
Onboard Evolution of Understandable Swarm Behaviors

Simon Jones, Alan F. Winfield, Sabine Hauert,* and Matthew Studley*

Designing the individual robot rules that give rise to desired emergent swarm
behaviors is difficult. The common method of running evolutionary algorithms
off-line to automatically discover controllers in simulation suffers from two
disadvantages: the generation of controllers is not situated in the swarm and so
cannot be performed in the wild, and the evolved controllers are often opaque
and hard to understand. A swarm of robots with considerable on-board proc-
essing power is used to move the evolutionary process into the swarm, providing
a potential route to continuously generating swarm behaviors adapted to the
environments and tasks at hand. By making the evolved controllers human-
understandable using behavior trees, the controllers can be queried, explained,
and even improved by a human user. A swarm system capable of evolving and
executing fit controllers entirely onboard physical robots in less than 15 min is
demonstrated. One of the evolved controllers is then analyzed to explain its
functionality. With the insights gained, a significant performance improvement in
the evolved controller is engineered.

1. Introduction

Swarm robotics takes inspiration from collective phenomena in
nature,[1] where swarm-level behaviors emerge through the local
interactions of multiple agents with each other and with the envi-
ronment. Swarms have appealing properties for robotic systems;
they are robust, resilient, and scalable and show potential in
real-world applications ranging from exploration, mapping,
and search and rescue to disaster recovery, pollution control,
and cleaning.[2] A central problem within the field is the design
of controllers for the individual agents such that the desired
swarm behavior emerges. Artificial evolution has been widely

used to allow swarm engineers to automat-
ically discover controllers capable of pro-
ducing the desired collective behavior.[3]

Conventionally, evolutionary swarm
robotics has used two approaches: off-line
evolution in simulation, followed by the
transfer of the evolved controllers into a
real swarm, and online embodied evolution
within the swarm, where robots continually
test the fitness of controllers in the real
world and exchange genetic material to
generate new controllers. Off-line evolution
requires external infrastructure to perform
the evolution and send the resulting con-
trollers to the robots. It also requires good
a priori information about the environ-
ments and scenarios the robots may
encounter, which often results in a reality
gap when a mismatch is present, causing
evolved controllers to perform poorly in
reality. Online embodied evolution can be
slow, taking hours or days, and has the dan-

ger that a robot instantiating a bad controller could come to
harm, an important consideration in potentially hostile environ-
ments. We propose a hybrid, moving computation into the real
swarm so that evolution can be both fast, as with off-line evolu-
tion, and potentially responsive to changes in the environment,
as embodied evolution is.

Both off-line and online evolutionary methods have typically
resulted in controllers that are opaque and hard to understand.
This has important implications for safety analysis and the ability
to gain insight from the discovered controllers and even improve
them. We use behavior trees (BT) as the controller architecture.
They have desirable properties, they are hierarchical, so any sub-
tree is a valid behavior tree in its own right, they are modular and
can be used to encapsulate useful sub-behaviors, and they are
human-readable and amenable to automatic simplification.

In this article, we outline our first steps toward the vision of an
adaptive, responsive, and safe swarm by using on-board evolu-
tion in simulation with the Xpuck Teraflop swarm, enhanced
e-pucks with very high collective processing power,[4] followed
by analysis, understanding, and improvement of one of the
evolved behavior trees. We make two contributions, firstly, we
demonstrate in-swarm evolution of controllers in real time that
result in the real-world swarm fitness improving over time, with
very fit controllers emerging in some cases in less than 15min.
And secondly, we demonstrate a benefit of behavior trees as a
controller architecture by showing how it is possible to simplify,
analyze, and then improve one of the evolved controllers.

This article is arranged in the following way, Section 2 dis-
cusses the background and situates the study. Section 3 describes
the methods, and in Section 4, we present the results and discuss

S. Jones, Dr. S. Hauert
Bristol Robotics Laboratory
University of Bristol
Senate House, Tyndall Ave, Bristol BS8 1TH, UK
E-mail: sabine.hauert@bristol.ac.uk

Prof. A. F. Winfield, Dr. M. Studley
Bristol Robotics Laboratory
University of the West of England
Coldharbour Ln, Stoke Gifford, Bristol BS16 1QY, UK
E-mail: matt.studley@brl.ac.uk

The ORCID identification number(s) for the author(s) of this article
can be found under https://doi.org/10.1002/aisy.201900031.

© 2019 The Authors. Published by WILEY-VCH Verlag GmbH& Co. KGaA,
Weinheim. This is an open access article under the terms of the Creative
Commons Attribution License, which permits use, distribution and
reproduction in any medium, provided the original work is properly cited.

DOI: 10.1002/aisy.201900031

FULL PAPER
www.advintellsyst.com

Adv. Intell. Syst. 2019, 1, 1900031 1900031 (1 of 12) © 2019 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

mailto:sabine.hauert@bristol.ac.uk
mailto:matt.studley@brl.ac.uk
https://doi.org/10.1002/aisy.201900031
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.advintellsyst.com


them. Finally in Section 5, we draw some conclusions and
outline further work.

2. Background and Previous Work

Common approaches to engineering swarm behaviors include
bioinspiration, evolution, reverse engineering, and hand design.[5–10]

Controller architectures include neural networks, probabilistic
finite state machines (FSM), behavior trees, and hybrid combi-
nations.[11–14] See Francesca and Birattari for a recent review.[15]

We use BT for our controller architecture because they are
modular, human readable, and extendable. A BT is a hierarchical
structure of nodes with leaves that interact with the world and
inner nodes that combine these actions in various ways. All
FSMs can be represented by a BT and with a source of random-
ness so can probabilistic FSMs.[16] The tree structure of BTs is
amenable to the techniques of Genetic Programming.[17] They
have their origins as a software engineering tool but are now
widely used in the games industry as the controllers of non-
player characters. Recent studies have formalized and applied
them to robotics,[18–20] with our previous study applying them
to evolutionary swarm robotics.[14]

When controllers are discovered through evolution or other
automatic methods using a simulated environment, the problem
of transferability of the controller to real robots arises, the so-
called reality gap. Approaches to minimizing this include using
high-fidelity simulation with periodic testing on real robots,[21,22]

injection of noise within a simulation,[23] including transferabil-
ity within the fitness function of the automatic method,[24,25] and
reducing the representational power of the controller.[12] We
apply a combination of techniques, injecting noise, minimizing
the effect of problematic areas of simulation such as collisions by
avoiding behaviors that give rise to them, and using the ability of
behavior trees to encapsulate predesigned useful sub-behaviors.

Embodied evolution in robotics directly tests controllers in
reality, avoiding the reality gap problem. When applied to
swarms, the evolutionary algorithm is distributed over the robots
achieving parallelism with individual agents testing different
controllers and robots “mating” to generate controller solu-
tions.[26–29] The use of real robots to evaluate the controllers
means run times can be very long, days or even weeks. See
Bredeche et al. for a recent review.[30]

The robot platform we use is our Xpuck Teraflop swarm.[4]

Based on the e-puck, it extends its computational capabilities
using a powerful single-board computer with in excess of 130
GFLOP graphics processing unit (GPU)-based processing perfor-
mance.[31] The nine-robot swarm we use in this study has a col-
lective processing power of over 1 teraflop. We distribute
evolution of behavior tree controllers over the swarm, where each
Xpuck is a node within a distributed parallel island model evo-
lutionary algorithm (EA). There is a large literature on parallel
EAs.[32] The island model separates the population into islands
that evolve along separate trajectories but between which there
is a certain level of migration of individuals. The island model
often yields better results than a single panmictic population
of the same size, due to diversity being maintained.[33]

Topology, migration frequency, and migration size are important
parameters defining the properties. O’Dowd et al. use an island

model system within a swarm of e-pucks enhanced with the
Linux Extension Board;[34,35] however, they only simulate a single
robot. Each of our robots runs several hundred parallel simula-
tions of the whole swarm.

Because of the advances in processing power available to build
computationally powerful swarms and the explainability offered by
behavior trees, this is the first study to combine fast on-board evo-
lution of swarm robotic behaviors and the understandability of
behavior trees. The time is ripe tomove swarms into the real world.

3. Experimental Section

3.1. Benchmark Task and Fitness Function

A benchmark task is needed for the swarm of robots that is non-
trivial and has relevance to possible real-world applications. In
the field, foraging is regarded as canonical problem in that it
encapsulates the solution of many sub-problems, such as naviga-
tion, object recognition, and transport, and that it is a direct ana-
logue to real-world problems, such as harvesting, pollution
control, search and rescue, and many others.[36]

The version used in this study required the swarm to continu-
ously move a stream of objects in a particular direction. The
direct manipulation of real objects was important, to demon-
strate resilience to reality gap effects, so a round blue plastic
Frisbee was used. The Xpuck robots had no manipulators, so
the frisbee could only be moved with pushing actions. All experi-
ments took place in an arena of size 2m by 1.5 m surrounded by
white walls of height 0.2 m. In the arena were placed nine Xpuck
robots and the blue plastic frisbee. All objects within the arena
were tracked with a Vicon motion tracking system by means of
unique patterns of spherical reflectors. The robots were con-
nected by Wi-Fi to a Hub PC that was used to initiate experi-
ments and captured data, illustrated in Figure 1.

The task was defined as follows: The blue frisbee was placed
approximately in the center of the arena. The swarm must move
the frisbee in the �x direction. If the frisbee contacted either the
þx or the �x walls of the arena, the robots were stopped and the
frisbee relocated back to the approximate center before the robots
were started again at their current location. The fitness of the
swarm was the �x velocity of the frisbee normalized to the max-
imum Xpuck velocity and averaged over some time period.

The fitness function is then

f raw ¼ �
P

Δxfrisbee
tsim · vmax

(1)

kpenalty ¼
�
1 if ΣΔxfrisbee ¼ 0
0 otherwise

(2)

rderate ¼
�
2 · rmemfree if rmemfree < 0.5
1 otherwise

(3)

f evo ¼ rderate · ð f raw � kpenaltyÞ (4)

where Δxfrisbee are the movements of the frisbee in the x direc-
tion, not counting relocations. For use within the evolutionary
algorithm, the raw fitness value was modified in two ways.
First, the case where there was no movement of the frisbee at

www.advancedsciencenews.com www.advintellsyst.com

Adv. Intell. Syst. 2019, 1, 1900031 1900031 (2 of 12) © 2019 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

http://www.advancedsciencenews.com
http://www.advintellsyst.com


all was penalized to bootstrap into solutions where the robots
were at least moving; a randomly moving robot that collided
with the frisbee was better than non-moving robots. Second,
the fitness was derated when the amount of available memory
rmemfree fell below 50% to control tree bloat.

3.2. Xpuck Reference Model

The Xpuck robots were based on the e-puck and used the same
physical sensors, with the addition of substantial processing
power to enable the fast on-board physics-based simulation.
The various sensor and actuator capabilities needed to be both
modeled in simulation and exposed to the robot controller.
This was formalized with the robot reference model, shown
in Table 1. This approach and the design of some behavior tree
functionality were inspired by Francesca et al.[37] The robot was
based on the e-puck and used the same physical sensors and

actuators. It was a two-wheel differential drive robot with a maxi-
mum speed of 0.13ms�1. There were eight IR proximity sensors
around its perimeter, capable of sensing an obstacle out to a few
centimeters away, at a height about 35mm above the ground,
capable of detecting other Xpucks and the arena walls, but not
the frisbee, which only had a height of about 20mm. A VGA
camera together with image processing code could detect blobs
of color. Only blue detection was used in this article to see the
blue frisbee used in the benchmark task. The image processing
produced a three bit number, indicating the presence of blue in
the left, center, or right thirds of the field of view of the camera.

In addition, the robot was augmented with two virtual senses,
using the pose information available from the Vicon system in the
arena. These were a compass, giving the pose angle of a robot in
the world frame, and a range-and-bearing sense, giving the num-
ber of neighbors and each of their range and bearings, out to a
maximum range of half a meter. Both of these senses could be
implemented on the real robots with additional hardware.

Figure 1. a) Image of the swarm running, showing several Xpucks, with two pushing the Frisbee. b) The Xpuck arena. Experiments take place within a
2 m� 1.5 m area surrounded by walls slightly higher than the height of the Xpucks. Each Xpuck has a unique pattern of spherical reflectors on their top
surface to enable the Vicon motion tracking system to identify each individual object pose. The Vicon PC is dedicated to managing the Vicon system and
makes available a stream of pose data. The Hub PC is responsible for all experiment management, data logging, and virtual sense synthesis. c) Mean fitness
of the island model EA over each of the 20 runs. Boxplot whiskers cover full range. d) Real fitness of the swarm over time across all runs. Violin plots show
distribution of fitness over runs, with ticks at median and extrema. Red line is fifth-order polynomial fitted to medians of each segment.

www.advancedsciencenews.com www.advintellsyst.com

Adv. Intell. Syst. 2019, 1, 1900031 1900031 (3 of 12) © 2019 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

http://www.advancedsciencenews.com
http://www.advintellsyst.com


3.3. Behavior Tree Architecture

A behavior tree controller architecture was used. Behavior trees
had desirable properties such as modularity, encapsulation, and
human readability. Any behavior tree could be used as a subtree
within another; any subtree is a valid behavior tree in its own
right.

The tree structure meant that they were amenable to the tree
crossover and mutation techniques from genetic program-
ming.[17] Terminology varied slightly across the literature, but
all behavior trees had a set of nodes in a tree structure. All nodes
and thus subtrees had the same interface; they received tick
events from their parent and responded immediately with one
and only one of success≡ S, failure ≡ F, or running≡ R if the sub-
tree was performing some task that took non-zero time. The root
of the tree was the source of regular tick events, usually at the
robot controller update rate. Inner nodes received ticks and
responded based on the responses of their children to ticks.
Leaf nodes interacted with the environment, represented in
abstraction as the blackboard, a set of registers that could be read
and written.

The inner nodes were common across different implementa-
tions of behavior trees, the leaf nodes and blackboard were
domain-specific and designed for the particular application.
The most important inner nodes were the sequence and

selection nodes, abbreviated as seq and sel. These combined
at least two child subtrees in complimentary logical ways: seq
ticked each of its subtrees in left-to-right order until they have
all returned success or any return failure or running, returning
that respectively, and sel ticked each subtree until they have all
returned failure or any return success or running. Additional
inner nodes termed decorators had a single-child subtree and
performed operations like logical inversion and repetition.

The leaf nodes and the blackboard defined the interface
between the controller and the real world. Using the robot capa-
bilities described by the robot reference model, a set of black-
board entries and nodes to manipulate them was defined. To
move the robot, vgoal specified a target direction vector for
motion. The senses were expressed as vblue, which pointed
toward any blue objects visible in the forward facing camera,
vup pointing in the þx direction, vattr pointing toward large con-
centrations of other robots, and vprox, which pointed to the near-
est obstacle detected by the IR sensors. Leaf nodes provided ways
of manipulating blackboard entries, providing for scaling,
rotation, and addition. Blackboard entries could be queried in
various ways, including probabilistically. Please see Supporting
Information S1 for more detailed information.

3.4. Automatic Tree Reduction

To improve understandability of the trees, an automatic method
of tree reduction, akin to compiler optimization, was formalized.
A series of reduction transformation rules that could be applied
to a tree while leaving its functionality unchanged were specified
(see Supporting Information S2 for more detailed information).
An example would be that any subtree of a seq known to return
failure meant that subsequent child subtrees to its right would
never be ticked and could be removed.

Since the reduction rules were identities, the execution of a
correctly reduced tree must result in identical behavior, anything
else indicating bugs in the process. To validate our reductions,
a simulation was run with nine robots executing the original and
reduced tree for 60 simulated seconds, in each case producing a
log file containing the poses of all objects at every timestep,
together with all sensor inputs and actuator outputs. Any differ-
ence in the log files indicated non-equivalence.

3.5. Simulator and Reality Gap Mitigation

The simulator used in this study was detailed in Jones et al.[4]

It was a fast 2D physics simulator and behavior tree interpreter
that ran on the GPU of the Xpuck. In order that the simulator
could be used successfully to evolve controllers that transfer well
to the real robots, the effect of the reality gap must be minimized.
There is always a trade-off between higher simulator fidelity and
faster simulation, so fidelity must be improved where the simu-
lation performance cost is low, while using other mitigating strat-
egies of noise injection and behavior modification.

Three approaches were used. First, a series of simple scenar-
ios were run with one or two robots pushing the frisbee in the
real arena. Using the captured pose data from the Vicon system,
these scenarios were recreated in simulation and the simulator
parameters associated with friction and collisions were tuned

Table 1. Robot reference model for the Xpucks.

Input variables Values Description

Pi∈f1,2,..,8g [0,1] Proximity sensor i

Bi∈fleft,center,rightg {0,1} Blue blob detection

Θ [�π,π} Compass, giving pose angle in
world frame

n ∈ ℕ {0,…,15} Number of neighboring Xpucks

ðr,∠bÞi∈f1, : : : ,ng,n 6¼0 ð½rmin, rmax�, ½�π, πÞÞ Range and bearing of neighbor i

Output variables

vi∈fleft,rightg [�vmax,vmax] Left and right wheel velocities

Constants

tupdate 100 ms Sensor and controller update
period

rmin 75mm Minimum range and bearing
range

rmax 0.5 m Maximum range and bearing
range

vmax 0.13 ms�1 Maximum wheel velocity

∠qi∈f1,2, : : : ,8g 17�, 49�, 90�, 150�,
�150�,�90�, �49�, �17�

Angle of proximity sensor i

pmax 30 mm Proximity sensor maximum
range

pheight 35 mm Height of proximity sensors
above ground

FOV 56� Camera field of view

d 75mm Diameter of robot

l 53mm Wheelbase

www.advancedsciencenews.com www.advintellsyst.com

Adv. Intell. Syst. 2019, 1, 1900031 1900031 (4 of 12) © 2019 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

http://www.advancedsciencenews.com
http://www.advintellsyst.com


such that the differences between simulator and real trajectories
were minimized. The latencies of camera color detection, synthe-
sized range-and-bearing, and compass senses were also mea-
sured, and it was ensured that the simulator matched these.

Second, the repeatability of motion was measured to get real-
world information about the noise of the robots. A much higher
level (10�) of motion noise was then injected into the simulator
to mask simulator infidelities.[23]

Finally, observing that collisions between robots and between
robots and walls are the most problematic and expensive from a
modeling perspective, and the area of largest discrepancy
between trial scenarios and simulation, collisions at the control-
ler level were minimized. All robots ran a base-level collision
avoidance behavior; if any obstacle was sensed by the IR proxim-
ity detectors, the robot would turn away from the obstacle. Due to
the modular hierarchical nature of behavior trees, this was sim-
ple to implement as a top-level tree, with the evolved controller
tree being instantiated below this.

3.6. In-Swarm Evolution

In order that in-swarm evolution could be performed, an evolu-
tionary algorithm capable of running across the multiple robots
of the swarm was needed. To do this, an evolutionary algorithm
was run on each robot, and they were connected bymigrating indi-
viduals between robots. This is the island model distributed evo-
lutionary algorithm. It took inspiration from the way that natural
evolution proceeds on islands. Each island hosted a population of
evolving individuals with its own evolutionary trajectory. In addi-
tion, there was some degree of interchange of genetic material
between the island, a migration rate. The separation into sub-
populations could result in higher performance than a single pan-
mictic population of the same size due to niching effects and the
maintenance of diversity.[38] In addition, by separating the total
population into sub-populations with only a small amount of com-
munication between then, coarse-grained parallelismwas enabled.

It is generally the case that robot simulation time scales with
the number of robots being simulated.[4] As robots were added to
the swarm, the collective processing power increased, compen-
sating for the required additional processing required to simulate
that larger swarm such that simulation time and thus the evolu-
tionary algorithm generation time remained approximately con-
stant. The swarm was scalable in evolutionary performance.

Evolution proceeds in the following way using the fitness
function detailed earlier. On each robot, a population npop¼ 256
of new individuals was generated using Koza’s ramped-half-
and-half procedure with a maximum tree depth of ndepth¼ 6.[39]

The fitness of the population was measured in simulation over
tsim¼ 60 s with a single evaluation, and then sorted. A new popu-
lation of individuals was formed from this population; the fittest
nelite¼ 64 individuals were transferred across unchanged. The
remaining individuals were either copied across unchanged or
with probability preplace¼ 0.25 replaced with either a new random
individual or an individual generated by crossover using a modi-
fied tournament selector from two elite parents with probability
pxover¼ 0.5, followed by the three mutation operators with proba-
bilities for parameters of pmutparam¼ 0.05, node replacement
pmutpoint¼ 0.05, or new subtree pmutsubtree¼ 0.05. The fitness of

the new population was measured in the same way as previously.
Because many (81%) of individuals were unchanged, some would
undergo multiple fitness evaluations, providing resilience to the
noisy fitness function. The algorithm maintained statistics on
the number of evaluations, the average fitness, and the variance.

The modified tournament selector used a size of ntsize¼ 3 but
instead of comparing average fitness of the selected individuals,
it compared the 95% likelihood fitness, or if there has been only
one evaluation, half the fitness. This exerted some selection pres-
sure toward lower variance in fitness.

After each new generation was completed on a particular
robot, the fittest individual of that population was broadcasted.
All robots in the swarm sample made a copy of currently broad-
cast individuals at the point they started broadcasting their own
fit individual. They maintained a list of the eight most recent
sampled individuals from each robot. The least fit eight individ-
uals of the local population were replaced by the fittest eight
individuals across these lists of recent fit individuals from
other robots. This gave the island model migration rate of
rmigration ¼ 8

256 ¼ 0.031. This process was asynchronous and
decentralized; robots would not finish each generation in step.
The migration topology was fully connected because all robots
could hear the broadcasts of any other.

Every 2min, the behavior tree execution engine of each Xpuck
loaded the latest, fittest controller that the local evolutionary algo-
rithm had generated. This controller took over the running of the
robot in the real world from that point until the next controller
was loaded. The real swarm thus executed a heterogeneous but
related set of fit behavior tree controllers, which followed the tra-
jectory of the island model system.

3.7. Experimental Protocol

The nine Xpucks were placed in the arena (see Figure 1) at the left
hand (x<�0.6m) end with random orientation. The blue frisbee
was placed approximately in the center of the arena. From theHub
PC, the state of the Xpucks wasmonitored and the experiment was
started, pausing it as necessary to relocate the frisbee back to the
center of the arena. While the swarm was not paused, experiment
time advanced and the evolutionary algorithm proceeded on each
Xpuck. After 16min of experiment time, the experiment was com-
plete and the Xpucks were halted. During those 16min, seven dif-
ferent controllers had run on each Xpuck.

All Vicon data, telemetry, and evolutionary algorithm data
were logged for analysis. This included the heritage and mea-
sured simulation fitness of every single individual within the
whole island model evolutionary system, and the full behavior
trees of the fittest individuals of each island for every generation.

Because the power consumption when running the simulator
for the evolutionary algorithm was high, the Xpuck battery life
was about 1.5 h, sufficient for about five runs.

4. Results

We performed 20 runs. Mean final fitness of the evolutionary
algorithm was 0.21, σ¼ 0.037. Mean fitness of the real swarm
in that last 2 min segment was 0.085, σ¼ 0.11. The distributed
island model evolutionary algorithm running on the swarm

www.advancedsciencenews.com www.advintellsyst.com

Adv. Intell. Syst. 2019, 1, 1900031 1900031 (5 of 12) © 2019 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

http://www.advancedsciencenews.com
http://www.advintellsyst.com


completed an average of 84, σ¼ 11.1 generations per run giving a
mean generation time of 12.2 s. The swarm ran a total of 3.9 mil-
lion simulations. The performance of the swarm in each run is
detailed in Table 2, which shows the final average fitness of the
island model evolutionary algorithm and the real fitness of the
swarm in each 2 min segment that it was running an evolved
controller. Figure 2a shows the mean fitness of the island
model evolutionary algorithm running on the swarm for each
of the 20 runs and Figure 2b shows the real swarm fitness.
The evolutionary algorithm shows increasing fitness in every
case, with final mean fitness over all runs of 0.21, with best
and worst fitness of 0.30 and 0.15. The measured fitness of
the real swarm differs from the simulated swarm fitness, but
only in the case of runs 19 and 20, it differs significantly (two
sample independent T-test with assumption of same variance,
p¼ 0.035 and p¼ 0.004). The remaining 90% of runs have per-
formance differences that can be attributed to sampling error.

4.1. Behavioral Analysis

One important motivation for using behavior trees is their
human understandability. In this section, we classify the multi-
ple runs to choose an analysis target. When watching videos
of the real swarm, it is apparent that there is a rich variety of
behaviors that solve the problem of collective movement of
the frisbee, not captured by the bottom line fitness measure.

The approach we take to analyze and gain insight is as follows.
Firstly, we define several behavioral metrics, which we can auto-
matically calculate from the captured trajectory data of the
swarm. We then associate these metrics with individual 2 min
segments during which the swarm is executing a fixed set of
behavior tree controllers. In general, the segments near the
end of an experimental run will have greater real fitness, but
we have already seen that there is wide variance in this measure.

We take all the segments that have a reasonable real world
swarm fitness, defined here to be f > 0.1, and shown bolded
in Table 2, and perform a behavioral cluster analysis to determine
the impact of quite different solution strategies. From different
clusters, representing a different solution style, we can then ana-
lyze the behavior tree controllers themselves, using the identities
defined earlier to simplify the trees such that we can gain under-
standing of their functionality. In doing this, we hope to discover
useful or interesting behavioral traits.

The metrics we define are: 1) Energy menergy ¼P
i∈robotsjvleftðiÞj þ jvrightðiÞj. The total use of the motors.

2) Pushing mpush, the average proportion of the robots that are
within 1 frisbee radius plus 1.5 robot radii of the center of the
frisbee. 3) Loitering mloit, the average proportion of robots that
are within 3 frisbee radii but not in the pushing zone.
4) Cooperation mcoop ¼ 1

n·rpushing
jPi∈pushingð1,∠θiÞj, the degree to

which the robots in close proximity to the frisbee are facing in
the same direction, thus can push cooperatively. 5) Acceleration

Table 2. The 20 runs, showing fEA, the mean fitness of the island model evolutionary algorithm, and frealx, the real fitness for each 2 min segment of the
16min runs. Mean and standard deviation over all runs are shown at the bottom of the table. Real fitness values f > 0.1 are shown in bold.

Run fEA freal1 freal2 freal3 freal4 freal5 freal6 freal7

1 0.219 0.001 �0.113 0.152 0.098 �0.004 �0.081 0.174

2 0.163 0.023 0.036 �0.035 0.016 0.020 0.043 0.028

3 0.220 0.048 �0.086 0.106 �0.024 0.141 0.123 0.116

4 0.233 0.034 0.017 0.038 0.042 0.039 �0.023 0.085

5 0.203 0.065 �0.063 0.040 0.108 0.148 �0.077 0.097

6 0.259 �0.025 0.030 �0.031 �0.019 0.015 0.125 0.240

7 0.266 �0.080 �0.032 0.175 0.188 0.110 0.073 0.204

8 0.213 �0.005 0.172 0.072 0.126 0.079 0.015 0.171

9 0.154 0.093 0.014 0.092 0.039 0.000 0.062 0.038

10 0.221 �0.043 �0.015 0.191 0.132 0.062 0.059 0.005

11 0.299 �0.004 0.043 �0.025 0.105 0.114 0.194 0.200

12 0.227 0.009 0.038 �0.096 0.121 0.089 0.146 0.154

13 0.180 �0.036 �0.016 �0.139 �0.001 0.101 �0.017 0.199

14 0.164 0.070 �0.009 0.074 0.097 0.085 0.028 0.108

15 0.167 0.054 �0.061 �0.023 0.127 �0.055 0.063 �0.069

16 0.184 �0.104 0.048 0.107 0.075 0.049 0.076 �0.082

17 0.189 0.022 �0.024 0.082 �0.069 0.098 �0.035 0.160

18 0.183 �0.047 0.013 0.022 0.053 0.063 0.004 0.124

19 0.180 �0.056 �0.026 0.038 �0.025 �0.021 �0.088 �0.197

20 0.182 0.064 0.086 0.085 0.008 0.094 �0.035 �0.061

x 0.205 0.004 0.003 0.046 0.060 0.061 0.033 0.085

σ 0.037 0.053 0.062 0.084 0.066 0.054 0.076 0.113

www.advancedsciencenews.com www.advintellsyst.com

Adv. Intell. Syst. 2019, 1, 1900031 1900031 (6 of 12) © 2019 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

http://www.advancedsciencenews.com
http://www.advintellsyst.com


maccel ¼
P j Δvmleft

Δt j þ j Δvmright

Δt j. The sum of all motor absolute
motor accelerations, a measure of how jerky the motion is.

A total of 33 segments in the runs have a fitness f > 0.1.
We cluster these using a self-organizing map that tries that
arranges the data in cells such that topological relations in the
high-dimensional feature space are somewhat preserved in the
2D representation.[40]

Figure 2a shows the map. The background color of the Cells
shows the fitness, ranging from dark green in Cell 4 representing
f ¼ 0.11 to light yellow in cell 2, representing f¼ 0.24. The radii
of the segments within the cells show the values of each of the
behavioral metrics. Consider Cell 1, showing a high value for
maccel but low for the other metrics, indicating a predominance
of quite jerky movement with few robots near the frisbee, and

Figure 2. a) Self-organizing map clustering different real swarm run segments according to five behavior metricsmenergy, mpush, mloit, mcoop, and maccel,
shown as different radii segments within cells. Background color is mean fitness of that cell. b) Outline of Tree 806768 in original evolved form showing
overall structure. c,d) Tree 806768 in reduced form as a tree and listing. The two behaviors B1 and B2 are labeled in red, and parameters are highlighted in
blue.

www.advancedsciencenews.com www.advintellsyst.com

Adv. Intell. Syst. 2019, 1, 1900031 1900031 (7 of 12) © 2019 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

http://www.advancedsciencenews.com
http://www.advintellsyst.com


Cell 12, with very high menergy, mpush, and mcoop, indicating lots
of movement with many robots quite close to the frisbee.

The three fittest runs in real life are Runs 6, 7, and 11, which
have final segments in Cells 2, 10, and 9 respectively. Runs 7 and
11 are in adjacent cells so would be expected to have more similar
behavior than to Run 6. Run 11 is interesting for another reason,
that its final population of controllers is dominated by a single
controller, and it was the fittest run in simulation.

For these reasons, we examine the behavior trees from Run 11
final segment, present in Cell 9. It has the highest final fitness in
the EA of 0.299, and a final segment fitness in reality of 0.2, with
steadily increasing real fitness over most of experimental run.
The trees present in the final segment have unique identifiers
806768, 906737, 807914. Before analyzing any trees, we first per-
form a pairwise functional comparison between trees to elimi-
nate those that are differently labeled but functionally
identical. This shows that tree 807914 is functionally identical
to 806768. There are differences in the tree, but these are in never
triggered branches. Tree 906737 controls two robots but tree
806768 dominates the swarm, having migrated from its origin
to be present on seven of the nine robots. This suggests that
it is consistently fit.

4.2. Tree Analysis

The original and reduced versions of tree 806768 are shown in
Figure 2b,c. It is clear that there is a large amount of redundancy.
The original has 134 nodes and the reduced form has 9, a 93%
reduction. From the reduced form, we can extract and under-
stand the behavior, finding interesting emergent effects where
two robots acting together can stably push the frisbee.

Let us analyze it, line numbers referring to the listing on the
right of Figure 2f. The sel avoiding is the standard prefix that
we use for all evolved trees to perform basic collision avoidance
before any other behaviors. If the robot is not performing the
avoiding action, then the subsequent tree to the right is ticked.
This consists of two sequences, the first guarded by the query
node bfront. If this returns success, if there is blue directly
in front of the robot, the rest of that sequence will be ticked,
otherwise the second sequence will be ticked.

There are therefore two behaviors, depending on whether the
blackboard register vblue is non-zero and pointing forwards, i.e.,
there is something blue in the center of the field of vision of the
robot. If the robot is directly facing something blue, it will per-
form one behavior (lines 6 and 7) labeled B1, otherwise it will
perform the behavior of lines 9 and 10, labeled B2. We can restate
this as

vgoal ¼

8><
>:

�
vblue:y � 20.7 · vup:x
vprox:x þ 6.5 · vup:y

�
if directly facing frisbee ðB1Þ

ð1,∠39°Þ þ 12.3 · vblue otherwise ðB2Þ
(5)

If not directly facing the frisbee, the behavior B2 is quite
simple to state; the robot move forward in an anticlockwise cir-
cular fashion until something blue enters the visual field, at
which point it move forward while turning in that direction until
the frisbee is in the center of the visual field, at which point the

other behavior B1 takes control. Figure 3a visualizes a simulation
of the behavior tree with the robot starting at pose (0.3, 0, 0) so
facing in the þx direction away from the frisbee. The location of
the robot is shown for each timestep of 100ms over a period
of 3 s. The color of the trail indicates which behavior is executing;
yellow indicating B2 and green B1. We can see that the robot
circles in an anticlockwise direction until the blue frisbee comes
into view, at which point the robot heads more toward the frisbee.
Finally the behavior switches to B1.

Behavior B1, triggered when the robot is directly facing the fris-
bee, forms the goal vector of several components and the meaning
is not immediately clear. By observing that the components of
the vup vector dominate the maximum values that might be seen
from vprox.x and vblue.y of �2 and 0.32 respectively, the majority of
vgoal is formed from the vup vector reflected in the robot y-axis
and anisotropically scaled. If the pose angle of the robot is
between [�π/2, π/2], this will cause the robot to rotate to face
in the þx direction and stop. With angles greater than this,
[>π/2,<�π/2], i.e., facing in the�x direction, the robot will move
forward while turning to face theþx direction. The rate of turning
is dependent on the angle of the robot, so at an angle of exactly π,
the robot will move forward with no turning, but any deviation will
result in an accelerating turn toward the þx direction.

Consider two scenarios, each with the frisbee in the center and
one with a robot to its right facing in the �x direction, and one
with a robot to its left facing in the �x direction. In the first sce-
nario, the robot will move forward until it contacts the frisbee,
then pushing the frisbee in the �x direction. In the second sce-
nario, the robot will not move. We can see that random creation
of these two scenarios will on average result in an increase in
fitness because the frisbee will only ever move in the �x direc-
tion. If we perturb the first scenario slightly with a robot starting
pose of (0.2, 0, π � 0.1), the robot will move forward while turn-
ing clockwise. The frisbee will again be pushed in the �x direc-
tion, but as the robot continues to rotate, it will reach the
situation where the vector vblue no longer has zero angle (from
the possible angles of �18.7�, �9.35�, 0, 9.35�, 18.7�) and thus
bfront will return failure and behavior B2 will occur. This will
tend to make the robot move forward and turn anticlockwise
toward the frisbee, while pushing it. If the turning rate is fast
enough, then the robot will end up fully facing the frisbee again,
such that the first behavior is again activated. We can see that we
might have a switching of behaviors of clockwise and anticlock-
wise forward movement such that the frisbee is on average
moved in the �x direction.

In fact, a single robot does not reliably turn far enough that the
frisbee becomes centered in the field of view, so sometimes, the
frisbee will get pushed in a circular path and sometimes on an
erratic path toward�x depending on the exact starting condition.
Figure 3b shows the evolution of the perturbed first scenario,
with B1 resulting in a slow clockwise turn initially, then a period
of rapid switching between B1 and B2, a further period of B1
turning anticlockwise this time, then finally a stable situation
running B2 with the robot pushing the frisbee in a circular path.

What is interesting is if we change the scenario to have two
robots in contact with the frisbee. In this case, although neither
individually can stably push the frisbee, with two robots their
interactions produce an emergent stable pushing behavior.
It is important to realize that these interactions now include

www.advancedsciencenews.com www.advintellsyst.com

Adv. Intell. Syst. 2019, 1, 1900031 1900031 (8 of 12) © 2019 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

http://www.advancedsciencenews.com
http://www.advintellsyst.com


the default collision avoidance behavior, not shown in
Equation (5). This usually causes a robot to turn on the spot away
from the object detected with the IR proximity sensors and is
visible on the trail visualization as denser outlines at points
where the robots are not moving forward.

Figure 3c shows an example of this. The initial configuration
of the system was the frisbee at location (0.65, 0) and the robots at

poses (0.8, 0.05, π) and (0.8, �0.05, π). The track of the frisbee is
not straight, but never degenerates into a stable orbit. The two
robots use varying amounts of B1 and B2, depending on the sys-
tem state. By inspection, when the frisbee path is tending upward
toomuch, the top Xpuck starts spendingmore time in B2 and the
less in B1, causing the system of frisbee and robots to turn back
downward, and likewise in the opposite situation, with collision

Figure 3. Visualizations of various scenarios. a) A single Xpuck following behavior B2 then B1. The robot starting pose is (0.3,0,0), facing in the þx
direction away from the frisbee. Color of the trail is green for B1 and yellow for B2, each plot of trail is one control cycle of 100ms. b) Single Xpuck
following behavior B1 at the start, then combinations until ending in a stable orbit in behavior B2. c) Two Xpucks with a starting position close to the right
of the frisbee exhibiting stable emergent cooperative pushing behavior.

www.advancedsciencenews.com www.advintellsyst.com

Adv. Intell. Syst. 2019, 1, 1900031 1900031 (9 of 12) © 2019 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

http://www.advancedsciencenews.com
http://www.advintellsyst.com


avoidance ensuring that the other robot is turned to maintain
some separation.

4.2.1. Resilience to Perturbation

The two robot scenario demonstrating emergent pushing above
is ideal, in that the starting positions are adjacent to the frisbee
and facing in the correct direction. How resilient is this system to
perturbations of the positions of the two robots to the relative to
the frisbee? We approach this by comparing the performance of
the tree 806768 with the simple tree that just moves forward and
performs collision avoidance, called forward. We start with the

frisbee at position (0, 0) and the two robots are placed with ran-
dom poses centered on (0, 0, 0) with added Gaussian noise of
standard deviations (0.2, 0.2, 1.5). The robots and frisbee are
not allowed to overlap. Valid configurations are simulated for
a time of 8 s, just less than the time for a perfect attempt to push
the frisbee to an x-boundary. A total of 100 000 simulations were
run for each tree. The mean starting distance of the robots from
the frisbee is measured for each run, and this data are binned
and plotted against the fitness of that run.

Figure 4a shows the results. There are clearly two quite differ-
ent types of behavior here. As youmight expect, if you run a lot of
trials of essentially a random walk (move forward with collision

Figure 4. a) Distribution of fitness of two robots over 100 000 simulations of each of two trees against mean starting distance from frisbee. Ticks show
extrema and medians. The tree 806768 maintains good performance even when the starting position is far from the frisbee, indicating ability to find and
then push the frisbee. b) Performance of tree 806768 with varying swarm size. The swarm exhibits superlinear performance scaling up to a swarm size of
seven. c) Performance of engineered version of tree 806768 showing better single-robot performance and 10% better overall performance.

www.advancedsciencenews.com www.advintellsyst.com

Adv. Intell. Syst. 2019, 1, 1900031 1900031 (10 of 12) © 2019 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

http://www.advancedsciencenews.com
http://www.advintellsyst.com


avoidance), there will be some that are quite fit, but the majority
will not be. The data show this, with the forward tree having most
runs clustering around zero fitness. The tree 806768, in contrast,
maintains a consistent median fitness, which falls gradually as
the mean starting distance from the frisbee increases, as you
would expect because the robots have to reach the frisbee before
pushing it. The important indicator of an effective controller is
that the median fitness is maintained even over a quite large
increase in the distance away from the frisbee, implying the
active movement toward and then pushing of the frisbee.

4.2.2. Scalability

One interesting question about swarm controllers is whether
they produce emergent behavior. It is not obvious how to answer
this, but one approach would be to measure the fitness of the
controller when running in different sized swarms. If there
was no emergent behavior, we would expect a single agent to
have a certain degree of fitness f¼ fagent, then n agents to have
a higher fitness f¼ k · fagent but with k < n since multiple agents
with no cooperation or emergent behavior may interfere, and for
our task there is a physical limit on howmany agents can actually
interact with the frisbee. We expect sublinear scaling, in other
words. Conversely, with emergent cooperation in the swarm,
we may see superlinear scaling when cooperation outweighs
interference. Superlinear performance scaling has been observed
in swarm robotics systems,[41] and Hamann develops a simple
model of swarm performance comprising two components of
cooperation and interference.[42]

We simulated the tree 806768 at different swarm sizes up to
n¼ 16. Figure 3b shows the results. There is clearly superlinear
performance scaling up to a swarm size of n¼ 7. Above seven
robots, the performance scaling is sublinear as the system per-
formance reaches a plateau of around f¼ 0.3. Above a certain
number of robots, there can be no improvement in performance
because there is only a single frisbee and the robots have a maxi-
mum velocity. We can regard the superlinear scaling as evidence
of emergent collective behavior.

4.3. Engineering Higher Performance

Given the ability we now have to deconstruct evolved behavior
trees and understand how they work; we can use this knowledge
to engineer higher performance. We observed in Section 4.2 that
a single robot using tree 806768 was unable to reliably push the
frisbee, while more than one robot could. What if we could tune
the behavior tree such that a single robot could successfully push
the frisbee? The listing in Figure 2f shows four parameters
highlighted in blue. We denote these a, b, c, and d, respectively.
We decided to try and hand tune the parameters to optimize both
single-robot pushing stability and overall fitness.

We can see from the data in Table 3 that we have achieved
a useful and significant (independent T-test p< 0.0001) perfor-
mance improvement of about 10% from what was already a
quite fit controller. The performance was measured in simula-
tion over 1000 runs with different starting conditions before
and after tuning. Figure 4c shows that the single agent
performance has increased considerably from the unaltered tree

(from 0.039 to 0.12) as we intended when optimizing for more
stable single-robot pushing behavior.

5. Conclusions

We have demonstrated a swarm that is capable of evolving new
controllers within the swarm itself, removing the tie to off-line
processing power. The in-swarm computational power is able to
run an island model evolutionary algorithm that can produce fit
and effective swarm controllers within 15 real-time minutes, far
faster than has been possible previously. This is due to careful
attention to several elements; the writing of a fast simulator that
makes maximal use of the GPU processing power available, tun-
ing the simulator parameters and controller architecture to min-
imize and mitigate reality gap effects, using the available
simulator budget more effectively by improving the evolutionary
algorithm, and finally using the island model to scale the evolu-
tionary performance with the size of the swarm. The progressive
transfer of control of the real robots to these better controllers
leads to improving real-world fitness.

One overarching theme of this study has been the desirable
properties of behavior trees as a controller architecture, particu-
larly as the target of evolutionary algorithms. The modularity,
human understandability, and natural extendibility mean that
we can analyze and understand evolved controllers for insight.
In this study, we demonstrate this by using automatic methods
to simplify evolved trees, then further human analysis to describe
in detail how a selected tree actually functions. We then demon-
strate how this confers control to the human who can even
improve the performance of the swarm. This understandability,
or explainability, is an important characteristic for the safety of
future systems created by machine learning.

This study opens the door to the automatic design of
robot swarm behaviors in the wild, while providing a human-
understandable interface that can be queried and modified by
a human operator. We believe this will be the first step toward
deploying robots in real-world applications in a fully automatic
and adaptable way.

Supporting Information
Supporting Information is available from the Wiley Online Library or from
the author.

Table 3. Hand-tuned parameters for tree 806768, performance measured
in simulation over 1000 runs with different starting conditions.

Original Optimized

A 6.55 2

B �20.7 �48

C 39� 70.3�

D 12.3 48

Fitness x̄ 0.27 0.30

Fitness σ 0.044 0.041

www.advancedsciencenews.com www.advintellsyst.com

Adv. Intell. Syst. 2019, 1, 1900031 1900031 (11 of 12) © 2019 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

http://www.advancedsciencenews.com
http://www.advintellsyst.com


Acknowledgements
S.J. was funded by EPSRC grant EP/L015293/1.

Conflict of Interest
The authors declare no conflict of interest.

Keywords
evolutionary robotics, swarm robotics, behavior trees, explainability

Received: May 27, 2019
Revised: July 15, 2019

Published online: August 23, 2019

[1] E. Şahin, Swarm Robotics, Springer, Berlin 2005, p. 10.
[2] M. Brambilla, E. Ferrante, M. Birattari, M. Dorigo, Swarm Intell. 2013,

7, 1.
[3] S. Hauert, S. Mitri, L. Keller, D. Floreano, in The Horizons of

Evolutionary Robotics (Eds: P. A. Vargas, E. A. Di Paolo, I. Harvey,
P. Husbands), MIT Press, Cambridge, MA 2014, pp. 203–217.

[4] S. Jones, M. Studley, S. Hauert, A. Winfield, Front. Robot. AI 2018,
5, 11.

[5] C. W. Reynolds, ACM SIGGRAPH Comput. Graph. 1987, 21, 25.
[6] V. Trianni, R. Groß, T. H. Labella, E. Şahin, M. Dorigo, Adv. Artif. Life

2003, 1, 865.
[7] S. Hauert, J.-C. Zufferey, D. Floreano, in Proc. IEEE Congress on

Evolutionary Computation, IEEE, Piscataway, NJ 2009, p. 55.
[8] V. Trianni, S. Nolfi, Artif. Life 2011, 17, 183.
[9] M. Rubenstein, A. Cornejo, R. Nagpal, Science 2014, 345, 795.
[10] L. Pitonakova, R. Crowder, S. Bullock, Front. Robot. AI 2018, 5, 47.
[11] G. Baldassarre, S. Nolfi, D. Parisi, Artif. Life 2003, 9, 255.
[12] G. Francesca, M. Brambilla, A. Brutschy, L. Garattoni, R. Miletitch,

G. Podevijn, A. Reina, T. Soleymani, M. Salvaro, C. Pinciroli,
F. Mascia, V. Trianni, M. Birattari. Swarm Intell. 2015, 9, 125.

[13] M. Duarte, J. Gomes, V. Costa, S. M. Oliveira, A. L. Christensen,
Applications of Evolutionary Computation (Eds: G. Squillero,
P. Burelli), Springer, Cham, 2016, p. 213.

[14] S. Jones, M. Studley, S. Hauert, A. Winfield, in Proc. 13th Int. Symp.
on Distributed Autonomous Robotic Systems (Eds: R. Gross,
A. Kolling, S. Berman, E. Frazzoli, A. Martinoli, F. Matsuno,
M. Gauci), Springer, Cham 2018, p. 487.

[15] G. Francesca, M. Birattari, Front. Robot. AI 2016, 3, 29.
[16] P. Ogren, in Proc. AIAA Guidance, Navigation and Control Conf.,

American Institute of Aeronautics and Astronautics, Reston,
VA 2012, p. 4458.

[17] J. R. Koza. Genetic Programming: On the Programming of Computers by
Means of Natural Selection, Vol. 1, MIT Press, Cambridge, MA 1992.

[18] M. Colledanchise, P. Ogren, in Proc. IEEE/RSJ Int. Conf. on Intelligent
Robots and Systems (Ed: W. Burgard), IEEE, Piscataway, NJ 2014,
p. 1482.

[19] A. Marzinotto, M. Colledanchise, C. Smith, P. Ogren, in Proc. IEEE
Int. Conf. on Robotics and Automation (Ed: W. Burgard), IEEE,
Piscataway, NJ 2014, p. 5420.

[20] K. Y. Scheper, S. Tijmons, C. C. de Visser, G. C. de Croon, Artif. Life
2016, 22, 23.

[21] S. Mitri, D. Floreano, L. Keller, Proc. R. Soc. B Biol. Sci. 2010, 278, 378.
[22] M. Waibel, L. Keller, D. Floreano, IEEE Trans. Evol. Comput. 2009, 13,

648.
[23] N. Jakobi, P. Husbands, I. Harvey, in Proc. European Conf. on

Artificial Life (Eds: F. Morán, A. Moreno, J. J. Merelo, P. Chacón),
Springer, Berlin 1995, p. 704.

[24] S. Koos, J.-B. Mouret, S. Doncieux, IEEE Tran. Evol. Comput. 2013,
17, 122.

[25] J.-B. Mouret, K. Chatzilygeroudis, in Proc. Genetic and Evolutionary
Computation Conf. (Ed: G. Ochoa), ACM, New York, NY 2017, p.
1121.

[26] R. A. Watson, S. G. Ficici, J. B. Pollack, Robot. Auton. Syst. 2002,
39, 1.

[27] Y. U. Takaya, T. Arita, presented at 8th Int. Symp. on Artificial Life and
Robotics, Beppu, Japan, January 2003.

[28] N. Bredeche, J.-M. Montanier, W. Liu, A. F. Winfield, Math. Comput.
Model. Dyn. Syst. 2012, 18, 101.

[29] S. Doncieux, N. Bredeche, J.-B. Mouret, A. E. G. Eiben, Front. Robot.
AI, 2015, 2, 4.

[30] N. Bredeche, E. Haasdijk, A. Prieto, Front. Robot. AI 2018, 5, 12.
[31] F. Mondada, M. Bonani, X. Raemy, J. Pugh, C. Cianci, A. Klaptocz,

S. Magnenat, J.-C. Zufferey, D. Floreano, A. Martinoli, in Proc. 9th
Conf. on Autonomous Robot Systems and Competitions, (Eds:
P. J. S. Gonçalves, P. Torres, C. M. O. Alves), Vol. 1, IPCB,
Portugal 2009, p. 59.

[32] E. Cantú-Paz, Calculateurs paralleles, reseaux et systems repartis 1998,
10, 141.

[33] D. Whitley, S. Rana, R. B. Heckendorn, CIT. J. Comp. Inform. Technol.
1999, 7, 33.

[34] P. J. O’Dowd, M. Studley, A. F. Winfield, Evol. Intel. 2014, 7, 95.
[35] W. Liu, A. F. Winfield, Microprocess. Microsy. 2011, 35, 60.
[36] A. F. Winfield, Encyclopedia of Complexity and Systems Science (Ed:

R. A. Meyers), Springer, New York 2009, 3682.
[37] G. Francesca, M. Brambilla, A. Brutschy, V. Trianni, M. Birattari,

Swarm Intel. 2014, 8, 89.
[38] D. Whitley, S. Rana, R. B. Heckendorn, in Proc. AISB International

Workshop on Evolutionary Computing, Springer, Berlin, 1997,
p. 109.

[39] R. Poli, W. B. Langdon, N. F. McPhee, J. R. Koza, A Field Guide to
Genetic Programming. http://lulu.com; http://www.gp-field-guide.
org.uk (accessed: December 2008).

[40] T. Kohonen, Biol. Cybern. 1982, 43, 59.
[41] F. Mondada, M. Bonani, A. Guignard, S. Magnenat, C. Studer,

D. Floreano, in Proc. European Conf. on Artificial Life (Eds:
M. S. Capcarrère, A. A. Freitas, P. J. Bentley, C. G. Johnson,
J. Timmis), Springer, Berlin 2005, p. 282.

[42] H. Hamann, in Proc. Int. Conf. on Swarm Intelligence (Eds: Y. Tan,
Y. Shi, Z. Ji), Springer, Berlin 2012, p. 168.

www.advancedsciencenews.com www.advintellsyst.com

Adv. Intell. Syst. 2019, 1, 1900031 1900031 (12 of 12) © 2019 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

http://lulu.com
http://www.gp-field-guide.org.uk
http://www.gp-field-guide.org.uk
http://www.advancedsciencenews.com
http://www.advintellsyst.com

	Onboard Evolution of Understandable Swarm Behaviors
	1. Introduction
	2. Background and Previous Work
	3. Experimental Section
	3.1. Benchmark Task and Fitness Function
	3.2. Xpuck Reference Model
	3.3. Behavior Tree Architecture
	3.4. Automatic Tree Reduction
	3.5. Simulator and Reality Gap Mitigation
	3.6. In-Swarm Evolution
	3.7. Experimental Protocol

	4. Results
	4.1. Behavioral Analysis
	4.2. Tree Analysis
	4.2.1. Resilience to Perturbation
	4.2.2. Scalability

	4.3. Engineering Higher Performance

	5. Conclusions


