
1

Neural-Learning-Based Force Sensorless
Admittance Control for Robots with Input Deadzone

Guangzhu Peng, C. L. Philip Chen, Fellow, IEEE, Wei He, Senior Member, IEEE,
and Chenguang Yang, Senior Member, IEEE

Abstract—This paper presents a neural networks based admit-
tance control scheme for robotic manipulators when interacting
with the unknown environment in the presence of the actuator
deadzone without needing force sensing. A compliant behaviour
of robotic manipulators in response to external torques from
the unknown environment is achieved by admittance control. In-
spired by broad learning system (BLS), a flatted neural network
structure using Radial Basis Function (RBF) with incremental
learning algorithm is proposed to estimate the external torque,
which can avoid retraining process if the system is modelled
insufficiently. To deal with uncertainties in the robot system, an
adaptive neural controller with dynamic learning framework is
developed to ensure the tracking performance. Experiments on
the Baxter robot have been implemented to test the effectiveness
of the proposed method.

Index Terms—neural networks (NNs); adaptive control; broad
learning; force/torque observer; admittance control.

I. INTRODUCTION

IN the past decades, robots have been widely applied in many
fields of social life, such as industry, service and education

[1]. In these cases, robots are inevitably encountering the un-
known environment. Therefore, control of robots in a safe and
compliant behaviour during the interactive process has been
widely studied. In the literature, hybrid position/force control
and impedance control have been the two main approaches for
interaction control [2]–[5].

Impedance control aims to impose a desired dynamic be-
havior on the robot to interact with environments. The desired
interaction performance is specified through a impedance
model. On the basis of the control causality, admittance
control could be regarded as the inverse of impedance control
[6]. The admittance control can ensure the robot produce
a good interaction performance by adapting the motion to
the external force. The admittance control aims to map the

This work was partially supported by Engineering and Physical Sciences
Research Council (EPSRC) under Grant EP/S001913, National Natural Sci-
ence Foundation of China under Grant 61751202, Grant 61751205, Grant
U1813203, and Grant U1801262, in part by the Science and Technology De-
velopment Fund, Macau SAR (File no. 079/2017/A2, and 0119/2018/A3), in
part by the Multiyear Research Grants of University of Macau. Corresponding
author: C. L. Philip Chen.

G. Peng is with the Department of Computer and Information Science,
Faculty of Science and Technology, University of Macau, Macau 999078,
China (Email: gz.peng@qq.com).

C. L. Philip Chen is with School of Computer Science and Engineering,
South China University of Technology, Guangzhou 510641, China, with the
Unmanned System Research Institute, Northwestern Polytechnical University,
XiAn, 710072, China, and also with the Faculty of Science and Technology,
University of Macau, Macau 999078, China (e-mail: philip.chen@ieee.org).

W. He is with Institute of Artificial Intelligence, University of Science
and Technology Beijing, Beijing 100083, China, and also with School of
Automation and Electrical Engineering, University of Science and Technology
Beijing, Beijing 100083, China (Email:hewei.ac@gmail.com).

C. Yang is with Bristol Robotics Laboratory, University of the West of
England, Bristol, BS16 1QY, UK (Email: cyang@ieee.org).

external force measured by the force sensors to the position
of the robot end-effector through an admittance model. In
general admittance control schemes, the inner-loop is for
trajectory tracking, which accepts the trajectory generated by
the admittance model in the out-loop as the input signal [7].
In addition, the admittance model varies from different tasks.
This characteristic enables the admittance control to be used
in many forms to achieve a good physical interaction control
performance [8].

In admittance control schemes, force measurement is funda-
mental and necessary, and the interactive control performance
is largely decided by the accuracy of the external force
measurement [9]. A common method is to use force sensors
to measure external forces. Although the force sensor can
provide high precision, it also has shortcomings. First of all,
commercial sensors with high precision are often expensive.
Secondly, force sensors mounted on robots will change the
dynamics of robots [10]. Finally, due to exposure to the com-
plex and dangerous industrial environment, the force sensor
will be vulnerable to damage, which is not applicable to
certain situations. Therefore, force observer approaches have
been widely studied. In [11] [12], the disturbance observer
approach was proposed to estimate the external force. In [13],
a dynamic state observer was proposed to estimate the contact
force. In [14], generalized momentum based observer was used
for measuring the contact force with partially known model
dynamics. These classical model-based observer methods can
not work well without accurate model dynamics.

To solve this problem, many force estimation methods
integrating neural networks have been studied [15] [16]. In
[15], a NN-improved disturbance observer was proposed with
partial dynamics of the robotic link. In [16], NNs were em-
ployed to approximate the Coulomb friction and improve the
performance of the model-based observer. Although NNs were
employed into the above methods, the problem of requiring
system dynamics is still unsolved. In [17], an inverse dynamics
method combining with multilayer feedforward NNs have
been proposed without robot dynamic model. NNs were used
to identify the system dynamics and have a good approxima-
tion performance. However, this architecture will consumes
more time as the number of layers of neural network increases.
Compared with traditional multilayer NNs, the random vec-
tor functional-link neural network (RVFLNN) is an effective
network with good approximation ability and simple structure.
Moreover, it can avoid long training time and has fast learning
property [18] [19]. Considering this good property, the inverse
dynamics observer combined with RVFLNN is proposed for
external force. The advantage is that the dynamics of robot
system is not required and the training time of the NN structure
is shorter.

The control performance is another important factor in

2

practical control system [20]. In the literature, adaptive con-
trol methods incorporating intelligent tools have been widely
employed in control systems [21]–[24]. Different from model-
based control approaches, these adaptive control methods
could deal with the unknown system dynamics by automat-
ically updating laws. Although model-based control usually
shows better control performance, it is based on an accurate
model [25]. In practice, an accurate model is hardly to be
obtained owing to the complexity of mechanical robot system.
In addition, the payload on the manipulator could also make
the modelling of the robotic arm more difficult [26]. In
[27], the RBFNN was employed to deal with uncertainties
of both robot system and the object, and a prescribed tracking
performance was guaranteed. In [28], NNs were integrated in
control design to cope with the uncertain dynamics. In [29],
the adaptive fuzzy control method was used to suppress the
uncertain dynamics of the system. Although NNs or fuzzy
logic can solve the problem of system uncertainties, these
intelligent tools inevitably increase the burden of control
system. In order to have good approximation performance,
the number of neurons and fuzzy rules will increase, which
in turn will bring heavy computation burden to the system
and affect the control effect. Moreover, when the learning is
insufficient, the inaccurate approximation will influence the
control performance. However, among the literatures about
adaptive NN control, few studies have concerned with the
the way of solving the problems of the insufficient learning
condition and computational burden.

Recently, the broad learning system (BLS) has attracted
much attention because of its novel framework without suf-
fering time-consuming training process caused by traditional
deep structure, and it has been used in pattern recognition and
classification [30] [31]. Considering its novel architechture,
the property of BLS could also be employed to NN based
control scheme to accumulate the learning experience with
node expansion without retraining the model. In [32], it has
been pointed out that deterministic learning theory is an
efficient way to deal with the unknown dynamics by satisfying
the persistent excitation (PE) condition. Based on the above
discussion, an adaptive RBFNN learning framework has been
developed. Compared with the traditional learning network,
the difference is that this adaptive learning framework can
not only ensure the approximation ability of NNs under
insufficient learning condition, but also will not bring heavy
computational burden to the system.

Deadzone is an crucial problem of affecting the dynamic
control performance of the system. In practical systems, the
deadzone will not only cause the loss of control precision,
but also cause system instability. Researchers have proposed
many methods to solve this problem. In [33], an adaptive
method was incorporated into motion control system for tuning
fuzzy logic parameters. In [34], the deadzone nonlinearities
in control system were compensated by inverse function.
However, due to the complexity and uncertainties of practi-
cal actuators, the deadzone functions are difficult to know.
Therefore, such model-based compensation methods may not
have good performance in practical systems. With the strong
approximation ability, NNs have been applied into control
system to compensate the deadzone nonlinearity [35]–[38].
Inspired by above works, in this paper, a NN-based force
sensorless admittance control scheme for robotic arms with
actuator deadzone is proposed. This paper is a continuation of

our previous work [39], and the improvements are given as
follows:

(i) Admittance control is adopted to generate a compliant
interactive behaviour with considering the dynamics of the
unknown environment. A saturation function in joint space is
considered to constraint the robot motion.

(ii) A flatted neural network structure using RBF with
incremental learning is proposed to estimate the external
torque rather than model-based observer.

(iii) A RBFNN-based learning controller with dynamic
framework is developed to deal with system uncertainties and
compensate the deadzone nonlinearities.

The rest of this paper is organized as follow. Section
II expresses the preliminaries. Control design is presented
in Section III. Section IV gives the experimental results.
Conclusion is drawn in Section V, and appendix is presented
in section VI.

II. PRELIMINARIES

A. Problem Formulation
The dynamics of a n−link robotic manipulator is

Mq(q)q̈ + Cq(q, q̇)q̇ +Gq(q) = τ + JTfext (1)

where q̈ ∈ Rn, q̇ ∈ Rn and q ∈ Rn represent joint accelera-
tion, velocity and position, respectively. Mq(q) ∈ Rn×n and
Cq(q, q̇) ∈ Rn×n denote the inertia and coriolis matrices, and
Gq(q) ∈ Rn is the gravity load. τ ∈ Rn is the joint torque
and fext is the external force. The relationship between the
external torque and the force can be written as

τext = JTfext (2)

where J(q) is the manipulator Jacobian matrix.
Property 1: The matrix Mq(q) is symmetric and positive

definite [40].
Property 2: The matrix 2Cq(q, q̇) − Ṁq(q) is skew-

symmetric [40].
The environmental dynamics can be defined as

ME ẍ+ CE ẋ+GEx = −fext (3)

where ME , CE and GE are the coefficient matrices. ẍ, ẋ
and x denote the acceleration, velocity and position of the
end-effector of the manipulator, respectively. Through inverse
kinematics and (2), the environmental dynamics in (3) can
be transformed to joint space to describe the environment
dynamics, such that

Φ(q̇, q) = τext (4)

where Φ(·) denotes the mapping function.
In this paper, a damping-stiffness admittance model [41] is

used to describe this relationship, such as

Cd(ẋr − ẋd) +Gd(xr − xd) = −fext (5)

where xd and xr denote the desired trajectory and modified
desired trajectory in task space, respectively. Cd and Gd are
coefficient matrices. According to (5), compliant motion xr for
the external force is generated based on the desired trajectory
xd and fext. In joint space, the admittance model (5) can be
described as

CdJ(q)(q̇r − q̇d) +Gd(ϕ(qr)− ϕ(qd)) = −(JT)−1τext (6)

3

Fig. 1. The structure and updating algorithm for Functional-link neural
network (modified from [19]).

where ϕ(·) denotes the robot kinematics function, qr and qd
denote the modified desired trajectory and desired trajectory
in joint space, respectively.

In admittance control schemes, the modified desired tra-
jectory qr is always assumed to be bounded, i.e., |qri| <
Ci, (i = 1, 2...n), where Ci is a positive constant. However,
during the process of robot-environment interaction, the mod-
ified trajectory qr may violate the prescribed bound, that is,
|qri| > Ci, i = 1, 2...n. To solve this problem, a saturation
function is defined as

qri =

− γi(1− e

qri+ρiCi
γi)− ρiCi, qri < −ρiCi

qri, |qri| ≤ ρiCi

γi(1− e
ρiCi−qri

γi) + ρiCi, qri > ρiCi

(7)

where γi = (1 − ρi)Ci, 0 < ρi < 1 (i = 1, 2, .., n). Under
this saturation function, the modified desired trajectory qr can
be guaranteed to stay within a constraint space.

B. RBFNN with PE Property
In this part, a brief introduction of RBFNN approximation

is given. In [42], it is proven that the RBFNN can approximate
any continuous function f(•) with a sufficient large node l,
and optimal weight W ∗, that is

f(Zin) = W ∗TS(Zin) + ε(Zin), ∀Zin ∈ ΩZin (8)

where Zin ∈ ΩZin ⊂ Rυ is the input vector of RBFNN with
input dimension υ. ||ε(Zin)|| < ε∗ denotes the approximation
error (|| • || is the Euclidean norm of vectors).

It should be noticed that the activation function of RBFNN
is Gaussian function

si(Zin) = exp[
−(Zin − uT

i)(Zin − ui)
η2
i

], i = 1, ..., l (9)

where l is the number of the NN node; ui =
[ui1, ui2, ..., uiυ] (i = 1, 2, ..., l) and ηi denotes the node center
and the variance, respectively.

In practice, W ∗ is the ideal NN weight matrix and estimated
by Ŵ , and the function can be approximated by

f̂(Zin) = Ŵ
T
S(Zin) (10)

where f̂(Zin) is the estimate of f(Zin). The approximation
error of the weight can be defined as W̃ = Ŵ −W ∗.

Definition 1: [32] Consider the lattice of RBFNN is con-
structed in (8), we can select

% ≥ 2h = min
i 6=j
||ui − uj || > 0 (11)

When the periodic input trajectory Z
′
(t) is upon on the lattice,

there will always be a regression subvector Sξ(Z
′
) in the

%−neighborhood of Z
′
(t), such that

Sξ(Z
′
) = [s1(Z

′

1), ..., slξ(Z
′

lξ
)] (12)

with different centers ui1, ..., uilξ . Because the value of the
regression vector becomes very small as the trajectory moves
away from the centers, we can choose

2h ≤ % ≤ %
′

(13)

with the distance between Z
′

(i = 1, 2, ..., lξ) and NN centers
satisfying ||Z ′i−uij || < %

′
, we can obtain si(Z

′
) > %

′′
, where

%
′′

is a small positive constant.
Lemma 1: [32] Assume that the periodic trajectory Z

′
(t) is

within a compact set Ω ∈ Rυ , and its derivative form Ż
′
(t) is

bounded within Ω. If the centers of RBFNN could be placed
on a sufficient large enough lattice to cover the compact set Ω,
the Sξ(Z

′
) defined in (12) and (13) will satisfy the persistent

excitation.

C. RVFLNN with Dynamic Updating Algorithm
The RVFLNN has a good ability of quick modeling for

nonlinear systems with a simple structure, as shown in Fig.
1, where ξ(·) represents a mapping function for input X , and
Wh, βh are randomly generated, Yn is the output matrix with
Yn = AnWn. In [19], an improvement version and a dynamic
updating algorithm for RVFLNN is proposed to calculate
weights for new added enhancement nodes. The model is
modified and illustrated in Fig. 1, where the pattern matrix
An := [X|ξ(XWh + βh)] contains information of both input
and enhancement nodes, and a is a new enhancement node
added into the network. In this part, the dynamic updating
algorithm for calculating the weights based on the matrix
pseudo-inverse will be introduced with an added enhancement
node. First, we define Ap = [An|a], and the pseudoinverse of
the matrix Ap is

A+
p =

[
A+
n − dbT
bT

]
(14)

where d = A+
n a, and A+

n denotes pseudoinverse of the matrix
An.

bT =

{
(I + dTd)dTA+

n if c = 0

c+ if c 6= 0
(15)

where c = a − And. Then, the weights Wn and Wp can be
computed by

Wn = (λI +AT
nAn)−1AT

nYn

Wp =

[
Wn − dbTYn

bTYn

]
(16)

where Wn and Wp denote the weights before and after new
enhancement nodes are added into the network. As can be
seen from the above equations, after adding new enhancement
nodes, we only need to calculate the weight of the newly added

4

nodes and do not need to recalculate the weight of the whole
network.

Remark 1: As presented in [30], it has been noted that
there is no restriction on the the mapping feature function ξ(·)
from the input vector to the enhancement vector. In addition,
this flatted neural network structure and the corresponding
incremental learning algorithm can be applied in other neural
network structures, such as support vector machine or RBF.
Therefore, we choose the Gaussian function as the mapping
function.

D. Actuator Deadzone
The deadzone nonlinearity is to describe the insensitivity of

a system to small signals, as shown in Fig. 2.

Fig. 2. The deadzone nonlinearity (modified from [36]).

The deadzone nonlinearity can be described as [36]

D(τ) =

gr(u− dr), τ ≥ dr
0, dl < τ < dr

gl(u− dl), τ ≤ dl
(17)

where u is the actuator input; gr(·) and gl(·) are the unknown
functions; dr and dr are unknown parameters of the functions.

III. CONTROL DESIGN

A. Inverse Dynamics Method
In this section, a novel inverse-dynamics-based observer

[17] with NNs is developed, and the revised architecture is
shown in Fig. 3. The dynamics of the robotic arm in (1) can
be Linearized as

τ + JTfext = Mq(q)q̈ + Cq(q, q̇)q̇ +Gq(q)

= Ψ(q̈, q̇, q)Π

= τfree

(18)

where τfree is the torque to make the robotic arm move in free
motion. The right side of the (18) is parameterized. Ψ is the
regression matrix and Π is the parameter vector of the robotic
arm. In this case, the estimation accuracy may be affected by
inaccurate models or modelling errors. Traditional idea is to
find a least squares solution of Π, and use it to estimate the
contact force fext, such that

f̂ext = J−T(Ψ(q̈, q̇, q)Π̂− τ)

= J−T(τ̂free − τ)
(19)

where Π̂ is estimate of the parameter vector. It is not difficult to
find that the accuracy of the model directly affects the solution

Fig. 3. The NN-based observer under training (modified from [17]).

of the least squares. It is difficult to implement the inverse-
dynamics-based observer if the robotic arm is not accurately
modelled or the modelling error is relatively large.

To solve this problem, A flatted network structure with RBF
is developed to estimate the model parameters. Compared with
traditional multilayer feedforward neural networks employed
in [17], this NN structure incorporating incremental learning
algorithm can guarantee the approximation accuracy without
remodelling the NN structure, when the approximation accu-
racy is not satisfactory. As seen in (16), the advantage of
incremental learning method is that the network only needs
to train the weights of new added enhancement nodes without
calculating the weights of the previous trained network. As
depicted in Fig. 3, the inputs of the neural network under
training are vectors of joint acceleration, velocity and joint
position. After completing the training process, the trained NN
model can be used to estimate the torque τfree and calculate
the external force from (19).

B. RBFNN Learning with Dynamic Framework
In this section, inspired the broad learning system, a dynam-

ic RBFNN learning framework that combines node expansion
and deterministic learning theory will be developed. As pre-
sented in Fig. 4, the NN nodes with centers far away from
the input trajectory will be discarded, and then the number
of NN nodes will be decreased. Then newly added nodes
with centers close to input trajectory will be properly placed,
and the number of NN nodes will increase. Considering PE
conditions and Lemma 1, the satisfied parameter estimation
could not be achieved well when the input of RBFNN is
far from the centers of the Guassian function, which will
bring a low impact on the estimation performance. In this
case, an extra NN node will be added to incorporate the new
information. Here, the information of the added NN node
is defined as [unew, ηnew,Wnew], where unew, ηnew,Wnew

denote the center, variance and the weight of the added NN
node respectively. Suppose that the distance between centers
of the nearest m NN nodes and the corresponding input is
dp = [p1, p2, ..., pm]. Then, the parameters of the added node
can be defined as

unew = p+ γ||Zξ − p||
ηnew = ηi

(20)

where Zξ is the current point of Zin, the initial weight of
added NN node is Wnew = 0, p denotes the average distance

5

Fig. 4. The traditional RBFNN learning principle to enhancement of RBFNN
learning (modified from [43]).

of dp, such as

p =

∑m
k=1 pi
m

, i = 1, 2, ...m (21)

After that, centers vector of NN nodes can be rewritten as

ut+1 =

{
[ut, unew] , if p > Ξ

ut, otherwise
(22)

where Ξ is the predefined threshold. After new enhancement
nodes are added into networks, the weight vector can be
rewritten as

W(·n) =

[
W(·)
Wnew

]
(23)

where W(·n) is the weight vector after new enhancement nodes
added into networks.

C. RBFNN Controller
In this part, a RBFNN-based controller is designed to

guarantee the control performance. The tracking errors are
defined as

e1 = qr − q
α = q̇r +K1e1

e2 = ė1 +K1e1

(24)

where K1 = {k11, k12, ..., k1n} with k1i being positive con-
stant.

Considering the actuator deadzone, the robot dynamics (1)
can be written as

Mq(q)q̈ + Cq(q, q̇)q̇ +Gq(q) = D(τ) + τext (25)

where D(·) is defined in (17).
Design the control torque

τ = M̂qα̇+ Ĉqα+ Ĝq +K2e2 + ∆τ̂ − τ̂ext (26)

where ∆τ̂ is the estimates of ∆τ = τ − D(τ), M̂q, Ĉq and
Ĝq are the estimates of Mq, Cq and Gq , τ̂ext is the estimate
of τext; K2 is the control gain.

The updating law of RBFNN is

˙̂
WM = Θ−1

M (S(XM)α̇e2 − σMŴM)

˙̂
WC = Θ−1

C (S(XC)αe2 − σCŴC)

˙̂
WG = Θ−1

G (S(XG)e2 − σGŴG)

˙̂
Wτ = −Θ−1

τ (S(Xτ)e2 + στŴτ)

(27)

where Θ(·) are positive definite matrices; σ(·) are positive
constants for disturbance [32].

Fig. 5. Description of the UUB and the definition in (38).

Substituting (26) into (25) yields

−Mq ė2 = (M̂q −Mq)α̇+ (Ĉq − Cq)α+ (Ĝq −Gq)
+ Cqe2 −∆τ̂ +K2e2 + ∆τe

(28)

where ∆τe = τext − τ̂ext.
Theorem 1: Considering the system dynamics (1), error

signals (24), NN updating law (27) and Lyapunov function
(32), the proposed control scheme can ensure that e2, ||W̃(·)||
are UUB. Since ||W ∗(·)|| is bounded, ||Ŵ(·)|| = ||W ∗(·) + W̃(·)||
will be bounded. According to the definition in (24), we can
obtain e1, α, q are bounded.

Remark 2: In [32], it has been proven that almost all
periodic trajectories satisfy the (partial) PE condition. The
approximation of uncertainties can be achieved with the lo-
calized RBF neural networks (ŴTS(Zin)) when the tracking
convergence is obtained. In a possible large lattice on which
the RBF neural network is constructed, the input trajectory
could not search all the every neural node. Therefore, the
NN learning will only occur in the localized area near the
input trajectory of the neural network. For those neurons with
centers close to the input trajectory, their weights can converge
to a small neighborhoods of a set of the optimal weights.
For those neurons far from the input trajectory, their weight
will updates slightly, with little change. Since the centers are
far from the input trajectory, the activation function S(Zin)
will be small and the weights remain small according to the
updating law (27), which means little learning experience can
be obtained. Therefore, we can present the restriction between
the input orbit and centers to make the RBF neural network
have the learned knowledge, that is

dis(qd, u) < Υ⇒ |ŴTS(Zin)− f(x)| < ε (29)

where f(·) denotes the unknown function, and Υ is a threshold
specified by the designer. In this case, the unknown function
is approximated by

f(x) = W ∗TS(Zin) + ε(Zin)

= ŴT
ξ S(Zin) + ε′(Zin)

(30)

where the Ŵξ is the subvector of Ŵ , and ε′ is the approxima-
tion error. Ŵξ corresponds to the NN nodes with their centers
close to the input trajectory.

Considering that these neurons with centers far from the
input orbit contribute little and bring extra computational
burden to the system, in this paper, we will discard the NN
nodes with centers far from the input trajectory according to
the following principle

S(Zin) < λ, Zin ∈ Rυ (31)

where λ is a predefined constant.

6

Fig. 6. Illustration of the experimental setup.

IV. EXPERIMENT RESULTS

In this section, experiments are conducted to verify the
effectiveness of our proposed method. The Baxter robot is
a humanoid two-arm robot, each arm consists of seven joints:
two shoulder joints s0, s1, two elbow joints e0, e1 and three
wrist joints w0, w1, w2. The model dynamic is introduced in
[44]. As shown in Fig. 6, the left arm of the Baxter robot is
interacting with the external force form the environment, and
the dynamics of the environment is modelled as the damping-
stiffness system. The motion range of the robotic arm is
specified within the constraint space.

A. Test of Adaptive RBFNN Controller
Firstly, the group of experiments aims to test the effec-

tiveness of the RBFNN-based controller in the presence of
actuator deadzone on joint s0. The upper and lower bounds
of the deadzone input are defined as dr = 0.49 and dl =
−0.49. The RBFNNs are divided into two groups, one for
approximating the unknown dynamics of robot system with
[q, q̇, α, α̇, e2] ∈ R5n, the other for dealing with the problem
of input deazone, with [τ, q, q̇, e2] ∈ R4n. The center value
of Guassian function of neural networks nodes should be
set within the range of the upper and lower bound of the
robot motion and input limits, in [−1.5, 1.5] × [−1.3, 1.3] ×
[−1.3, 1.3]× [−1.3, 1.3]× [−1, 1] ∪ [−10, 10]× [−1.3, 1.3]×
[−1.5, 1.5] × [−1, 1]. The gains in updating law are selected
as Θτn = diag{0.125}, ΘM = diag{0.3}, ΘC = diag{0.3},
ΘG = diag{0.3}. The control parameters are selected as
K1 = diag{12}, K2 = diag{6}. The desired trajectory is
specified as qd = [sin(5t);−1; 1.19; 1.94;−0.67; 1.03;−0.5].

The results are depicted in Figs. 7-12. As the input signal
enters the deadzone space, the actuator could only provide
little energy which cannot ensure the control performance,
as shown in Fig. 10. In the Fig. 12, we can find that the
deadzone condition (red solid line) is obvious at 10.5s and
continued to 12.3s and difference between Dτ and control
torque τ will degrade the control performance as shown in Fig.
10. With the NN compensation, the tracking performance has
been improved and the tracking error (red dotted line) with NN
compensation is smaller than the controller (blue solid line)
without compensation, as depicted in Figs. 9 and 11. Based
on the forward kinematics of Baxter robot is given in [45], the
tracking performance of end-effector with NN compensation
is shown in Figs. 7-8. As shown in Fig. 7, the actual trajectory
of the end-effector can follow the desired trajectory effectively,
and the tracking error is less than 0.04. As shown in Fig. 12,

0
0.1

0.05

1

00 -0.05

2

-0.1-0.1 -0.15

actual
desired

Fig. 7. The tracking performance of
the end-effector.

-0.05
0.02

0.02

0

0 0
-0.02

0.05

-0.02 -0.04-0.04 -0.06

error

Fig. 8. The tracking error of the end-
effector.

0 5 10 15 20 25 30
t[s]

-1.5

-1

-0.5

0

0.5

1

1.5

am
pl

itu
de

 [r
ad

]

q
1

q
d1

Fig. 9. The tracking performance of
joint s0 with NN compensation.

0 5 10 15 20 25 30
t[s]

-1.5

-1

-0.5

0

0.5

1

1.5

am
pl

itu
de

 [r
ad

]

q
1

q
d1

Fig. 10. The tracking performance of
joint s0 without NN compensation.

0 5 10 15 20 25 30
t[s]

-0.2

-0.1

0

0.1

0.2

am
pl

itu
de

 [r
ad

]

tracking error without compensation
tracking error with compensation

Fig. 11. The tracking errors of joint
s0 with/without NN conpensation.

0 5 10 15 20 25 30
t[s]

-10

-5

0

5

am
pt

itu
de

D
1

 without compensation

1
 with compensation

1

Fig. 12. The control inputs of joint
s0.

0 50 100 150 200 250 300 350 400 450
t[s]

-5

0

5

m
ag

ni
tu

de
 [r

ad
]

joint 1 joint 2 joint 3 joint 4 joint 5 joint 6 joint 7

Fig. 13. The free-motion training
trajectory.

0 5 10 15 20 25 30
t[s]

-1.5

-1

-0.5

0

0.5

1

1.5

am
pl

itu
de

 [r
ad

]

Fig. 14. The validation trajectory.

0 5 10 15 20 25 30
t[s]

-2

0

2

4

am
pl

itu
de

actual
estimate

Fig. 15. The validation performance
with proposed observer.

0 5 10 15 20 25 30
t[s]

-1.5

-1

-0.5

0

0.5

1

1.5

am
pl

itu
de

 [r
ad

]

Fig. 16. The test trajectory.

0 5 10 15 20 25 30
t[s]

-4

-2

0

2

4

6

8

am
pl

itu
de

actual
estimate

Fig. 17. The test performance with
proposed observer.

0 5 10 15 20 25 30
t[s]

-1.5

-1

-0.5

0

0.5

1

1.5

am
pl

itu
de

 [r
ad

]

q
r1

q
d1

Fig. 18. The trajectory adaptation of
joint s0.

0 5 10 15 20 25 30
t[s]

-1.5

-1

-0.5

0

0.5

1

1.5

am
pl

itu
de

 [r
ad

]

q
r1

q
1

Fig. 19. The trajectory tracking of
joint s0.

0 5 10 15 20 25 30
t[s]

-1

-0.5

0

0.5

1

1.5

2

2.5

am
pl

itu
de

 [r
ad

]

q
r1

q
c1

upper bound

lower bound

Fig. 20. The performance of trajec-
tory constraint.

the input signal (green dotted line) with NN compensation
is closer to the desired control input (blue solid line). The
results of this group of experiments show the effectiveness of
our proposed method.

B. Test of Admittance Control
This group of experiments is to test the performance of force

estimation and trajectory modification based on admittance

7

control. In Fig. 6, the environment model is defined as:
−τext = 0.01q̈ + 0.15q̇ + 1.1q. The damping and stiffness
matrices are defined as CE = diag{3}, GE = diag{5}. The
parameters in saturation function are set as ρi = 0.95, Ci =
1.1, γi = 0.05.

Before testing the admittance control, the flatted function-
link networks shoul be trained to obtain the robot dynamics
parameters. During the training phase, seven joints of Baxter
robot must be excited and controlled to move in free motion
in the workspace. At the beginning, the trajectory of the
robotic arm are commanded to flow a desired trajectory under
the proportional-derivative (PD) controller. The motion of
the robot arm should be set between the upper and lower
bound of the motion range, in [−1.7, 1.7] × [−2.14, 1.05] ×
[−3.05, 3.05]× [−0.15, 2.61]× [−3.05, 3.05]× [−1.57, 2.09]×
[−3.05, 3.05]. Then, the data of q, q̇, q̈, τ are recorded for off-
line training, as shown in Fig. 3. The training trajectories for
each joint are depicted as shown in Fig. 13. The training time
lasts for 450s, and each joint has different amplitudes and
periods, as shown in Fig. 13. In the step of training, the arm of
Baxter robot is required to be followed and excited for several
times. After that, the proposed observer is validated and tested
by similar trajectories with different amplitudes and periods,
and the results are shown in Figs. 14-17. As shown in Figs.
14-17, the estimate can follow the external torque well, and
the overall results are satisfactory.

The results of trajectory adaptation are presented in Figs.
18-20. The effect of external torque is about from 12s to 30s.
As we can see from Fig. 18, when external force is applied to
the manipulator, the desired trajectory (blue solid line) will be
modified (red dotted line) to be compliant to the external force.
The tracking performance after the trajectory modification is
shown in Fig. 19. The external torque is estimated by the
proposed observer in Fig. 17. The consuming time for training
the neural network is 5.088s. The total number of NN nodes
employed in the flatted NN structure is 1000. By using the
saturation function, the robot motion is limited between the
upper and lower bound predefined by the designer, which
ensure the robot work within the prescribed joint space, as
shown in Fig. 20. As we can see from these figures, the
overall result is satisfactory, which shows the effectiveness of
our proposed method.

C. Test of RBFNN learning with Dynamic Framework

This group of experiments aims to test the function approxi-
mation capabilities of RBFNN learning with dynamic updating
algorithm. The RBFNN is employed to approximate the non-
linear function f(q, q̇, α, α̇) = Mq(q)α̇ + Cq(q, q̇)α +Gq(q),
where α is defined in (24). The functional approximation per-
formance of the our implemented neural network is depicted
as shown in Figs. 21-26. The RBF network contains 512
nodes and parameters in updating law are set: Θ(·) = 0.03
σ = 0.035. The parameter of discarding nodes defined in (29)
is Υ = 0.05. As shown in Fig. 22, the weight of NN nodes
with their centers close to the input trajectory are activated well
and the weight of NN nodes with their centers far away from
the input trajectory are updating slightly and remains very
small, that means, little learning experience can be obtained. In
this case, we discard the NN nodes with their centers far away
from the input trajectory according to the principle in (29), and
the number of the discarded NN nodes is 208. After discarding

0 5 10 15 20 25 30
t[s]

0

2

4

6

8

am
pl

itu
de

estimate with 304 NN nodes
actual
estimate with 512 NN nodes

Fig. 21. The function approximation
with 512 NN nodes and 304 NN n-
odes.

Fig. 22. The convergence of NN
weight with 512 NN nodes.

Fig. 23. The convergence of NN
weight with 304 NN nodes.

0 5 10 15 20 25 30
t[s]

0

2

4

6

8

am
pl

itu
de

estimate
actual

Fig. 24. The function approximation
with dynamic RBFNN learning frame-
work.

Fig. 25. The convergence of NN
weight with 304 NN nodes under dy-
namic RBFNN learning framework.

Fig. 26. The convergence of NN
weight of 100 new NN nodes.

these NN nodes, the function approximation performance (red
dotted line) is shown in Fig. 21 and the weight convergence is
shown in Fig. 23. Comparing the approximation performance
before (green dotted line) and after (red dotted line) discarding
nodes as shown in Fig. 21, we can see that the performance of
neural network function approximation is affected little after
discarding these nodes, but the computational burden of the
system has been reduced in half. From the Fig. 21, it is seen
that the function approximation performance is not very satis-
factory. To make the neural network have better approximation
ability, 100 new nodes are added into system with their centers
next to the input trajectory, and the approximation results are
depicted in Fig. 24. The value of weight is updating according
to the law in (27), and the convergence of the weight of old
NN nodes and new NN nodes are shown in Figs. 25 and 26,
respectively. By comparing the Fig. 21 with Fig. 24, we can
see that the approximation performance (blue solid line in Fig.
24) of implemented neural network with dynamic framework
could follow the approximated non-linear function’s dynamics
(red dotted line) better, which can verify the effectiveness of
our proposed method.

V. CONCLUSION

In this paper, a neural-learning-based sensorless control
scheme in the presence of input deadzone is presented for
robotic arm to interact with the unknown environment. An
inverse-dynamics-based force observer integrating the flatted
network with RBF is developed to estimate the external force
from the environment. A dynamic RBFNN learning framework
is developed to approximate the uncertainties of the system.
This novel NN adaptive controller is presented in Section III.
The proposed control scheme is validated through experiments
on the Baxter robot in Section IV.

8

VI. APPENDIX

Consider the following Lyapunov candidate

V =
1

2
eT

2 Mqe2 +
1

2
tr(W̃T

τ ΘτW̃τ) +
1

2
tr(W̃T

MΘMW̃M)

+
1

2
tr(W̃T

CΘCW̃C) +
1

2
tr(W̃T

GΘGW̃G)

(32)
The derivative of (32) is

V̇ =eT
2 Mq ė2 +

1

2
eT

2 Ṁqe2 + tr(W̃T
τ Θτ

˙̂
Wτ)

+ tr(W̃T
MΘM

˙̂
WM) + tr(W̃T

CΘC
˙̂
WC)

+ tr(W̃T
GΘG

˙̂
WG)

(33)

Substituting (31) into (33), we have

V̇ = eT
2 (− M̃α̇− C̃α− G̃+ ∆τ̂)

− eT
2 K2e2 − eT

2 ∆τe + tr(W̃T
τ Θτ

˙̂
Wτ)

+ tr(W̃T
MΘM

˙̂
WM) + tr(W̃T

CΘC
˙̂
WC)

+ tr(W̃T
GΘG

˙̂
WG)

(34)

Substituting the NN updating law (27) into (34), yields

V̇ =− eT
2 (K2e2 + ∆τe −∆τ̂)− eT

2 M̃α̇

− eT
2 C̃α− eT

2 G̃+ tr(W̃T
MΘM

˙̂
WM)

+ tr(W̃T
CΘC

˙̂
WC) + tr(W̃T

GΘG
˙̂
WG)

=− eT
2 (K2e2 + ∆τe −∆τ̂)− eT

2 M̃α̇

− eT
2 C̃α− eT

2 G̃+ tr[W̃T
τ (S(Xτ)e2 − στŴτ)]

+ tr[W̃T
M (S(XM)α̇e2 − σMŴM)]

+ tr[W̃T
C (S(XC)αe2 − σCŴC)]

+ tr[W̃T
G (S(XG)e2 − σGŴG)]

=− eT
2 K2e2 − eT

2 ∆τe − σM tr(W̃T
MW̃M)

− σM tr(W̃T
MW

∗
M)− σCtr(W̃T

C W̃C)

− σCtr(W̃T
CW

∗
C)− σGtr(W̃T

GW̃G)

− σGtr(W̃T
GW

∗
G)− στ tr(W̃T

τ W̃τ)

− στ tr(W̃T
τ W

∗
τ)

(35)

Using the Youngs inequality [46], and the derivative of V
is

V̇ ≤− eT
2 K2e2 +

1

2
eT

2 e2 −
1

2
στ tr(W̃

T
τ W̃τ)

− 1

2
σM tr(W̃

T
MW̃M)− 1

2
σCtr(W̃

T
C W̃C)

− 1

2
σGtr(W̃

T
GW̃G) + ∆

(36)

where ∆ = 1
2∆τT

e ∆τe + 1
2σM tr(W

∗T
M W ∗M) +

1
2σCtr(W

∗T
C W ∗C) + 1

2σGtr(W
∗T
G W ∗G) + 1

2στ tr(W
∗T
τ W ∗τ).

Let us define $ comprised of e2, W̃M , W̃C , W̃G, and the
(36) can be rewritten as V̇ ≤ −κι($)+∆, where κ and ∆ are
positive constant. There is an invariant set Ωs for −κι($) +
∆ > 0, that is, the derivative of V is negative outside the set.
We can define the set Ωb with V ($) decreasing in V̇ < 0, after
a period of time, the states $ will enter into Ωs and will not
escape afterwards. By uniformly ultimately bounded (UUB)
stablity, the state variable $ will converge to a bounded set.

The invariant set can be defined as

Ωs =
{

(||W̃M ||, ||W̃C ||, ||W̃G||, ||W̃τ ||, ||e2||), |

eT
2 (K2 − 1

2I)e2

∆
+
σD||W̃D||2

∆
+
σ∆||W̃C ||2

∆

+
σG||W̃G||2

∆
+
στ ||W̃τ ||2

∆
≤ 1 }

(37)

As depicted in Fig. 5, the area of the set Ωs is in the first
quadrant passing through the points

σ(·)||W̃(·)||2 = ∆, W̃ = ς

eT
2 (K2 −

1

2
I)e2 = ∆, e2 = ϑ

(38)

After new enhancement nodes are added into networks, we
reconstruct a new Lyapunov candidate

V =
1

2
eT

2 Mqe2 +
1

2
tr(W̃T

τnΘτnW̃τn)

+
1

2
tr(W̃T

MNΘMNW̃MN)

+
1

2
tr(W̃T

CNΘCNW̃CN)

+
1

2
tr(W̃T

GNΘGNW̃GN)

(39)

where W(·) denotes the NN weight after adding new nodes
into networks.

The derivative of (39) is

V̇ =eT
2 Mq ė2 +

1

2
eT

2 Ṁqe2 + tr(W̃T
τnΘτn

˙̂
Wτn)

+ tr(W̃T
MNΘMN

˙̂
WMN) + tr(W̃T

CNΘCN
˙̂
WCN)

+ tr(W̃T
GNΘGN

˙̂
WGN)

(40)

Substituting (28) into (40) and noting that

V̇ =eT
2 (−M̃α̇− C̃α− G̃+ ∆τ̂)− eT

2 K2e2

− eT
2 ∆τe + tr

([
W̃τ

W̃τnew

]T

Θτn

[
˙̂
Wτ

˙̂
Wτnew

])

+ tr

([
W̃M

W̃Mnew

]T

ΘMN

[
˙̂
WM

˙̂
WMnew

])

+ tr

([
W̃C

W̃Cnew

]T

ΘCN

[
˙̂
WC

˙̂
WCnew

])

+ tr

([
W̃G

W̃Gnew

]T

ΘGN

[
˙̂
WG

˙̂
WGnew

])
(41)

where W(·new) denotes the weight vector of new added nodes.
The updating law is designed as

˙̂
WMN = Θ−1

MN (S(XMN)α̇e2 − σMNŴMN)

˙̂
WCN = Θ−1

CN (S(XCN)αe2 − σCNŴCN)

˙̂
WGN = Θ−1

GN (S(XGN)e2 − σGNŴGN)

˙̂
Wτn = −Θ−1

τn (S(Xτn)e2 + στnŴτn)

(42)

where Θ(·) are positive definite matrices, and σ(·) are positive
constant.

9

Substituting (42) into (41), we have

V̇ =− eT
2 (K2e2 + ∆τe −∆τ̂)− eT

2 M̃α̇

− eT
2 C̃α− eT

2 G̃+ tr(W̃T
MNΘMN

˙̂
WMN)

+ tr(W̃T
CNΘCN

˙̂
WCN) + tr(W̃T

GNΘGN
˙̂
WGN)

=− eT
2 K2e2 − eT

2 ∆τe − σMN tr(W̃
T
MNW̃MN)

− σMN tr(W̃
T
MNW

∗
MN)− σCN tr(W̃T

CNW̃CN)

− σCN tr(W̃T
CNW

∗
CN)− σGN tr(W̃T

GNW̃GN)

− σGN tr(W̃T
GNW

∗
GN)− στntr(W̃T

τnW̃τn)

− στntr(W̃T
τnW

∗
τn)

(43)

By using the Young’s inequality in (43), yields

V̇ ≤− eT
2 K2e2 +

1

2
eT

2 e2 −
1

2
στntr(W̃

T
τnW̃τn)

− 1

2
σMN tr(W̃

T
MNW̃MN)− 1

2
σCN tr(W̃

T
CNW̃CN)

− 1

2
σGN tr(W̃

T
GNW̃GN) + ∆n

(44)
where ∆n = 1

2∆τT
e ∆τe + 1

2σMN tr(W
∗T
MNW

∗
MN) +

1
2σCN tr(W

∗T
CNW

∗
CN) + 1

2σGN tr(W
∗T
GNW

∗
GN) +

1
2στntr(W

∗T
τnW

∗
τn). We can find that the states after

adding new enhancement nodes also satisfy uniformly
ultimately bounded(UUB) stablity. By using Theorem 1, we
can prove that the states W̃τn, W̃MN , W̃CN , W̃GN , e2 will
converge to an invariant set.

REFERENCES

[1] W. He, Z. Li, and C. P. Chen, “A survey of human-centered intelligent
robots: issues and challenges,” IEEE/CAA Journal of Automatica Sinica,
vol. 4, no. 4, pp. 602–609, 2017.

[2] Z. Li, S. S. Ge, and A. Ming, “Adaptive robust motion/force control
of holonomic-constrained nonholonomic mobile manipulators,” IEEE
Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics),
vol. 37, no. 3, pp. 607–616, 2007.

[3] J. J. Craig and M. H. Raibert, “A systematic method of hybrid position/-
force control of a manipulator,” in COMPSAC 79. Proceedings. Com-
puter Software and The IEEE Computer Society’s Third International
Applications Conference, 1979. IEEE, 1979, pp. 446–451.

[4] S. Part, “Impedance control: An approach to manipulation,” Journal of
dynamic systems, measurement, and control, vol. 107, no. 17, 1985.

[5] J. E. Colgate and N. Hogan, “Robust control of dynamically interacting
systems,” International journal of Control, vol. 48, no. 1, pp. 65–88,
1988.

[6] M. T. Mason, “Compliance and force control for computer controlled
manipulators,” IEEE Transactions on Systems, Man, and Cybernetics,
vol. 11, no. 6, pp. 418–432, 1981.

[7] I. Ranatunga, F. L. Lewis, D. O. Popa, and S. M. Tousif, “Adaptive
admittance control for humanvrobot interaction using model reference
design and adaptive inverse filtering,” IEEE Transactions on Control
Systems Technology, vol. 25, no. 1, pp. 278–285, Jan 2017.

[8] P. Marayong, G. D. Hager, and A. M. Okamura, “Control methods
for guidance virtual fixtures in compliant human-machine interfaces,”
in 2008 IEEE/RSJ International Conference on Intelligent Robots and
Systems, Sep. 2008, pp. 1166–1172.

[9] B. J. Waibel and H. Kazerooni, “Theory and experiments on the stability
of robot compliance control,” IEEE Transactions on Robotics and
Automation, vol. 7, no. 1, pp. 95–104, 1991.

[10] S. Eppinger and W. Seering, “Introduction to dynamic models for robot
force control,” IEEE Control Systems Magazine, vol. 7, no. 2, pp. 48–52,
1987.

[11] C. Lee, S. Chan, and D. Mital, “A joint torque disturbance observer
for robotic assembly,” in Proceedings of 36th Midwest Symposium on
Circuits and Systems. IEEE, 1993, pp. 1439–1442.

[12] T. Murakami, R. Nakamura, F. Yu, and K. Ohnishi, “Force sensorless
impedance control by disturbance observer,” in Conference Record of
the Power Conversion Conference-Yokohama 1993. IEEE, 1993, pp.
352–357.

[13] P. Hacksel and S. Salcudean, “Estimation of environment forces and
rigid-body velocities using observers,” in Proceedings of the 1994 IEEE
International Conference on Robotics and Automation. IEEE, 1994,
pp. 931–936.

[14] M. Capurso, M. M. G. Ardakani, R. Johansson, A. Robertsson, and
P. Rocco, “Sensorless kinesthetic teaching of robotic manipulators
assisted by observer-based force control,” in 2017 IEEE International
Conference on Robotics and Automation (ICRA). IEEE, 2017, pp. 945–
950.

[15] X. Liu, F. Zhao, S. S. Ge, Y. Wu, and X. Mei, “End-effector force
estimation for flexible-joint robots with global friction approximation
using neural networks,” IEEE Transactions on Industrial Informatics,
vol. 15, no. 3, pp. 1730–1741, March 2019.

[16] V. Zahn, R. Maass, M. Dapper, and R. Eckmiller, “Learning friction
estimation for sensorless force/position control in industrial manipula-
tors,” in Proceedings 1999 IEEE International Conference on Robotics
and Automation (Cat. No. 99CH36288C), vol. 4. IEEE, 1999, pp.
2780–2785.

[17] A. C. Smith, F. Mobasser, and K. Hashtrudi-Zaad, “Neural-network-
based contact force observers for haptic applications,” IEEE Transac-
tions on Robotics, vol. 22, no. 6, pp. 1163–1175, 2006.

[18] Y.-H. Pao, G.-H. Park, and D. J. Sobajic, “Learning and generalization
characteristics of the random vector functional-link net,” Neurocomput-
ing, vol. 6, no. 2, pp. 163–180, 1994.

[19] C. L. P. Chen and J. Z. Wan, “A rapid learning and dynamic stepwise
updating algorithm for flat neural networks and the application to time-
series prediction,” IEEE Transactions on Systems, Man, and Cybernetics,
Part B (Cybernetics), vol. 29, no. 1, pp. 62–72, Feb 1999.

[20] C.-E. Ren and C. P. Chen, “Sliding mode leader-following consensus
controllers for second-order non-linear multi-agent systems,” IET Con-
trol Theory & Applications, vol. 9, no. 10, pp. 1544–1552, 2015.

[21] C. P. Chen, G.-X. Wen, Y.-J. Liu, and F.-Y. Wang, “Adaptive consensus
control for a class of nonlinear multiagent time-delay systems using
neural networks,” IEEE Transactions on Neural Networks and Learning
Systems, vol. 25, no. 6, pp. 1217–1226, 2014.

[22] Z. Li, S. Xiao, S. S. Ge, and H. Su, “Constrained multilegged robot
system modeling and fuzzy control with uncertain kinematics and
dynamics incorporating foot force optimization,” IEEE Transactions on
Systems, Man, and Cybernetics: Systems, vol. 46, no. 1, pp. 1–15, 2015.

[23] Z. Liu, G. Lai, Y. Zhang, and C. L. P. Chen, “Adaptive neural output
feedback control of output-constrained nonlinear systems with unknown
output nonlinearity,” IEEE Transactions on Neural Networks and Learn-
ing Systems, vol. 26, no. 8, pp. 1789–1802, 2015.

[24] D.-P. Li, D.-J. Li, Y.-J. Liu, S. Tong, and C. P. Chen, “Approximation-
based adaptive neural tracking control of nonlinear mimo unknown time-
varying delay systems with full state constraints,” IEEE transactions on
cybernetics, vol. 47, no. 10, pp. 3100–3109, 2017.

[25] A. M. Smith, C. Yang, H. Ma, P. Culverhouse, A. Cangelosi, and E. Bur-
det, “Novel hybrid adaptive controller for manipulation in complex
perturbation environments,” PloS one, vol. 10, no. 6, 2015.

[26] C. Yang, X. Wang, L. Cheng, and H. Ma, “Neural-learning-based
telerobot control with guaranteed performance,” IEEE Transactions on
Cybernetics, vol. 47, no. 10, pp. 3148–3159, Oct 2017.

[27] C. Yang, Y. Jiang, Z. Li, W. He, and C. Su, “Neural control of bimanual
robots with guaranteed global stability and motion precision,” IEEE
Transactions on Industrial Informatics, vol. 13, no. 3, pp. 1162–1171,
June 2017.

[28] C. Yang, X. Wang, Z. Li, Y. Li, and C. Su, “Teleoperation control
based on combination of wave variable and neural networks,” IEEE
Transactions on Systems, Man, and Cybernetics: Systems, vol. 47, no. 8,
pp. 2125–2136, Aug 2017.

[29] Z. Li, Y. Xia, and F. Sun, “Adaptive fuzzy control for multilateral
cooperative teleoperation of multiple robotic manipulators under random
network-induced delays,” IEEE Transactions on Fuzzy Systems, vol. 22,
no. 2, pp. 437–450, April 2014.

[30] C. L. P. Chen and Z. Liu, “Broad learning system: An effective
and efficient incremental learning system without the need for deep
architecture,” IEEE Transactions on Neural Networks and Learning
Systems, vol. 29, no. 1, pp. 10–24, Jan 2018.

[31] C. L. P. Chen, Z. Liu, and S. Feng, “Universal approximation capability
of broad learning system and its structural variations,” IEEE Transac-
tions on Neural Networks and Learning Systems, vol. 30, no. 4, pp.
1191–1204, April 2019.

[32] Cong Wang and D. J. Hill, “Learning from neural control,” IEEE
Transactions on Neural Networks, vol. 17, no. 1, pp. 130–146, Jan 2006.

[33] F. L. Lewis, Woo Kam Tim, Li-Zin Wang, and Z. X. Li, “Deadzone
compensation in motion control systems using adaptive fuzzy logic
control,” IEEE Transactions on Control Systems Technology, vol. 7,
no. 6, pp. 731–742, Nov 1999.

[34] P. L. Andrighetto, A. C. Valdiero, and D. Bavaresco, “Dead zone
compensation in pneumatic servo systems,” in ABCM symposium series
in mechatronics, vol. 3, 2008, pp. 501–509.

10

[35] R. R. Selmic and F. L. Lewis, “Deadzone compensation in motion
control systems using neural networks,” IEEE Transactions on Automatic
Control, vol. 45, no. 4, pp. 602–613, April 2000.

[36] W. He, A. O. David, Z. Yin, and C. Sun, “Neural network control of a
robotic manipulator with input deadzone and output constraint,” IEEE
Transactions on Systems, Man, and Cybernetics: Systems, vol. 46, no. 6,
pp. 759–770, June 2016.

[37] S. I. Han and J. M. Lee, “Precise positioning of nonsmooth dynamic
systems using fuzzy wavelet echo state networks and dynamic surface
sliding mode control,” IEEE Transactions on Industrial Electronics,
vol. 60, no. 11, pp. 5124–5136, Nov 2013.

[38] Y. Liu, L. Tang, S. Tong, and C. L. P. Chen, “Adaptive nn controller
design for a class of nonlinear mimo discrete-time systems,” IEEE
Transactions on Neural Networks and Learning Systems, vol. 26, no. 5,
pp. 1007–1018, May 2015.

[39] G. Peng, C. Yang, W. He, and C. L. P. Chen, “Force sensorless admit-
tance control with neural learning for robots with actuator saturation,”
IEEE Transactions on Industrial Electronics, pp. 1–1, 2019.

[40] B. Siciliano and O. Khatib, Springer handbook of robotics. Springer,
2016.

[41] S. G. Shuzhi, C. C. Hang, and L. Woon, “Adaptive neural network
control of robot manipulators in task space,” IEEE transactions on
industrial electronics, vol. 44, no. 6, pp. 746–752, 1997.

[42] T. H. Lee and C. J. Harris, Adaptive neural network control of robotic
manipulators. World Scientific, 1998, vol. 19.

[43] H. Huang, T. Zhang, C. Yang, and C. L. P. Chen, “Motor learning
and generalization using broad learning adaptive neural control,” IEEE
Transactions on Industrial Electronics, pp. 1–1, 2019.

[44] A. Smith, C. Yang, C. Li, H. Ma, and L. Zhao, “Development of
a dynamics model for the baxter robot,” in 2016 IEEE International
Conference on Mechatronics and Automation, Aug 2016, pp. 1244–
1249.

[45] Z. Ju, C. Yang, and H. Ma, “Kinematics modeling and experimental
verification of baxter robot,” in Proceedings of the 33rd Chinese Control
Conference, July 2014, pp. 8518–8523.

[46] W. H. Young, “On classes of summable functions and their fourier se-
ries,” Proceedings of the Royal Society of London. Series A, Containing
Papers of a Mathematical and Physical Character, vol. 87, no. 594, pp.
225–229, 1912.

Guangzhu Peng received the B.Eng. degree in au-
tomation from Yangtze University, Jingzhou, China,
in 2014, and the M.Eng. degree in pattern recogni-
tion and intelligent systems from the College of Au-
tomation Science and Engineering, South China U-
niversity of Technology (SCUT), Guangzhou, China,
in 2018. He is currently pursuing the Ph.D. degree in
Computer Science with the Faculty of Science and
Technology, University of Macau, Macau, China.

His current research interests include robotics,
human-robot interaction, intelligent control, etc.

C. L. Philip Chen (S’88-M’88-SM’94-F’07) is the
Chair Professor and Dean of the School of Computer
Science and Engineering, South China University of
Technology, China; on leave from Faculty of Sci-
ence and Technology, University of Macau, Macau,
China. The University of Macau’s Engineering and
Computer Science programs receiving Hong Kong
Institute of Engineers’ (HKIE) accreditation and
Washington/Seoul Accord is his utmost contribu-
tion in engineering/computer science education for
Macau as the former Dean of the Faculty.

His current research interests include systems, cybernetics, and compu-
tational intelligence. Dr. Chen was the IEEE SMC Society President from
2012 to 2013 and is now a Vice President of Chinese Association of
Automation (CAA). He is a Fellow of IEEE, AAAS, IAPR, CAA, and HKIE.
He is the editor-in-chief of the IEEE Transactions on Cybernetics, and an
associate editor of several IEEE Transactions. He was a Program Evaluator of
the Accreditation Board of Engineering and Technology Education (ABET)
of the U.S. for computer engineering, electrical engineering, and software
engineering programs. He received 2016 Outstanding Electrical and Computer
Engineers award from his alma mater, Purdue University after he graduated
from the University of Michigan, Ann Arbor, Michigan, USA.

Wei He (S’09-M’12-SM’16) received his B.Eng.
and his M.Eng. degrees from College of Automation
Science and Engineering, South China University
of Technology (SCUT), China, in 2006 and 2008,
respectively, and his PhD degree from Department
of Electrical & Computer Engineering, the National
University of Singapore (NUS), Singapore, in 2011.
He is currently working as a full professor in School
of Automation and Electrical Engineering, Univer-
sity of Science and Technology Beijing, Beijing,
China. He has co-authored 3 books published in

Springer and published over 100 international journal and conference papers.
He was awarded a Newton Advanced Fellowship from the Royal Society,
UK in 2017. He was a recipient of the IEEE SMC Society Andrew P. Sage
Best Transactions Paper Award in 2017. He is serving the Chair of IEEE
SMC Society Beijing Capital Region Chapter. He is serving as an Associate
Editor of IEEE Transactions on Neural Networks and Learning Systems, IEEE
Transactions on Control Systems Technology, IEEE Transactions on Systems,
Man, and Cybernetics: Systems, Assembly Automation, IEEE/CAA Journal of
Automatica Sinica, Neurocomputing, and an Editor of Journal of Intelligent
& Robotic Systems. His current research interests include robotics, distributed
parameter systems and intelligent control systems.

Chenguang Yang (M’10-SM’16) received the
B.Eng. degree in measurement and control from
Northwestern Polytechnical University, Xian, China,
in 2005, the Ph.D. degree in control engineering
from the National University of Singapore, Singa-
pore, in 2010 and postdoctoral training in human
robotics from the Imperial College London, London,
U.K. He has been awarded EU Marie Curie Inter-
national Incoming Fellowship, UK EPSRC UKRI
Innovation Fellowship, and the Best Paper Award of
the IEEE Transactions on Robotics as well as over

ten conference Best Paper Awards. His research interest lies in human robot
interaction and intelligent system design.

