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Abstract

Enclosed spaces are common in built structures but pose a challenge to many

forms of manual or robotic surveying and maintenance tasks. Part of this chal-

lenge is to train robot systems to understand their environment without human

intervention. This paper presents a method to automatically classify features

within a closed void using deep learning. Specifically, the paper considers a

robot placed under floorboards for the purpose of autonomously surveying the

underfloor void. The robot uses images captured using an RGB camera to iden-

tify regions such as floorboards, joists, air vents and pipework. The paper first

presents a standard mask regions convolutional neural network approach, which

gives modest performance. The method is then enhanced using a two-stage

transfer learning approach with an existing dataset for interior scenes. The con-

clusion from this work is that, even with limited training data, it is possible to

automatically detect many common features of such areas.

Keywords: Computer vision, underfloor maintenance, convolutional neural

network

1. Introduction

Many tasks in the built environment require surveys of tightly enclosed or

otherwise difficult to access and/or navigate spaces and where data capture is
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difficult and sparse. Examples range from common domestic properties that

require maintenance in roof voids or under floorboards, through to hazardous5

environments such as nuclear reactors or remote pipework. Such applications

require robotic surveyance tools that have minimal footprint in order to access

such environments and navigate therein. Any sensors therefore must have min-

imal dimensions and preferably use low-to-moderate power consumption, such

as a standard RGB camera, as in this paper. A further difficulty relates to the10

time consuming nature of manually controlling such robots to recover required

survey data given limited views, awkwardness of terrain and/or the need for

laborious data annotation (as is required with deep learning methods and to

meet commercial requirements such as accreditation).

This paper offers a method to ease the burden faced in these cases by means15

of a combined robotics and computer vision system that can rapidly and (semi-)

autonomously capture data and provide detailed annotation of the area data.

Basic mapping and path-planning is a well-studied area of robotics, which typi-

cally involves some form of simultaneous localisation and mapping (SLAM) [1].

However, automated methods to annotate such map data is less documented20

for the challenging environments considered here. The proposed approach uses

deep learning to automatically annotate RGB images from a robot-mounted

camera for one particular application: that of underfloor mapping for residen-

tial properties. The application is a case study and could be extended to other

application areas given sufficient training data.25

The application considered here is motivated by a need of Q-Bot Ltd [2] in

their underfloor insulation service. A method for automatically spraying insula-

tion into the void is sought where the automatic pixel-wise object classification

will enable insulation to be applied where needed to the floorboards and hot wa-

ter pipes, but prevent insulating over air vents, electrical wiring and joist ends.30

This task presents a significant challenge even for an experienced human opera-

tor, while accreditation requirements create an additional burden (for instance,

the British Board of Agrément means the whole installation process must be

recorded and documented). Therefore, being able to locate and tag features au-
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tomatically would streamline an otherwise laborious and repetitive task. These35

challenges are common across the construction industry. Future applications,

using a different set of classes, might involve using robots to apply materials

to other building surfaces, using a drone or crawling robot to check facades on

a tower block, the detection of cracks in pipework using robots navigating the

inside the pipe, or seeking damage to control rods in a nuclear reactor. A new40

set of labelled training data will be required for these applications but the basic

paradigm will be similar to that discussed here.

The specific contributions of the paper are as follows:

• Performance analysis of a general mask regions with convolutional neural

network (RCNN) approach for semantic segmentation of relevant scenes45

showing modest performance.

• Methods to improve the robustness of the method using a two-stage trans-

fer learning technique based on an existing dataset and redefinition of

feature aspect ratios within the RCNN.

• Detailed experiments to prove the robustness of the method showing strong50

performance with features such as walls, joists and floorboards and promis-

ing results for most others.

Section 2 of this paper considers other literature in the field including the

background material from machine learning and neural network methods. Sec-

tion 3 describes the basic network architecture chosen for this work and the data55

capture process. Optimisation of the approach by means of two-stage learning

and the incorporation of an alternative dataset is covered in Section 4. A de-

tailed analysis of the methods is then provided in Section 5 before Section 6

concludes the paper.

2. Related work60

The construction industry primarily relies on manual labour-intensive pro-

cesses and has experienced little productivity growth over the last 25 years,
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being slow to adopt new technologies [3]. In many countries, the situation is

further exacerbated by a skills shortage, which may worsen in the near future

[4]. Further, a huge proportion of buildings that will exist in the mid/late 21st65

century have already been constructed, and to varying environmental standards.

For example, it is estimated that 80% of UK buildings that will exist in 2050

have already been built [5]. Therefore, maintaining and upgrading the existing

building stock is a key challenge, yet there is very little useful information avail-

able to inform decision making and maintenance is often reactive, laborious and70

difficult.

One reason for the lack of useful information is that many processes rely

on paper-based manual data entry (an issue partially addressed in this paper

via automated data labelling), and these systems are poorly integrated with

business processes. This has created a wide range of challenges as progressively75

more data is collected, providing a range of new applications for the field of

computer vision in the construction industry. Aside from the application of this

paper, examples include: partial automation of a tunnel inspection routine [6];

health and safety monitoring [7]; productivity analysis [8]; workforce analysis [9];

detection of interior partition components [10]; recognition and quantification80

of bugholes in concrete [11]; and extrusion quality monitoring [12].

Despite the increased interest mentioned above, there has been relatively

little work to apply computer vision to the many tight spaces found in built

structures such as underfloor voids, pipes and around eaves. Some of the more

established works in the area involve more predictable conditions with specific85

requirements, such as pipework [13], and may require some form of structured

lighting and/or expensive hardware [14]. In this paper by contrast, we focus on

methods for a more generic understanding of tight spaces, with underfloor voids

as the case study. Iwaki et al. [15] considered a basic SLAM-based approach to

underfloor mapping while a robust version based on similar underlying princi-90

ples was proposed by Cebollada et al. [16] to apply underfloor insulation [17].

However, these efforts focused on 3D mapping without concern for semantic

scene understanding/object detection, which was carried out for this paper.
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In line with most automated scene understanding processes in recent years,

this work draws on convolutional neural networks (CNNs) [18] due to their95

proven track record in a range of applications. A neural network is an ap-

proach to pass images (or other signals) through a complicated series of fil-

ters (convolutions) with particular parameters, such that certain characteristics

of the images are enhanced or suppressed. If the correct filters and param-

eters are chosen, then distinctive features will be enhanced enabling recogni-100

tion/classification/detection of a particular class of object/scene. Many exist-

ing algorithms are able to optimise the parameters for the filters automatically,

which yield exceptionally high classification accuracy for numerous applications.

However, these methods generally require huge datasets of typically manually

labelled images to train for a new application and may require immense com-105

puter processing time on graphical processing units (GPUs).

As with many other works in the field, the requirement for huge datasets is

partially overcome here using the concept of transfer learning [19]: that is, to

use a network originally trained on another dataset and retrain certain layers of

the network to the new application. Nevertheless, the need for sizable datasets110

is not entirely diminished.

For many applications in construction and elsewhere (e.g. the automated

insulation robot considered in this paper), it is insufficient to merely classify a

single image, but rather to identify regions within a scene. Girshick et al. pro-

posed a means known as “regions with CNN” (RCNN) to efficiently represent115

regions within an image in order to localise objects within view [20] forming a

bounding box around required targets. This was expanded upon in Fast RCNN

and Faster RCNN [21]. The Mask-RCNN [22] provides a pixel-by-pixel mask

within the bounding box to form a so-called semantic segmentation but requires

an exceptionally time consuming, and usually manual, pixel-wise labelling pro-120

cess in order to make training possible.

The RCNN approaches for semantic segmentation were used for this paper

for feature detection. There have been other works applying a related paradigm

to the construction industry such as Dung and Anh who semantically segment
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images of cracks in concrete [23], and Xiong et al. who segment 3D building125

models from laser scanner point clouds [24]. However, ours is unique in its

application to enclosed spaces.

This paper addresses one of the key challenges facing the construction in-

dustry: how to improve quality and accountability while accommodating for the

lack of existing information. The research shows how computer vision can be130

used to automate categorisation while accounting for the limited training data

set encountered in this application, and many others involving tight spaces, in

the construction industry. The main unique features are the novel dataset and

tuned RCNN from the enclosed underfloor regions and the nature of the two-

stage approach to optimise performance on a limited dataset, while drawing135

upon a prior model (in this case from the NYU dataset [25]).

3. Segmentation using a basic mask-RCNN

This section describes a direct application of an existing Mask-RCNN deep

learning architecture to RGB images of underfloor scenes for semantic segmen-

tation.140

3.1. Data capture and pre-processing

For the application considered for this paper, a robot that was designed and

developed at Q-Bot Ltd (see Fig. 1) was fitted with a standard RGB camera

and 2D LiDAR scanner. The LiDAR scanner is not necessary for the bulk

of the work in this paper, but is used later to demonstrate the mapping of145

data labelling to 3D map data. The robot was placed in several underfloor

voids of residential properties and navigated remotely throughout the void while

continuously capturing image data from multiple viewpoints at regularly spaced

angles relative to the robot’s direction of travel. Illumination was limited to the

on-board white LED sources (see Fig. 1) and a very small amount of natural light150

from any openings. Further details of the data capture process can be found

in [26]. RGB images taken from the camera were then manually labelled and
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Figure 1: Photograph of the robot used for data capture, shown here applying insulation foam

to illustrate an application. The robot dimensions are approximately 58cm(L), 45cm(W),

29cm(H).

used to train an RCNN for segmenting any future images into classes of objects

from the environment (e.g. floorboards, walls, joists, etc.). In other words, the

goal was to develop a neural network able to accept an RGB image as input155

and then to output a matrix, of dimensions equal to the original image, where

each element indicates the class of object in a given pixel. Fig. 2 illustrates an

example of a (near) perfect output matrix produced manually.

A decision to only use two-dimensional RGB data (i.e without incorporation

of depth) was made since: (1) image-based algorithms are simpler and more160

efficient; (2) there is no registration necessary between the data from different

sensors; (3) the integration of the computer vision code with the rest of a robot

coding is more modular; and (4) training data based on transfer-learning (see

Section 2) are more readily available in RGB. Nevertheless, it is acknowledged

that 3D data does have the potential to offer richer information and will be165

considered for future work.

The method proposed here takes a raw image captured by the camera and

an XML data file containing the manual labels which were established using

LabelMe [27]. It then creates a mask image containing labels and regions of

each object for all the images, similar to that shown in Fig. 2. The data is170
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Figure 2: Example of a typical underfloor scene and the theoretical perfect output from the

algorithm. The colours encode floorboards (light green), joists (magenta), walls (red), vents

(dark green), cables (purple) and openings (cyan). Black areas are unclassified.

split 2:1 between training and testing datasets, as shown in Table 1. The Mask-

RCNN is then trained on the training dataset using transfer learning and then

validated against the (unseen) testing dataset. The transfer learning is based on

pre-trained weights from the common objects in context (COCO) dataset [28],

since this remains the largest and best-known pixel-wise labelled dataset. The175

overall framework is illustrated by Fig. 3.

3.2. Training data

A total of 256 labelled images were used for training and evaluating the

Mask-RCNN. The breakdown of images and pixels containing the various classes

can be seen in Fig. 4. Floorboards, joists and walls appear in the most images180

and occupy the most pixels.

When the network is trained, half of the data (selected at random) is aug-

mented to simulate a larger dataset by applying the following transformations

to generate new data:

• ±10◦ rotation185

• 0.2 of the width/height translation (black padding)

• 50% flipped horizontally
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Figure 3: The Mask-RCNN processing pipeline showing the main steps of the process. N.B. the

example validation output is for illustrative purposes only, and larger versions can be seen

later in the paper (e.g. Fig 5).
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These parameters where chosen in light of typical operating conditions of the

robot (e.g. where driving over bricks or debris might form an effective small

rotation) or geometrical properties of the features (e.g. any floorboard image is190

equally valid if flipped horizontally but not vertically).

Images

Training 170

Testing 86

Total 256

Table 1: The partitioning of data between training and test datasets.
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Figure 4: Histogram showing the number of images and number of pixels containing each

label. Note the log scale: i.e. there are substantially fewer cases of air vents, obstacles, etc.

3.3. Results

The results described in this section refer to the prediction accuracy of the

trained model against the testing partition of the dataset. These are images

that have not been used to train the model, but have an associated ground195

truth mask which is used to assess the performance. The model is applied to

each of the 86 images in the testing set, which output an evaluation graphic for

each test as shown in Fig. 5. These show:
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• The input image.

• The predictions of the model overlaid on the image.200

• The ground truth labels.

• An overlay image of the predictions and ground truth, where red shows

the predicted mask and green shows the ground truth.

• The confusion matrix of ground truth vs predicted labels (e.g. 66.2% of

floorboard pixels are correctly identified as floorboards for the case of205

Fig. 5).

Figure 6 shows the accumulated results for all classes across all of the 86 im-

ages in the testing set (i.e. it is the output if all the confusion matrices generated

for each image are combined). This demonstrates that fair recognition accuracy

for walls (86.3%) and floorboards (73.5%) has been achieved. The accuracy for210

a few other categories appears low, which is probably due to the fact that the

relative pixel counts become obscure when aggregating all the confusion matri-

ces: a single misdiagnosed large object can have an exaggerated effect on the

overall accuracy that is reported here. The low accuracy for some classes is also

likely due, in part, to human errors in the data labelling process, as well as the215

biased distribution of pixel count per category. We note that, if supplied with

sufficient accurate training data, as with the case of walls and floorboards, the

same model should be able to yield a much higher overall accuracy. Further,

individual results such as those in Fig. 5 have the potential for much higher

accuracy than the accumulated totals imply. Nevertheless, the results from this220

basic approach are only modest and so motivated the improvements described

in Section 4.

3.4. Limitations

Based on results for this section, the main limitation would appear to be

those object types that are small and/or have a low number of examples/pixels.225

Importantly, these often correspond to wires and pipes which have a small num-

ber of occurrences, and also have a high degree of variance associated with their
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Figure 5: Example results for a typical test image. Top row: input image, prediction labels,

ground truth labels. Bottom row: overlaid predictions, confusion matrix of predicted vs actual

class labels, where the numbers in brackets following the predicted class labels are probability

scores of each label prediction being correct.

appearance. Although these objects are detected in some images, they are so

badly identified across the whole dataset, that they all score close to zero.

To help understand this problem, a sequence of real images were augmented230

with synthetic wires (based on Bezier curves) before the CNN was retrained.

With a sufficiently large number of new images, many of the synthesised wires

were detected, proving the overall validity of the network architecture for such

awkwardly shaped features and motivating the following section. Note that,

while the validity of the architecture was proven this way, we later found no235

evidence that synthetic images helped to detect real pipes or wires and so were

not included in further training sets.

Aside from the issue of small/less common features, a major weakness of

the method above relates to the boundaries of regions. This is apparent in

Fig. 5, where a portion of floorboards near the centre of the image has not been240

segmented into anything at all.
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Figure 6: Performance matrix using all 86 images in the testing partition.

4. Segmentation using a fine-tuned two-stage mask-RCNN

This section covers two methods by which the training of the network was

optimised: using a two-stage learning approach and considerations of the aspect

ratio (anchor) of detection regions.245

4.1. An improved method

One of the greatest challenges faced in this project was the difficulty in cap-

turing enough good-quality image data to train a reliable Mask-RCNN model;

especially for certain classes, such as pipes and wires. Therefore, a two-stage

transfer learning approach is proposed to learn a “transitional model” for the250

semantic segmentation of objects in buildings, and then to the final model for se-

mantic segmentation in underfloor voids. In the two-stage learning process, the

model benefits from being exposed to more pipe and wire data and it is therefore
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capable of retaining useful features learned from these object classes. It is then

tuned to work with data captured in underfloor voids and use these features for255

an improved classification and segmentation performance. This method ensures

that the majority of knowledge (i.e. network weights) that is transferred from

the first stage to the second stage is useful and relevant.

To obtain the transitional model, a subset of the New York University (NYU)

dataset [25] was employed which contains image data of walls, floors, ceilings,260

pipes, wires, air vents, etc., similar to the objects of interest in this project.

The dataset also contains unrelated classes such as paintings, desks and cabinets.

Overall, 1449 images containing over 10,000 instances were utilised for this first-

stage learning. All model layers were trained with a batch size of 1 for 40 epochs,

at which time it converged to its final values. 80% of the NYU subset was used265

for training and the remaining 20% for testing. For this first stage, many general

classes were used, including those not directly related to underfloor scenes. This

approach helps to capture low-level features (such as corners and edges of general

indoor objects) from a larger dataset than would be possible using underfloor

features alone. These features are potentially useful for the second stage of270

learning, even though they originate from unrelated classes.

The trained model weights were then used for a second stage transfer learn-

ing, during which only the model heads were trained: i.e. only the output layer,

not the region proposal network nor the backbone model. Given that there were

fewer trainable model parameters than those in the previous stage, a batch size275

of 2 was used. The model was trained for 85 epochs before it started to over-fit.

Note that the same pre-trained COCO weights were used for model initialisation

as those in the method of Section 3. Further, the same 86 images in the test-

ing partition were used to evaluate this improved model such that performance

of this model can be directly and objectively compared to the original model.280

Other details of the training process are the same as illustrated in Section 3

while the overall framework is illustrated by Fig. 7.

Another investigation was carried out with a focus on pipe and wire de-

tection/classification. Pipes and wires are often found to be elongated in the
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Pretrained network
(COCO weights)

Retrained network
(with new aspect ratios)

Classifier

Figure 7: Framework for the two-stage transfer learning approach.

captured images. However, the original Mask-RCNN model generates Region-285

of-Interest (ROI) proposals (i.e. bounding boxes for detected objects) that have

aspect ratios restricted to 0.5, 1 or 2, meaning that it will be effective in detect-

ing square objects but may struggle with thin objects. Therefore, the aspect

ratios were replaced with 0.2, 0.5, 1, 2 and 5, and the region proposal network

layers of the model retrained to accommodate the new aspect ratios.290

4.2. Results

Figure 8 shows results using the new method for the same scene as that

shown in Fig. 5. The result clearly shows a cleaner transition between the

segments and better coverage of the floorboards.

Figure 9 shows the updated confusion matrix using the improved training295

method. The matching scores are clearly higher than in Fig. 6 except for the

“obstacles” class. The reason for this is uncertain although fortunately this is

likely to be a less critical class than most others since obstacles can easily be

identified using 3D scanning hardware rather than CNN approaches.

Further investigation showed that improvements between results in Figs. 6300

and 9 came from both the modification of aspect ratios and the inclusion of

NYU data. This is exemplified by Table 2, which shows the detection rate

(i.e. fraction of instances in which a class is identified at all, as opposed to the

amount of region overlap) for pipes increased substantially as a result of both

measures. This is despite the IoU scores being modest for all approaches. This305

is significant since it is often adequate to detect the presence (or otherwise) of

a particular feature without details of the precise pixel distribution.
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Figure 8: Improved segmentation of the scene from Fig. 5.

(a) (b) (c)

Pipes (out of 23) 4 (17.4%) 9 (39.1%) 18 (78.3%)

Wires (out of 6) 0 2 (33.3%) 2 (33.3%)

Table 2: Detection rates for pipes and wires using (a) the basic method from Section 3, (b)

the improved method with different aspect ratios, and (c) the final approach including the

two-stage learning.

5. Summary and discussion

To understand the improvements/differences between the basic approach

and the advanced approach, one should consider the confusion matrices (the310

diagonals of which are summarised more clearly in Fig. 10), the detection rates

from Table 2 and Fig. 11, and the individual scene performances.

The general comparison, illustrated by Fig. 10, shows that results for most

classes are either comparable or notably better for the advanced method. While

pipe and wire scores are very low indeed for both methods, Table 2 shows better315

detection rate for the advanced approach, as already mentioned. Figure 11

shows the detection rates for all classes, mostly revealing a similar pattern to
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Figure 9: Performance matrix using all 86 images in the testing partition using the improved

training regime.

that already found. It should be noted that the detection rates are manually

provided on a per image basis and involve a certain amount of subjectivity. For

example, the bottom-right image in Fig. 12, is classed as floorboards not detected320

since there is a floorboard present that is not found at all.

A qualitative assessment by visual reference to individual scenes reveals lit-

tle obvious trend in terms of resilience to illumination, perspective effects, etc.

Indeed, there are some cases whereby the basic method performs better for un-

known reasons. Consider the results in Fig. 12 for example. The first result325

shows a challenging case where the advanced method performs better, as ex-

pected, while the second case involves one joist that was only detected in the

basic method.

Figures 13 to 15 show further results for the advanced method to illustrate
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the advanced method. The values here correspond to the diagonals of Fig. 6 and 9.
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Figure 11: Detection rates for the basic method (left bars for each class) and the advanced

method. Numbers in brackets refer to the the number of images containing that class.
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Figure 12: Results from the basic method (left) and advanced method for two typical scenes.

its strengths and limitations. The first two of these show very successful seg-330

mentation. The last example is more challenging due to the complex patterns

of walls, joists and pipes. However, it is only the pipework that was completely

undetected in this case.

Finally, Fig. 16 shows an example of mapping the classified areas to 3D

data for applications in robotics: e.g. to determine where to apply insulation335

and what application stroke technique to apply. In real applications, it may be

necessary to further supplement this with classification scores from the detection

stage of the network. This would help to avoid a misclassification: for example,

if the vent to the lower-right of Fig. 16 were detected with low confidence, then

a human operator could be called upon for confirmation.340

6. Conclusions

This paper has presented a CNN approach to the highly challenging task

of automated underfloor closed-space scene segmentation. While the various

performance metrics may not suffice for all applications, there is strong evidence

that the CNN can reliably segment scenes given sufficient training data.345
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Figure 13: Example of a well-segmented simple scene.

Figure 14: Example of a more challenging well-segmented simple scene.
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Figure 15: Example of challenging scene.

Figure 16: Example of mapping the 2D labels onto a region of a 3D point cloud (here LiDAR

data).
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The work constitutes a step forward towards remote and autonomous la-

belling of features in closed environments. This is because the developed meth-

ods are robust for many of the most ubiquitous and important features; the

methods can be deployed in a real system; and the proposed paradigm offers a

framework that can be augmented in future application areas. The fine-tuning350

of the algorithm for objects with high aspect ratios is of particular significance

to the application of computer vision in construction: many common construc-

tion objects are long and thin, including those not specifically studied in this

paper such as truss structures, scaffold and cranes. While these features were

not part of this study, it is expected that a very similar approach could be ap-355

plied for their detection. The paper also demonstrates that the NYU dataset

is appropriate for follow-on research where segmentation of construction envi-

ronments/built scenes is essential (either using the approach in this paper or

otherwise). Finally, it should be reiterated that all deep learning methods re-

quire large datasets. Therefore, appending any future manually labelled images360

to the dataset and retraining the network should improve performance further

– as would the incorporation of any depth sensor data.

This research has demonstrated the potential for computer vision techniques

to impact the construction industry in two areas:

1. Improving the automation of robotic systems: in this case allowing a robot365

to identify areas needing treatment and allowing for the generation of an

appropriate control strategy.

2. Creating “digital twins”, or annotated records, of buildings where none

currently exist.

This creates opportunities to improve planning and management of a wide range370

of construction activities, enhances the information available for quality assur-

ance, as well as improving the productivity of the workforce. For Q-Bot’s ap-

plication specifically, the information is critical for accreditation; creating an

efficient, consistent (as the process is not reliant on an individual’s interpreta-

tion and record keeping) and accountable process to verify installation quality.375

22



Acknowledgements

This work was funded by InnovateUK (TSB Reference: TS/P010954/1).

References

[1] C. Cadena, L. Carlone, H. Carrillo, Y. Latif, D. Scaramuzza, J. Neira,

I. Reid, J. J. Leonard, Past, present, and future of simultaneous localization380

and mapping: Toward the robust-perception age, IEEE Transaction on

Robotics 32 (6) (2016) 1309–1332. doi:https://doi.org/10.1109/TRO.

2016.2624754.

[2] Q-Bot Ltd., https://www.q-bot.co/, [Accessed: 10 January 2020].

[3] UK government white paper, “Fixing our broken housing market”,385

https://www.gov.uk/government/publications/fixing-our-broken-

housing-market, [Accessed: 10 January 2020].

[4] Homes England Strategic Plan, https://assets.publishing.service.

gov.uk/government/uploads/system/uploads/attachment_data/

file/752686/Homes_England_Strategic_Plan_AW_REV_150dpi_REV.390

pdf, [Accessed: 10 January 2020].

[5] The Royal Society of Engineering, Engineering a low carbon built environ-

ment, ISBN 1-903496-51-9, [Accessed: 10 January 2020] (2010).

URL https://www.raeng.org.uk/publications/reports/

engineering-a-low-carbon-built-environment395

[6] S.-N. Yu, J.-H. Jang, C.-S. Han, Auto inspection system using a mobile

robot for detecting concrete cracks in a tunnel, Automation in Construction

16 (3) (2007) 255 – 261. doi:https://doi.org/10.1016/j.autcon.2006.

05.003.

[7] J. Seo, S. Han, S. Lee, H. Kim, Computer vision techniques for construction400

safety and health monitoring, Advanced Engineering Informatics 29 (2)

(2015) 239 – 251. doi:https://doi.org/10.1016/j.aei.2015.02.001.

23

http://dx.doi.org/https://doi.org/10.1109/TRO.2016.2624754
http://dx.doi.org/https://doi.org/10.1109/TRO.2016.2624754
http://dx.doi.org/https://doi.org/10.1109/TRO.2016.2624754
https://www.q-bot.co/
https://www.gov.uk/government/publications/fixing-our-broken-housing-market
https://www.gov.uk/government/publications/fixing-our-broken-housing-market
https://www.gov.uk/government/publications/fixing-our-broken-housing-market
https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/752686/Homes_England_Strategic_Plan_AW_REV_150dpi_REV.pdf
https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/752686/Homes_England_Strategic_Plan_AW_REV_150dpi_REV.pdf
https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/752686/Homes_England_Strategic_Plan_AW_REV_150dpi_REV.pdf
https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/752686/Homes_England_Strategic_Plan_AW_REV_150dpi_REV.pdf
https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/752686/Homes_England_Strategic_Plan_AW_REV_150dpi_REV.pdf
https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/752686/Homes_England_Strategic_Plan_AW_REV_150dpi_REV.pdf
https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/752686/Homes_England_Strategic_Plan_AW_REV_150dpi_REV.pdf
https://www.raeng.org.uk/publications/reports/engineering-a-low-carbon-built-environment
https://www.raeng.org.uk/publications/reports/engineering-a-low-carbon-built-environment
https://www.raeng.org.uk/publications/reports/engineering-a-low-carbon-built-environment
https://www.raeng.org.uk/publications/reports/engineering-a-low-carbon-built-environment
https://www.raeng.org.uk/publications/reports/engineering-a-low-carbon-built-environment
https://www.raeng.org.uk/publications/reports/engineering-a-low-carbon-built-environment
http://dx.doi.org/https://doi.org/10.1016/j.autcon.2006.05.003
http://dx.doi.org/https://doi.org/10.1016/j.autcon.2006.05.003
http://dx.doi.org/https://doi.org/10.1016/j.autcon.2006.05.003
http://dx.doi.org/https://doi.org/10.1016/j.aei.2015.02.001


[8] J. Gong, C. H. Caldas, Computer vision-based video interpretation model

for automated productivity analysis of construction operations, Journal

of Computing in Civil Engineering 24 (3) (2010) 252–263. doi:https:405

//doi.org/10.1061/(ASCE)CP.1943-5487.0000027.

[9] E. Konstantinou, J. Lasenby, I. Brilakis, Adaptive computer vision-based

2D tracking of workers in complex environments, Automation in Construc-

tion 103 (2019) 168 – 184. doi:https://doi.org/10.1016/j.autcon.

2019.01.018.410

[10] H. Hamledari, B. McCabe, S. Davari, Automated computer vision-based

detection of components of under-construction indoor partitions, Automa-

tion in Construction 74 (2017) 78 – 94. doi:https://doi.org/10.1016/

j.autcon.2016.11.009.

[11] F. Wei, G. Yao, Y. Yang, Y. Sun, Instance-level recognition and quantifi-415

cation for concrete surface bughole based on deep learning, Automation

in Construction 107 (2019) 102920. doi:https://doi.org/10.1016/j.

autcon.2019.102920.

[12] A. Kazemian, X. Yuan, O. Davtalab, B. Khoshnevis, Computer vision for

real-time extrusion quality monitoring and control in robotic construction,420

Automation in Construction 101 (2019) 92 – 98. doi:https://doi.org/

10.1016/j.autcon.2019.01.022.

[13] C. Koch, K. Georgieva, V. Kasireddy, B. Akinci, P. Fieguth, A review on

computer vision based defect detection and condition assessment of con-

crete and asphalt civil infrastructure, Advanced Engineering Informatics425

29 (2) (2015) 196 – 210. doi:https://doi.org/10.1016/j.aei.2015.

01.008.

[14] Laser Tunnel Scanning System, http://www.pavemetrics.com/

applications/tunnel-inspection/laser-tunnel-scanning-system/,

[Accessed: 10 January 2020].430

24

http://dx.doi.org/https://doi.org/10.1061/(ASCE)CP.1943-5487.0000027
http://dx.doi.org/https://doi.org/10.1061/(ASCE)CP.1943-5487.0000027
http://dx.doi.org/https://doi.org/10.1061/(ASCE)CP.1943-5487.0000027
http://dx.doi.org/https://doi.org/10.1016/j.autcon.2019.01.018
http://dx.doi.org/https://doi.org/10.1016/j.autcon.2019.01.018
http://dx.doi.org/https://doi.org/10.1016/j.autcon.2019.01.018
http://dx.doi.org/https://doi.org/10.1016/j.autcon.2016.11.009
http://dx.doi.org/https://doi.org/10.1016/j.autcon.2016.11.009
http://dx.doi.org/https://doi.org/10.1016/j.autcon.2016.11.009
http://dx.doi.org/https://doi.org/10.1016/j.autcon.2019.102920
http://dx.doi.org/https://doi.org/10.1016/j.autcon.2019.102920
http://dx.doi.org/https://doi.org/10.1016/j.autcon.2019.102920
http://dx.doi.org/https://doi.org/10.1016/j.autcon.2019.01.022
http://dx.doi.org/https://doi.org/10.1016/j.autcon.2019.01.022
http://dx.doi.org/https://doi.org/10.1016/j.autcon.2019.01.022
http://dx.doi.org/https://doi.org/10.1016/j.aei.2015.01.008
http://dx.doi.org/https://doi.org/10.1016/j.aei.2015.01.008
http://dx.doi.org/https://doi.org/10.1016/j.aei.2015.01.008
http://www.pavemetrics.com/applications/tunnel-inspection/laser-tunnel-scanning-system/
http://www.pavemetrics.com/applications/tunnel-inspection/laser-tunnel-scanning-system/
http://www.pavemetrics.com/applications/tunnel-inspection/laser-tunnel-scanning-system/


[15] H. Mizumoto, N. Sata, H. Iwaki, S. Oomura, S. Tsukui, F. Matsuno, De-

velopment of intuitive operation interface of underfloor inspection robot,

in: Society of Instrument and Control Engineers Annual Conference, 2008,

pp. 2962–2967. doi:https://doi.org/10.1109/SICE.2008.4655170.
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