK293T transfection, followed by immunoblotting with 

patient serum can be an effective way to detect autoantibodies, as demonstrated 

by Dalmau et al., 2008 who used this method to identify anti-NMDAR 

autoantibodies in anti-NMDA-receptor encephalitis patient serum. Li et al., 2010 

also used a similar method to characterise anti-pancreatic duodenal homeobox 

1 autoantibodies in T1D patient serum. HEK293T cells over-expressed the GluR 

subunit proteins GluK2 and GluK5 following transfection with GluK2 or GluK5 

plasmid DNA (Figure 3.1) and processed for immunoblotting. From the 27 serum 

samples tested no clear positives were found, due to non-specific bands in the 

GluK2/GluK5 lanes, as well as in the negative control. Previous studies have 

noted that use of immunoblotting to detect autoantibodies from sera can be 

difficult as there are often many non-specific bands on the blots, making the 

results hard to interpret (Banjara et al., 2017; Pumphrey et al., 2013; Vianello et 

al., 2005). This was also seen in the current study. To minimise non-specific 

bands, future studies could purify overexpressed GluR subunit proteins instead 

of using the whole protein homogenate so that the serum sample antibodies can 

only bind to GluR proteins and therefore increase the specificity of the assay 

(Gleichman et al., 2012). Detection of GluR autoantibodies by immunoblotting 

may not have been possible because the process of extracting GluK2/GluK5 

protein lysate and its use in SDS-PAGE gels interferes with the proteins tertiary 

structure and therefore when the protein is used it is no longer in its native 

conformation. As a result of this, epitopes which are present in the native form 

may become hidden or destroyed during sample processing, thus preventing 



173 
 

autoantibody binding (Bass et al., 2017). This theory is supported by research, 

which has shown that GAD autoantibodies associated with T1D cannot be 

detected by immunoblotting due to changes in the GAD protein physiochemical 

structure caused by protein extraction for use with SDS-PAGE gels (Pihoker et 

al., 2005). It was therefore concluded that immunoblotting was not an appropriate 

method for the detection of GluR autoantibodies from patient serum and an 

alternative method needed to be used. 

3.4.2 Cell-based immunofluorescence assays can be used for the detection of 

GluR autoantibodies from patient serum 

To overcome some of the problems faced with using immunoblotting to detect 

autoantibodies a cell-based assay was decided to be used instead. Cell-based 

assays have been shown to be an effective method to detect glutamate receptor 

autoantibodies from patient serum (van Coevorden-Hameete et al., 2016; Park 

et al., 2018). Additionally, cell-based assays do not denature the proteins and 

helps to prevent potential epitope sites from being altered or obscured during 

sample preparation (Gastaldi et al., 2017; Ricken et al., 2018). Co-staining with 

a commercial GluR antibody enabled direct visualisation of HEK293T cells which 

were overexpressing GluR proteins and it could therefore be determined if 

autoantibody staining from patient serum was specifically targeting GluR 

overexpressing cells. This prevented reporting of false positives, a problem which 

is seen with this method of autoantibody assay if it is not known which specific 

cells are overexpressing the target protein (Gastaldi et al., 2017).  

Human serum contains many naturally occurring antibodies which have the 

potential to react with proteins from the HEK293T cell line, resulting in non-

specific primary antibody binding; an issue which has been observed in the 
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previous experiments using immunoblots (Figure 3.2 and 3.3.). Optimisation of 

the secondary antibody dilution was essential to try and reduce background 

fluorescence, whilst still allowing visualisation of positive primary GluR 

autoantibody staining. After optimisation a dilution of 1:100 for patient serum and 

1:50,000 dilution for the secondary anti-human antibody was used. 

3.4.3 No difference is observed in GluR autoantibody frequency in T1D patient 

serum compared to healthy age-matched controls 

T1D patient serum and healthy age-matched controls were tested for the GluR 

subunits; GluK2, GluK5, GluN1 and GluN1 with GluN2B. We adopted the scoring 

for positive staining described by Leite et al., 2008 (Method section Table 3.3), 

which was also used in numerous other studies (Huda et al., 2017; Park et al., 

2018; Tsonis et al., 2015). There was found to be no significant difference in 

samples positive for GluR autoantibodies between T1D patients and age-

matched healthy controls (Figure 3.18). Our data indicates that autoantibodies to 

GluRs are not associated with T1D and there is no evidence that excitotoxicity 

driven by GluR autoantibodies causes β-cell loss in T1D for this group of patients.  

The current study unexpectedly observed a large difference between the number 

of healthy control serum which contained autoantibodies to GluN1 and the 

number of healthy control serum which were positive for GluN1 autoantibodies 

when co-transfected with GluN2B. It was expected that the number of positive 

samples for both GluN1 and GluN1 co-transfected with GluN2B would be similar 

in the healthy control group, however, there was significantly more positives for 

GluN1 alone (p = 0.01732). Studies have demonstrated that binding of different 

GluN2 subunits to GluN1 results in different conformational changes to the 

receptor which can also lead to changes in receptor function and gating kinetics 
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(Hansen et al., 2018; Lind et al., 2017; Ryan et al., 2008). Therefore, the 

difference in number of positive samples may be because binding of GluN2B to 

GluN1 changes the structure of the receptor and as such may block autoantibody 

binding sites which are available when GluN1 is not bound to GluN2B and is 

instead bound to one of the other GluN2 (GluN2A, GluN2C or GluN2D) or GluN3 

(GluN3A – B) subunits.  

Intriguingly, research suggested that there are two endotypes for T1D which can 

be divided based on their insulitic profile (Arif et al., 2014; Endocrinology, 2019; 

Leete et al., 2016). The first subtype shows high infiltration of leukocytes, 

specifically CD20+ cells, whilst the second subtype shows a low CD20+ profile. 

The authors demonstrated that the two endotypes are split by age of onset, with 

CD20+ high individuals being consistently diagnosed before the age of 7 years, 

whereas CD20+ low individuals are diagnosed after the age of 13 years (Leete et 

al., 2016). Significantly, those diagnosed after 13 years of age retain 40 % of their 

insulin-containing islets, whereas those diagnosed under 7 do not retain these 

cells and their β-cell loss is more aggressive. The authors have suggested that 

the cause of T1D in the CD20+ low individuals is more likely to be due to a 

functional deficit within the islets of Langerhans, rather than the result of total β-

cell loss, as seen in the CD20+ high endotype (Leete et al., 2016). It should 

therefore be noted that all serum samples used in this study were from newly 

diagnosed T1D patients over the age of 29 and may identify with the CD20+ low 

endotype which is thought to result from islet dysfunction and later lead to 

autoimmunity and epitope spreading, rather than islet autoimmunity being the 

initiating cause of disease. The current study only used T1D patient samples 

which were positive for GAD autoantibodies and previous studies have identified 
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that GAD antibodies are more common in T1D patients diagnosed at a later age, 

compared to IAA and IA-2 antibodies which are more prevalent in those 

diagnosed young (Gillespie and Long, 2019; Tridgell et al., 2011) and are 

associated with faster disease progression (Gillespie and Long, 2019). This 

supports the conclusion that the current study has only tested one subset of T1D 

patients and future studies should aim to use samples from a wide range of ages 

and autoantibody profiles. 

As discussed in section 1.5, researching causes of T1D is challenging as the 

clinical presentation of disease only occurs after the majority of β-cells have been 

destroyed (Figure 1.4, (Rojas et al., 2018)). As a result, by the point of diagnosis 

the immune system has already been activated and numerous changes in the 

immune response have occurred. Studies have identified that the autoantibody 

profile of an individual at the point of seroconversion and the point of diagnosis 

are often different and in some cases the initial autoantibody at seroconversion 

(IAA in the majority of T1D cases) had already disappeared by the time of 

diagnosis (Bauer et al., 2019; Ilonen et al., 2018). It is therefore possible that any 

currently unknown autoantibodies that might be the primary cause of T1D may 

have already also disappeared at the time of diagnosis and may be the reason 

for the lack of autoantibodies to GluR subunits in the current study. In conclusion, 

autoantibodies targeted towards GluRs are unlikely to be indicators of T1D, 

however, future work should aim to gather samples from patients of a more varied 

age-range.  

As described in section 1.4.3 there are numerous models which have been 

suggested to lead to the development of T1D (Figure 1.7) and it may be that 

autoantibodies are not the initiating cause of T1D. For example, recent research 
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has suggested that viral infection is the initial cause of autoimmunity which leads 

to T1D (Hyöty et al., 2018; Principi et al., 2017). There are several viral 

mechanisms which are proposed to induce T1D. The first of which is viral 

molecular mimicking, where the virus contains structurally similar antigens to self-

antigens which leads to confusion by the immune system and activation of T and 

B cells which target both virus and self-antigens, causing autoimmunity (Figure 

3.19a). This is supported by research which has found that Coxsackievirus B’s 

(CVB) P2-C protein sequence resembles human GAD (Kaufman et al., 1992). 

The second mechanism, termed the bystander effect, suggests that the 

proinflammatory and inflammatory mediators which are activated during viral 

infection cause islet cell damage and subsequent release of islet antigens from 

β-cells and increased autoantigen presentation by antigen presenting cells 

(APCs) (Figure 3.19b). A recent study investigating CVB induced T1D in NADPH 

oxidase-deficient Non-Obese Diabetic mice found they were protected from virus-

induced autoimmune diabetes (Burg et al., 2018). Burg et al., 2018 proposed that 

this protection was due to impaired pro-inflammatory Toll-like receptor signalling 

in NADPH oxidase deficient NOD mice. Impaired Toll-like receptor signalling 

would prevent initiation of proinflammatory mediators, thus, stopping T1D 

progression via the bystander effect. Finally, as mentioned in section 1.4.4, and 

linked to the bystander effect, epitope spreading is thought to be linked with a 

persistent viral infection, triggering the release of more self-antigens as more 

tissue and cells become damaged which are then targeted by new autoreactive 

cells (Cornaby et al., 2015; Didona and Di Zenzo, 2018) (Figure 3.19c). This 

being said, there is a growing consensus that T1D is a heterogenous disorder 

with different subtypes which may have different causes from one individual to 
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another and present with the varying levels of β-cell loss and insulin production 

(Ahlqvist et al., 2018; Atkinson et al., 2015). As stated previously, it is therefore 

important that any future studies use a varied sample population of different age 

of onset, duration of disease and autoantibody profile in order to get a more 

indicative picture of the disease. 
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Figure 3.19. Mechanisms of virus induced T1D. A) Molecular mimicry; virus contains structurally similar antigens to self-antigens 

which leads to activation of T and B cells which target both virus and self-antigens. B) Bystander effect; proinflammatory and 

inflammatory mediators are activated during viral infection cause cell damage and subsequent release of islet antigens from β-cells and 

increased autoantigen presentation by antigen presenting cells (APCs). C) Epitope spreading; persistent viral infection triggers the 

release of more self-antigens as more tissue and cells become damaged which are then targeted by new autoreactive cells. Image 

taken from Smatti et al., 2019.
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4. Conclusion and Future Work 

4.1. Conclusion  

The first aim of this study was to identify GluRs, specifically KAR subunits, 

expressed in the human β-cell line, EndoC-βH1. Experiments using RT-PCR 

identified the KAR subunits GluK2 and GluK5, as well as the auxiliary subunits 

Neto1 and Neto2 in EndoC-βH1 cells. In addition, the current study showed that 

GluK2 and GluN2B protein is produced by EndoC-βH1 cells. The expression of 

GluRs in pancreatic β-cells has produced varying results in the literature (Tables 

1.1 – 1.3) due to the difficulty in firstly obtaining islets and then effectively sorting 

them into the different cell types of the islets of Langerhans. Until the 

development of the human β-cell line, EndoC-βH1, there was no pure β-cell line 

to conduct conclusive GluR expression experiments and therefore added to the 

variation of results seen in the literature as only murine cell lines were available 

(Tables 1.1 – 1.3). Specifically the presence of KARs in pancreatic β-cells has 

been identified by relatively few studies and with varying results (Benner et al., 

2014; Bramswig et al., 2013; Cabrera et al., 2008; Dorrell et al., 2011; Eizirik et 

al., 2012; Huang et al., 2017; Inagaki et al., 1995; Kutlu et al., 2009; Nica et al., 

2013). Only one study has identified GluK5 subunit protein (Molnár et al., 1995). 

The current study is therefore the first to identify GluK2 protein from human β-

cells and provide evidence that human β-cells form functional KARs. 

The second aim of the study was to elucidate what role KARs play in insulin 

secretion. GSIS experiments have shown that activation of KARs potentiates 

insulin secretion when in the presence of stimulatory glucose levels, but not at 

basal glucose concentrations. This study showed that GluK2 is translocated to 



181 
 

the surface when EndoC-βH1 cells are treated with stimulatory glucose 

concentrations, indicating that KARs trafficking is influenced by changes in 

glucose levels in pancreatic β-cells. This study has confirmed that KARs 

contribute in GSIS in β-cells. Overall, these findings demonstrate that GluRs play 

a role in hormone secretion in human β-cells and therefore mainting blood 

glucose levels in the body. GluRs could therefore provide valuable new insight 

into how β-cells respond to glucose and are a potential new target for drug 

development in controlling insulin levels in Diabetic patients, however, further 

research is still needed. 

The final aim of the project was to identify if GluR subunits on the β-cell surface 

are targeted by the immune system in T1D. This is the first study which has aimed 

to identify a direct association between anti-GluR autoantibodies and T1D. The 

current study demonstrated that there was no significant difference seen between 

the number of T1D patient sera positive for GluR autoantibodies compared to 

healthy controls and it is therefore unlikely that GluRs are the primary 

autoantibody targets in newly diagnosed, adult T1D patients. However, the 

current study is limited in that it only used serum samples from an older age group 

and as discussed in section 3.4.3, research suggests that there are two T1D 

endotypes which are split by insulitic profile, with the first endotype presenting at 

a young age (before 7 years old) and the second occurring after 13 years old (Arif 

et al., 2014; Endocrinology, 2019; Leete et al., 2016). The current study only used 

patient samples of individuals over 13 years old and therefore only investigated 

GluRs in relation to one T1D endotype. Despite GluRs being unlikely to be 

associated with T1D, it was important to rule them out as potential targets by the 

immune system so that new cell-surface protein targets can now be investigated.     
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4.1. Future Work 

The current study has been able to begin to identify a role for GluRs in insulin 

secretion from human β-cells as it was able to identify GluR subunit proteins, as 

well as demonstrating that activation of KARs leads to increased GSIS. However, 

the current study has only just begun to understand GluRs in β-cells and what 

role they play in hormone secretion and glucose homeostasis. The current study 

was limited as it was unable to successfully produce a GluK2 knock-down EndoC-

βH1 cell line and therefore relied on GluR agonists and antagonists to determine 

GluR function. It would be important for future studies to investigate the specific 

role of GluK2 in insulin secretion from pancreatic β-cells by creating a stable 

GluK2 knock-out EndoC-βH1 cell line. The current study found using lenti-viral 

knock-down unsuccessful in the EndoC-βH1 cell line, however, a recent study 

has identified that CRISPR-Cas9 is a more reliable and effective method for gene 

knock-down in this cell line (Grotz et al., 2020) and should be considered in future 

studies. This approach could also be used to investigated how Neto proteins 

influence GluK2 trafficking to the cell surface in β-cells, as within neuronal cells 

they are known to play a role in the function and trafficking of KARs (Evans et al., 

2017, 2019) and it is yet to be confirmed if they have the same effect in β-cells. 

Knockdown of Neto proteins could help to identify if these proteins are involved 

in surface expression of KARs, as is seen in neuronal cells and therefore are also 

involved in insulin secretion.  

Within the human body blood glucose levels can fluctuate from high to low over 

a range of concentrations, however, the current study only investigated the 

extremes of this range and only at two concentrations as a representation of 

stimulatory (20 mM) and non-stimulatory (0.5 mM) glucose. In order to elucidate 
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a fuller picture of GluRs within β-cells, it will also be useful to study their 

expression and effects over a range of glucose concentrations and time points to 

see if the effects of GluRs are directly correlated to glucose concentration. When 

β-cells are exposed to chronic glucose levels it results in cytotoxicity and cell 

damage (Huang et al., 2017, Cairano et al., 2011) and some research has 

suggested that NMDAR knock-down reduces β-cell death (Marquard et al., 

2015). It would therefore be of interest to investigate the role of GluRs, specifically 

KARs, in β-cell damage when cells are exposed to chronic glucose levels and 

identify if KARs are able to provide protection from damage or if they are part of 

the cause. 

The current study has also proposed a mechanism to demonstrate how KARs 

induce insulin secretion (Figure 2.24). However, future work is needed to identify 

the specific mechanism and signally pathway by which KARs interact to increase 

insulin secretion. Previous studies have demonstrated that kainate results in 

[Ca2+]I in MIN6 cells (Gonoi et al., 1994; Inagaki et al., 1995), it would therefore 

be important to confirm that human EndoC-βH1 cells also increase [Ca2+]I and 

that it is this influx of Ca2+ which potentiates insulin secretion. KARs are also able 

to induce metabotropic effects in neuronal cells (Falcón-Moya et al., 2018) and 

as described in section 2.4.6 it may be that interaction with the PKA signally 

pathway by KARs increases insulin secretion in β-cells. Identification of the 

specific signally pathways involved in KAR-induced insulin secretion could lead 

to new therapeutic targets which could be utilised to improve insulin secretion in 

diabetic patients.  

The current study has been able to contribute new knowledge in the presence 

and role of GluRs on human β-cells. It has specifically identified GluR subunits 
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which are expressed by the human β-cell line EndoC-βH1 and has demonstrated 

that KARs are able to increase GSIS in β-cells. However, more work is needed 

to uncover how GluRs exert their effects on β-cells and if they can be utilised to 

protect β-cells from damage when under stress. 
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6. Appendix 

6.1. Appendix I 

shRNA sequencing results from Source Biosciences. 

shRNA integrated into pSUPER-neo-GFP; Primer 30nt_M13R (provided by 

Source Biosciences) 

NNNNNNNNNNNNNCCTCACTAAAGGGACNAAAGCTGGTACCGGGCCCCCCCTCGAGAAAAACCT

CTGATTATGCTTTCCTAATCTCTTGAATTAGGAAAGCATAATCAGAGGGGGGATCTGTGGTCTC

ATACAGAACTTATAAGATTCCCAAATCCAAAGACATTTCACGTTTATGGTGATTTCCCAGAACA

CATAGCGACATGCAAATATTGCAGGGCGCCACTCCCCTGTCCCTCACAGCCATCTTCCTGCCAG

GGCGCACGCGCGCTGGGTGTTCCCGCCTAGTGACACTGGGCCCGCGATTCCTTGGAGCGGGTTG

ATGACGTCAGCGTTCGAATTCTACCGGGTAGGGGAGGCGCTTTTCCCAAGGCAGTCTGGAGCAT

GCGCTTTAGCAGCCCCGCTGGGCACTTGGCGCTACACAAGTGGCCTCTGGCCTCGCACACATTC

CACATCCACCGGCCGGTAGGCGCCAACCGGCTCCGTTCTTTGGTGGCCCCTTCGCGCCACCTTC

TACTCCTCCCCTAGTCAGGAAGTTCCCCCCCGCCCCGCAGCTCGCGTCGTGCAGGACGTGACAA

ATGGAAGTAGCACGTCTCACTAGTCTCGTGCAGATGGACAGCACCGCTGAGCAATGGAAGCGGG

TAGGCCTTTGGGGCAGCGGCCAATAGCAGCTTTGCTCCTTCGCTTTCTGGGCTCANANGCTGGG

AANGGGTGGGTCCGGGGGCGGGCTCANGGGCGGGCTCNNGGGCGGGGCGGGCGCCCGAAAGTCC

TCCGGANGNCCGGCATTCTGCACGCTTCAAAAGCGCACGTCTGCCGCGCTGTTCTCCTCTTCCT

CATCTCCGGGNCTTTTNNACCTGCAGCCCAAGCTAGCTTACNNGTCGCCACCNTGGTGAGCAAG

GGCGANGANCTGTTCACCGGGGTGGTGNCCATCCTGGTCGAGCTGNACGGCGACGTAAACNGCC

ACANNTTCAGCGTGTCCNGCGAGGGCGNNGGNNGATGCCACCTANNNNAGCTGANCCNGANGNT

TNATCTGCNCNNCNGNAGCTGCCCGNGCCCTGGGCCACCCNCGTGACNNCCTGACTANNGCGNG

CNNNGNGTNNNNNNGCTACNCCNACCNCCNTGNANCAGCNNGANTNCNTNNANNTCNGNCNNNC

NCNNANGNNNANGTNCANNNNNNNNNNNNNTTNTTNANGNACNANGNNANNTNNNNNNNNNNCN

ANGNNNANNNNNANGNNNNNCCNNNNNANCNCNNNNNNNNNNAANNNNNNNNNNNNNNNGANNN

NNNCNNGNNNANNNGNNNNNNNNNNNNNNNNNTNNNNNNNNCNNNANNNNNN 
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shRNA integrated into pXLG3-PX-GFP-IRES-WPRE 

NNNNNNANNCGCGGGCCNGTGTCNCTAGGCGGGANNACCCAGCGCGCGTGCGCCCTGGCAGGAA

GATGGCTGTGAGGGACAGGGGAGTGGCGCCCTGCAATATTTGCATGTCGCTATGTGTTCTGGGA

AATCACCATAAACGTGAAATGTCTTTGGATTTGGGAATCTTATAAGTTCTGTATGAGACCACAG

ATCCCCCCTCTGATTATGCTTTCCTAATTCAAGAGATTAGGAAAGCATAATCAGAGGTTTTTCT

CGAGGGGGGGCCCGGTACCAGCTTTTGTTCCCTTTAGTGAGGGTTAATTTCGAGCTTGGCGTAA

TCATGGTCATAGCTGTTTCCTGTGTGAAATTGTTATCCGCTCACAATTCCACACAACATACGAG

CCGGAAGCATAAAGTGTAAAGCCTGGGGTGCCTAATGAGTGAGCTAACTCACATTAATTGCGTT

GCGCTCACTGCCCGCTTTCCAGTCGGGAAACCTGTCGTGCCAGCTGCATTAATGAATCGGCCAA

CGCGCGGGGAGAGGCGGTTTGCGTATTGGGCGCTCTTCCGCTTCCTCGCTCACTGACTCGCTGC

GCTCGGTCGTTCGGCTGCGGCGAGCGGTATCAGCTCACTCAAAGGCGGTAATACGGTTATCCAC

AGAATCAGGGGATAACGCAGGAAAGAACATGTGAGCAAAAGGCCAGCAAAAGGCCAGGAACCGT

AAAAAGGCCGCGTTGCTGGCGTTTTTCCATAGGCTCCGCCCCCCTGACGAGCATCACAAAAATC

GACGCTCAAGTCAGAGGTGGCGAAACCCGACAGGACTATAAAGATACCAGGCGTTTCCCCCTGG

AAGCTCCCTCGTGCGCTCTCCTGTTCCGACCCTGCCGCTTACCGGATACCTGTCCGCCTTTCTC

CCTTCGGGAAGCGTGGCGCTTTCTCATAGCTCACGCTGTAGGTATCTCAGTTCGGTGTAGGTCG

TTCGCTCCAAGCTGGGCTGTGTGCACGAACCCCCCGTTCAGCCCGACCGCTGCGCCTTATCCGG

TAACTATCGTCTTGAGTCCAACCCGGTAAGACACGACTTATCGCCACTGGCAGCAGCCACTGGT

AACAGGATTAGCAGAGCGAGGTATGTAGGCGGTGCTACAGAGTTCTTGAAGTGGTGGCCTAACT

ACGGCTACACTAAANNAACAGTATTTGGTATCTGCGCTCTGCTGAANCCAGTTACCTTCGGAAA

AANNAGTTGGTAGCTCTTGATCCGGCAANCAANCCACCGCNGGNNAGCGGTGGNTTTTTTTTGT

TTGCAANCNNCCAANTTACCCNNCNNAAAAAAANGGATCTNNNGAANNNTCCTTTNGATCTTTT

NCTACGGGGNNCNGANNNNNNAATGGAANCGAAANNTNCCNGTTTAAGGNATTTTNGGNCNNTG

AAANTTNTCCAAAAAGGNNNNNCCCCNNNAANNNCCNTTNAAANTTNAAAANGGNANNTTTNAA

ANCCNNNNNNAANNNNNNNNNNNNNNNNAANCTTTGGNNCNNNNNNNTTCNNNNNGNNTNNNNN

CCNNNNNNAGNCNTNNNNNNNNNNCCGAANNNGGCNNNNATCNNANNNNNNNNNNTATNNNNNN

NNNNNTCNNNNNNGGNNNTNNNNNNNNNNNANNNNNNGGNNNNNNNNNNNNNCNNNNGNNNNCC

NNANGNNNNNNNNNNNNAANCCCNNNGNANNCCCNACNNNNNNCCNNGNNNNCCNNNTNTTTTN

CNNNNNNNNNANGNCCNNNCCNNNNCNNNNNNNGNNNNNNNAANNNNNANNNNNNNNNGNNNNN

NNNNNNNTNNNATNNCCNCCNNNNANCNANNNNANNNNNANNNNNNGTNNTNNNNNANGNNNNN

NNNNNNANNNNNGNNNNNNNCNNNTTCANANNNNNNTNNNNNNNNNTNATTTTNNTNNNNNNTN

NNGNNNANAANNNNNNNTNAATNNC 
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6.2. Appendix II 
 

Protein FASTA sequences taken from UniProt 

https://www.uniprot.org/uniprot/Q63273 

Anti-GRIK5 Antibody (Millipore UK Limited) protein target sequence highlighted 

in yellow. Differences between the human and rat sequence are highlighted in 

red. 

 

Human GRIK5 Protein Sequence 

MPAELLLLLIVAFASPSCQVLSSLRMAAILDDQTVCGRGERLALALAREQINGIIEVPAK 

ARVEVDIFELQRDSQYETTDTMCQILPKGVVSVLGPSSSPASASTVSHICGEKEIPHIKV 

GPEETPRLQYLRFASVSLYPSNEDVSLAVSRILKSFNYPSASLICAKAECLLRLEELVRG 

FLISKETLSVRMLDDSRDPTPLLKEIRDDKVSTIIIDANASISHLILRKASELGMTSAFY 

KYILTTMDFPILHLDGIVEDSSNILGFSMFNTSHPFYPEFVRSLNMSWRENCEASTYLGP 

ALSAALMFDAVHVVVSAVRELNRSQEIGVKPLACTSANIWPHGTSLMNYLRMVEYDGLTG 

RVEFNSKGQRTNYTLRILEKSRQGHREIGVWYSNRTLAMNATTLDINLSQTLANKTLVVT 

TILENPYVMRRPNFQALSGNERFEGFCVDMLRELAELLRFRYRLRLVEDGLYGAPEPNGS 

WTGMVGELINRKADLAVAAFTITAEREKVIDFSKPFMTLGISILYRVHMGRKPGYFSFLD 

PFSPAVWLFMLLAYLAVSCVLFLAARLSPYEWYNPHPCLRARPHILENQYTLGNSLWFPV 

GGFMQQGSEIMPRALSTRCVSGVWWAFTLIIISSYTANLAAFLTVQRMEVPVESADDLAD 

QTNIEYGTIHAGSTMTFFQNSRYQTYQRMWNYMQSKQPSVFVKSTEEGIARVLNSRYAFL 

LESTMNEYHRRLNCNLTQIGGLLDTKGYGIGMPLGSPFRDEITLAILQLQENNRLEILKR 

KWWEGGRCPKEEDHRAKGLGMENIGGIFIVLICGLIIAVFVAVMEFIWSTRRSAESEEVS 

VCQEMLQELRHAVSCRKTSRSRRRRRPGGPSRALLSLRAVREMRLSNGKLYSAGAGGDAG 

SAHGGPQRLLDDPGPPSGARPAAPTPCTHVRVCQECRRIQALRASGAGAPPRGLGVPAEA 

TSPPRPRPGPAGPRELAEHE 

 

Rat GRIK5 Protein Sequence 
 

MPAELLLLLIVAFANPSCQVLSSLRMAAILDDQTVCGRGERLALALAREQINGIIEVPAK 

ARVEVDIFELQRDSQYETTDTMCQILPKGVVSVLGPSSSPASASTVSHICGEKEIPHIKV 

GPEETPRLQYLRFASVSLYPSNEDVSLAVSRILKSFNYPSASLICAKAECLLRLEELVRG 

FLISKETLSVRMLDDSRDPTPLLKEIRDDKVSTIIIDANASISHLVLRKASELGMTSAFY 

KYILTTMDFPILHLDGIVEDSSNILGFSMFNTSHPFYPEFVRSLNMSWRENCEASTYPGP 

ALSAALMFDAVHVVVSAVRELNRSQEIGVKPLACTSANIWPHGTSLMNYLRMVEYDGLTG 

RVEFNSKGQRTNYTLRILEKSRQGHREIGVWYSNRTLAMNATTLDINLSQTLANKTLVVT 

TILENPYVMRRPNFQALSGNERFEGFCVDMLRELAELLRFRYRLRLVEDGLYGAPEPNGS 

WTGMVGELINRKADLAVAAFTITAEREKVIDFSKPFMTLGISILYRVHMGRKPGYFSFLD 

PFSPAVWLFMLLAYLAVSCVLFLAARLSPYEWYNPHPCLRARPHILENQYTLGNSLWFPV 

GGFMQQGSEIMPRALSTRCVSGVWWAFTLIIISSYTANLAAFLTVQRMEVPVESADDLAD 

QTNIEYGTIHAGSTMTFFQNSRYQTYQRMWNYMQSKQPSVFVKSTEEGIARVLNSRYAFL 

LESTMNEYHRRLNCNLTQIGGLLDTKGYGIGMPLGSPFRDEITLAILQLQENNRLEILKR 

KWWEGGRCPKEEDHRAKGLGMENIGGIFVVLICGLIIAVFVAVMEFIWSTRRSAESEEVS 

VCQEMLQELRHAVSCRKTSRSRRRRRPGGPSRALLSLRAVREMRLSNGKLYSAGAGGDAG 

AHGGPQRLLDDPGPPGGPRPQAPTPCTHVRVCQECRRIQALRASGAGAPPRGLGTPAEAT 

SPPRPRPGPTGPRELTEHE 

 

 

https://www.uniprot.org/uniprot/Q63273
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6.3. Appendix III 
 

Lentivus knock-down of GluK2 in neuronal cells from University of Bristol 
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6.4. Appendix IIII 

PCR sequencing results from Source Biosciences. 

GluK2 Forward Primer: CATGCAGCAAGGTTCTGAGC 

Sequence Amplified:  

CATTTCTTCGTATACTGCTAACTTAGCCGCCTTTCTGACAGTGGAACGCATGGAATCCCCTATT

GACTCTGCTGATGATTTAGCTAAACAAACCAAGATAGAATATGGAGCAGTAGAGGATGGTGCAA

CCATGACTTTTTTCAAGAAATCAAAAATCTCCACGTATGACAAAATGTGGGCCTTTATGAGTAG

CAGAAGGCAGTCAGTGCTGGTCAAAAGTAATGAAGAAGGAATCCAGCGAGTCCTCACCTCTGAT

TATGCTTTCCTAATGGAGTCAACAACCATCGAGTTTGTTACCCAGCGGAACTGTAACCTGACAC

AGATTGGCGGCCTTATAGACTCTAAAGGTTATGGCGTTGGCACTCCCATGGGTTCTCCATATCG

AGACAAAATTACCATAGCAATTCTTCAGCTGCAAGAGGAAGGCAAACAA 

GluK5 Forward Primer: AGAACCAACTACACCCTGCG 

Sequence Amplified: 

GAGANTGGGGTGTGGTNCTCTANNNGCACCNTGGNCATGAATGCCTCCACCCTGGACNTCAACC

TGTCTCAAACACTGGCCAGCAAGACCCTGGTGGTCACAACCATCCTGGAGAACCCATACGTCAT

GCGCCGGCCCAACTTCCAGGCCCTGTCGGGGAACGAACGCTTCGAGGGCTTCTGCGTGGACATG

CTGCGGGAGCTGGCCGAGCTGCTGCGCTTCCGCTACCGCCTGCGGTTGGTGGAGGATGGGCTGT

ACGGGGCGCCCGAGCCCAACGGCTCCTGGACGGGCATGGTTGGCGAGCTCATCAACCGGAAGGC

AGAC 

Neto1 Forward Primer: CACCAGTGGGACTGTCATTG 

Sequence Amplified:  

TTATCNTCTCTGTCATCGTACAGATCAAACAGCCTCGTAAAAAGTATGTCCAAAGGAAATCAGA

CTTTGACCAGACAGTTTTCCAGGAGGTATTTGAACCTCCTCATTATGAGTTATGCACTCTCAGA

GGGACAGGAGCTACAGCTGACTTTGCAGATGTGGCAGAA 

 

 

 

 



214 
 

Neto2 Forward Primer: TTTGCTTCGCCAAATTATCC 

Sequence Amplified: 

GNATCTACATTTTGGANCTNGCTNNNNNGTNNNNNNNNNAGAGCTNTNGNACCNTTTGATGAAC

ATTNTTATATAGAACCATCATTTGAGTGTCGGTTTGATCACTTGGAAGTTCGAGATGGGCCATT

TGGTTTCTCTCCTCTTATAGATCGTTACTGTGGCGTGAAAAGCCCTCCATTAAA 

 


