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Abstract—As a primary form of communication, text is used
widely in applications including e-mail conversations, mobile text
messaging, chatrooms, and forum discussions. Modern systems
include facilities such as predictive text, recently implemented
using deep learning algorithms, to estimate the next word to
be written based on previous historical entries. However, we
often enter sensitive information such as passwords using the
same input devices - namely, smartphone soft keyboards. In
this paper, we explore the problem of deep learning models
which memorise sensitive training data, and how secrets can
be extracted from predictive text models. We propose a general
black-box attack algorithm to accomplish this for all kinds of
memorised sequences, discuss mitigations and countermeasures,
and explore how this attack vector could be deployed on an
Android or iOS mobile device platforms as part of target
reconnaissance.

I. INTRODUCTION

PREDICTIVE text has become widely adopted across
many modern devices to improve usability, and time

required for composing a message. Predictive text functions
first gained wide popularity on early mobile devices which
provided a numerical keypad instead of a traditional keyboard,
which necessitating the grouping of multiple letters each
number key (‘ABC’ on key 1, ‘DEF’ on key 2, and so forth).
The so-called ‘T9’ predictive text model would check all three
letters from each keypress and suggest word completions based
on a stored dictionary [7]. Whilst these methods were fairly
straightforward in their approach, based on frequency analysis,
nowadays we can utilise more sophisticated deep learning
models such as recurrent neural networks, and long short-
term memory (LSTM) networks, to develop a much richer
understanding of a user’s writing style and their message
composition [17]. Such learning methods will continually learn
about the sequence of words and characters that are inputted
by the user.

Whilst this can have great benefits for developing a bespoke
model that fits to the user’s preferences well, by the very nature
of learning from all interactions, there are potential security
vulnerabilities that could be associated with this. For example,
if a user was to write a confidential message to a family
member, how would this sensitive information be captured
by a learning model? How about other sensitive materials
that may be commonly entered by a user? In particular, the
reliance that users have nowadays on online accounts and login
credentials means that passwords may be commonly entered

via the device keyboard. Therefore, if the device is designed
to continually learn about the user’s typing interactions, such
that patterns can be identified and predictions can be made
for future interactions, does this present an opportunity for an
attacker to extract unintentional secrets?

In this paper, we explore the issue of unintentional mem-
orisation in predictive text modelling systems. We devise a
small-scale study to test how well a system can learn about our
text-based interactions such that predictions can be made on a
character or word level for what should follow a given passage.
We then examine how this could potentially be exploited
by an attacker to identify personal information about a user.
Examples could include presenting the first part of a post
code and having the system reveal the remainder to identify
location information of a user (e.g., if an attacker entered
‘BS16’, what would a system predict to come next?). We
discuss this challenge further to consider the nature of privacy
attacks that could be exploited in this manner, including how
feasible a password could be extracted from a learnt model of
user interactions.

The paper is structured as follows: Section II presents re-
lated work on the topic of vulnerabilities, possible attacks and
mitigations which can be performed on deep learning models.
Section III provides a background to the domain, including
deep learning, recurrent networks, generative sequences, legal
privacy concerns, and our intended threat model. Section IV
presents our system design, incorporating our deep learn-
ing model architecture, training data corpus, language model
design, and the attack algorithm. Section V presents our
results and a discussion of these findings. Finally, Section VI
concludes our work and provides discussion of further works.

II. RELATED WORKS

There has been a considerable amount of research in the
intersection between machine learning and privacy preserva-
tion. It has previously been shown that a machine learning
classifier, trained on private data, can leak information about
its training set [10], [11]. Through repeated training rounds,
a machine learning classifier fθ() can achieve high accuracy
in predicting its training data. Due to this property it is
possible to use the presence of a high confidence output to
infer sensitive information about a data subject - for instance,
whether a patient record in a study possesses a specific
genotype. This kind of attack, named model inversion was



first demonstrated in the black-box setting (i.e. an adversary
can access a model but not inspect it’s parameters), using a
pharmacogenetic regression model [11], and later extended
to facial recognition [10] in both black-box and white-box
settings (i.e. an adversary can inspect model parameters). One
limitation of this attack in the black-box setting can be that
some prior knowledge of the target data subject’s non-sensitive
attributes is needed, and this can be addressed using model
poisoning to inject malicious data into the training set [13].

An extension of this technique allows an adversary to
perform membership inference [33], by which the input is
initialised and then optimised to produce a high confidence
output from the model. By identifying a local maximum in
this way, we can infer a correlation between the data point
and a training set member, and in theory rebuild the dataset
in its entirety. This has been extended from the centralised to
the distributed training environment, where it has been shown
a malicious training participant can infer data membership
through crafted updates [25].

Some causes of this vulnerability have been identified, such
as influence of individual data points [38], and poor general-
isation (or overfitting) [40], and mitigations suggested such
as ε-differential privacy [1], regularisation techniques [21]
[15] [34] [28], adversarial regularisation [24], API hardening
[36] and improved data sanitisation techniques [18]. However,
due to the well-known tension between privacy and utility in
data publishing [30], such attacks can never be completely
prevented in an accurate model. Previous work by Legg et
al. [22] explored how visual analytics techniques can be used
to identify potential vulnerabilities that may exist within a
trained model, and how robustness could be improved when
using collaborative user-machine guided sample selection.

Inference attacks seek to leverage the unintended mem-
orisation of training data, to which modern deep learning
models have been shown to be particularly susceptible [41]
[23]. Recent work by Carlini et al. [4] provides a conceptual
demonstration of unintentional memorisation for generative
text models. They demonstrate the concept for a credit card
number injected within body text that is used for training
a deep learning model. Our work extends on this notion,
however we address passwords rather than credit card numbers
since we believe passwords are more commonly written or
stored by users (e.g., sharing with a family member via text
message, or storing in a Notes application). Furthermore, a
credit card number will naturally be out-of-distribution from
typically keyboard usage, whereas a password may closer
resemble text that the user typically writes. Our work therefore
focuses on the more salient case of storage and extraction of
a strong password, of arbitrary length and no known context,
and the practical feasibility of weaponising this in the process
of performing cyber-reconnaissance.

III. BACKGROUND

A. Neural Networks

A neural network refers to a function f with parameters
θ, designed to approximate some other function which resists

being defined explicitly. This approximation is found using a
set of m example data points x and labels y,

X = {( xi , yi) }mi=1

which are used to compute yi = fθ(xi). We then evaluate
how accurate the network is with respect to each data point by
computing the loss function L(x, y, y, θ), and then performing
gradient descent to update θ. In other words, we compare the
estimated values of yi to the known values of yi, and use the
average of the differences to update θ in the direction which
minimises the loss,

θnew ←− θold − η
1

m

m∑
i=1

∇L(xi, yi, θold)

where η is a learning rate, which limits the update magnitude
in order to reduce over-correction. This process is known as
training, and it is often required to train a neural network many
times over the entire set of X, with each full iteration known
as a training epoch, in order for the network to reach a desired
level of accuracy with respect to the training data. However,
accuracy on training data can only translate to accuracy in the
real world to the extent that X is representative of the global
distribution. In practice, we will almost always see under- and
over-representation of one or more features in a training set
relative to the global distribution, and chasing higher accuracy
through continued training can run the risk of overfitting the
network to the training data in a way which reduces its real
world accuracy.

B. Recurrent Neural Networks

A Recurrent Neural Network (RNN) is a subclass of neural
networks which differ from traditional feed-forward neural
architectures in that each unit’s input at each time step t ∈ Z
consists not just of the input vector xt ∈ Rn but also a hidden
state vector ht−1 ∈ Rm, returning ht and the output vector
yt. This essentially gives each neural unit a memory enabling
it to classify the present input in the context of the inputs it
has seen recently.

One problem with the standard RNN is that, while in theory
ht can contain information from x0:t−1, in practice the storage
of long term dependencies can lead to problems with train-
ing due to exploding/vanishing gradients caused by needing
to multiply together each gradients during back-propagation
[27]. The use of Long short-term memory (LSTM) [14]
addresses this problem through use of one or more memory
cells accessed exclusively through gate functions, the effect
of which is to make back-propagation additive rather than
multiplicative. In this way the degree of exploding/vanishing
gradient effect is limited so that it can be treated easily during
training, by altering the learning rate η or by clipping the
gradients to stay within a specified min/max.

C. Generative Sequence Models

RNNs are especially effective for producing Generative
Sequence Models, useful for applications such as natural



language processing, speech recognition, and machine trans-
lation. Generative sequence models can be defined as models
which will take in a sequence (x1, ..., xn) and output a next
token xn+1, based on a distribution Pr(xn+1|x1, ..., xn). For
instance, in a language modelling task, the model would create
a distribution of all known words, with each given a probability
of occurrence based on the previous words in the sentence. If
the model’s input consists of "the cat sat on the", it would
assign a high probability to the word "mat" occurring next,
and a low probability to the word "a", although "a" has a
much higher overall occurrence in English.

Training this kind of model is similar to the standard neural
method described above, although instead of a set of labelled
data we have a training data corpus of length m, broken
into sequences of length n, comprising one or more discrete
tokens x. In this paradigm we simply substitute the sequence
x1:n−1 = (x1, ..., xn−1) for the data point xi, and the label is
simply the next token xn, so that our gradient descent works
this way:

θnew ←− θold − η
1

m

m∑
i=1

∇L(x1:n−1, xn, θold)

In this way the model learns a conditional distribution of the
tokens contained within the training data, which can then be
used to identify the mostly likely next token in a sequence.
Formally, in this context we use fθ(x1:i) to find Pr(xi|x1:i−1)
where xi ∈ X.

Due to the arbitrary length of such sequences (such as a
conversation, or a video output feed), a generative sequence
model can be effectively implemented using stateful architec-
ture such as RNNs.

D. Legal Implications of Secret Memorisation

The recent adoption and enforcement of the General Data
Protection Regulation (GDPR) [31] across the European Union
has focused the minds of data privacy researchers and prac-
titioners alike. Broadly speaking, it mandates that storage of
personally identifiable information relating to a data subject
requires up-front justification - whether it be informed consent,
national law, and so forth. In short, if a cloud-based deep
learning model is capable of unintended memorisation of a
user’s private information without any appropriate justification
(or the user’s knowledge that such a thing is possible), it could
constitute a serious breach of GDPR provisions requiring
disclosure to the relevant Data Protection Officer. We consider
this a strong motivator for research into this area.

E. Threat Model

We assume a setting in which a predictive text model fθ
is stored on a user-owned device. This model is continually
trained using text entered by the user, using a soft keyboard
installed on the device. This keyboard is used to input text
data into all applications on the device, including clients for
sending SMS, email, web form data and so on, all of which
therefore contribute towards training a general predictive text
model. The keyboard uses the trained model to suggest word

completions through an API which takes the current text
sequence as input and returns a sorted list of next-word
suggestions.

We assume an adversary who has no information about the
data used to train the model, with black box access to the
model. A black box attack is one in which the adversary can
get and keep any information exposed by interacting with the
API, and leverage any previously learned information to attack
further. For the purposes of this exploration, we also assume
an unlocked, accessible device and do not consider the suite of
modern access controls such as face recognition, thumbprint
scanning, or keycode entry, in order to best understand this
attack surface and the potential vulnerability that it represents.

IV. SYSTEM DESIGN

Our proposed attack targets a user-trained text-prediction, or
text-completion feature. Smartphone operating systems such
as iOS and Android have adopted such features in their
touchscreen keyboard to assist user’s in composing messages
quickly. To give us the freedom to experiment in this kind of
environment, we first need to build a representative generative
model and training strategy, and an interface through which it
can be polled for predictions.

A. Model Architecture

Due to their proven ability to make accurate predictions
on sequential data while avoiding problems of exploding
or vanishing gradients, and the limited resources we have
available for multiple training cycles, a single layer of LSTM
units is used for this application. The state of the art in
these kinds of model are arguably represented in the work of
Devlin et al. [5] and Radford et al. [29], both of which use very
deep, highly dimensional models and incorporate the newly
developed attention function of Vaswani et al. [37]. It could
be argued that, intuitively, a single-layer low-parameter LSTM
model’s performance cannot be substituted for a far larger,
more sophisticated network. However, as we know that a very
large model can memorise its training set even while achieving
high accuracy [41] [23], we expect that any positive results
achieved on out-of-distribution sequences in a small, simple
model would be magnified if repeated on more sophisticated
models. Therefore, a small LSTM model is a better choice
for confirming and measuring what we hope to observe. Our
full model architecture is therefore an input layer, one single
LSTM layer with 75 units, and a dense output layer.

B. Training Data and Approach

We wish to select a suitable data corpus such that we
can train a general text model quickly, and so that we can
investigate how the model performs when crafted sequences
are injected into the corpus that are out of distribution. Whilst
there do exist text message corpora, such as Almeida, Hidalgo
and Silva [2], their intended usage (e.g., identifying spam
messages) means that they are not sufficiently representative.
Furthermore, the inclusion of ‘txt spk’ abbreviations in this
dataset is now less commonly adopted by users compared to



earlier text messaging usage. For the purpose of this project,
we opted for The Adventures of Sherlock Holmes by Arthur
Conan Doyle [6] from the Project Gutenberg repository since
this is an easily accessible texts written in standard English.
Whilst this choice was to represent a general usage of the
English language, the theme of Sherlock Holmes using small
clues to detect larger secrets is true also of this presented
work. We parsed the full text to remove special characters
and punctuation, and convert to lower case, so that the text
was suitable for training our model.

The out-of-distribution data in our case is an unknown
sequence of letters representative of a user password, for which
we generate a 16 character string using a random number
generator. This length and composition are chosen simply to
focus on the problem of strong passwords which are resistant
to brute force, dictionary and masking attacks - in other
words, the kinds of passwords we encourage users to adopt
at home and in the workplace. Due to the low likelihood of
meaningful sequences generated by a strong random number
generator, we should expect that the combination of a long
length and an unpredictable letter sequence together should
put this information outside of any distribution of English
usage, meaning it ought to be detectable as such. We insert this
sequence into the training corpus at a random index, so that the
attacker cannot leverage knowledge of the words surrounding
the inserted password, such as "My password is" or similar
phrases.

We train the model using the RMSProp algorithm, an
adaptive learning-rate variant of stochastic gradient descent
which has demonstrated faster convergence in RNN tasks [35],
and incorporate early-stopping as a guard against overfitting
[28]. In order to train the LSTM, we construct a set of input
and output arrays where characters are represented using a
one-hot vector encoding. For each set, the input array contains
each three-character sequence (or trigram) comprising the text
(represented as a 36×3 array). The corresponding output array
contains the immediate next single character (represented as
a 36 × 1 array). We train the model on all input / output
pairs from the dataset for 20 epochs. The epoch value was
chosen so that a practically viable predictive model could
be repeatedly retrained for our experimentation, whilst also
providing a suitable level of predictive performance that is
capable of generating recognisable sequences. For the purpose
of this study, once the trained model is capable of achieving
reasonable predictions, we are interested to explore how this
capability can be exploited further to extract information from
the model.

C. Character-level and Word-level Language models

A language model can be understood both on the character
level and on the word level. This describes whether the model
learns and generates text as a stream of characters or of
words. In other words, a character-level generator will take
in the sequence ‘playin_’ and suggest the letter ‘g’, while a
word-level generator will take in the sequence ‘The cat sat
on the ___’ and suggest the word ‘mat’. For this research

we address character-level models. A word-level model would
require a much greater level of complexity since there would
be significantly more combinations of words that need to be
modelled (i.e. iterating through a dictionary of every word
encountered by the model, versus through a known standard
character set). In addition, for our particular domain, this
would essential require the password being explicitly stored
within the dictionary of a word-level model, formed by ob-
serving the data. Our character-level model can effectively
achieve predictions at the word-level, since we can iteratively
predict the sequence of characters until a space character is
encountered. An example of real-world reconnaissance would
be postcode recovery, where entering the first part ‘BS16’
could predict ‘1QY’ as a next word (or essentially ‘1, Q,
Y, SPACE’ as the set of predicted characters), or fragments
of information such as key personnel referred to by name,
or client/supplier information where a supply chain is being
targeted. These examples could all potentially operate on the
same underlying principle as those demonstrated in this study.

D. Text-prediction Interface and Attack Sequence

The model and program we have constructed lends itself
well to inferring a high probability complete word, given an
incomplete one. A simple algorithm would be to provide a
partial string s into the model, append the suggested next-
character to s, and repeat this until the next suggestion is
a space or newline character. By building a top-k tree of
potential next characters, we can approximate the functionality
of a predictive-text interface which could take the sequence
‘even’ and suggest ‘[event, evenly, eventually]’. Predictive
accuracy greatly improves with longer input strings (such as
5-grams or 10-grams) according to Shannon [32], but here
we focus on the higher-entropy (or ‘more surprising’) case of
building longer strings from shorter ones.

To frame our attack, we envision a high-access target
with a strong 16-character password. We know they are not
susceptible to a dictionary attack, and we do not have the
computational power to mount a brute force attack on a human
timescale. We have a method to access the target’s predictive
text model, and wish to leverage this to either discover the
password or narrow the search space to something reasonable.
With these elements, we have built two algorithms to extract an
embedded random password of a known length, which came
to be referred to as Simple and Deep.

1) Simple Search Algorithm: Our Simple algorithm builds
an array of lowercase letter trigrams S = {aaa, ..., zzz}, and
selects Si as an input for our model. The model will output
the probability distribution of possible next characters, and we
select the top most likely. If the character is a space, we move
to the Si+1, otherwise we append the suggested character
to Si, pop the first character, and input the new trigram
into the model. Whenever a sequence of characters, unbroken
by spaces, of length 16 (inclusive of the initial trigram) is
encountered, the sequence is added to a list of potential
password candidates. In effect, this is a simple shortest-path
search which explores the most likely node each time. As



there are not many sixteen character words, we would expect
a sequence of this length to have a high probability of success.

2) Deep Search Algorithm: A more thorough Deep search
can be performed where we perform a similarly greedy al-
gorithm, but disregard all ‘space’ characters. Where a ’space’
is encountered as the top-1 suggested next character, we take
instead the second-placed suggestion. This creates a sixteen
character string for each member of S, with a mathematically
higher likelihood of success but also a higher wall clock time.
The list of candidate strings generated by either algorithm will,
we hypothesise, have a high chance to contain the memorised
full inserted password string. To clarify, our generated pass-
words do not contain spaces, and so the presence of the ‘space’
character is always to denote the break between two words in
our corpus.

Our experiments consisted of generating a randomised
sixteen-character string P of lowercase letters, instantiating a
new model with randomised parameters, training the model on
a text corpus of length L = {1000, 2000, 4000, 16000} with
the password inserted at a random index, using our Simple
and Deep extraction algorithms described above to generate
a list of potential password candidates, and comparing the
generated candidates with the inserted password. If we find
the inserted password in the list of generated candidates, we
register the run as a success, and at the end of 20 runs
of each test we calculate the percentage of success of that
series of experiments. In this way we can see the algorithms’
effectiveness for different amounts of training data, which
intuitively mirrors how a predictive text model would be used
over time to write messages.

In our tests, due to the noticeable fall in accuracy of the
simple algorithm as we increased the text length, we chose
not to run it after 4000 words. We include it nonetheless as a
low-commitment ‘quick and dirty’ first pass approach which
can be run conveniently in a few minutes.

Our testing platform was built using using Google Colabo-
ratory and run on a Nvidia Tesla T4 with a CUDA Compute
Rating of 7.5 [3]. All models were built and trained using the
Keras/Tensorflow library for rapid ML experimentation [19].
Our testing results are shown as follows.

V. RESULTS & DISCUSSION

Length
(chars)

No. of
Words Algorithm Candidates Success%

1000 121 Simple 26.65 90

2000 208 Simple 35.25 95

4000 368 Simple 19.45 60

4000 368 Deep 21952 90

16000 1049 Deep 24389 10
TABLE I

SUMMARY OF RESULTS SHOWING THE SUCCESS OF OUR ALGORITHMS IN
EXTRACTING A PASSWORD EMBEDDED IN VARIABLE-LENGTH TEXT

CORPORA.

Table I shows the results of our experimentation. Our simple
search algorithm identifies a variable number of candidate

strings, while the deep search algorithm will produce the same
number on each run - the difference from 4000 to 16000 letters
is caused by the increased alphabet size in the longer corpus.
It can be seen that the password becomes hard to extract as
we increase the text length, which then improves greatly as
we search more deeply, and then falls again with a larger
text corpus. This would seem to suggest that success could be
achieved by progressively deepening each round of searching
until the embedded secret is reconstructed.

We argue the results represent a qualified success for our
approach, showing that a password, or any sensitive text
sequence inserted once into a body of training data, can in
some cases be reconstructed algorithmically by an adversary.
We also see the effect of increasing the text length, as we reach
the limits of what can be extracted using the three-character
beam search. Our discussion of these findings follows.

A. Mining Models for Secrets is Viable

In the password search case, the primary benefit is to
significantly reduce the complexity of the search space. In
the case of strong random passwords, where the standard
dictionary attack or mask search approaches will not find
a foothold, our method presents an alternative to the long-
form brute force search. Assuming a successfully extracted
password, even in the worst case we have mapped the n
character search space Sn (about 4.3× 1023 in our model) to
a three-character S3 space (under 20,000), radically reducing
the search space and so making such an attack vector feasible.

Small modifications of this approach can let us intuitively
mine other personal information from a predictive model.
Postcodes, car registration numbers, contact details and so
forth can be brought out of a model if it has seen such
information in the target’s messages. In this context, access
to a target’s predictive text app can be seen as a high value
reconnaissance asset. We argue that this is a threat deserving of
more attention by researchers and practitioners, going forward.

B. Mitigations and Countermeasures

1) Differential Privacy: In general, differential privacy
(DP) is understood as a formally guaranteed method of pre-
venting privacy leakage from a disclosure mechanism [8].
Formally, a function K with data sets D and D′ is recognised
as differentially private if:

Pr[K(D)] ≤ exp(ε) · Pr[K(D′)]

where D′ differs from D by no more than one additional
element. In the context of this research, we would say that
the addition of one word to the training set (such as a
password string) should have an exponentially small effect
on the suggestions made by the predictive text model, such
that there be no observable difference directly attributable to
the presence of the password. Generally, the selection of the
parameter ε is designed to be guided by a risk assessment of
a privacy leak, as a function of likelihood and impact. If a
leakage is thought to be unlikely or easily mitigated, then a
higher ε can be used, whereas if a leak is expected to result in



expensive consequences then ε should be made smaller. This
property in practice is balanced by the fact it is implemented
by adding noise during gradient descent. The lower the ε, the
noisier the training, and (in extreme cases) the less useful the
model’s predictions.

DP has been explored practically as a countermeasure to
model inversion attacks by Shokri [33] and Carlini [4], as
well as being given formal treatment in the predictive model
context by Dwork [9]. Most interesting from the perspective
of situational awareness is the Exposure metric Carlini puts
forward, which aims to answer the likelihood part of the risk
assessment. By analysing the predictive confidence of each
suggested character relative to a random space, and comparing
to the other options in the space, the memorised secret can be
ranked against every equivalent string in the relevant search
space. If the secret has a lower exposure ranking against one
or more equivalent strings in the space, it is less likely than
that string to be produced by the model. This metric should
allow for an optimal ε to be discovered iteratively for each
model, giving the best predictive performance possible while
keeping likelihood of extraction below a tolerable limit. The
drawback of this technique is that it requires the sampling
or modelling of a defined subspace within the distribution -
effectively requiring prior knowledge of a specific memorised
secret in order to rank its exposure. We believe this limits
its practical applicability in most cases, but does suggest a
possible use as a pre-emptive measurement where ε must be
calculated in order to prevent certain kinds of secrets two
which a model is expected to be exposed. Whilst the aim
of this current study was not to explore the role of DP, we
acknowledge that there is potential to explore DP in the context
of unintentional memorisation.

2) Text Message Sanitisation: Theoretically speaking, the
most provably effective countermeasure to the problem of
a deep learning model memorising secrets is to remove the
secrets from training data set. If the secret is not seen by
the model, then it doesn’t become part of the distribution and
will not be distinguishable from randomness by an extraction
algorithm such as the ones we have described. Removal of
secrets from a text pre-training could be done in multiple
ways - for example, using a whitelist filter to only allow
known dictionary words into the training set, or a blacklist
to prevent words that contain combinations of lowercase,
uppercase, numbers, special characters, or some other heuristic
for password-likeness. For cases where a text model is being
continually trained using user inputs, we also would suggest
the defensive use of an algorithm such as ours to detect
embedded secrets and add them to a blacklist preventing them
from further memorisation, were they to be re-entered at a
later time. Most significantly, cyber awareness practitioners
and researchers would need to build awareness amongst users
of deep learning predictive text models (by which we mean,
modern mobile phone owners) of the potential dangers of
sending passwords and other private information to trusted
parties via text messaging platforms.

3) Password Construction: Mention must be made here of
the potential implications that this kind of vulnerability could
have on the contemporary mental model of strong password
construction. Often, guidance has suggested the use of a
password with high entropy - by being long and including
capitals, numbers, special characters and so on; is unique to
the specific access it controls; is not predictable or guessable,
such as by using common sequences, or an iterating suffix; and
more besides. These best practices are effective at preventing
attacks on passwords, because they aim to restrict password
choice to distributions which are not searchable in human time.

Our algorithm raises the possibility that a strong password’s
own uniqueness and ‘unpredictability’ could even become
its own weakness, due to the inherent properties of gradi-
ent descent algorithms [10]. As a strong password will not
resemble other words and phrases, it will not have close
neighbours in the data set, and in these cases a deep learning
optimiser will simply fit a curve which predicts the password.
A ‘weaker’ password, based on a sports team or a loved
one’s name, could by the same mechanism blend into the
data and stick out. It might be possible to find a rule for
generating strong passwords capable of resisting memorisation
by language models, though this was beyond the scope of
the present work. More recently, the National Cyber Security
Centre issued guidance of using three random words [26], to
provide a password that is both long and memorable, moving
away from the notion of complex characters, which was also
famously depicted in the XKCD ‘Password Strength’ comic
[39].

4) API Restrictions: The attack algorithm described relies
on an essentially unrestricted ability to poll a deep learning
model repeatedly for a duration of nearly fifteen minutes.
As we are using our experiments to model an attack on
a predictive-text API on a mobile OS, one common sense
mitigation would appear to be to modify such an API to limit
the number of predictions it can make over a given time period.
It may be possible to find a strategy where the user will not
notice the restriction on their convenient use of the phone, but
an adversary attempting password extraction would be denied.

VI. FURTHER WORK & CONCLUSIONS

In this work, we have presented a case study on extracting
information from a text-based machine learning model, and
hope to make a valuable addition to the ongoing discussion
on whether the permeation of deep learning in all areas of life
can be compatible with strong privacy assurances. Given the
effectiveness of deep learning tools for generative language
models (not to mention other domains), we hope that research
and practice will focus on understanding this vulnerability in
order to both protect the user, and empower them to make safe
usage choices. In this spirit, we here identify some limitations
in the scope of the present work, and some interesting avenues
of potential future research:

1) Varied and larger text corpora: The purpose of
the text corpus is to provide a ‘background’ language
distribution from which a memorised secret can stick



out, and due to this property would not expect different
password extraction results simply by changing the text
corpus. We acknowledge the limitation that our study
was based on a single text corpus. However, the purpose
of our study is primarily to examine the potential of
unintentional memorisation as a significant and relevant
current-day attack vector, rather than to assess password
extraction against different text corpora. Further research
would aim to explore this property against genuine
user device interactions rather than on publicly-available
sample texts.

2) Deeper Algorithms For Secret Mining: Due to the
resources and time available for repeated retraining and
extraction, our experiment is designed around using very
short sequences for training and extraction, from short
training text lengths with artificially restricted character
sets. As the results show, with a relatively small amount
training data we exceed the limitations of trigrams as
a predictive sequence. We would expect an algorithm
which searched the 5-gram space with a full character
set (uppercase as well as lowercase alphanumeric, plus
special characters) to have significantly greater predic-
tive success over a representative distribution of written
text.

3) More Complex Language Models: We have been
running our experiments on a single LSTM layer with a
limited text corpus, which possibly is not representative
the state of the art in language modelling that we see
in BERT [5] or GPT-2 [29]. Language models of the
sort employed at production scale use added layers
of encoders and attention mechanisms [16] [37] [20]
trained over millions of sequences. While we would
expect such large and complex models to be more
than capable of memorising secrets, an absence of true
experimental data makes it difficult to know for sure
what this could look like in practice.

4) Real Hardware, Real Code: Our synthetic model is
run using Python code, using fast dedicated hardware,
and this limits insight into a mobile implementation’s
performance in terms of wall clock time, processor cycle
count, power draw and heat output, etc. We also did not
investigate the practicalities of how iOS/Android soft
keyboards request and receive predictive text sugges-
tions. A better understanding of both areas would be
valuable to evaluating the impact of this vulnerability.

5) Greater Accessibility and Awareness: Our experi-
ences have raised the possibility that effective techniques
such as Differential Privacy have perhaps not yet been
rolled out in libraries and packages aimed at researchers
and practitioners with less expertise and experience in
designing and implementing deep learning. Given the
high potential for liability for privacy breaches under
the GDPR and other legislation, there would be value in
assessing how widespread knowledge of this risk is in
the fields of deep learning and data science, and how
confident practitioners are of their ability to mitigate

such risks as they could appear in their own products
and data sets.

6) Implications Under GDPR and other Legislation: We
would call on legal scholars to bring their attentions
to how this vulnerability is to be interpreted in the
current context of the GDPR (and derivatives such as
the UK’s DPA 2018), as well as similarly motivated
statutes such as the California Consumer Privacy Act
(enforceable as of 1 July 2020) [12]. Clarification of, for
instance, whether such memorisation constitutes a ’filing
system’ for ’personal data’ under these regulations could
ultimately set the tone for any subsequent discussion
of this issue. We leave these questions open to the
community.

We have explored how this model can be exploited on a
character level and a word level, such that by observing what
outputs the model gives we can effectively learn about the
traits and characteristics of the original text that the system has
learnt from. In doing so, personal information that users may
enter into their device (e.g., passwords, postcode locations,
credit card numbers) could well be extracted if an attacker can
judge the form it may have taken and its surrounding context.

We hope that in presenting this work we begin to highlight
the security issues that are associated with the growing reliance
on machine learning models and their increasing persistence
in our daily lives. Future work will explore this challenge
deeper, and begin to address how developers could identify
characteristics that should be excluded from learning models.
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