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Abstract:  

In a world where the means of exchange is convertible into the numeraire consumption good at a 

fixed rate, no one wants to hold money over time – and due to convertibility there is no means by 

which the Friedman rule can generate deflation. This is the environment we study in this paper in 

order to demonstrate that there is still a way to reach the first-best: institutionalize the naked 

shorting of the unit of account, or in other words establish a banking system. 

To motivate the benefits of a banking system, the environment has real productivity shocks that 

are constantly changing the optimal level of economic activity, so the optimal quantity of money 

is inherently stochastic. Efficiency in such an environment requires the capacity to expand the 

money supply on an “as needed” basis. We show how a debt-based payments system that relies 

on banks to certify the individual debtors’ IOUs addresses the monetary problem. 

This model explains (i) central bank monetary policy as a means of stabilizing the banking 

system and (ii) usury laws as means of promoting equilibria that favor non-banks over those that 

favor banks. Furthermore, by modeling a commercial bank-based monetary system as an 

efficient solution to a payments problem this paper develops a theoretic framework that may be 

used to evaluate central bank digital currency proposals. 
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This paper studies the nature of money in an environment where the means of payment is 

convertible at a fixed rate into the numeraire consumption good. By focusing on this 

environment we eliminate the possibility that the means of payment changes value over time, 

and deliberately construct a situation where the price level is disabled as a means of equilibrating 

the supply of money with the demand for it. To our knowledge no one else has studied such an 

environment in a Lagos-Wright-type framework. Our goal in this paper is to demonstrate that in 

this environment the first-best can still be attained – if the means of payment is effectively a 

naked short of the unit of account. 

A naked short has the effect of creating a “phantom” supply of the shorted object that disappears 

when the short is closed out. We demonstrate here that banks can create this “phantom” supply 

of the unit of account in the form of acceptances of private debt.1 This type of bank liability is 

issued when the bank stamps a private commercial bill “accepted,” and the bank obligation is put 

into circulation when the borrower makes purchases. Then, when the borrower pays off the loan, 

the phantom supply of the unit of account along with the outstanding, but contingent, bank 

liability that was used to create it is closed out. 

Why do we model the means of payment as a naked short of the unit of account? We argue, first, 

that this is the best way to understand the nature of the banking system in its developmental 

stages. Second, by modelling the means of payment in this way our model demonstrates the 

efficiency gains that can be created through the introduction of a banking system. Third, by 

carefully evaluating the incentive feasibility conditions for our bank money equilibria, we are 

able to relate the monetary system to banking stability. We find that the implementation of 

central bank monetary policy via interest rates can be explained by the need to stabilize the 

banking system. Finally, we also find support for the use of usury laws as a means by which 

policymakers choose amongst multiple equilibria to favor the interests of non-banks over those 

of banks. 

The monetary system modelled in this paper is based on the 18th century British monetary system 

as described in Henry Thornton (1802) An enquiry into the nature and effects of the paper credit 

of Great Britain. Privately issued bills function as a means of payment because they are 

“accepted” as liabilities by the banks that underwrite the monetary system. While these bills 

were denominated in a gold-based unit of account,2 as a practical matter there was no expectation 

that they would be settled in gold. Instead, they were used as a means of transferring bank 

liabilities from one tradesman to another. Thus, bills that are simultaneously private IOUs and 

bank liabilities are used to make payment. The non-bank debtor pays off her debt by depositing 

someone else’s bank-certified liability into her account. (The 18th century monetary system was 

the precursor of the checking account system and operates just like a system of overdraft 

 
1 While it would be easy to reconfigure the means of payment to be deposits or bank notes, we believe the monetary 

function of bank liabilities in this paper is sufficiently different from the existing literature that it useful to present it 

using an unfamiliar instrument.  
2 For the purposes of keeping the exposition simple, assume that we model the monetary system prior to 1797 (when 

gold convertibility was suspended). 
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accounts.) The bank’s liability on a deposited bill is extinguished when funds are credited to the 

depositor’s account. 

In our model productivity is stochastic, and as a result the demand for money is stochastic. We 

show that the bank-based money described in our model can accommodate this stochastic money 

demand so that a first best is attained. Thus, our model can be viewed as a model of the “banking 

school” view where money is issued on an “as needed” basis at the demand of non-banks. 

We argue that the convertible currency environment forces a reconsideration of the nature of 

money. Typically the monetary literature views money as “an object that does not enter utility or 

production functions, and is available in fixed supply” (Kocherlakota 1998). Shifts in the price of 

money equilibrate the economy in these environments. Historically, however, stabilization of the 

price of money by tying it to a fixed quantity of gold was a foundation of economic success in 

the early modern period (van Dillen 1964; Bayoumi & Eichengreen 1995). Thus, we consider 

how money functions in an environment where its price is “anchored”. We show that a solution 

is for the means of payment to be a debt instrument that is denominated in the anchored unit of 

account and is certified by a bank. This solution is based on actual market practice in the early 

modern period.  

This approach allows us to reinterpret general results such as Gu, Mattesini, and Wright (2014) 

(GMW)’s finding that when credit is easy, money is useless, and when money is essential, credit 

is irrelevant. While their conclusion is correct given their definitions of money and credit, we 

argue that this standard definition of money is not the correct definition to apply to an 

environment with banks. We argue that the means of payment in an environment with banks is a 

naked short of the unit of account, which would be categorized in GMW’s lexicon as “credit”. 

This paper employs the methods of new monetarism. Our model combines an environment based 

on Berentsen, Camera, and Waller (2007) with an approach to banking that is more closely 

related to Gu, Mattesini, Monnet, and Wright (2013) (GMMW) and Cavalcanti and Wallace 

(1999a,b). Our model of banking is distinguished from GMMW because non-bank borrowing is 

supported not by collateral, but by an incentive constraint alone, and from Cavalcanti and 

Wallace because our banks don’t issue bank notes, but instead certify privately issued IOUs. We 

find that for values of the discount rate that accord with empirical evidence, such a payments 

system can be operated with no risk of default simply by setting borrowing constraints.3 We start 

by finding the full range of incentive feasible equilibria of the model, and then discuss how, 

when there are multiple equilibria, a policymaker may choose between these equilibria.  

In this environment competitive banking is incentive feasible only when enforcement is 

exogenous. In the case of endogenous enforcement, competition in banking typically drives the 

returns to banking below what is incentive feasible and the only equilibrium will be autarky. This 

result is consistent with many other papers that have found that the welfare of non-banks is 

 
3 Indeed, we argue elsewhere that the credit based on precisely such constraints constituted the “safe assets” of the 

monetary system through the developmental years of banking (Sissoko 2016). Treasury bills, the modern financial 

world’s safe assets, were introduced in 1877 and modeled on the private money market instruments of 19 th century 

Britain (Roberts 1995: 155). 
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improved when there is a franchise value to banking (Martin and Schreft 2005, Monnet and 

Sanches 2015, Huang 2017. See also Demsetz et al. 1996).  

Thus, the challenge for a policymaker is how to regulate competition in the banking sector so 

that banking is both incentive compatible – and therefore stable – and also meets the 

policymaker’s goals in terms of serving non-banks. One solution is to treat banking as a natural 

monopoly, allowing an anti-competitive structure while at the same time imposing a cap on the 

fees that can be charged by banks. This solution explains usury laws, which by capping interest 

rates at a level such as 5%, the rate in 18th century Britain, is able to generate both a robust 

franchise value for the banks that provide payments system credit and at the same time to ensure 

that a significant fraction of the gains created by the existence of an efficient means of payment 

accrue to non-banks. An alternate solution is to impose a competitive structure on the banking 

industry, but also to set a minimum interest rate as a floor below which competition cannot drive 

the price. We argue that this is the practice of modern central banks and thus that monetary 

policy should be viewed as playing an important role in preventing competition from 

destabilizing the banking sector. 

Section I introduces the model of a convertible currency. Section II describes the equilibria of the 

model. Section III presents the equilibria using diagrams. Section IV discusses the means by 

which policymakers choose between the difference equilibria of the bank-based monetary 

system. Section V concludes. 

1. A model of convertible bills as a means of payment 

Time is discrete, indexed by 𝑡 = 0, 1, 2, …, and extends over an infinite horizon. Following 

Berentsen, Camera, and Waller (2007) (BCW) in each period two perfectly competitive markets 

open sequentially. There are two consumption goods, 𝑥, which is perishable and must be 

consumed during the first market (FM) and 𝑋, which is perishable and must be consumed during 

the second market. The second market will be abbreviated CM, because this market plays the 

same role as the centralized market in the Lagos-Wright (2005) framework upon which BCW is 

built. Note that the model of banking here is very different from the model of banking in BCW 

and is closer in spirit to the model of banking in Gu Mattesini Monnet and Wright (2013). 

There is no discounting between the FM and the CM. The discount factor from one period to the 

next is given by 𝛽. 

There are two types of agents, non-banks and banks, and there is a continuum of mass one of 

each type of agent. Non-banks experience a preference shock at the beginning of each period 

such that with probability 𝑛 the agent is a “lender” and with probability 1 − 𝑛 the agent is a 

“borrower.” (This nomenclature anticipates the roles that the two types will play in the model.) 

Lenders can only produce in the FM at cost 𝑐(𝑞) = 𝑞2/2𝐴 where 𝑞 is the amount produced of 

good 𝑥 and 𝐴 is a production shock. The production shock takes one of two values 𝐴 ∈ {1, 𝐴} 

with 𝑃𝑟{𝐴 = 𝐴} = 𝜎 and 𝑃𝑟{𝐴 = 1} = 1 − 𝜎. In the CM lenders can only consume, deriving 

utility 𝑈(𝑋) = 𝑋.  Borrowers can only consume in the FM, deriving utility 𝑢(𝑥) = 𝑥𝛼  where 
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𝛼 ∈ (0,1). In the CM borrowers produce at cost 𝐶(𝑄) = 𝑄, where 𝑄 is the quantity of good 𝑋 

produced. Banks do not produce and consume only in the CM, deriving utility 𝑈(𝑋) = 𝑋. 

Both forms of uncertainty, the preference shock and the production shock, are realized at the 

start of each period. These shocks are publicly observable. 

As in BCW, we assume that the goods trades that take place in the FM and the CM are 

anonymous, that agents cannot identify their trading partners, and that trading histories are 

private information. A borrower cannot commit to paying a lender in the future, because he will 

not be able to meet and identify the right lender. Thus, in the absence of some kind of a monetary 

device, anonymity will force the economy to be autarkic in the FM. 

Banks have a technology that makes it possible for them to record the financial history (but not 

the trading history) of each member of the economy. The account-keeping technology is 

operated costlessly. Banks also have a public history: if at the close of the period interbank 

clearing leaves a bank with a negative net worth, then the bank is forced to declare bankruptcy 

publicly. 

Acceptance banking 

Banks offer credit lines to borrowers up to a limit, ℓ, which is endogenous and ensures that 

repayment of debt is incentive compatible for the borrower. Bank liabilities – and therefore the 

credit line and any bills that draw down the credit line – are denominated in the CM good. Not 

only are they denominated in the CM good, but they are anchored to it: they are convertible into 

the CM good at a fixed rate at any point in time. Thus, if a bill circulates from one period to the 

next it represents a promise to pay the same quantity of the CM good in whatever period the bill 

is presented.  

A borrower draws down on the credit line by issuing a bill that is instantaneously accepted by the 

borrower’s bank. This has two effects: it converts the bill into an accepted bill that is a liability 

of the bank similar to a bank note and it draws down the credit line that the bank has extended to 

the borrower. Commercial bills are modeled here as bearer bills, and are payable to whoever 

holds them. 

Thus, in an acceptance banking system a single commercial bill plays two distinct roles. First, 

the commercial bill is a loan that draw down the credit line that a bank has extended to the issuer. 

Second, because an accepted commercial bill is a bank liability, third parties are willing to 

receive it in payment and it circulates as money. Thus, the physical document that is an accepted 

commercial bill is simultaneously both a bank loan and a bank note. 

The distinguishing characteristic of an accepted bill is that there are two parties who are both 

fully liable for payment of the bill, the non-bank issuer and the bank-acceptor. The liability to the 

bank of the issuer of the commercial bill is extinguished when the issuer deposits accepted bills 

equal in value to his debt in his account. A bank’s liability on an accepted bill is extinguished 
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when the accepted bill is deposited into a bank account and thus it no longer circulates. The 

details of how the banks operate a clearing and settlement system are omitted from the model.4  

Banks also have the technology to circulate their bills in the CM in order to purchase the 

consumption good. Such a circulation of bills is, however, inherently fraudulent, because in this 

model there is no way for such bills to be paid and their issue guarantees that the issuing bank 

will be bankrupt at the end of the period. Since the banks have the technology to profit from such 

a default, the banks face an endogenous limit on their liabilities, 𝑏̅. At the end of a period in 

which a bank fraudulently circulates bills, the bank will be bankrupt and be forced into autarky. 

This technology is only available to a bank that was active in lending in the FM – a restriction 

that can be viewed as an aspect of the bank’s public history. 

In this model banks offer loans that extend from the FM to the CM of a given period. Observe 

that even after a loan is paid off by its issuer (by depositing funds into his account to cover the 

bill), the accepted bill that created the loan may continue to circulate as a bank liability until such 

time as the holder of the accepted bill chooses to present it to a bank. 

After the realization of the uncertainty at the start of the FM, trade in the first market takes place 

and borrowers issue bills that draw down their bank credit lines. Such loans are denoted by ℓ ∈

[0, ℓ], and the interest rate, 𝑖 ≥ 0, is charged on the loan and payable in the CM along with the 

principal of the loan. The punishment for a default on a loan is loss of access to bank services in 

the future. Let 𝑑 ∈ [0,∞) represent physical holdings of accepted bills. 

The First-Best Allocation: To find the first best allocation we assume that all agents are treated 

symmetrically. The problem is the same in each period except for the production shock. We 

consider the first-best allocation to be the allocation that a social planner would choose in each 

period if she could allocate consumption after learning the outcome of the production shock. 

After the realization of the production shock, but before the realization of the preference shock, 

in each period a representative agent has the expected utility: 

(1 − 𝑛)(𝑥𝛼 − 𝑄) + 𝑛 (−
𝑞2

2𝐴
+ 𝑋) 

And optimization will be subject to the FM and CM feasibility constraints:  

(1 − 𝑛)𝑥 = 𝑛𝑞 

(1 − 𝑛)𝑄 = 𝑛𝑋 

The first order conditions of this problem indicate that optimal FM consumption is: 

𝑥∗∗(𝐴) = [
𝛼𝑛𝐴

(1 − 𝑛)
]

1
2−𝛼

 

optimal FM production is: 

𝑞∗∗(𝐴) =
1 − 𝑛

𝑛
𝑥∗∗(𝐴) 

 
4 The focus on symmetric equilibria and banks that are in all respects identical means that this amounts to 

unnecessary detail here. 

(1) 

(2a) 

(2b) 
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and that all values that satisfy the CM feasibility constraint will be optimal. Thus, the quantities 

that a social planner who could force agents to produce and consume would choose in each 

period are given by 𝑥∗∗(𝐴) and the feasibility constraints. 

2. Symmetric equilibrium 

Following BCW, we limit our attention to stationary symmetric equilibria where each type of 

agent plays the same pure strategy. We first analyze the choices made by a lender in the second 

market, then in the first market, and then we analyze the borrower’s choices. Only after 

optimizing choices in each of the markets have been established do we fully specify all of the 

relevant value functions.  

To simplify notation, current period variables will be denoted without a subscript, next period 

variables with prime mark and previous period variables with the subscript −1. 

The Lender’s Problem: Observe that a lender – who does not intend to default – derives only 

costs and no benefits from borrowing. For this reason, banks will not extend loans to lenders. 

Then, letting 𝑊𝑙(𝑑) represent the value to a lender of entering the CM with accepted bills, 𝑑, 

and 𝑉(𝑑′) represent the value to a non-bank of starting the next period with accepted bills, 𝑑′ we 

find: 

𝑊𝑙(𝑑) = max𝑋,𝑑′ 𝑋 + 𝛽𝑉(𝑑
′) 

subject to the budget constraint 

𝑋 + 𝑑′ =  𝑑 

The lender maximizes consumption in the CM and the discounted value of carrying 𝑑′  into the 

next period FM subject to the constraint that the value of the accepted bills carried into the CM 

must equal the CM goods consumed and the value of the accepted bills carried into the next 

period. Substituting out for 𝑋, we find:  

𝑊𝑙(𝑑) = 𝑑 +max𝑑′ −𝑑
′ + 𝛽𝑉(𝑑′) 

                   = 𝑑 +𝑊𝑙(0) 

The first order condition for the choice of 𝑑′  is:  

1 ≥ 𝛽𝑉′(𝑑′) 
with complementary slackness. Thus, this choice does not depend on the quantity of accepted 

bills brought into the CM. All lenders will carry the same quantity of accepted bills into the next 

period. 

Observe that the envelop condition for this problem is: 

𝑊𝑑
𝑙 = 1 

Now consider the FM and the problem faced by a lender who brings bills, 𝑑, into the FM. After 

the realization of uncertainty at the start of the FM the lender’s problem is: 

max𝑞 −
1

2𝐴
𝑞2 +𝑊𝑙(𝑑 + 𝑝𝑞) 

where 𝑝 is the price of the good in the FM market. That is, the lender chooses 𝑞 to maximize the 

sum of the costs incurred by producing 𝑞 and the value to the lender of carrying the proceeds of 

(3) 

(4) 
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the sale of 𝑞 into the CM. The first order condition for this problem is 

−𝑞/𝐴 + 𝑝𝑊𝑑
𝑙 = 0 

and an optimizing lender will choose 

𝑞∗(𝐴, 𝑝) = 𝑝𝐴 

Observe that the amount that lenders choose to produce does not depend on the quantity of bills 

that they bring into the market, but only on the value of the product and their productivity this 

period. 

The Borrower’s Problem: Turning to the borrower, observe that the borrower’s value function in 

the CM depends on loans as well as accepted bills brought into the CM: 

𝑊𝑏(ℓ, 𝑑) = max𝑄,𝑑′ −𝑄 + 𝛽𝑉(𝑑
′) 

subject to the budget constraint 

𝑑′ = 𝑄 +  𝑑 − (1 + 𝑖)ℓ  
The borrower maximizes the sum of the cost of producing in the CM and the continuation value 

of carrying 𝑑′  bills into the next period subject to the constraint that the value of the bills carried 

on must equal the quantity produced plus the value of bills less the expense to the borrower of 

paying off the loan. Observe that this expense has two components: the principal of the loan 

which is paid off by producing in exchange for acceptances that will be deposited in the issuer’s 

account and the interest on the loan which may be paid by transferring real goods to the bank. 

Just as in the case of the lender, this problem can be rewritten: 

𝑊𝑏(ℓ, 𝑑) = 𝑑 − (1 + 𝑖)ℓ + max𝑑′ −𝑑
′ + 𝛽𝑉(𝑑′) 

                       = 𝑑 − (1 + 𝑖)ℓ +𝑊𝑏(0,0) 
And we find that once again the assets that are brought into the CM do not affect the choice of 

bills brought out of the CM. As a result both lenders and borrowers solve the same problem in 

the CM, have the same first order condition, and will carry the same quantity of bills into the 

next period. 

The envelop conditions for the borrower are: 

𝑊ℓ
𝑏 = −(1 + 𝑖) 

𝑊𝑑
𝑏 = 1 

These conditions determine the optimizing choices that a borrower will make when transacting 

with a bank in the FM. When a borrower brings accepted bills into the FM, the fact that 𝑖 ≥ 0 

ensures that the borrower will prefer to spend the bills that were brought into the FM rather than 

holding them and taking out a loan to make up the difference.  

First, we consider credit equilibria. In a credit equilibrium the borrower’s stock of bills is 

insufficient to purchase the desired quantity and the borrower must take out a loan. Then, the 

borrower’s problem is: 

max𝑥 𝑥
𝛼 +  𝑊𝑏(𝑝𝑥 − 𝑑, 0) 

subject to 

𝑝𝑥 − 𝑑 ≤ ℓ̅ 

where ℓ̅ is a borrowing constraint that is taken as given by the borrowers. That is the borrower 

maximizes the sum of his current period utility from consumption and the continuation value of 

(5) 
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spending all of his (matured and therefore non-interest bearing) bills and carrying an interest-

bearing loan in to the CM, subject to the constraint imposed by the bank on the size of the loan. 

The first order condition is then: 

𝛼𝑥𝛼−1 + 𝑝𝑊ℓ
𝑏 − 𝑝𝜆 = 0 

where λ is the multiplier on the borrowing constraint. The borrower’s optimal choice will be 

𝑥∗(𝑝) =

{
 
 

 
 (

𝛼

𝑝(1 + 𝑖)
)

1
1−𝛼

       if  λ = 0 

ℓ̅ + 𝑑

𝑝
                otherwise

 

That is, when the borrowing constraint does not bind there is an interior solution, and when the 

borrowing constraint does bind so that λ > 0, the borrower will spend all available funds. Thus, 

there are two types of credit equilibria to consider: those in which there is slackness in the 

lending constraint, and those in which there is not. 

When the lending constraint is non-binding, the market clearing price, 𝑝(𝐴), is:  

𝑝(𝐴) = (
𝛼

1 + 𝑖
)

1
2−𝛼

(
1 − 𝑛

𝐴𝑛
)

1−𝛼
2−𝛼

 

and expenditure on the FM good given 𝐴 is: 

𝜋(𝑖)𝐴
𝛼
2−𝛼                    

where  

𝜋(𝑖) ≡ (
𝛼

1 + 𝑖
)

2
2−𝛼

(
𝑛

1 − 𝑛
)

𝛼
2−𝛼

 

Observe that when borrowing takes place unconstrained, a positive lending rate distorts 

consumption relative to the first best allocation: because interest must be paid on the borrowed 

funds, borrowers will prefer to reduce consumption of the FM good relative to the first-best.   

By contrast when the credit constraint binds, the market clearing price, 𝑝ℓ(𝐴), is:  

𝑝ℓ(𝐴) = [
(1 − 𝑛)(ℓ̅ + 𝑑)

𝐴𝑛
]

1
2

 

and expenditure on the FM good given A is: 

ℓ̅ + 𝑑 

Diagram 1 depicts the sequence of events, the movement of commercial bills through the 

economy, and how the holdings of loans and bills change over time.  

(6) 

(7) 

(8) 
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Banks:  

Banks in our model set interest rates and credit limits, but otherwise respond passively to the 

economy’s demand for accepted bills: they earn iL where L represents the aggregate quantity of 

loans. They are willing to lend to each borrower whatever ℓ ≤ ℓ̅ the borrower demands. 

How is it possible for banks to “meet the needs of trade” by responding passively to the demand 

for bank credit? That is, how it is possible for a bank’s balance sheet to expand to meet the 

demand for loans? This is explained by the fact that the accounting treatment for an accepted bill 

is typically “off-balance sheet.” An accepted bill is a contingent bank liability that will only be 

payable if the original issuer of the bill defaults. Accounting norms in general do not require that 

a contingent liability be reported on balance sheet until it becomes probable that the contingency 

will be realized.5 For this reason, there is no requirement in this model that the quantity of loans 

must be backed by “deposits.”  

While under modern accounting practices accepted bills are typically off-balance sheet for a 

bank, an alternate convention that was sometimes followed in the 19th century was to treat the 

accepted bills as both an asset and a liability. Thus, we “stack the deck” against banking by 

taking the more conservative view that accepted bills count against a bank’s debt limit. That is, 

even though the quantity of loans that a bank can accept is not limited by the quantity of deposits 

placed with a bank, there is a limit on the quantity of loans that a bank can accept. This limit is 

 
5 For the off-balance-sheet treatment of accepted bills, see David Sheppard, The Growth and Role of U.K. Financial 

Institutions 1880 – 1962 at 117 Table (A)1.1 n.4 (1971). 

Review of Economic Analysis forthcoming 2020 (12)



10 
 

analogous to the borrowing limit that is faced by non-banks: there is an endogenous debt limit, 𝑏̅, 

that constrains the banks’ liabilities – and accepted bills count against this constraint.  

The banks’ debt limit is generated by the fact that in the CM banks have the technology to 

circulate bills that are not related to non-bank transactions in order to purchase the consumption 

good. At the end of a period in which a bank circulates such bills, the bank is bankrupt, is found 

out, and is forced into autarky.  

We analyze two types of equilibria: enforcement equilibria where the debt of both non-banks and 

banks is exogenously enforceable, and equilibria without enforcement in which lending 

constraints must be used to guarantee the incentive compatibility of the repayment of debt.  

2.1 Stationary enforcement equilibrium  

In an enforcement equilibrium, because the debt of banks is exogenously enforceable, 𝑏̅ = ∞, 

and, because the debt of non-banks is exogenously enforceable, ℓ̅ = ∞. There are two types of 

enforcement equilibria with credit to consider. (The derivation of the value functions is presented 

in Appendix 1.)  

Type Ia: 𝑑 ≤ 𝜋(𝑖), borrowing takes place in all states. In a Type Ia environment the value 

function, 𝑉𝐼𝑎, is: 

𝑉𝐼𝑎(𝑑) = (1 − 𝑛)
2−2𝛼
2−𝛼 (

𝑛𝛼

1 + 𝑖
)

𝛼
2−𝛼

[1 − 𝛼 +
𝛼

2(1 + 𝑖)
] [(1 − 𝜎) + 𝜎𝐴

𝛼
2−𝛼]

+ 𝑑 [(1 − 𝑛)(1 + 𝑖) + 𝑛] + 𝑛𝑊𝑒𝑝(0) + (1 − 𝑛)𝑊𝑙𝑝(0, 0) 

Type Ib: 𝑑 ∈ [𝜋(0), 𝜋(𝑖)𝐴
𝛼

2−𝛼], borrowers borrow only when 𝐴 is realized. In a Type Ib 

environment the value function, 𝑉𝐼𝑏, is: 

𝑉𝐼𝑏(𝑑) = (1 − 𝑛)
2−2𝛼
2−𝛼 (𝑛𝛼)

𝛼
2−𝛼 [(1 − 𝜎) (1 −

𝛼

2
) + 𝜎 [1 − 𝛼 +

𝛼

2(1 + 𝑖)
] (

𝐴

1 + 𝑖
)

𝛼
2−𝛼

]

+ 𝑑 [𝜎(1 − 𝑛)(1 + 𝑖) + (1 − 𝜎(1 − 𝑛))] + 𝑛𝑊𝑒𝑝(0) + (1 − 𝑛)𝑊𝑙𝑝(0, 0) 

In each environment the value function depends on FM consumption, the value that the stock of 

accepted bills, 𝑑, will make it possible to carry into the CM, and the continuation value of the 

game. Observe that in an enforceable credit equilibrium consumption in the FM is independent 

of the level of 𝑑, but that when 𝑖 > 0 borrowers consume less than they would in the first best 

allocation. Observe also that in this environment where liquidity constraints don’t bind, the 

principal effect of 𝑑 > 0 is to reduce the interest costs for borrowers. For this reason both value 

functions are linear in 𝑑 and the solution to the optimization problem, equation (3), is well-

defined. 

  

(9) 

(10) 
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Intertemporal Optimization 

In the Type Ia environment consumption in the FM is independent of 𝑑, and the first order 

condition for the value function is simply: 

𝑉𝐼𝑎
′
(𝑑) = 1 + (1 − 𝑛)𝑖 

Thus, the only effect of an incremental increase in 𝑑 when debt holdings are low is to generate a 

return equal to the value of carrying the bills into the next CM and the expected value of the 

interest that will be avoided by borrowers who increase their holdings of bills. 

Of course, in order for this low level of debt to be a stationary equilibrium it must be the case 

that an agent optimizes in the CM, or that equation (3) is satisfied and therefore that the Type Ia 

agent prefers to spend all but d of his deposits in the CM, or that: 

1 ≥ 𝛽𝑉𝐼𝑎′(𝑑) = 𝛽[1 + (1 − 𝑛)𝑖] 
or 

𝑖 ≤
1 − 𝛽

𝛽(1 − 𝑛)
≡ 𝑖̂𝐼𝑎 

Observe that only when the banks are able to coordinate on the highest optimizing interest rate, 

𝑖̂𝐼𝑎, is a positive level of bill holdings consistent with equilibrium. Any measure of competition 

in the banking sector that results in a lower interest rate causes optimizing borrowers to prefer 

not to carry bills over time.  

In the Type Ib environment, the Euler equation gives us the only level of 𝑖 that is consistent with 

an equilibrium in which borrowers borrow only if 𝐴 is realized – and therefore carry enough bills 

into the FM to consume when 𝐴 = 1 is realized:  

1 − 𝛽

𝜎𝛽(1 − 𝑛)
= 𝑖 ≡ 𝑖̂𝐼𝑏 

Definition 1: A bank money equilibrium with enforcement and borrowing is a set 

(𝑖, 𝑝(𝐴), 𝑑, 𝑞(𝐴), 𝑥(𝐴)) such that equations (2), (5), (6), (9) and (11) are satisfied. 

Definition 2: A bank money equilibrium with enforcement and partial borrowing is a set 

(𝑖, 𝑝(𝐴), 𝑑, 𝑞(𝐴), 𝑥(𝐴)) such that equations (2), (5), (6), (10) and (12) are satisfied. 

 

Banks: How interest rates are chosen 

As was discussed above, banks do not choose the quantity of loans they wish to make, but 

instead set the interest rate and the borrowing constraints and then allow quantities to adjust 

given the prices that have been set. In an enforcement equilibrium, 𝑏̅ = ∞, and as a result there 

are no constraints on the quantity of loans that a bank can make.  

Because banks choose price and not quantity, we analyze bank behavior using the framework of 

Bertrand competition. That is, we assume that each bank sets its interest rate, taking what it 

(12) 

(11) 
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expects the other banks to do as given, and an equilibrium is found when each bank’s strategy is 

a best response to the other banks’ strategies.   

In each period a bank chooses the interest rate to maximize the expected value of the lending rate 

multiplied by the loans that the bank expects to make, ℓ𝑏(𝑖): 

max𝑖 𝐸 𝑖ℓ
𝑏(𝑖) 

Because the banks under Bertrand competition simultaneously set the interest rate, 𝑖, that they 

will charge non-bankers, non-bankers will bring all of their business to the bank that posts the 

lowest interest rate. We assume that if more than one bank posts the lowest interest rate, then the 

market is split evenly between the banks offering the low rate. As is well established, the best 

response of a bank is to set the rate incrementally below the lowest rate set by the other banks if 

that rate is above cost and to set the rate at cost if the lowest rate is at cost. For this reason, the 

only Nash equilibrium in Bertrand competition is for banks to price their loans at cost. That is, 

the outcome of Bertrand competition is the competitive outcome.  

Given this structure the logic of Bertrand competition will mean that all banks set 𝑖 = 0 since 

lending is a costless activity and any bank that expects the other banks to set higher rates will try 

to capture the whole market by setting a lower rate.  

Observe that when banking is competitive, the left hand side of equation (11) is zero, and we can 

conclude that when banking is competitive equation (11) is an inequality and the only 

enforcement equilibrium has 𝑑 = 0. We state this formally as follows: 

Proposition 1: When banking is competitive, 𝑖 = 0, and the only monetary equilibrium with 

enforcement has 𝑑 = 0 and is a bank money equilibrium with enforcement and borrowing. In 

this equilibrium, production and consumption are first-best, 𝑞(𝐴) = 𝑞∗∗(𝐴) and 𝑥(𝐴) = 𝑥∗∗(𝐴). 

Proof: Because 𝛽 < 1, equation (12) cannot be satisfied when banking is competitive, so there 

are no equilibria with partial borrowing. To evaluate Type Ia equilibrium we substitute 𝑖 into 

(11), find that the left hand side is zero, and thus that the equation holds as an inequality. Then in 

any equilibrium 𝑑 = 0. Substituting 𝑑 = 𝑖 = 0 into equations (5) and (6), we find 

𝑞(𝐴) = 𝑞∗∗(𝐴) and 𝑥(𝐴) = 𝑥∗∗(𝐴).■ 

Observe also that the monetary equilibrium with enforcement and competitive banking gives the 

first-best outcome even though the Friedman Rule does not hold. In other words, when the 

monetary system is based on the one that existed in the 18th century, the first-best outcome is 

possible in an environment with convertible currency – if debt is enforceable. In short, the 

Friedman Rule is not so much a general result, but instead an artifact of a particular way of 

modeling money. When one views the means of exchange – as it was viewed in the era of 

convertible currency6 – not as an asset, but as a debt on which interest had to be paid, the first 

best is possible as long as the cost of that debt is negligible. 

  

 
6 See, e.g, Wicksell (1898), Dunbar (1909), Willis (1916). 
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2.2 Stationary equilibrium without enforcement 

Now consider the case of equilibria without enforcement, where the repayment of debt must be 

incentive compatible for the agents in our economy. The non-bankers will face the credit 

constraint, ℓ̅, that ensures that they are never able to borrow so much that they would prefer to 

default rather than to pay back the debt. Similarly, the bankers will face the credit constraint, 𝑏̅, 

which ensures that the value of being a banker is greater than the value of taking advantage of 

the special economic function of a banker in order to defraud the public and then suffer the 

consequences of bank failure. 

Before calculating 𝑏̅ and ℓ̅, we consider the problem faced by non-bankers. There are three 

possible types of environment without enforcement. (The derivation of the value functions is 

presented in Appendix 1.) 

Type I: the non-bank borrowing constraint is slack 

Type II: the non-bank borrowing constraint only binds when  𝐴 is realized 

Type III: the non-bank borrowing constraint always binds 

Within the Type I environment, there may be sub-type “a” equilibria where non-banks borrow in 

every period, sub-type “b” equilibria where non-banks hold enough bills that they borrow only 

when productivity is high, and sub-type “c” equilibria where non-banks hold so many bills that 

they never borrow. A Type Ic equilibrium is the only one in which there is no borrowing. In the 

Type II environment, because the liquidity constraint binds in the high productivity state, there 

can only be two sub-types of equilibria, “a” and “b,” similarly all Type III equilibria are also 

sub-type “a” equilibria. The value functions for each of these six types of equilibria differ, and 

we start by focusing on the subtype “a” equilibria. The other types of equilibria will be 

considered at various points in the text. Each equilibrium is described by three equations: an 

intertemporal Euler equation, a non-bank incentive constraint, which both determines the level of 

ℓ̅ and incorporates the non-bank value function, and a bank incentive constraint which 

determines the minimum interest rate consistent with a bank borrowing constraint sufficiently 

high to support desired borrowing in the high productivity state. 

Type Ia equilibria 

The value function for the environment where the liquidity constraint never binds was derived 

above in the section on enforcement equilibria. The relevant Euler equation is: 𝑖 ≤
1−𝛽

𝛽(1−𝑛)
≡ 𝑖̂𝐼𝑎. 

The borrowing constraint for non-banks 

The borrowing constraint for the non-banks ensures that the repayment of debt is always 

incentive compatible. In the case of no default, a borrower pays back the loan with interest (after 

having spent in the FM any bills she brought into the FM) and gets the continuation value of the 

game, or: 

𝑊𝑏(ℓ, 0) = −(1 + 𝑖)ℓ + 𝛽𝑉(𝑑) 
By contrast, the value to a borrower of entering the CM with loan, ℓ, and accepted bills, d, when 
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the borrower intends to default is represented by 𝑊̂𝑏(ℓ, 𝑑). Default results in a loss of bank 

services and without bank support no other member of the economy will accept the defaulter’s 

debt in payment, so the continuation value of the game is autarky.7 Furthermore, a defaulter 

chooses not to produce at a loss so: 

𝑊̂𝑏(ℓ, 𝑑) = −𝑄̂ + 𝛽𝑉̂(𝑑̂′) = 0 

Then, the borrowing constraint for non-banks is:  

𝑊𝑏(ℓ̅, 0) ≥ 𝑊̂𝑏(ℓ̅, 𝑑) = 0 

When this equation holds with equality, it can be rewritten as a fixed point problem:  

ℓ̅ =
𝛽𝑉(𝑑; ℓ̅)

1 + 𝑖
 

Let ℓ̅∗  denote the solution to this problem. 

Lemma 1: Given ℓ̅ = ℓ̅∗, 𝑊𝑏(ℓ, 0) is decreasing in ℓ, and 𝑊𝑏(ℓ, 0) ≥ 𝑊̂𝑏(ℓ̅, 𝑑) for all  ℓ ≤ ℓ̅. 

Proof:  𝑊𝑏(ℓ, 0) = −(1 + 𝑖)ℓ + 𝛽𝑉(𝑑; ℓ̅∗) and for all cases 𝑉(𝑑; ℓ̅∗) is independent of ℓ, the 

amount of debt that the borrower carries into the CM in the current period. As 𝑊𝑏(ℓ, 0) is 

decreasing in ℓ and is equal to zero at ℓ̅∗,  𝑊𝑏(ℓ, 0) ≥ 0 = 𝑊̂𝑏(ℓ̅, 𝑑) for all  ℓ ≤ ℓ̅∗. ■  

Before preceding to discuss the banks’ problem, it is convenient to rewrite d, the bill holdings 

that are carried from one period to the next as a fraction, θ, of the expected expenditure of the 

borrower in the unconstrained case: 

𝑑 = 𝜃𝜋(𝑖) [(1 − 𝜎) + 𝜎𝐴
𝛼
2−𝛼] 

 

Define 𝜃 as the fraction of the expected expenditure that would allow the borrower to purchase 

his optimal bundle in the low productivity state: 

𝜃 ≡
1

(1 − 𝜎) + 𝜎𝐴
𝛼
2−𝛼

< 1 

and define 𝜃 similarly, but for the high productivity state: 

𝜃 ≡
𝐴

𝛼
2−𝛼

(1 − 𝜎) + 𝜎𝐴
𝛼
2−𝛼

> 1 

 

  

 
7 This is similar to Gu, Mattesini, Monnet, & Wright (2013) where the penalty to being caught in default is autarky. 

Note, however, that we do not adopt the whole of their framework. They assume that an agent is only caught 

defaulting with a certain probability. This does not accord with the role of banks discussed in this paper, although as 

a technical matter, such a probability can easily be added to the model. 

(14) 

(13) 
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Banks: The problem of franchise value 

Recall that banks have the technology to circulate their bills in the CM in order to purchase the 

CM good even though this will leave them insolvent. Recall also that in both the CM and the FM 

banks face the limit on their liabilities, 𝑏̅. At the end of a period in which a bank circulates such 

fraudulent bills the bank is bankrupt and is forced into autarky. Here we discuss the banks’ 

incentive compatibility constraint both under Bertrand competition and more generally. 

First, consider the steady state value of being a banker at the start of a period, which we will 

represent by 𝑉𝑏(𝑖), where 𝑖 is the steady state value of the interest rate. Then,  

𝑉𝑏(𝑖) = 𝐸𝑊𝑏(𝐿) 

where 𝑊𝑏(𝐿) is the value of being a banker at the start of the CM, given that loans 𝐿 were made 

in the FM. 𝑉𝑏(𝑖) is the expected value of 𝑊𝑏(𝐿) over both values of 𝐴. Furthermore  

𝑊𝑏(𝐿) = 𝑖𝐿 + 𝛽𝑉𝑏(𝑖) 
or the value of being a banker in the CM is the real interest owed to the bank plus the discounted 

continuation value of being a banker in the future. And we can conclude that: 

𝑉𝑏(𝑖) =
𝑖𝐸𝐿

1 − 𝛽
 

where 𝐸𝐿 is the expected quantity of loans. 

Let 𝑊̃(𝐿) be the value of default to a banker who expects payment on loans outstanding, 𝐿, in 

the CM. Then: 

𝑊̃(𝐿) = 𝑖𝐿 + 𝑏̅ − 𝐿 

or 𝑊̃(𝐿) is given by the funds paid to the bank in exchange for the loan plus the value to the 

bank of issuing bills up to the bank’s constraint, as the continuation value of default in the next 

period is autarkic and therefore zero. Recall that a bank must lend in the FM in order to be able 

to issue bills in the CM. 

Banking is incentive compatible only if the bank will prefer not to default, when the bank’s loans 

– and the interest to be paid on them – are at their lowest. In the type Ia environment incentive 

compatibility is given by: 

𝑊𝑏((1 − 𝑛)(𝜋(𝑖) − 𝑑)) ≥ 𝑊̃((1 − 𝑛)(𝜋(𝑖) − 𝑑)) 

In order for the banking system to have the borrowing capacity to support the market it must be 

the case that 𝑏̅, the lending capacity of the banks, is sufficiently high  

𝑏̅ ≥ (1 − n) (𝜋(𝑖)𝐴
𝛼
2−𝛼 − 𝑑) 

𝑏̅ must therefore exceed the mass of borrowers times the maximum amount that they seek 

borrow. Here we impose this borrowing capacity as a condition that must be met in order for the 

banking system to provide adequate banking services. Thus, after simplifying the banks’ 

incentive compatibility constraint, substituting in the FM value function, and imposing the 

condition that 𝑏̅ must be high enough that the bank can afford to fund the maximum level of 

loans, we find:  

𝛽 

1 − 𝛽

𝑖𝐸𝐿

𝜋(𝑖)(1 − 𝑛)
 ≥ 𝐴

𝛼
2−𝛼 − 1 

(15) 

(17) 

(16) 
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In a Type Ia equilibrium 𝜃 < 𝜃 < 1 and 

𝐸𝐿 = (1 − 𝑛)(1 − 𝜃)𝜋(𝑖) [(1 − 𝜎) + 𝜎𝐴
𝛼
2−𝛼] 

Plug this into equation (17) and define 𝑖̆𝐼𝑎 to be the 𝑖 that solves equation (17) when it holds as 

an equality: 

𝑖 ≥
1 − 𝛽

𝛽(1 − 𝜃)
(𝜃 − 𝜃) ≡ 𝑖̆𝐼𝑎 

Observe that in a Type Ia equilibrium as long as 𝑖 > 0, then there exists some value of β such 

that the incentive compatibility constraint, equation (18), will be met for all β greater than that 

value. Under Bertrand competition, however, i = 0 and the Type Ia incentive compatibility 

constraint for bankers is always violated.  

This indicates that banking is an incentive compatible profession only if bankers earn some 

positive rate of interest on their loans over and above the costs of making them. This is stated 

formally in Lemma 2. 

Lemma 2: Competitive banking, where the interest rate reflects only the zero costs of banking, 

is not incentive compatible in a type I environment. 

In addition, only when the banking sector is structured such that there is a franchise value to 

banking,  

𝑉𝑏(𝑖) > 0, is bank provision of a reputation-based money supply incentive compatible.8  

Given that under Bertrand competition there can be no equilibrium in a type I environment, we 

now characterize the set of possible equilibria without the assumption that the banking sector is 

competitive, and then in Section IV discuss means by which policy can choose one of these 

equilibria. 

Definition 3: A bank money equilibrium with unconstrained credit and borrowing in all states 

(Type Ia equilibrium) is a set (𝑖, 𝑝(𝐴), 𝑑, 𝑞(𝐴), 𝑥(𝐴), ℓ̅, 𝑏̅) such that the resource and intra-

temporal optimization conditions, equations (2), (5), and (6), intertemporal optimization, 

equation (11), and the incentive compatibility constraints, equations (13) and (18), are satisfied, 

𝜋(𝑖)𝐴
𝛼

2−𝛼 ≤ ℓ̅ + 𝑑, and 𝑑 < 𝜋(𝑖).  

In a Type Ia equilibrium the Euler, equation (11), tells us that either 𝑑 = 0 and the equation sets 

an upper bound on 𝑖 or 𝑑 > 0 and 𝑖 = 𝑖̂𝐼𝑎. The bank incentive constraint, equation (18), sets a 

lower bound on 𝑖, 𝑖̆𝐼𝑎. Lemma 3 then defines some of the characteristics of a Type Ia 

equilibrium. 

 
8 Charles Goodhart observes that this framework omits an alternative enforcement mechanism: early 20th century 

banking developed in an environment where the assets of wealthy bankers were at risk, and there is indeed little 

doubt that the actual enforcement mechanisms used in the past were more complicated than those in the model. 

(18) 
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Lemma 3: If the non-bank borrowing constraint never binds and 𝑑 = 𝜃 = 0, then when 𝑛 + 𝜎 ≥

1 there exists i such that 𝑖̂𝐼𝑎 ≥ 𝑖 ≥ 𝑖̆𝐼𝑎, and when 𝑛 + 𝜎 < 1 ,there exists i such that 𝑖̂𝐼𝑎 ≥ 𝑖 ≥

𝑖̆𝐼𝑎, if  

𝐴 ≤ (
2 − 𝑛 − 𝜎

1 − 𝑛 − 𝜎
)

2−𝛼
𝛼

 

Proof: When the non-bank borrowing constraint never binds and 𝑑 = 𝜃 = 0,  

1 − 𝛽

𝛽

1

1 − 𝑛
≡ 𝑖̂𝐼𝑎  ≥ 𝑖̆𝐼𝑎 ≡

1 − 𝛽

𝛽

𝐴
𝛼
2−𝛼 − 1

(1 − 𝜎) + 𝜎𝐴
𝛼
2−𝛼

 

which can be rewritten: 

(2 − 𝑛 − 𝜎)  ≥ (1 − 𝑛 − 𝜎)𝐴
𝛼
2−𝛼 

The two results follow.■ 

The steady state value function that incorporates equations (2), (5), and (6) in a Type Ia 

environment is given by: 

𝑉𝐼𝑎(𝑑) =
1

1 − 𝛽
(1 − 𝑛)

2−2𝛼
2−𝛼 (

𝑛𝛼

1 + 𝑖
)

𝛼
2−𝛼

[1 − 𝛼 +
𝛼(1 + 2𝜃𝑖)

2(1 + 𝑖)
] [(1 − 𝜎) + 𝜎𝐴

𝛼
2−𝛼] 

Plug this into equation (13) to get: 

ℓ̅∗𝐼𝑎 =
𝛽

1 − 𝛽
(1 + 𝑖)

−2
2−𝛼(1 − 𝑛)

2−2𝛼
2−𝛼 (𝑛𝛼)

𝛼
2−𝛼 [1 − 𝛼 +

𝛼(1 + 2𝜃𝑖)

2(1 + 𝑖)
] [(1 − 𝜎) + 𝜎𝐴

𝛼
2−𝛼] 

Confirm that the assumption that the non-bank borrowing constraint does not bind is met or that 

ℓ̅∗ ≥ [
𝛼

1 + 𝑖
]

2
2−𝛼

[
(1 − 𝑛)

𝑛
]

−𝛼
2−𝛼

(𝐴
𝛼
2−𝛼 − 𝜃 [(1 − 𝜎) + 𝜎𝐴

𝛼
2−𝛼]) 

This inequality simplifies:  

𝛽(1 − 𝑛)

1 − 𝛽
[
1 − 𝛼

𝛼
+
(1 + 2𝜃𝑖)

2(1 + 𝑖)
] ≥ 𝜃 − 𝜃 

 In the case where no bills are carried from one period to the next, 𝜃 = 0 and the inequality 

simplifies even further:  

1

1 + 𝑖
≥ 2(

𝜃

1 − 𝑛

1 − 𝛽

𝛽
−
1 − 𝛼

𝛼
) 

Proposition 2: Given 𝑑 = 𝜃 = 0 and 𝑛 + 𝜎 ≥ 1  or  𝑛 + 𝜎 < 1  and 𝐴 ≤ (
2−𝑛−𝜎

1−𝑛−𝜎
)

2−𝛼

𝛼
, then the 

set of interest rates consistent with bank money equilibrium with unconstrained credit is given by 

{𝑖| 𝑖̂𝐼𝑎 ≥ 𝑖 ≥ 𝑖̆𝐼𝑎and (20) holds} and there exists a critical value 𝛽̂𝐼0 such that a bank money 

equilibrium with unconstrained credit exists for all 𝛽 ≥ 𝛽̂𝐼0.  

(19) 

(20) 
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Proof: By Lemma 3 there exists 𝑖 such that equations (11) and (18) hold or 𝑖̂𝐼𝑎 ≥ 𝑖 ≥ 𝑖̆𝐼𝑎. The 

Type Ia value function, equation (9), incorporates equations (2), (5) and (6) and, in turn, is 

incorporated with equation (13) into equation (20). Thus, the set of Type 1a equilibrium interest 

rates is described by equations (11), (18), and (20) or {𝑖|𝑖̂𝐼𝑎 ≥ 𝑖 ≥ 𝑖̆𝐼𝑎and (20) holds}. 

The right hand side of equation (20) is decreasing in 𝛽, converges to ∞ as 𝛽 converges to zero, 

and converges to a negative number as 𝛽 converges to one. Thus, there exists 𝛽̂𝐼0 such that 

equation (20) holds with equality when 𝑖 = 𝑖̂𝐼𝑎. Now consider 𝛽′ ≥ 𝛽̂𝐼0. By equations (11) and 

(18), 𝛽′ defines new values 𝑖̂′ < 𝑖̂𝐼𝑎 and 𝑖̆𝐼′ < 𝑖̆𝐼𝑎, but does not change the relationship between 

them, so 𝑖̂′ ≥ 𝑖̆𝐼′. Plugging 𝑖̂′ into equation (20) we find that the right hand side has increased and 

the left hand side has decreased so the equation still holds. Conclusion: a bank money 

equilibrium with unconstrained credit exists for all 𝛽 ≥ 𝛽̂𝐼0.■ 

When bills are held over time in equilibrium, less is borrowed from the banks and as a result 

interest rates must be higher than in the 𝜃 = 0 case in order for the bank incentive constraint to 

hold – as equation (18) demonstrates.  

Lemma 4: If the non-bank borrowing constraint never binds and 𝜃 > 0, then iff  

𝜃 ≤ 1 − (1 − 𝑛)(𝜃 − 𝜃) ≡ 𝜃 there exists i such that 𝑖̂𝐼𝑎 = 𝑖 ≥ 𝑖̆𝐼𝑎. Furthermore,  

𝜃 = 𝜃    if 𝑛 + 𝜎 = 1 

𝜃 > 𝜃    if 𝑛 + 𝜎 < 1 

𝜃 < 𝜃    if 𝑛 + 𝜎 > 1 

Proof: There exists i such that 𝑖̂𝐼𝑎 = 𝑖 ≥ 𝑖̆𝐼𝑎 iff 

1 − 𝛽

𝛽

1

1 − 𝑛
≡ 𝑖̂𝐼𝑎  ≥ 𝑖̆𝐼𝑎 ≡

1 − 𝛽

𝛽(1 − 𝜃)
(𝜃 − 𝜃) 

which can be rewritten: 

1 − (1 − 𝑛)(𝜃 − 𝜃) ≥ 𝜃 

The equation  

1 − (1 − 𝑛)(𝜃 − 𝜃) ≤ 𝜃 

can in turn be rewritten 

1 − 𝜎 − 𝑛 ≤ 𝐴
𝛼
2−𝛼(1 − 𝜎 − 𝑛) 

The three results relating 𝜃 to 𝜃 follow.■ 

A bank money equilibrium with unconstrained credit can only exist if the non-bank liquidity 

constraint does not bind in the high productivity state. In the case where 𝜃 ≥ 0, we use the Euler, 

equation (11), to determine 𝑖, plug that into equation (19) and solve for 𝜃. This defines a function 

𝜙, such that a Type Ia equilibrium can exist only if 𝜙 ≤ 𝜃. 

𝜙(𝛼, 𝛽, 𝑛, 𝜃) ≡ [𝜃 −
𝛽(1 − 𝑛)

1 − 𝛽
(
1 − 𝛼

𝛼
−
𝛽(1 − 𝑛)

2(1 − 𝛽𝑛)
)]

(1 − 𝛽𝑛)

1 + 𝛽(1 − 2𝑛)
≤ 𝜃 (21) 

Review of Economic Analysis forthcoming 2020 (12)



19 
 

Proposition 3: Bank money equilibria with unconstrained credit, borrowing in every state, and 

𝜃 > 0 are characterized by: 

𝑖 = 𝑖̂𝐼𝑎 =
1 − 𝛽

𝛽(1 − 𝑛)
 

𝜙(𝛼, 𝛽, 𝑛, 𝜃) ≤ 𝜃 ≤ min(𝜃, 𝜃) 

 

(i) For 𝛼 <
2

3
 and 𝜃 ≤ min (𝜃, 𝜃) there exists a critical value 𝛽̂𝐼𝑎 such that a bank money 

equilibrium with unconstrained credit exists for all 𝛽 ≥ 𝛽̂𝐼𝑎; 

(ii) For 𝛼 <
2

3
 there exists a critical value, 𝛽, below which there is no 𝜃 that will support a Type 

Ia equilibrium. For 𝛼 <
2

3
  and 𝛽 ≤ 𝛽, there exists a critical value 𝜃̃ such that a Type Ia 

equilibrium exists for all 𝜃 ≤ 𝜃 ≤ min (𝜃, 𝜃) 

Proof:  When 𝜃 > 0 , the Euler, equation (11) must hold with equality, fixing 𝑖 = 𝑖̂𝐼𝑎. By 

Lemma 4, for 𝜃 ≤ 𝜃,  𝑖̂𝐼𝑎 ≥ 𝑖̆𝐼𝑎 and equation (18) is also met. Equations (2), (5), (6) and (13) are 

incorporated into equation (21) which defines a lower bound for 𝜃.  

(i) To find 𝛽̂𝐼𝑎, consider equation (21): 

𝜙(𝛼, 𝛽, 𝑛, 𝜃) ≤ 𝜃 

When 𝛼 <
2

3
, 𝜙 is continuously decreasing in 𝛽. As 𝛽 converges to one, 𝜙 converges to −∞ for 

𝛼 <
2

3
, and equation (21) is true. As 𝛽 converges to 0, 𝜙 converges to 𝜃 and for 𝜃 ≤ min(𝜃, 𝜃) 

equation (21) is false. Thus, when 𝛼 <
2

3
 for any given 𝜃 ≤ min (𝜃, 𝜃), there exists some 𝛽̂𝐼𝑎, 

such that 𝜙(𝛼, 𝛽, 𝑛, 𝜃) = 𝜃. Because when 𝛼 <
2

3
,  𝜙(𝛼, 𝛽, 𝑛, 𝜃) is continuously decreasing in 𝛽, 

equation (21) will be true for all 𝛽 ≥ 𝛽̂𝐼𝑎.  

(ii) When 𝛼 <
2

3
, 𝛽 is found by setting  

𝜙(𝛼, 𝛽, 𝑛, 𝜃) = min (𝜃, 𝜃) 

Using an argument analogous to the preceding argument, we find that a 𝛽 which solves this 

equation must exist. Furthermore, because 𝜙(𝛼, 𝛽, 𝑛, 𝜃) is continuously decreasing in 𝛽, when 

𝛼 <
2

3
, 𝜙 will be greater than min (𝜃, 𝜃) for all 𝛽 < 𝛽, and thus for such 𝛽 there exists no 𝜃 ≤

min (𝜃, 𝜃) such that equation (21) is true. When 𝛼 <
2

3
  and 𝛽 ≥ 𝛽,  𝜙(𝛼, 𝛽, 𝑛, 𝜃) ≤ min (𝜃, 𝜃). 

Set 𝜃̃ = max (0, 𝜙). Then equation (21) is true for all 𝜃̃ ≤ 𝜃 ≤ min (𝜃, 𝜃). ■ 

 

Type Ib and Ic equilibria 

Definition 4: A bank money equilibrium with unconstrained credit and borrowing in the high 

productivity state (Type Ib equilibrium) is a set (𝑖, 𝑝(𝐴), 𝑑, 𝑞(𝐴), 𝑥(𝐴), ℓ̅, 𝑏̅) such that the 
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resource and intra-temporal optimization conditions, equations (2), (5), and (6), intertemporal 

optimization, equation (12), and the incentive compatibility constraints, equations (13) and (17), 

are satisfied, 𝜋(𝑖)𝐴
𝛼

2−𝛼 ≤ ℓ̅ + 𝑑, and 𝜋(𝑖) ≤ 𝑑 < 𝜋(𝑖)𝐴
𝛼

2−𝛼.  

Definition 5: A bank money equilibrium with unconstrained credit and no borrowing (Type Ic 

equilibrium) is a set (𝑖, 𝑝(𝐴), 𝑑, 𝑞(𝐴), 𝑥(𝐴), ℓ̅, 𝑏̅) such that the resource and intra-temporal 

optimization conditions, equations (2), (5), and (6), intertemporal optimization, and the incentive 

compatibility constraints for both banks and non-banks are satisfied, and 𝜋(𝑖)𝐴
𝛼

2−𝛼 ≤ 𝑑.  

The value functions for Type Ib and Type Ic equilibria are derived in Appendix 1. The result in 

Lemma 5 is unsurprising: 

Lemma 5: No Type Ic equilibria, in which 𝜃 ≥ 𝜃 and agents never borrow, exist.  

Proof: When 𝜃 > 0, the Euler equation must hold with equality. In this environment where there 

is no borrowing the Euler would be 
1

𝛽
= 1, which is a contradiction. ■ 

In order for a Type Ic equilibrium to exist, non-bankers would have to carry bills from one 

period to the next even though these bills purchase the same quantity of goods in each period. 

Discounting ensures that this is never an optimizing choice. 

In a Type Ib equilibrium, borrowing only takes place in the high productivity state, and as a 

result the economy only needs to support a single level of borrowing. For this reason, it is 

possible to set the bank borrowing constraint equal to the desired borrowing of the non-bankers 

in the high productivity state. Because only banks that lend in the FM can issue liabilities and 

default in the CM, the fact that a tight borrowing constraint can be imposed on the bankers 

ensures that the problem of bank default can be eliminated without adversely affecting the 

allocation of the non-bankers. For this reason, the bank borrowing constraint is not a binding 

constraint in a Type 1b equilibrium. 

Thus, a Type Ib equilibrium is determined by three equations, 𝜃 < 𝜃 ≤ 𝜃, the Euler, 𝑖 = 𝑖̂𝐼𝑏, and 

𝜙𝑏 ≤ 𝜃, where 𝜙𝑏 is found by the same procedure as 𝜙: the 𝑉𝐼𝑏 value function is plugged into 

equation (13), which is solved for ℓ̅∗. Then the non-binding liquidity constraint condition is 

imposed and the resulting inequality is solved for 𝜃. Finally 𝑖̂𝐼𝑏 is plugged into the equation. 

From this we find: 

Proposition 4: Bank money equilibria with unconstrained credit and 𝜃 < 𝜃 ≤ 𝜃 are 

characterized by: 

𝑖 = 𝑖̂𝐼𝑏 =
1 − 𝛽

𝜎𝛽(1 − 𝑛)
 

𝜙𝑏(𝛼, 𝛽, 𝑛, 𝜃) ≡ 𝜃 (2 −
1

𝛼
+ 𝑖̂𝐼𝑏) − (

1

𝛼
−
1

2
) (

1

𝑖̂𝐼𝑏
) [𝜃 + 𝜃

(1 − 𝜎)

𝜎
(1 + 𝑖̂𝐼𝑏)

2
2−𝛼] ≤ 𝜃 
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Proof: When 𝜃 > 𝜃 , the Euler, equation (12) must hold with equality, fixing 𝑖 = 𝑖̂𝐼𝑏. Equations 

(2), (5), (6) and (13) are incorporated with the condition that the liquidity constraint must not 

bind to find 𝜙𝑏 which defines a lower bound for 𝜃. ■ 

 

Type IIa equilibria 

In the Type IIa environment ℓ̅ only binds when  𝐴 is realized, but borrowing takes place in both 

states. The related value function (derived in Appendix 1) for non-banks is:  

𝑉𝐼𝐼𝑎(𝑑) = (1 − 𝜎) (
𝑛𝛼

1 + 𝑖
)

𝛼
2−𝛼

(1 − 𝑛)
2−2𝛼
2−𝛼 [1 − 𝛼 +

𝛼

2(1 + 𝑖)
]

+ (1 − 𝜎)𝑑 [(1 − 𝑛)(1 + 𝑖) + 𝑛]+𝜎(1 − 𝑛)
2−𝛼
2 [𝑛𝐴(ℓ̅ + 𝑑)]

𝛼
2

+  𝜎 [𝑛𝑑 − (1 − 𝑛)(1 + 𝑖)ℓ̅ +
(1 − 𝑛)(ℓ̅ + 𝑑)

2
] + (1 − 𝑛)𝑊𝑙𝑝(0, 0) + 𝑛𝑊𝑒𝑝(0) 

When VII(d) is lagged one period, simplified, and plugged into the CM optimization problem, we 

get: 

𝑊𝑒𝑝(𝑑) = 𝑑 + 𝛽 [(1 − 𝜎) (
𝑛𝛼

1 + 𝑖
)

𝛼
2−𝛼

(1 − 𝑛)
2−2𝛼
2−𝛼 [1 − 𝛼 +

𝛼

2(1 + 𝑖)
]

− 𝜎ℓ̅ [
1 − 𝑛

2
+ (1 − 𝑛)𝑖′] + (1 − 𝑛)𝑊𝑙𝑝(0, 0) + 𝑛𝑊𝑒𝑝(0)]

+ max𝑑′ {−𝑑
′

+ 𝛽𝑑′ [(1 − 𝜎
1 − 𝑛

2
) + (1 − 𝜎)(1 − 𝑛)𝑖′]+𝛽𝜎(1 − 𝑛)

2−𝛼
2 [𝑛𝐴(ℓ̅ + 𝑑′)]

𝛼
2
} 

Before proceeding to solve the optimization problem, observe first that the maximization 

problem solved by borrowers in the CM is the same as that solved by lenders, and second that 

the second derivative in terms of 𝑑′ of the optimization problem is negative, so the solution to 

the problem is well defined. Take the FOC to find the following Euler equation:  

1

𝛽
− 1 ≥ (1 − 𝜎)(1 − 𝑛)𝑖′ − 𝜎

(1 − 𝑛)

2
+
𝛼𝜎

2
(𝑛𝐴)

𝛼
2 [
1 − 𝑛

ℓ̅ + 𝑑′
]

2−𝛼
2

 

A monetary equilibrium with no accepted bill holdings from one period to the next will exist 

only if the marginal benefit of spending an accepted bill in the CM exceeds the marginal benefit 

of carrying it into the next period. The latter marginal benefit is given by the right hand side of 

equation (22) and is composed of the interest benefit earned by a borrower when productivity is 

low and the cost incurred by a borrower when productivity is high and the bills are not carried 

(22) 
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into the next period together with the incremental benefit due to a higher level of consumption 

when the liquidity constraint binds.  

Equation (22) can be used to define the maximum lending rate that is consistent with borrower 

optimization in a Case IIa equilibrium, 𝑖̂𝐼𝐼𝑎: 

{
1

𝛽
− 1 + 𝜎

(1 − 𝑛)

2
−
𝛼𝜎

2
(𝑛𝐴)

𝛼
2 [
1 − 𝑛

ℓ̅ + 𝑑′
]

2−𝛼
2
}

1

(1 − 𝜎)(1 − 𝑛)
≡ 𝑖̂𝐼𝐼𝑎 ≥ 𝑖 

In the Type IIa environment equation (15) still defines bank incentive compatibility. However, 

both the expected loans in the high productivity state and the minimum level of 𝑏̅ to support the 

equilibrium are given by = (1 − n)ℓ̅. Thus, the bank incentive constraint is given by: 

𝛽𝑖

1 − 𝛽
[(1 − 𝜎)(𝜋(𝑖) − 𝑑) + 𝜎ℓ̅] ≥ ℓ̅ − (𝜋(𝑖) − 𝑑) 

Definition 6: A bank money equilibrium with partially constrained credit and debt in all states 

(Type IIa equilibrium) is a set (𝑖, 𝑝(𝐴), 𝑑, 𝑞(𝐴), 𝑥(𝐴), ℓ̅, 𝑏̅) such that the resource and intra-

temporal optimization conditions, equations (2), (5), and (6), intertemporal optimization, 

equation (23), and the incentive compatibility constraints, equations (13) and (24), are satisfied, 

and 𝜋(𝑖) ≤ ℓ̅ + 𝑑 ≤ 𝜋(𝑖)𝐴
𝛼

2−𝛼 . 

Type IIa equilibria can only be evaluated numerically by solving jointly for 𝑖 and ℓ̅. Diagram 2 

(in the next section) shows a typical region of equilibrium for the case where there are no bill 

holdings. Diagram 4 (also in the next section) shows the same for positive bill holdings. Type IIb 

equilibria can also only be found numerically. All efforts to find such an equilibrium have, 

however, failed. 

Type III equilibrium  

The value function for a Type III equilibrium in which the liquidity constraint always binds is: 

𝑉𝐼𝐼𝐼(𝑑) =
1

1 − 𝛽
{(1 − 𝑛)

2−𝛼
2 [𝑛ℓ̅ + 𝑑)]

𝛼
2 [(1 − 𝜎) + 𝜎(𝐴)

𝛼
2] − (1 − 𝑛) (

ℓ̅ + 𝑑

2
+ 𝑖ℓ̅)} 

From this we derive the Euler equation: 

1

𝛽
− 1 +

(1 − 𝑛)

2
−
𝛼

2
𝑛
𝛼
2 [
1 − 𝑛

ℓ̅ + 𝑑′
]

2−𝛼
2
[(1 − 𝜎) + 𝜎(𝐴)

𝛼
2] ≥ 0 

and plugging the value function into equation (13) we get the non-bank incentive constraint: 

ℓ̅ ≤
𝛽

(1 − 𝛽)(1 + 𝑖)
{(1 − 𝑛)

2−𝛼
2 [𝑛(ℓ̅ + 𝑑)]

𝛼
2 [(1 − 𝜎) + 𝜎(𝐴)

𝛼
2] − (1 − 𝑛) (

ℓ̅ + 𝑑

2
+ 𝑖ℓ̅)} 

(23) 

(25) 

(24) 

(26) 
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In the Type III environment lending in every period is given by (1 − 𝑛)ℓ̅, and as a result the 

minimum lending capacity of the banks, 𝑏̅, is also (1 − 𝑛)ℓ̅. This gives the Type III bank 

incentive constraint: 

𝛽 

1 − 𝛽
𝑖ℓ̅  ≥ 0 

Observe that in this environment as in the Type Ib environment the equation used to determine 

the minimum interest rate consistent with bank incentive compatibility tells us nothing. Because 

the bank lending constraint can be set equal to the amount that will be borrowed whenever 

borrowing takes place and banks that do not lend in the FM cannot circulate liabilities in the CM, 

there is no need for excess capacity upon which banks can default – and even an interest rate of 0 

is consistent with equilibrium. 

Definition 7: A bank money equilibrium with always-constrained credit (Type III equilibrium) is 

a set (𝑖, 𝑝(𝐴), 𝑑, 𝑞(𝐴), 𝑥(𝐴), ℓ̅, 𝑏̅) such that the resource and intra-temporal optimization 

conditions, equations (2), (5), and (6), intertemporal optimization, equation (25), and the 

incentive compatibility constraints,  equations (13) and (27), are satisfied, and ℓ̅ + 𝑑 ≤ 𝜋(𝑖). . 

Proposition 5: Given 𝑑 = 0, there exists a critical value 𝛽̂𝐼𝐼𝐼0 such that no bank money 

equilibrium with always-constrained credit exists for all 𝛽 ≥ 𝛽̂𝐼𝐼𝐼0.  

Proof: First, solve equation (26) to find ℓ̅∗ when 𝑑 = 0, and impose the condition that ℓ̅∗ is less 

than desired expenditure in the low productivity state. Solve this condition for 𝛽 to find: 

𝛽 ≤ 2{
1 + 𝑛𝑖

1 + 𝑖
+ 𝑛 +

2

𝛼
[(1 − 𝜎) + 𝜎(𝐴)

𝛼
2] (1 − 𝑛)}

−1

≡ 𝛽̂𝐼𝐼𝐼0 

■ 

3. Equilibria in diagrams 

Diagrams 2 through 5 allow us to visualize the set of stationary equilibria that exist in this 

convertible currency world. Unsurprisingly the level of bill holdings that supports the broadest 

range of equilibrium interest rates is the corner solution, no bill holdings at all.  

When no bills are carried, the monetary system relies only on the “as needed” issue of credit to 

support the transactions of the economy. Because of the absence of a stock of a monetary asset, 

demand and supply do not fully determine the interest rate in equilibrium. Instead incentive 

constraints place upper and lower bounds on the set of equilibrium interest rates. In the next 

section, means by which the interest rate may be determined are discussed along with the policy 

implications of such choices. 

 

  

(27) 
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Diagram 2 

 

Diagram 2 shows that when bills are not carried over time, 𝛽 is an important determinant of the 

type of equilibrium that can be supported. For the highest values of 𝛽, the only equilibria that 

exist are Type I equilibria where non-banks never face binding liquidity constraints. In a Type I 

equilibrium the bank incentive compatibility constraint defines a minimum interest rate (the blue 

line) that is adequate to induce the banks not to opt to take one-time advantage in the low 

productivity state of their ability to issue money up to the level needed to support production in 

the high productivity state, consume the proceeds, and then default. Similarly, the intertemporal 

Euler condition defines the level of interest (the yellow line) that is consistent with non-banks 

choosing to carry bills from one period to the next. In equilibria where non-banks carry no bills 

over time interest rates may lie below the yellow line. 

The green line, 𝜙, defines the boundary where ℓ̅∗, the minimum non-bank borrowing constraint, 

is just equal to the desired expenditure in the high productivity state. The red line, 𝜙𝐼𝐼𝐼, defines 

the boundary where ℓ̅∗ is just equal to the desired expenditure in the low productivity state. 

When 𝛽 takes on a middling value, the only type of equilibrium with no bill holdings that exist 

are the Type II equilibria where non-banks are liquidity constrained in the high productivity 

state, but not in the low productivity state. For the Type II equilibria it is once again the case that 

the minimum level of the equilibrium interest rate is determined by the bank incentive constraint, 

while the maximum level is defined by the non-banks’ intertemporal Euler equation. 

For the lowest values of 𝛽 only Type III equilibria, where non-banks are liquidity constrained in 

all states, can be supported, and virtually any interest rate is a candidate for equilibrium. This 

latter result is due to the fact that on the one hand the same amount is borrowed in every state 

allowing the bank borrowing constraint to be set tightly, giving the banks no opportunity to issue 

liabilities in the CM and then default,  

  

III 

II    

       I 

 𝑖 ̆

 𝑖 ̂

 𝜙 

 𝜙𝐼𝐼𝐼 
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Diagram 3 

 

and making the lower bound on the equilibrium interest rate zero; and on the other hand, non-

banks are liquidity constrained in all states, so at the margin the interest rate doesn’t play a role 

in the choice of how many bills to carry from one period to the next. Thus, in a Type III 

equilibrium the principal effect of raising interest rates is to reduce ℓ̅∗, the maximum size of the 

credit line that it is incentive compatible for non-banks to repay. (Note that the equilibrium level 

of ℓ̅∗ and how it changes is not depicted in Diagram 2.) 

Diagram 3 depicts the welfare associated with the equilibria in Diagram 2. Non-bank welfare is 

highest when the interest rate is at the lowest equilibrium level. The blue line represents this 

case, while the green line represents non-bank welfare when the interest rate is at its maximum. 

Bank welfare when the interest rate is at its minimum is represented by the yellow line, and bank 

welfare when the interest rate is at its maximum by the red line. Note also that because there is 

no maximum interest rate in the Type III environment, in this case the highest value of the 

maximum interest rate for the Type II case was used instead.  

The most obvious implication of Diagram 3 is that not only the borrowers, but also the bankers 

are better off in environments where liquidity constraints are slack than where they are binding.  

Diagram 4 depicts the equilibria in which bills are held over time, focusing on the case of a 

moderate value of 𝛽 such that at 𝜃 = 0 the only equilibrium is a Type IIa equilibrium. The red 

line represents the Type IIa equilibria that exist when 𝜃 is low. These exist only up to the green 

dashed line, 𝜙, which is where ℓ̅∗ equals the desired expenditure in the high productivity state. 

When 𝜃 is high enough to lie on the other side of 𝜙, but is less than  𝜃, the equilibria are Type Ia 

and have 𝑖 = 𝑖̂𝐼𝑎. (Note that this diagram depicts the case where 𝑛 = 𝜎 = 0.5, so 𝜃 = 𝜃 by 

Lemma 4.) For 𝜃 < 𝜃 ≤ 𝜃, the only equilibria are Type Ib and have 𝑖 = 𝑖̂𝐼𝑏. They are depicted 

by the green line. Observe that for the moderate value of 𝛽 depicted here for values of 𝜃 greater 
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Diagram 4 

 

Diagram 5 

 

than but close to 𝜃, there are no Type Ib equilibria, because the ℓ̅∗ consistent with these values of 

𝜃 is so low that it would be binding in the high productivity state. 

In short, equilibria with positive debt holdings exist only when the interest rate is set at precisely 

the right level. Diagram 5 depicts welfare in these different equilibria. 

Diagram 5 shows that the steady state welfare of non-banks is increasing in the level of bill 

holdings, but only incrementally. The increase in welfare is generated by the fact that bill 

holdings allow borrowers to consume the same amount while borrowing less and therefore 
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reduce interest payments and the cost incurred to make those payments. On the other hand, the 

fact that the Euler equation holds with equality across the Type Ia and the Type Ib equilibria 

indicates that the cost of moving to a higher welfare steady state is offset by the cost of 

producing enough to get there.  

Another way to explain this point is to consider the case where 𝛽 is sufficiently high that when 

𝜃 = 0, the only equilibria are Type Ia equilibria. In this case when 𝑖 = 𝑖̂𝐼𝑎, there will be 

equilibria for 0 ≤ 𝜃 ≤ min [𝜃, 𝜃], and as in the diagram above, any steady state at 𝜃 = 𝜃 will 

have higher non-bank welfare than the steady state at 𝜃 = 0. The implication of the Euler 

equation is, however, that any agent in the 𝜃 = 0 steady state has no desire to move to the 

“higher welfare” steady state – because the costs of getting there precisely offset the value of the 

move. That is, despite the fact that Diagram 5 indicates that the highest welfare steady state is at 

𝜃 = 𝜃, this is only true if the agents start with 𝜃 = 𝜃, not if they have to get there by their own 

means. In short, despite the desirability of a high level of bill holdings that is implied by 

Diagram 5, in a world where agents are born without bill holdings this desirability does not exist. 

Finally, observe that shifts from one equilibrium to the next have a very different effect on 

bankers than on non-bankers. Bankers generally lose when bill holdings increase as they receive 

less in interest payments. However, when 𝜃 rises high enough to permit a transition from a Type 

IIa, liquidity constrained, equilibrium to a Type Ia, unconstrained equilibrium, the equilibrium 

interest rate falls dramatically but is more than offset by an increase in consumption and thus in 

interest paid to banks. As a result, it is the bankers who capture most of the welfare gains due to 

the transition – and they would have an incentive to set interest rates so as to facilitate this 

transition.   

The bottom line: This paper models banks as facilitating a means of exchange that is in fact a 

naked short of the unit of account. It demonstrates the welfare benefits of such a monetary 

system and the incentive compatibility of the naked short contract structure for both banks and 

non-banks. By comparing the welfare of the different types of equilibria in this section, we find 

that there is a strong welfare-based impetus for the banks and non-banks in an economy to 

develop the institutions that will support a monetary system that is anchored to a real 

consumption good, but where market participants, instead of storing the good, use credit-claims 

on the consumption good in order to transact. 

4. How do we choose among equilibria when 𝜽 = 𝟎?  

Since empirical studies typically conclude that annual discount rates are very high, usually above 

0.95, there is reason to believe that the “good” Type Ia equilibria will be incentive compatible for 

non-banks. The challenge in supporting Type Ia equilibria is the structure of the banking system. 

Lemma 2 states that a competitive banking sector will drive interest rates so low that a Type Ia 

equilibrium cannot be supported. In this section we consider policies that will make it possible to 

achieve a Type Ia equilibrium outcome in the environment of endogenous enforcement. 

4.1 Usury Laws 
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One solution is to treat banking as a natural monopoly (or oligopoly), taking a permissive 

approach to an anti-competitive structure in the industry, while at the same time capping the 

price at which bank services are offered. Usury laws can be viewed as part of such an approach. 

This paper studies the use of convertible currencies. One of the most important historical 

examples of a convertible currency is Britain’s gold standard which had its origins in the British 

monetary experiments of the late 1690s (Horsefield 1960) and was the foundation upon which 

the classical Gold Standard that anchored world trade in the late 19th century was built. Through 

the developmental stages of this British institution and of the British banking system that grew 

up with it, usury laws capped interest rates at 5% and as a practical matter through the 18th 

century this was the rate charged by banks on bills (Pressnell 1956: 89). The late 18th century 

monetary system as described by Thornton (1802) is the basis for the model of money in this 

paper. Because 18th century British tradesmen typically had bills outstanding, held no gold, and 

preferred to hold as assets interest bearing bills of other tradesmen, they were effectively in 

equilibria with 𝜃 = 0, where no matured (non-interest-bearing) bills are carried over time. 

Given the modern empirical evidence regarding discount factors, a 5% usury rate appears to be a 

very reasonable policy: as diagram 2 indicates a 5% interest rate will be consistent with Type Ia 

equilibrium as long as the discount factor is relatively high (over 0.93 in the diagram) – which is 

consistent with the empirical evidence. For an economy that is in a Type Ia 𝜃 = 0 equilibrium, a 

5% usury rate will function as a constraint on the interest rate charged by a not-so-competitive 

banking sector, and will serve only to force this sector to share more of the surplus with the non-

banks than would have been the case otherwise. In short, a usury rate in this model serves, as 

advertised, to protect the interests of the public at the expense of the financiers. 

Of course, the 5% usury rate is found to be reasonable policy here, because it is not a long-term 

lending rate. This is instead the rate paid on payments system debt that is to be repaid over the 

very short-term and that is risk-free due to the careful calibration of borrowing constraints to 

ensure that it is incentive compatible. 

The modern credit card system is testimony to the risk-free nature of payment system debt: most 

people have access to zero-interest payments system debt using their credit cards as long as the 

debt is repaid within 3 to 6 weeks after it is incurred – and they do not have an established 

history of failure to pay. (What makes the nature of the credit card system confusing is that it is 

combined with a system of high-interest rate long-term debt.) This model and the extraordinary 

success of historical financial systems that operated under a tight usury constraint indicate that 

imposing a usury rate on credit cards of 5%-9% might be an effective way of transferring value 

from the banks to consumers. 

4.2 Central bank lending rates 

Usury laws in Britain did not survive long into the 19th century. They were replaced by an active 

central bank lending policy that is the prototype for modern central bank policy. The practice of 

the central bank setting interest rates can also be explained by this model. 
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When banks compete too aggressively they may drive the interest rate down so low that 

providing bank services is no longer incentive compatible for the bankers. When this takes place, 

the banks will issue too many liabilities, fail to honor them, and destabilize the monetary system. 

One solution to this problem is to promote competition in the banking sector, but at the same 

time set a floor below which the competitive interest rate may not fall. 

In the model, if policymakers set the interest rate floor at 𝑖̆𝐼𝑎, then Bertrand competition in the 

banking sector will drive the interest rate to that level, a Type Ia equilibrium will be supported, 

and the policy will favor the interests of non-banks by ensuring that they pay the lowest possible 

equilibrium rate. Such a policy would imitate the current practice of the Federal Reserve in 

paying interest on reserves or the past practice of the Federal Reserve when it managed reserves 

to ensure that banks could lend at the Federal Funds Rate. In both cases, the fact that central bank 

policy ensures that banks can lend safely at a certain rate will have the effect of discouraging 

banks from reducing the rates they charge other borrowers below this level. 

In short, this model provides a clear explanation for why central bank policy takes the form that 

it does. Central banks set the short-term interest rate to ensure that competition in the banking 

sector does not drive rates so low that the practice of banking will no longer be incentive 

compatible and that the banking system will be destabilized by banks that issue liabilities that 

cannot be honored.  

5. Conclusion 

This paper models the role paid by banks in the payments system. Banks impose borrowing 

terms on non-banks that are consistent with incentive compatibility, including excluding them 

from the payments system if they default. By structuring payments system debt in this way banks 

are able to certify that non-bank debt is safe.  

Payments system debt is by its nature short-term. To capture the short-term nature of this debt in 

the model, it is both incurred and paid off within a single period. A natural implication of the 

short-term nature of the debt is then that interest paid on payments system debt does not 

compensate for discounting over time, but instead serves to ensure that payments system debt is 

incentive compatible both for the banks and for the non-banks. 

This model shows how banks can be the fulcra that institutionalize and organize the naked 

shorting of the unit of account.9 By doing so a “phantom” supply of the unit of account is created 

that exists only so long as the short-term payments system debt is outstanding.  

By basing the monetary system on the principle of the naked short and imposing a convertible 

currency structure on our environment, we demonstrate that this function of banks is efficiency 

enhancing: the Euler equation makes it clear that nobody wants to carry over time a currency that 

is convertible at a fixed rate into real goods, and thus that it is efficiency enhancing for people 

 
9 The model also illustrates the cartalist principle that accepted bills circulate as money, because they are backed by 

debt. That is, lenders who receive accepted bills in payment do so because they know that the structure of the 

monetary system ensures that the producers in the next sub-period will need to pay back their bank loan and 

therefore will accept in payment the bill, because it can be used to settle their outstanding debt. 
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living in a gold standard world to transact using credit instruments – as in fact was historically 

the case.  

Indeed, we demonstrate that the first-best can be achieved by such a bank-based monetary 

system in a convertible currency environment with enforceable debt. Thus, this represents an 

alternative to fiat money and the Friedman Rule as a means of optimally addressing transactions 

frictions in an economy. 

The paper focuses mostly, however, on the nature of the second-best equilibria that are incentive 

feasible when debt is not based on exogenous enforcement. In this case, non-bank borrowers face 

an endogenous borrowing limit. When discount rates are high, the borrowing limit does not bind, 

and it is the need to compensate the banks sufficiently that they are not incentivized to take 

advantage of their ability to issue naked shorts that bounds the allocation away from the first 

best. 

A full analysis of the relationship between these second-best equilibria and fiat money is left to 

future work. We note here, however, first, that the fact that productivity is stochastic in our 

environment is likely to mean that a simple Friedman Rule will have limited effectiveness, and, 

second, that because bank money allows for both short and long positions in the unit of account, 

whereas fiat money allows for only long positions in the unit of account, it is likely that as long 

as discount rates are not too low bank money will expand the set of implementable allocations 

relative to fiat money and make it possible for higher welfare outcomes to be achieved.  

This formal model of bank money as a naked short of the unit of account can also be adapted to 

the study of central bank digital currencies. If central bank digital currency is modeled as long 

only accounts held by non-banks at the central bank that can be spent down to but not below 

zero, then digital currency would be similar to fiat money. As a result, the likely result of a 

comparison between central bank digital money and bank money in this environment is that, as 

long as discount rates are not too low, a shift from bank money to central bank digital money 

would have adverse effects on the set of allocations, and the welfare, that is attainable in 

equilibrium. Thus, in future work we will use this environment to provide a theoretic foundation 

for the commonly voiced critique of central bank digital currencies that their adoption would 

have adverse effects by reducing the availability of bank loans and destabilizing the banking 

system (Broadbent 2016, Lowe 2017, Carney 2018).  
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Appendix 1: Derivation of Value Functions 

It is convenient for purposes of exposition to substitute out the equilibrium price level when 

defining expressions for the optimal consumption of good x, 𝑥∗(𝑑, ℓ̅, 𝐴),  the optimal supply of 

good x, 𝑞∗(𝑑, ℓ̅, 𝐴), and the resulting income received from the sale of good x, 𝑝𝑞∗(𝑑, ℓ̅, 𝐴). 

For optimal consumption, we find:  

𝑥∗( 𝑑, ℓ̅, 𝐴) =

{
 
 
 

 
 
 𝜒(0)𝐴

1
2−𝛼                                            if 𝜋(0)𝐴

𝛼
2−𝛼 < 𝑑

𝑛. 𝑎.                               if 𝜋(𝑖)𝐴
𝛼
2−𝛼 < 𝑑 < 𝜋(0)𝐴

𝛼
2−𝛼

𝜒(𝑖)𝐴
1

2−𝛼                       if 𝑑 ≤ 𝜋(𝑖)𝐴
𝛼
2−𝛼 < ℓ̅ + 𝑑

[
𝑛𝐴(ℓ̅ + 𝑑)

(1 − 𝑛)
]

1
2

                                                otherwise

 

where  

𝜒(𝑖) ≡ [
𝛼𝑛

(1 + 𝑖)(1 − 𝑛)
]

1
2−𝛼

 

The optimal supply of the FM good is given by:  

𝑞∗(𝐴, 𝑑, ℓ̅) =

{
 
 
 

 
 
 𝜁(0)𝐴

1
2−𝛼                                                   if 𝜋(0)𝐴

𝛼
2−𝛼 < 𝑑

𝑛. 𝑎.                                      if 𝜋(𝑖)𝐴
𝛼
2−𝛼 < 𝑑 < 𝜋(0)𝐴

𝛼
2−𝛼

𝜁(𝑖)𝐴
1

2−𝛼                               if 𝑑 ≤ 𝜋(𝑖)𝐴
𝛼
2−𝛼 < ℓ̅ + 𝑑

[
𝐴(1 − 𝑛)(ℓ̅ + 𝑑)

𝑛
]

1
2

                                            otherwise

 

where  

𝜁(𝑖) ≡ [
𝛼

1 + 𝑖
]

1
2−𝛼

[
(1 − 𝑛)

𝑛
]

1−𝛼
2−𝛼

 

And the resulting income received from the sale of the FM good is: 

𝑝𝑞∗(𝐴, 𝑑, ℓ̅) =

{
  
 

  
 𝜈(0)𝐴

𝛼
2−𝛼                                     if 𝜋(0)𝐴

𝛼
2−𝛼 < 𝑑

𝑛. 𝑎.                           if 𝜋(𝑖)𝐴
𝛼
2−𝛼 < 𝑑 < 𝜋(0)𝐴

𝛼
2−𝛼

𝜈(𝑖)𝐴
𝛼
2−𝛼              if 𝑑 ≤  𝜋(𝑖)𝐴

𝛼
2−𝛼 < ℓ̅ + 𝑑

(1 − 𝑛)(ℓ̅ + 𝑑𝑡)

𝑛
                                           otherwise

 

where  
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𝜈(𝑖) ≡ [
𝛼

1 + 𝑖
]

2
2−𝛼

[
(1 − 𝑛)

𝑛
]

2−2𝛼
2−𝛼

 

Then the value function for Type Ia: Always borrow, d ≤ 𝜋(𝑖)𝐴
𝛼

2−𝛼, is: 

𝑉1𝑎(𝑑) = (1 − 𝜎) {(1 − 𝑛) [𝜒(𝑖)𝛼𝐴
𝛼
2−𝛼 +𝑊𝑙𝑝 (𝜋(𝑖)𝐴

𝛼
2−𝛼 − 𝑑, 0)]

+ 𝑛 [−
𝜁(𝑖)2

2
𝐴

𝛼
2−𝛼 +𝑊𝑒𝑝 (𝑑 + 𝜈(𝑖)𝐴

𝛼
2−𝛼 )]}

+ 𝜎 {(1 − 𝑛) [𝜒(𝑖)𝛼𝐴
𝛼
2−𝛼 +𝑊𝑙𝑝 (𝜋(𝑖)𝐴

𝛼
2−𝛼 − 𝑑, 0)]

+ 𝑛 [−
𝜁(𝑖)2

2
𝐴

𝛼
2−𝛼 +𝑊𝑒𝑝 (𝑑 + 𝜈(𝑖)𝐴

𝛼
2−𝛼 )]} 

And we can rewrite (1 − 𝑛) [𝜒(𝑖)𝛼𝐴
𝛼

2−𝛼 +𝑊𝑙𝑝 (𝜋(𝑖)𝐴
𝛼

2−𝛼 − 𝑑, 0)] + 𝑛 [−
𝜁(𝑖)2

2
𝐴

𝛼

2−𝛼 +

𝑊𝑒𝑝 (𝑑 + 𝜈(𝑖)𝐴
𝛼

2−𝛼 )]  

= (1 − 𝑛) [[
𝛼𝑛

(1 + 𝑖)(1 − 𝑛)
]

𝛼
2−𝛼

𝐴
𝛼
2−𝛼 − (1 + 𝑖)([

𝛼

1 + 𝑖
]

2
2−𝛼

[
(1 − 𝑛)

𝑛
]

−𝛼
2−𝛼

𝐴
𝛼
2−𝛼 − 𝑑)

+𝑊𝑙𝑝(0,0)]

+ 𝑛 [− [
𝛼

1 + 𝑖
]

2
2−𝛼

[
(1 − 𝑛)

𝑛
]

2−2𝛼
2−𝛼 𝐴

𝛼
2−𝛼

2
+ 𝑑 + [

𝛼

1 + 𝑖
]

2
2−𝛼

[
(1 − 𝑛)

𝑛
]

2−2𝛼
2−𝛼

𝐴
𝛼
2−𝛼

+𝑊𝑒𝑝(0)] 

= (1 − 𝑛)𝐴
𝛼
2−𝛼 [

(1 − 𝑛)

𝑛
]

−𝛼
2−𝛼

[[
𝛼

(1 + 𝑖)
]

𝛼
2−𝛼

− ([𝛼]
2

2−𝛼(1 + 𝑖)
−𝛼
2−𝛼)]

+
𝑛𝐴

𝛼
2−𝛼

2
[
(1 − 𝑛)

𝑛
]

2−2𝛼
2−𝛼

[
𝛼

1 + 𝑖
]

2
2−𝛼

+ 𝑑 [(1 − 𝑛)(1 + 𝑖) + 𝑛] + 𝑛𝑊𝑒𝑝(0) + (1

− 𝑛)𝑊𝑙𝑝(0,0) 

= (𝑛𝐴)
𝛼
2−𝛼(1 − 𝑛)

2−2𝛼
2−𝛼 {[

𝛼

(1 + 𝑖)
]

𝛼
2−𝛼

− ([𝛼]
2

2−𝛼(1 + 𝑖)
−𝛼
2−𝛼) +

1

2
[
𝛼

1 + 𝑖
]

2
2−𝛼

}

+ 𝑑 [(1 − 𝑛)(1 + 𝑖) + 𝑛] + 𝑛𝑊𝑒𝑝(0) + (1 − 𝑛)𝑊𝑙𝑝(0,0) 
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= (
𝑛𝛼𝐴

1 + 𝑖
)

𝛼
2−𝛼

(1 − 𝑛)
2−2𝛼
2−𝛼 [1 − 𝛼 +

𝛼

2(1 + 𝑖)
] + 𝑑 [(1 − 𝑛)(1 + 𝑖) + 𝑛] + 𝑛𝑊𝑒𝑝(0) + (1

− 𝑛)𝑊𝑙𝑝(0,0) 

Thus we can conclude that Type Ia gives us the following value function: 

𝑉1𝑎(𝑑) = (
𝑛𝛼

1 + 𝑖
)

𝛼
2−𝛼

(1 − 𝑛)
2−2𝛼
2−𝛼 [1 − 𝛼 +

𝛼

2(1 + 𝑖)
] [(1 − 𝜎) + 𝜎𝐴

𝛼
2−𝛼]

+ 𝑑 [(1 − 𝑛)(1 + 𝑖) + 𝑛] + 𝑛𝑊𝑒𝑝(0) + (1 − 𝑛)𝑊𝑙𝑝(0,0) 

 

Type Ib: Splitting, 𝑑 ∈ [𝜋(0)𝐴
𝛼

2−𝛼, 𝜋(𝑖)𝐴
𝛼

2−𝛼] 

𝑉𝐼𝑏(𝑑) = (1 − 𝜎) {(1 − 𝑛)[𝜒(0)𝛼 +𝑊𝑙𝑝(0, 𝑑 − 𝜋(0))] + 𝑛 [−
𝜁(0)2

2
+𝑊𝑒𝑝(𝑑 + 𝜈(0) )]}

+ 𝜎 {(1 − 𝑛) [𝜒(𝑖)𝛼𝐴
𝛼
2−𝛼 +𝑊𝑙𝑝 (𝜋(𝑖)𝐴

𝛼
2−𝛼 − 𝑑, 0)]

+ 𝑛 [−
𝜁(𝑖)2

2
𝐴

𝛼
2−𝛼 +𝑊𝑒𝑝 (𝑑 + 𝜈(𝑖)𝐴

𝛼
2−𝛼 )]} 

Following the same method as for Type Ia, we find: 

𝑉𝐼𝑏(𝑑) = (1 − 𝑛)
2−2𝛼
2−𝛼 (𝑛𝛼)

𝛼
2−𝛼 [(1 − 𝜎) (1 −

𝛼

2
) + 𝜎 [1 − 𝛼 +

𝛼

2(1 + 𝑖)
] (

𝐴

1 + 𝑖
)

𝛼
2−𝛼

]

+ 𝑑 [𝜎(1 − 𝑛)(1 + 𝑖) + (1 − 𝜎(1 − 𝑛))] + 𝑛𝑊𝑒𝑝(0) + (1 − 𝑛)𝑊𝑙𝑝(0,0) 

 

Type Ic: Never borrow, d ≥ 𝜋(0)𝐴
𝛼

2−𝛼 

𝑉𝐼𝑐(𝑑) = (1 − 𝜎) {(1 − 𝑛)[𝜒(0)𝛼 +𝑊𝑙𝑝(0, 𝑑 − 𝜋(0))] + 𝑛 [−
𝜁(0)2

2
+𝑊𝑒𝑝(𝑑 + 𝜈(0) )]}

+ 𝜎 {(1 − 𝑛) [𝜒(0)𝛼𝐴
𝛼
2−𝛼 +𝑊𝑙𝑝 (0, 𝑑 − 𝜋(0)𝐴

𝛼
2−𝛼)]

+ 𝑛 [−
𝜁(0)2

2
𝐴

𝛼
2−𝛼 +𝑊𝑒𝑝 (𝑑 + 𝜈(0)𝐴

𝛼
2−𝛼 )]} 

Following the same method as for Type Ia, we find: 

𝑉𝐼𝑐(𝑑) = (1 −
𝛼

2
) (1 − 𝑛)

2−2𝛼
2−𝛼 (𝑛𝛼)

𝛼
2−𝛼 [(1 − 𝜎) + 𝜎𝐴

𝛼
2−𝛼] + 𝑑 + 𝑛𝑊𝑒𝑝(0) + (1

− 𝑛)𝑊𝑙𝑝(0,0) 
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Type IIa: Always borrow and ℓ̅ only binds for 𝐴, 𝜋(𝑖) ≤ ℓ̅ + 𝑑 < 𝜋(𝑖)𝐴
𝛼

2−𝛼 

𝑉𝐼𝐼𝑎(𝑑) = (1 − 𝜎) {(1 − 𝑛)[𝜒(𝑖)𝛼 +𝑊𝑙𝑝(𝜋(𝑖) − 𝑑, 0)] + 𝑛 [−
𝜁(𝑖)2

2
+𝑊𝑒𝑝(𝑑 + 𝜈(𝑖) )]}

+ 𝜎 {(1 − 𝑛) [[
𝑛𝐴(ℓ̅ + 𝑑)

(1 − 𝑛)
]

𝛼
2

+𝑊𝑙𝑝(ℓ̅, 0)]

+ 𝑛 [−
(1 − 𝑛)(ℓ̅ + 𝑑)

2𝑛
+𝑊𝑒𝑝 (𝑑 +

(1 − 𝑛)(ℓ̅ + 𝑑)

𝑛
 )]} 

After some algebra we get: 

𝑉𝐼𝐼𝑎(𝑑) = (1 − 𝜎) (
𝑛𝛼

1 + 𝑖
)

𝛼
2−𝛼

(1 − 𝑛)
2−2𝛼
2−𝛼 [1 − 𝛼 +

𝛼

2(1 + 𝑖)
]

+ (1 − 𝜎)𝑑 [(1 − 𝑛)(1 + 𝑖) + 𝑛]+𝜎(1 − 𝑛)
2−𝛼
2 [𝑛𝐴(ℓ̅ + 𝑑)]

𝛼
2

+  𝜎 [𝑛𝑑 − (1 − 𝑛)(1 + 𝑖)ℓ̅ +
(1 − 𝑛)(ℓ̅ + 𝑑)

2
] + 𝑛𝑊𝑒𝑝(0) + (1 − 𝑛)𝑊𝑙𝑝(0,0) 

Type IIb: 𝑑 ≥ 𝜋(𝑖), borrow and ℓ̅ binds for 𝐴, 𝜋(𝑖) ≤ ℓ̅ + 𝑑 < 𝜋(𝑖)𝐴
𝛼

2−𝛼 

𝑉𝐼𝐼𝑏(𝑑) = (1 − 𝜎) {(1 − 𝑛)[𝜒(0)𝛼 +𝑊𝑙𝑝(0, 𝑑 − 𝜋(𝑖))] + 𝑛 [−
𝜁(𝑖)2

2
+𝑊𝑒𝑝(𝑑 + 𝜈(𝑖) )]}

+ 𝜎 {(1 − 𝑛) [[
𝑛𝐴(ℓ̅ + 𝑑)

(1 − 𝑛)
]

𝛼
2

+𝑊𝑙𝑝(ℓ̅, 0)]

+ 𝑛 [−
(1 − 𝑛)(ℓ̅ + 𝑑)

2𝑛
+𝑊𝑒𝑝 (𝑑 +

(1 − 𝑛)(ℓ̅ + 𝑑)

𝑛
 )]} 

𝑉𝐼𝐼𝑏(𝑑) = (1 − 𝜎)(𝛼𝑛)
𝛼
2−𝛼(1 − 𝑛)

2−2𝛼
2−𝛼 (1 −

𝛼

2
)+𝜎(1 − 𝑛)

2−𝛼
2 [𝑛𝐴(ℓ̅ + 𝑑)]

𝛼
2

−  𝜎(1 − 𝑛) [
ℓ̅ + 𝑑

2
+ 𝑖ℓ̅] + 𝛽𝑉𝐼𝐼𝑏(𝑑) 

 

Type III: Always borrow and ℓ̅ always binds, ℓ̅ + 𝑑 <  𝜋(𝑖)𝐴
𝛼

2−𝛼 
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𝑉𝐼𝐼𝐼(𝑑) = (1 − 𝜎) {(1 − 𝑛) [[
𝑛(ℓ̅ + 𝑑)

(1 − 𝑛)
]

𝛼
2

+𝑊𝑙𝑝(ℓ̅, 0)]

+ 𝑛 [−
(1 − 𝑛)(ℓ̅ + 𝑑)

2𝑛
+𝑊𝑒𝑝 (𝑑 +

(1 − 𝑛)(ℓ̅ + 𝑑)

𝑛
 )]}

+ 𝜎 {(1 − 𝑛) [[
𝑛𝐴(ℓ̅ + 𝑑)

(1 − 𝑛)
]

𝛼
2

+𝑊𝑙𝑝(ℓ̅, 0)]

+ 𝑛 [−
(1 − 𝑛)(ℓ̅ + 𝑑)

2𝑛
+𝑊𝑒𝑝 (𝑑 +

(1 − 𝑛)(ℓ̅ + 𝑑)

𝑛
 )]} 

After some algebra we get: 

𝑉𝐼𝐼𝐼(𝑑) =
1

1 − 𝛽
{(1 − 𝑛)

2−𝛼
2 [𝑛(ℓ̅ + 𝑑)]

𝛼
2 [(1 − 𝜎) + 𝜎(𝐴)

𝛼
2] − (1 − 𝑛) (

ℓ̅ + 𝑑

2
+ 𝑖ℓ̅)} 
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