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Nonlinear structural behaviour offers a richness of
response that cannot be replicated within a traditional
linear design paradigm. However, designing robust
and reliable nonlinearity remains a challenge, in part,
due to the difficulty in describing the behaviour of
nonlinear systems in an intuitive manner. Here, we
present an approach that overcomes this difficulty
by constructing an effectively one-dimensional system
that can be tuned to produce bespoke nonlinear
responses in a systematic and understandable manner.
Specifically, given a continuous energy function E and
a tolerance ε > 0, we construct a system whose energy
is approximately E up to an additive constant, with
L∞-error no more that ε. The system is composed of
helical lattices that act as one-dimensional nonlinear
springs in parallel. We demonstrate that the energy
of the system can approximate any polynomial and,
thus, by Weierstrass approximation theorem, any
continuous function. We implement an algorithm
to tune the geometry, stiffness and pre-strain of
each lattice to obtain the desired system behaviour
systematically. Examples are provided to show the
richness of the design space and highlight how the
system can exhibit increasingly complex behaviours
including tailored deformation-dependent stiffness,
snap-through buckling and multi-stability.

1. Introduction
Historically, elastic nonlinearities have been avoided by
structural engineers. This is often due to the need to
simplify the design process and limit the sensitivity
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to design parameters in order to create robust, repeatable behaviour. Moreover, elastic
nonlinearities are often synonymous with sudden catastrophic failure. However, recent advances
in material construction processes, e.g. three-dimensional printing, and the availability of
advanced computational/experimental analysis methods have permitted a relaxation of this
design conservatism [1–5]. In particular, computation has permitted the probing of complex
nonlinear design spaces with resultant improvements such as reduced structural weight,
increased robustness or additional functionality [2,6].

In general, the potential for multifunctional designs to reduce system part count is particularly
attractive from the perspectives of structural weight and minimal design philosophy. However,
a trade-off ensues. Conventional components are stiff and movement is achieved through
mechanical joints, such as hinges. To eliminate mechanical joints but retain operational load-
bearing capacity, greater control of stiffness and form is required at both global and local
structural levels [7]. In this context, nonlinear elastic deformations are an attractive means
for robust and repeatable shape and stiffness adaptation. The desire to explore and exploit
nonlinearity has motivated more complex descriptions of the underlying mechanics. For instance,
with structures capable of large deformations, geometrically nonlinear stress analysis is often
involved in the design process [8–11].

An emerging and somewhat more challenging task than describing the nonlinear response of
a structure under loading is its inverse, i.e. designing a structural topology and material system
to exhibit a specific nonlinear response. The need for bespoke elastic responses has arisen in
many fields including energy absorption [12], robotic and MEMS actuation [8,13,14], extreme
thermoelastic devices [15] and flow regulation valves [6,16]. The strength of the nonlinearity in
these bespoke responses is often limited so it can be realized and manufactured. In cases where
the nonlinearity is unconstrained, a discussion of how such responses can be realized with current
design and manufacturing technologies is often omitted. In the instances where physical systems
have been fabricated, they are of little use outside of the intended application [12]. Therefore,
a universal design framework able to achieve an arbitrary nonlinear response in a systematic
manner would be immensely valuable to the wider engineering community.

Bespoke nonlinear elasticity has already been investigated by some authors. Typically, the
focus has been on finding and coupling suitable problem parametrizations with nonlinear finite-
element analysis (FEA) solvers and optimization algorithms [8–11]. Due to the complexity of the
underlying structural models, the process of tailoring nonlinear responses has often been reported
as computationally expensive. As an example, Jutte [17] successfully used topology optimization,
coupled with a nonlinear FEA solver, on a two-dimensional network of geometrically nonlinear
curved beams. The level of achievable nonlinearities was restricted though, with buckling or
snap-through behaviours excluded. A variety of nonlinearities were observed, including constant
and nonlinear strain hardening and softening curves.

In the context of nonlinear lattice structures, Pirrera et al. [18] inspired by the behaviour of
the virus bacteriophage T4, explored the design space of geometrically frustrated helical lattices
(figure 1d) demonstrating robust, elastic multi-stability. Similar structures, with a focus on the
handedness of their auxetic properties, were investigated by Lipton et al. [19]. Also of note is the
work on gridshells by Baek et al. [20,21], where the authors investigate the shape and rigidity of
shell-like structures arising from the buckling of initially planar grids of rods.

(a) Main contributions of this article
To the authors’ knowledge, there are currently no tools capable of designing a one-dimensional
system to exhibit arbitrary nonlinear extensional responses. We address this deficiency by
presenting a system that can be constructed as an assembly of well-understood nonlinear, spring-
like ‘units’. The units’ behaviour is described by means of a simple analytical model, which
provides insight into the system’s mechanics while requiring minimal computational effort for
design. As units are added to the assembly, new aspects of behaviour may be observed. In essence,
as we increase the complexity of the system, richer responses can be achieved without increasing
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Figure 1. (a) A cylindrical lattice, (b) planar projection of lattice, (c) representative unit cell and (d) composite prototype.
Sketch of a typical lattice comprising four helical strips (i.e. N = 2) on the surface of its constraining cylinder and its planar
representation. Adapted from [18].

the complexity of the description of the system. Following this mechanism, we are able to design
nonlinear spring-like systems that can achieve a plethora of desirable response characteristics.

In the present work, the fundamental units are helical lattices like that illustrated in figure 1.
This structure was first presented in [18], where robust nonlinear features, such as multi-stability,
were observed for various ranges of lattice geometry, stiffness and pre-strain. This lattice acts as
an effective one-dimensional spring, the behaviour of which may be described succinctly using
its energetic profile under extension. Here, multiple helical lattices are coupled through rigid
connections, in arrangements similar to those presented in [19] whilst preserving the kinematic
assumption outlined in [18]. We demonstrate the appearance of new response characteristics that
are unobtainable via a single lattice in isolation. Besides, further behaviour continues to emerge
with additional geometrically distinct lattices.

Mathematically, linking lattices changes the system’s energy in a manner that resembles a
series expansion. We demonstrate that this offers sufficient design freedom to approximate any
polynomial energy, and thus to approximate any continuous energy to any desired accuracy in
L∞. In particular, we can prescribe the positions and stability of the system’s equilibria, as well
as its stiffness as a function of extension. In short, we can design a bespoke nonlinear elastic
response. We present a systematic approach to obtaining the design parameters for individual
lattices and the overall system assembly requirements.

(b) Outline
The remainder of paper proceeds as follows. In §§2 and 3, we first recall and then recast the
results of Pirrera et al. [18] for a single lattice. In §4, we extended these results to coupled systems
of multiple lattices. In §5, we prepare the ground for the main result which is then proved in §6.
Ancillary results are presented in §7. Several examples of engineered behaviours illustrating the
robustness of the design space and the algorithm are presented in §8. Finally, conclusion is drawn
in §9.

2. Kinematics and elastic energy of single lattices
Let us consider a generic helical lattice—as depicted in figure 1a—consisting of N pairs of
anisotropic helices, kinematically constrained to lie upon the surface of a reference cylinder of
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radius R. Pirrera et al. [18] developed an analytical formulation to describe the mechanics of such
a system, based on the elastic energy of the helical strips. For the reader’s convenience, we repeat
the kinematic analysis [15] here.

The lattice can extend or compress as a result of loading at its extremities and along the
longitudinal axis (i.e. the X-direction). As the lattice deforms, we assume [15,18] that:

(i) all helices remain on a single cylinder (whose radius and length can change);
(ii) the helical strips are hinged where they overlap allowing scissoring motion only;

(iii) the change in length of the helical strips is negligible; and
(iv) the helical strips are sufficiently slender that the dominant contribution to the energy

arises from bending and twisting with respect to the strips’ principal dimension.

Furthermore, consider the ‘+’ strip that passes through the origin in figure 1b. In the ζ -plane, this
strip has the parametrization

(ζ1, ζ2) = s(sin(θ ), cos(θ )),

where s is the arc-length parameter and θ is illustrated in figure 1c. From the assumptions above,
this strip maps to the helix

γ = ζ1X̂ + RQ
(
ζ2

R

)
Ŷ = s sin(θ )X̂ + RQ

(
cos(θ )

R
s
)

Ŷ, (2.1)

in the (X, Y, Z) coordinate system used in figure 1a, where a hat is used to indicate unit vectors
along these axes. Q(φ) ∈ SO(3) is a rotation about X̂ through an angle φ. The unit tangent t(s),
normal n(s) and binormal b(s) are defined as

t(s) = γ ′

‖γ ‖ = sin(θ )X̂ + cos(θ )Q
(

cos(θ )
R

s
)

Ẑ,

n(s) = t′

‖t′‖ = −Q
(

cos(θ )
R

s
)

Ŷ

and b(s) = t(s) × n(s) = cos(θ )X̂ − sin(θ )Q
(

cos(θ )
R

s
)

Ẑ,

where dash indicates differentiation with respect to the arc-length parameter, s. The unit cell
extension,

h ∈ [0, l], (2.2)

as shown in figure 1c, is used to uniquely describe the state of the system. Accordingly, the
curvature κx, and torsion κxy, can be defined in terms of the unit cell extension, such that

κx = t′(s) · n(s) = cos2(θ )
R

=
√

l2 − h2

2l2
(2.3a)

and κxy = −b′(s) · n(s) = sin(θ ) cos(θ )
R

= h
2l2

. (2.3b)

These definitions hold for the ‘−’ strip as well, except that the sign of the torsion is reversed. Since
we have assumed that the strips’ behaviour is dominated by bending and twisting deformations,
i.e. the stretching energy can be neglected, as in [15,18], we obtain a quadratic bending energy of
the form

U = 1
2

(
κ�dκ

)
, (2.4)

where the curvature components κ and associated reduced bending stiffness matrix d are
described by Classical Laminate Theory (CLT) [22] capturing stiffness anisotropy. The use of
CLT is for notational convenience alone and does not imply that the system must be composed
of composite strips. For example, anisotropy could be designed into the system by exploiting
cross-sectional geometry or functionally graded materials.
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3. Unit cell formulation
Figure 1 illustrates the lattice geometry schematically, its development into a plane, and the
representative unit cell upon which the lattice behaviour can be modelled. Herein, we limit
right- and left-handed helices—denoted by subscripts ·+ and ·−, respectively—to have equal
and opposite pitch, θ . This restriction ensures unit cells are rhombi and prevents the lattice from
twisting upon extension [18]. In addition, and conveniently for the current purposes, it creates a
bijective correspondence between R and h [18], permitting the lattice extension to be used as the
single degree of freedom to characterize the system [23].

(a) Total potential energy of a unit cell
With the unit cell representation, it is sufficient to consider the total potential energy of the
constitutive cell to describe overall lattice behaviour. For simplicity, but without loss of generality,
it is assumed that each right-handed helix has identical dimensions, stiffness and mechanical pre-
strain and that these properties are constant along the length of the helices. A similar commonality
is shared between left-handed helices. Using (2.4), the energy of the representative unit cell can
then be written as

Π = π l
N

(
w+(κ+ − υ+)�d+(κ+ − υ+) + w−(κ− − υ−)�d−(κ− − υ−)

)
, (3.1)

where (2π l/N) is the cell’s side length and w± the strip’s width. The model by Pirrera et al.
[18] considers axial, ·x, and twist, ·xy, components of curvature. Moreover, the total curvature
comprises two additive terms: the curvature developed by the helices upon deformation while
conforming to the surface of the cylinder, κ±(h), and the mechanical pre-curvature (tooling), υ±.
Hence,

κ±(h) − υ± =
[
κx±(h)
κxy±(h)

]
−
[
υx±
υxy±

]
, (3.2)

which is included in the energetic formulation with the corresponding terms of the reduced
bending stiffness matrix, d±

d± =
[

d11± d16±
d16± d66±

]
. (3.3)

The curvatures due to lattice extension may be stated using the Weingarten map [24]

κ±(h) = 1
R

[
cos2 θ

± sin θ cos θ

]
= 1

2l2

[√
l2 − h2

±h

]
, (3.4)

where, from figure 1

R = 2
√

l2 − h2. (3.5)

Equation (3.1) now may be expressed in terms of non-dimensional parameters.

(b) Non-dimensional form
To aid analysis, we make the following normalizations, indicated by an overbar:

h̄ = h
l

, (3.6a)

d̄± = d
d11±

=
[

1 ε̄±
ε̄± δ̄±

]
, (3.6b)
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κ̄± = 2lκ±, (3.6c)

ῡ± = 2lυ± (3.6d)

and ϕ̄ = w−d11−
w+d11+

. (3.6e)

This allows the energy of the representative unit cell, (3.1), to be recast as

Π (h̄) = π

4
w+d11+

Nl

(
a0 + a1h̄ + a2h̄2 + b1

√
1 − h̄2 + b2h̄

√
1 − h̄2

)

= π

4
w+d11+

Nl
Π̄ (h̄), (3.7)

for h ∈ [0, 1], with

a0 =
(

1 + ῡ2
x+ + 2ε̄+ῡx+ῡxy+ + δ̄+ῡ2

xy+
)

+ ϕ̄
(

1 + ῡ2
x− + 2ε̄−ῡx−ῡxy− + δ̄−ῡ2

xy−
)

, (3.8a)

a1 = −2
(
ε̄+ῡx+ + δ̄+ῡxy+

) + 2ϕ̄
(
ε̄−ῡx− + δ̄−ῡxy−

)
, (3.8b)

a2 = (
δ̄+ − 1

) + ϕ̄
(
δ̄− − 1

)
, (3.8c)

b1 = −2
(
ῡx+ + ε̄+ῡxy+

) − 2ϕ̄
(
ῡx− + ε̄−ῡxy−

)
(3.8d)

and b2 = 2ε̄+ − 2ϕ̄ε̄−. (3.8e)

For feasible systems, the stiffness coefficients must guarantee the positive definiteness of d̄± and
thus we require

ϕ̄ > 0, (3.9a)

δ̄± > 0 (3.9b)

and ε̄2
± < δ̄±. (3.9c)

Although the definition of the strain energy used herein only considers curvatures due to
mechanical loading and pre-strain, the description can be readily modified to include additional
fields, such as thermal, electromagnetic, piezoelectric, pH and moisture [15]. The inclusion of
such effects is straightforward, but beyond the scope of the current analysis. Inclusion of these
effects can improve prediction of manufactured performance of similar structural architectures
[25,26] and field-dependent curvature changes offer additional avenues to manipulate the
energy landscape of the system. In other words, the fields can be used, either in isolation or
synergistically, to enhance the tailorability of the lattice. For instance, both the equilibria and their
characteristics of stability can be tuned to change with temperature, creating nonlinear cyclic
thermal actuators or highly tuned coefficients of thermal expansion beyond what is achievable by
traditional materials [15].

4. Coupled lattice system
Although, as demonstrated in [18], a single helical lattice may be tuned to exhibit many desirable
nonlinear behaviours, it does not provide the designer with complete freedom to develop a
complete set of smooth energy profiles as a function of lattice extension. To overcome this
limitation, it is advantageous to consider the behaviour of multiple lattices coupled together.
Through the coupling of unique lattices, new responses are obtainable that cannot be achieved by
a single lattice in isolation. Developing this hierarchical system shows how, depending on length
scale, the tuning of nonlinear substructures can be considered analogous to the development of
architectured or meta-materials (see, for instance [27]).
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Figure2. Plan formdiagramsof a coupled lattice systemcomprising two lattices (cf. figure 1b). Showing (a) a partially extended
state and (b) locking due to maximal extension of second lattice.

(a) Lattices in parallel with common extension
Henceforth, coupled lattices are constrained to have the same extension. For clarity, we present
diagrams showing a two-lattice system, but analyses and results are for systems with I ∈ N lattices.
(Here N denotes the positive integers.)

(i) Extension

The ith lattice is composed of Mi bands of unit cells in the axial direction and Ni bands in the
circumferential direction, as illustrated in figure 2. In this section, i = 1, 2, . . . , I, unless specified
otherwise. From the geometry of the unit cell (figure 1), one can deduce that the maximum lattice
extension is 4πLi, where

Li = Mili
Ni

. (4.1a)

Since the lattice system locks when any lattice reaches full extension, as shown in figure 2b, the
maximum possible extension of the system is 4πL, where

L = min
i

Li. (4.1b)

Let the global extension of the system be 4πH, for H ∈ [0, L]. This global extension can be related
to the extensions of the unit cells of individual lattices through

hi = NiH
Mi

. (4.2a)

Then, the normalized extension of the ith lattice, h̄i (see (3.6a)), can be related to the normalized
extension of the system, H̄, through a parameter ψi:

h̄i =ψiH̄, (4.2b)

where, using (4.1),

ψi = L
Li

= L
li

Ni

Mi
∈ (0, 1] (4.2c)

and H̄ = H
L

∈ [0, 1]. (4.2d)
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(ii) Lattice energy

The energy of the ith lattice, ξi, may be obtained by multiplying the energy of each unit cell, given
by (3.7), and the number of unit cells, 2NiMi (cf. figure 2a):

ξi(H̄) = π

2
Mi

li
w+i d11+iΠ̄i(ψiH̄),

where we have used (4.2b). This can be written as

ξi(H̄) =ΥiΠ̄i(ψiH̄) (4.3a)

=Υi

(
a0i + a1iψiH̄ + a2iψ

2
i H̄2 + b1i

√
1 − ψ2

i H̄2 + b2iψiH̄
√

1 − ψ2
i H̄2

)
, (4.3b)

where Υi = π

2
Mi

li
w+i d11+i , (4.4a)

and the coefficients a0i, a1i, a2i, b1i and b2i are related to the material parameters δ̄i±, ε̄i±, ῡix±, ῡixy±
and ϕ̄i through (3.8). Note that

Υi > 0. (4.4b)

(iii) System energy

From (4.3), the system energy, Ξ , can be written as

Ξ (H̄) =
I∑

i=1

ξi(H̄) =
I∑

i=1

ΥiΠ̄i(ψiH̄)

= A0 + A1H̄ + A2H̄2 +
I∑

i=1

Bi fψi (H̄) +
I∑

i=1

Ci gψi (H̄), (4.5)

with coefficients

A0 =
I∑

i=1

Υia0i, (4.6a)

A1 =
I∑

i=1

Υia1iψi, (4.6b)

A2 =
I∑

i=1

Υia2iψ
2
i , (4.6c)

Bi =Υib1i (4.6d)

and Ci =Υib2i, (4.6e)

and functions fψ , gψ : [0, 1] → R+ given by

fψ (H̄) =
√

1 − (ψH̄)2 (4.7a)

and gψ (H̄) =ψH̄fψ (H̄) =ψH̄
√

1 − (ψH̄)2. (4.7b)

The A coefficients add no new behaviour to the lattice system compared to a single lattice since
the summation merely replaces one constant with another. Functions of the form Bi fψi (H̄) and
Ci gψi (H̄), however, contribute to the system energy with distinctive terms that a single lattice
cannot possess. As we shall see, a generic lattice system will feature behaviour that cannot be
reproduced by an individual lattice.
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R2
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Figure 3. Plan view of concentric lattice system.

(iv) Stiffness and equilibria

Differentiating (4.7) with respect to H̄, we obtain

f ′
ψ (H̄) = − ψ2H̄

fψ (H̄)
= − ψ

fψ (H̄)
ψH̄

and g′
ψ (H̄) = −ψ

3H̄2

fψ (H̄)
+ ψ fψ (H̄) = ψ

fψ (H̄)

(
1 − 2ψ2H̄2

)
.

Then, from (4.5), the first two derivatives of the normalized energy, Ξ̄ , with respect to extension
are

dΞ

dH̄
= A1 + 2A2H̄ +

∑
i

Υi√
1 − (ψiH̄)2

(
b2iψi − b1iψ

2
i H̄ − 2b2iψ

3
i H̄2

)
(4.8a)

and
d2Ξ

dH̄2
= 2A2 +

∑
i

Υi

(1 − (ψiH̄)2)3/2

(
−b1iψ

2
i − 3b2iψ

3
i H̄ + 2b2iψ

5
i H̄3

)
. (4.8b)

The stiffness, equilibria and characteristics of stability of the system can be deduced from these
expressions.

(b) Concentric lattices
We can restrict the behaviour of the system by arranging the lattices in a concentric manner, as
illustrated in figure 3. As the lattices are now concentric they are not permitted to intersect one
another. In other words, when the lattices are numbered outwards from the centre, Ri � Ri+1.

Since, from (3.5), (4.1) and (4.2), the radius of the ith lattice can be written as

Ri = 2li

√
1 − (ψiH̄)2,

the restriction Ri � Ri+1 is equivalent to

li

√
1 − (

ψiH̄
)2 � li+1

√
1 − (

ψi+1H̄
)2, (4.9)

for i = 1, . . . , I − 1. This is equivalent to

H̄2 �
l2i − l2i+1

ψ2
i l2i − ψ2

i+1l2i+1

if
Ni

Mi
>

Ni+1

Mi+1
, (4.10a)

li � li+1 if
Ni

Mi
= Ni+1

Mi+1
(4.10b)

and H̄2 �
l2i − l2i+1

ψ2
i l2i − ψ2

i+1l2i+1

if
Ni

Mi
<

Ni+1

Mi+1
, (4.10c)
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where we have used (4.1a) and (4.2c). Enforcing (4.10) for i = 1, . . . , I − 1, we obtain the range
(which might be empty) of H̄ for which radial self-intersections do not occur to be⎡
⎢⎣
√√√√√max

⎛
⎝0, min

i
(Ni/Mi)>(Ni+1/Mi+1)

l2i − l2i+1

ψ2
i l2i − ψ2

i+1l2i+1

⎞
⎠,

√√√√√min

⎛
⎝1, max

i
(Ni/Mi)<(Ni+1/Mi+1)

l2i − l2i+1

ψ2
i l2i − ψ2

i+1l2i+1

⎞
⎠
⎤
⎥⎦ ,

(4.11)
if li � li+1 for i = 1, . . . , I − 1; and empty otherwise. (Here we have taken into account that the
range of H̄ is [0, 1].)

(i) Absence of radial self-intersections

Radial self-intersections do not occur when

li+1 > li and
Ni

Mi
>

Ni+1

Mi+1
,

for all i = 1, . . . , I − 1, since under these conditions the inner maximum on the right of (4.11) is
vacuous, and the inner minimum on the left is non-positive. By a similar reasoning radial self-
intersections do not occur also when

li+1 < li and
Ni

Mi
<

Ni+1

Mi+1
,

for all i = 1, . . . , I − 1.
More comprehensively, (4.11) enables a characterization of the conditions on (li+1/li),

(Mi+1/Mi) and (Ni+1/Ni) under which radial self-intersections do not occur. This would allow
optimization to be conducted in two stages: first, the continuous design parameters for achieving
the desired response can be obtained, assuming maximal range of motion. Second, banding
numbers Ni, Mi and unit cell lengths li are chosen to avoid radial self-intersections. See §8 for
examples.

5. Taylor expansion of the system energy
In this section, we derive the Taylor expansions of the system energy (4.5) and present related
results that are used in §6.

We denote the non-negative integers 0, 1, 2, . . . by Z
∗, the L∞-norm of a continuous function

f : [0, 1] → R by ‖f‖∞:
‖f‖∞ = max

x∈[0,1]
|f (x)|,

and the smallest/largest singular value of a square matrix T by σ±(T).

(a) Taylor expansions of fψ and gψ
Let ψ ∈ (0, 1], cf. (4.2c). Note that the maximal domain of fψ and gψ , defined in (4.7), is
(−(1/ψ), (1/ψ)), which strictly contains [0, 1]. Thus, fψ , gψ ∈ C∞([0, 1]) are smooth inside and on
the boundary of [0, 1]; indeed, they have Taylor expansions about 0 given by

fψ (H̄) =
√

1 − (ψH̄)2 (4.7a)

=
∞∑

j=0

(−1)j
( 1

2
j

) (
ψH̄

)2j =
∞∑

j=0

c2j(ψH̄)2j (5.1a)

and gψ (H̄) =ψH̄
√

1 − (ψH̄)2 (4.7b)

=
∞∑

j=0

(−1)j
( 1

2
j

) (
ψH̄

)2j+1 =
∞∑

j=0

c2j+1(ψH̄)2j+1, (5.1b)
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for H̄ ∈ [0, 1], cf. (4.2d). Here, for conciseness, we have set

c2j = c2j+1 = (−1)j
( 1

2
j

)
, (5.2a)

for j ∈ Z
∗. It is convenient to also define, for J ∈ Z

∗,

C2J =

⎛
⎜⎜⎜⎜⎝

c0 0 . . . 0
0 c2 . . . 0
...

...
...

0 0 . . . c2J

⎞
⎟⎟⎟⎟⎠ ∈ R

(J+1)×(J+1) (5.2b)

and C2J+1 =

⎛
⎜⎜⎜⎜⎝

c1 0 . . . 0
0 c3 . . . 0
...

...
...

0 0 . . . c2J+1

⎞
⎟⎟⎟⎟⎠ ∈ R

(J+1)×(J+1). (5.2c)

We also list some properties of c2j, c2j+1, C2J and C2J+1 which will be needed later:

Remark 5.1.

(i) |c2j| (and thus |c2j+1|) is a decreasing function of j.
(ii) C2J and C2J+1 are invertible.

(iii) The smallest singular value of C2J (and of C2J+1) is |c2J| = |c2J+1|.

Proof.

(i) We calculate
|c2(j+1)|

|c2j|
= |c2(j+1)+1|

|c2j+1|
= 1

j + 1

∣∣∣∣j − 1
2

∣∣∣∣< 1.

(ii) This follows from c2j, c2j+1 	= 0 for j ∈ Z
∗.

(iii) This is immediate from item (i) above. �

(b) Truncated Taylor expansions of fψ and gψ
Returning to (5.1), the finite truncations of the Taylor expansions of fψ and gψ are given by

P2J(ψH̄) =
J∑

j=0

c2j(ψH̄)2j (5.3a)

and P2J+1(ψH̄) =ψH̄P2J(ψH̄) =
J∑

j=0

c2j+1(ψH̄)2j+1. (5.3b)

Note that even though cj < 0 unless j = 0, from (5.1), the polynomials above are positive for H̄ ∈
[0, 1].

By Taylor’s theorem, we can truncate the expansions in (5.1). Given ε > 0, we can find JP(ε) ∈ Z
∗

such that
fψ (H̄) = P2JP (ψH̄) + R2JP (ψH̄), (5.4a)

where R2JP (ψ ·), which is the remainder in the Taylor expansion of fψ to order 2JP, satisfies

‖R2JP (ψ ·)‖∞ < ε. (5.4b)

Then,

gψ (H̄) = P2JP+1(ψH̄) + R2JP+1(ψH̄), (5.4c)

where R2JP+1(ψH̄) =ψH̄R2JP (ψH̄). (5.4d)
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Since ψ ∈ (0, 1] and H̄ ∈ [0, 1], it follows that the remainder R2JP+1(ψ ·) also satisfies

‖R2JP+1(ψ ·)‖∞ < ε. (5.4e)

Remark 5.2. JP in (5.4) can be chosen so that the error, when (5.1) is truncated, is bounded
by ε, independent of ψ . To see this, note that the remainder terms in (5.4a,c) are continuous for
(ψ , H̄) ∈ [0, 1]2, which is a compact set. (Here we have extended the domain of ψ to include 0 so
as to obtain compactness.) Thus, to obtain bounds uniform in ψ , one chooses Jp to satisfy

sup
ψ∈(0,1]

‖R2JP (ψ ·)‖∞ < ε, (5.5a)

instead of (5.4b). This implies

sup
ψ∈(0,1]

‖R2JP+1(ψ ·)‖∞ < ε, (5.5b)

which is the uniform version of (5.4e).

In §5d, we analyse the system energy using the expansions and bounds above. However,
before we do that, we present some properties of the Taylor polynomials in (5.3) that will be
required there.

(c) A basis for polynomials
Our first result is that the Taylor polynomials in (5.3) form a basis for the polynomials:

Lemma 5.3. Let J ∈ Z
∗ and let ψi, i = 1, . . . , J + 1 be distinct. Then

(i) The J + 1 polynomials P2J(ψi·), i = 1, . . . , J + 1, defined in (5.3a) form a basis for the vector space
of even polynomials of order at most 2J.

(ii) The J + 1 polynomials P2J+1(ψi·), i = 1, . . . , J + 1, defined in (5.3b) form a basis for the vector
space of odd polynomials of order at most 2J + 1.

To prove the lemma, it is convenient to set, for I ∈ N,

W(ψ1,ψ2, . . . ,ψI) =

⎛
⎜⎜⎜⎜⎝
ψ1 0 . . . 0
0 ψ2 . . . 0
...

...
...

0 0 . . . ψI

⎞
⎟⎟⎟⎟⎠ ∈ R

I×I, (5.6a)

which is invertible when ψi 	= 0, i = 1, . . . , I; and

VJ(ψ1,ψ2, . . . ,ψI) =

⎛
⎜⎜⎜⎜⎝

1 ψ2
1 . . . ψ

2J
1

1 ψ2
2 . . . ψ

2J
2

...
...

...
1 ψ2

I . . . ψ
2J
I

⎞
⎟⎟⎟⎟⎠ ∈ R

I×(J+1), (5.6b)

which is square iff I = J + 1. Then, it is a Vandermonde matrix and is invertible when the ψi are
distinct (cf. e.g. [28]).
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Proof of Lemma 5.3. From (5.3),⎛
⎜⎜⎜⎜⎝

P2J(ψ1x)
P2J(ψ2x)

...
P2J(ψJ+1x)

⎞
⎟⎟⎟⎟⎠=

⎛
⎜⎜⎜⎜⎜⎝

c0 c2ψ
2
1 . . . c2Jψ

2J
1

c0 c2ψ
2
2 . . . c2Jψ

2J
2

...
...

...
c0 c2ψ

2
J+1 . . . c2Jψ

2J
J+1

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

1
x2

...
x2J

⎞
⎟⎟⎟⎟⎠

= VJ(ψ1,ψ2, . . . ,ψJ+1) C2J

⎛
⎜⎜⎜⎜⎝

1
x2

...
x2J

⎞
⎟⎟⎟⎟⎠ . (5.7a)

Now, the polynomials x2j, j = 0, . . . , J, form a basis for the vector space of even polynomials of
order at most 2J. Since both matrices in (5.7a) are invertible it follows that the same is true for the
polynomials P2J(ψi·), i = 1, . . . , J + 1.

The proof of the second assertion for odd polynomials is similar and follows from:⎛
⎜⎜⎜⎜⎝

P2J+1(ψ1x)
P2J+1(ψ2x)

...
P2J+1(ψJ+1x)

⎞
⎟⎟⎟⎟⎠=

⎛
⎜⎜⎜⎜⎜⎝

c1ψ1 c3ψ
3
1 . . . c2J+1ψ

2J+1
1

c1ψ2 c3ψ
3
2 . . . c2J+1ψ

2J+1
2

...
...

...
c1ψJ+1 c3ψ

3
J+1 . . . c2J+1ψ

2J+1
J+1

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

x
x3

...
x2J+1

⎞
⎟⎟⎟⎟⎠

= W(ψ1,ψ2, . . . ,ψJ+1) VJ(ψ1,ψ2, . . . ,ψJ+1) C2J+1

⎛
⎜⎜⎜⎜⎝

x
x3

...
x2J+1

⎞
⎟⎟⎟⎟⎠ , (5.7b)

and the invertibility of the matrices in (5.7b). �

Combining the two assertions of lemma 5.3, we immediately obtain:

Corollary 5.4. Let ψ1,ψ2, . . . ,ψJ+1 ∈ (0, 1] be distinct. Then, the 2J + 2 polynomials

H̄ 
→ P2J(ψiH̄), H̄ 
→ P2J+1(ψiH̄), i = 1, . . . , J + 1,

presented in (5.3), form a basis for the vector space of polynomials of order at most 2J + 1.

We shall refer to the basis in corollary 5.4 as the P-basis.
As our final result for this section, we present, for later use, a bound on the singular values of

the square Vandermonde matrix VJ(ψ1,ψ2, . . . ,ψJ+1) defined in (5.6b). This immediately follows,
for the case ψ1,ψ2, . . . ,ψJ+1 ∈ (0, 1], from the result in [29, section 3.2].

Lemma 5.5. Let ψ1,ψ2, . . . ,ψJ+1 ∈ (0, 1] be distinct. Then,

σ− � 1√
J + 1

max
1�k<J+1

J+1∏
�=1,
� 	=k

1

|ψ2
k − ψ2

� |
, (5.8)

where σ− is the smallest singular value of VN(ψ1,ψ2, . . . ,ψJ+1).

(d) Truncated Taylor expansion of the system energy
From the Taylor expansions in (5.4), given J ∈ Z

∗, we have a Taylor expansion for (4.5):

Ξ (H̄) = A0 + A1H̄ + A2H̄2 +
I∑

i=1

Bi fψi (H̄) +
I∑

i=1

Ci gψi (H̄) (4.5)
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≈ A0 + A1H̄ + A2H̄2 +
I∑

i=1

Bi P2J(ψiH̄) +
I∑

i=1

Ci P2J+1(ψiH̄) (5.9a)

=
(

A0 + c0

I∑
i=1

Bi

)
+
(

A1 + c1

I∑
i=1

Ci ψi

)
H̄ +

(
A2 + c2

I∑
i=1

Bi ψ
2
i

)
H̄2

+ c3

( I∑
i=1

Ci ψ
3
i

)
H̄3 + c4

( I∑
i=1

Bi ψ
4
i

)
H̄4

+ . . .+ c2J

( I∑
i=1

Bi ψ
2J
i

)
H̄2J + c2J+1

( I∑
i=1

Ci ψ
2J+1
i

)
H̄2J+1. (5.9b)

The terms of order 0, 1 and 2 have contributions from A0, A1 and A2, respectively, but the higher-
order odd and even terms follow the pattern of the terms of order 3 and 4, respectively.

From (5.4), the L∞-error in (5.9a) is

∥∥∥∥∥
I∑

i=1

Bi R2J(ψiH̄) +
I∑

i=1

Ci R2J+1(ψiH̄)

∥∥∥∥∥
∞

� IB+‖R2J‖∞ + IC+‖R2J+1‖∞

� 2I max (B+, C+) max
(‖R2J‖∞, ‖R2J+1‖∞

)
, (5.10a)

where B+ = max
i=1,...,I

|Bi| (5.10b)

and C+ = max
i=1,...,I

|Ci|. (5.10c)

As our last result for this section, we write the Taylor expansion (5.9) in the P-basis (cf.
corollary 5.4 and (5.3)).

For the even coefficients of the polynomial in (5.9b), using (5.6), we obtain,

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

A0 + c0

I∑
i=1

Bi

A2 + c2

I∑
i=1

Bi ψ
2
i

c4

I∑
i=1

Bi ψ
4
i

...

c2J

I∑
i=1

Bi ψ
2J
i

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎝

A0
A2
0
...
0

⎞
⎟⎟⎟⎟⎟⎟⎠

+ C2J V2J(ψ1,ψ2, . . . ,ψI)

⎛
⎜⎜⎜⎜⎜⎜⎝

B1
B2
B3
...

BI

⎞
⎟⎟⎟⎟⎟⎟⎠

. (5.11a)

Similarly, for the odd coefficients of the polynomial in (5.9b) we have

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

A1 + c1

I∑
i=1

Ci ψi

c3

I∑
i=1

Ci ψ
3
i

...

c2J+1

I∑
i=1

Ci ψ
2J+1
i

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎝

A1
0
...
0

⎞
⎟⎟⎟⎟⎠ + C2J+1 W(ψ1,ψ2, . . . ,ψI) V2J(ψ1,ψ2, . . . ,ψI)

⎛
⎜⎜⎜⎜⎝

C1
C2
...

CI

⎞
⎟⎟⎟⎟⎠ . (5.11b)
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6. Lattice systems approximating a prescribed energy functional
In this section, we prove our main result, namely, that given ε > 0 and an energy E ∈ C([0, 1], R),
a lattice system can be constructed whose energy, is approximately E up to an additive constant,
with L∞-error no more than ε.

In fact, it suffices to show this for polynomial energies since, from Weierstrass approximation
theorem [30], we can find a polynomial EP : [0, 1] → R such that

max
H̄∈[0,1]

∣∣∣E(H̄) − EP(H̄)
∣∣∣< ε

2
. (6.1a)

In the light of this, we will show that, given ε > 0 and a polynomial energy EP : [0, 1] → R, a lattice
system can be constructed whose energy, Ξ , is approximately EP, up to an additive constant, E0,
with L∞-error no more than (ε/2):

max
H̄∈[0,1]

∣∣∣EP(H̄) −Ξ (H̄) − E0

∣∣∣< ε

2
. (6.1b)

Then, it would follow from (6.1) and the triangle inequality that

max
H̄∈[0,1]

∣∣E(H̄) −Ξ (H̄) − E0
∣∣< max

H̄∈[0,1]

∣∣∣E(H̄) − EP(H̄)
∣∣∣ + max

H̄∈[0,1]

∣∣∣EP(H̄) −Ξ (H̄) − E0

∣∣∣< ε.

We will prove this assertion in two steps: First, we will show in theorem 6.2 that, given a
polynomial energy EP : [0, 1] → R, of the form

EP(H̄) = e0 + e1H̄ + e2H̄2 + e3H̄3 + . . .+ e2N+1H̄2N+1, (6.2)

for some N ∈ Z
∗, there exists an appropriate choice of lattice system parameters such that the

system energy (4.5) differs from EP by no more than (ε/2) in L∞. Then, we will show in theorem 6.3
that lattice systems with these parameters, with the possible exception of the constant term A0
in (4.5), can actually be constructed.

Remark 6.1. For convenience, we will allow for the possibility that e2N+1 = 0 in (6.2). This
allows us to assume, with no loss of generality, that the highest power of the polynomial EP is
odd.

(a) Approximation of polynomial energies
Theorem 6.2. Given ε > 0 and a polynomial EP, there exist

I ∈ N, (6.3a)

ψi ∈ (0, 1], i = 1, . . . , I, (6.3b)

A0, A1, A2 ∈ R (6.3c)

and Bi, Ci ∈ R, i = 1, . . . , I, (6.3d)

such that the lattice system energy (4.5) differs from EP by no more than (ε/2) in L∞.

Proof. From remark 6.1, we may assume that the highest power of H̄ in EP is 2N + 1, for some
N ∈ Z

∗. Set I = N + 1 and pick D> 0 such that

max

(
sup
ψ∈(0,1]

‖R2NP (ψ ·)‖∞, sup
ψ∈(0,1]

‖R2NP+1(ψ ·)‖∞

)
� ε

4ID
, (6.4)

where R2NP and R2NP+1 are defined in (5.4a,c); this is possible by remark 5.2.
Now suppose ψi ∈ (0, 1], i = 1, . . . , I are distinct. Then, we can write the polynomial EP in the

P-basis (cf. corollary 5.4 and subsequent remarks), i.e. P2N(ψi·), P2N+1(ψi·), i = 1, . . . , I, as in (5.3);
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indeed, we can write it as a (non-unique) combination of P- and monomial-bases. To do so, we
would find (non-unique) solutions to the affine equations

⎛
⎜⎜⎜⎜⎝

e0
e2
...

e2N

⎞
⎟⎟⎟⎟⎠=

⎛
⎜⎜⎜⎜⎜⎜⎝

A0
A2
0
...
0

⎞
⎟⎟⎟⎟⎟⎟⎠

+ C2N VN(ψ1,ψ2, . . . ,ψI)

⎛
⎜⎜⎜⎜⎜⎜⎝

B1
B2
B3
...

BI

⎞
⎟⎟⎟⎟⎟⎟⎠

(6.5a)

and

⎛
⎜⎜⎜⎜⎝

e1
e3
...

e2N+1

⎞
⎟⎟⎟⎟⎠=

⎛
⎜⎜⎜⎜⎝

A1
0
...
0

⎞
⎟⎟⎟⎟⎠ + C2N+1 W(ψ1,ψ2, . . . ,ψI) VN(ψ1,ψ2, . . . ,ψI)

⎛
⎜⎜⎜⎜⎝

C1
C2
...

CI

⎞
⎟⎟⎟⎟⎠ . (6.5b)

The existence of solutions to these equations follows from the invertibility of the four matrices
in (6.5), see remark 5.1(ii) and remarks following (5.6). The solution space is three-dimensional as
can be seen by observing that solutions exist for any A0, A1, A2, and are unique once these are
fixed (again, by invertibility of the four matrices that appear in (6.5)).

Now choose Aj, j = 1, 2, 3, and let

Ee = max (|e0 − A0|, |e2 − A2|, |e4|, . . . , |e2N|)
and Eo = max

(|e1 − A1|, |e3|, . . . , |e2N+1|
)

.

We wish to solve (6.5) under the constraint that

max
i=1,...,I

max (Bi, Ci)� D (6.6)

(cf. (5.10) and (6.4)). In other words, the image of a ball of radius D under the linear map
C2N VN(ψ1,ψ2, . . . ,ψI) needs to contain a ball of radius Ee; and the image of a ball of radius D
under the linear map C2N+1 W(ψ1,ψ2, . . . ,ψI) VN(ψ1,ψ2, . . . ,ψI) needs to contain a ball of radius
Eo. This is equivalent to the requirement that

σ−(C2N VN(ψ1,ψ2, . . . ,ψI)) � Ee

D

and σ−(C2N+1 W(ψ1,ψ2, . . . ,ψI) VN(ψ1,ψ2, . . . ,ψI)) � Eo

D
.

From (5.2a), remark 5.1(iii), (5.6a) and (5.8), a sufficient condition for this is

1√
N + 1

∣∣∣∣∣
( 1

2
N

)∣∣∣∣∣ max
1�k<N+1

N+1∏
�=1,
� 	=k

1

|ψ2
k − ψ2

� |
� Ee

D
(6.7a)

and
1√

N + 1

∣∣∣∣∣
( 1

2
N

)∣∣∣∣∣
(

min
i=1,...,I

ψi

) ⎛
⎜⎜⎝ max

1�k<N+1

N+1∏
�=1,
� 	=k

1

|ψ2
k − ψ2

� |

⎞
⎟⎟⎠� Eo

D
. (6.7b)

Now choose ψi ∈ (0, 1], i = 1, . . . , I, distinct so as to satisfy (6.7); this is possible since the
expressions on the left in (6.7) can be made arbitrarily large by choosing as many ψis as necessary
to be sufficiently close to each other.

Finally, let Bi, Ci, i = 1, . . . , I solve (6.5). By the construction above (6.6) is satisfied.
The lattice system with the parameters chosen above has energy given by (4.5). By (5.9a,b)

and (5.11) and (6.6), the Taylor expansion of this energy to order 2N + 1 is precisely the given
polynomial EP. From (5.10), (6.4) and (6.6) the error introduced by the Taylor approximation is
bounded by (ε/2). �
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(b) Existence of lattice systems with required energy
Next we show, in theorem 6.3, that a lattice system can be constructed that attains the energy
in theorem 6.2, up to an additive constant. We do this by showing that, for each lattice in the
system, the material parameters δ̄±, ε̄±, ῡx±, ῡxy±, ϕ̄ and the geometric-material parameter Υ can
be chosen so as to yield the coefficients (6.3) required by theorem 6.2, except possibly for A0. In
fact, we shall show that this is possible even when we impose the additional constraints

δ̄+ = δ̄−, (6.8a)

ε̄+ = ε̄−, (6.8b)

ῡx+ = ῡx− (6.8c)

and ῡxy+ = ῡxy−, (6.8d)

on each lattice in the system.

Theorem 6.3. Given the coefficients in (6.3), i.e. given

I ∈ N,

ψi ∈ (0, 1], i = 1, . . . , I,

A1, A2 ∈ R

and Bi, Ci ∈ R, i = 1, . . . , I,

there exist δ̄i±, ε̄i±, ῡix±, ῡixy±, ϕ̄i, Υi ∈ R, i = 1, . . . , I, satisfying (3.9), such that (3.8b–e) and (4.4b) are
satisfied.

Note that A0 is omitted from the list of coefficients in (6.3) since the energy of the lattice system
in theorem 6.3 is allowed to differ from the energy of the lattice system in theorem 6.2 by an
additive constant. Similarly, in the proof below we will omit (3.8a) from the (3.8).

Proof. Pick Υi > 0, i = 1, . . . , I. It is convenient to view this as a choice of Υ ∈ R
I with positive

components. Notice that (4.6b–e) can be written as

W(ψ1,ψ2, . . . ,ψI)Υ · a1 = A1, (6.9a)

W(ψ1,ψ2, . . . ,ψI)2Υ · a2 = A2, (6.9b)

W(Υ1,Υ2, . . . ,ΥI)b1 = B (6.9c)

and W(Υ1,Υ2, . . . ,ΥI)b2 = C, (6.9d)

where a1, a2, B, C ∈ R
I.

Here, W, defined in (5.6a), is invertible since Υi > 0, i = 1, . . . , I. Thus, (6.9c) and (6.9d) yield
b1 and b2, respectively. Each of (6.9a) and (6.9b) has an (I − 1)-dimensional space of solutions
since these equations define affine planes in R

I with co-dimension 1. Thus, we have a choice of
coefficients a1i, a2i, b1i, b2i ∈ R, i = 1, . . . , I, which satisfy (4.6b–e).

Next, for each lattice, given the coefficients a1, a2, b1, b2 ∈ R we shall construct a solution to
(3.8b–e), which satisfies (3.9).

To do this, we first pick ϕ̄ ∈ R to satisfy

ϕ̄ >max (0, −1 − a2) (6.10a)

and ϕ̄3 + (a2 − 1)ϕ̄2 −
(

1 + 2a2 + b2
2

4

)
ϕ̄ +

(
1 + a2 − b2

2
4

)
> 0. (6.10b)

This is possible since the coefficient of the highest power of the polynomial above is
positive, guaranteeing that a sufficiently large ϕ̄ will satisfy both inequalities. Note that (6.10a)
implies (3.9a).
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Next we pick

δ̄+(ϕ̄) = δ̄−(ϕ̄) = 1 + a2

1 + ϕ̄
and ε̄+(ϕ̄) = ε̄−(ϕ̄) = b2

2(1 − ϕ̄)
.

It is easy to see that (3.8c,e) are satisfied. Moreover, from (6.10a), (3.9b) is also satisfied.
We now calculate

ε̄2
+ − δ̄+ = ε̄2

− − δ̄− = b2
2

4(1 − ϕ̄)2 −
(

1 + a2

1 + ϕ̄

)
,

and an algebraic calculation shows that this is negative precisely when (6.10b) is satisfied;
thus (3.9c) is satisfied.

Finally, we pick ῡx± and ῡxy± to satisfy(
1 ε̄

ε̄ δ̄

)(
ῡx±
ῡxy±

)
= −1

2

(
b1

1+ϕ̄
a1

1−ϕ̄

)
,

which is simply (3.8b,d) written as a linear system. This has a unique solution since, by (3.9c), the
matrix is invertible. This completes the proof. �

Note the considerable freedom in the choice of coefficients and geometric and material
parameters in the constructions in the proofs of theorems 6.2 and 6.3. In particular, as the
computational examples in §8 show, the lattices in the system need not satisfy (6.8).

7. Ancillary results

(a) Simplification of the choice ofψi ∈ (0, 1], i = 1, . . . , I
The choice of (distinct) ψi ∈ (0, 1], i = 1, . . . , I, so as to satisfy (6.7) can be simplified by the
following two remarks:

Remark 7.1. The bounds in (6.7) can be simplified (but made less tight and therefore more
restrictive) using the observation that

N+1∏
�=1,
� 	=k

1

|ψ2
k − ψ2

� |
=

⎛
⎜⎜⎝

N+1∏
�=1,
� 	=k

1
|ψk + ψ�|

⎞
⎟⎟⎠
⎛
⎜⎜⎝

N+1∏
�=1,
� 	=k

1
|ψk − ψ�|

⎞
⎟⎟⎠> 1

2N

N+1∏
�=1,
� 	=k

1
|ψk − ψ�| .

(This follows from |ψk + ψ�| � 2 for �= 1, . . . , N + 1.) Thus, to satisfy (6.7) it suffices to enforce:

max
1�k<N+1

N+1∏
�=1,
� 	=k

1
|ψk − ψ�| �

√
N + 1

2N∣∣∣((1/2)
N

)∣∣∣
Ee

D
(7.1a)

and
(

min
i=1,...,I

ψi

) ⎛
⎜⎜⎝ max

1�k<N+1

N+1∏
�=1,
� 	=k

1
|ψk − ψ�|

⎞
⎟⎟⎠�

√
N + 1

2N∣∣∣((1/2)
N

)∣∣∣
Eo

D
. (7.1b)

Remark 7.2.

(i) To satisfy (6.7), it suffices to enforce (6.7b) and

min
i=1,...,I

ψi � Eo

Ee
. (7.2a)

Of course, (7.2a) is trivially satisfied if (Eo/Ee) � 1 so, in that case, (6.7) is equivalent
to (6.7b).
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(ii) On the other hand, when (Eo/Ee)< 1, to satisfy (6.7) it suffices to enforce (6.7a) and

min
i=1,...,I

ψi � Eo

Ee
. (7.2b)

Note that, in light of remarks 7.1 and 7.2 also holds when (6.7), (6.7a) and (6.7b) are replaced
by (7.1), (7.1a) and (7.1b), respectively.

Proof.

(i) From (6.7b) and (7.2a), we obtain

l.h.s. (6.7a) � 1
mini=1,...,I ψi

Eo

D
� Ee

D
,

which is (6.7a).
(ii) From (6.7a) and (7.2b), we obtain

l.h.s. (6.7b) �
(

min
i=1,...,I

ψi

)
Eo

D
� Ee

D
,

which is (6.7b). �

(b) Preservation of local extrema
While the construction presented in §6 guarantees a lattice system whose energy is close to a
prescribed function, there is no restriction on how the system energy behaves within the tolerance
band. In particular, the system energy could eliminate local extremizers of the prescribed
energy. However, for many applications, it is desirable that the system energy retain these local
extremizers.

We now show that this can be easily incorporated into our framework, provided that the
number of local extremizers is finite.

Given an energy E ∈ C([0, 1], R), let

mE = {H̄ ∈ [0, 1] | H̄ is a local minimum of E}
and ME = {H̄ ∈ [0, 1] | H̄ is a local maximum of E},
be the sets of local minimizers and maximizers of E, respectively. We assume that these sets are
finite. For the system energy, Ξ , to be able to distinguish between adjacent local extremizers m ∈
mE and M ∈ ME we need the tolerance ε to satisfy

E(m) + ε < E(M) − ε.

In other words, we need

ε <
1
2
(E(M) − E(m)) , (7.3)

for every pair of adjacent local extremizers m ∈ mE and M ∈ ME. (Finiteness of mE and ME ensures
that the minimum of l.h.s. (7.3) is positive.) To see the sufficiency of (7.3), consider adjacent local
extrema m− <M<m+ where m−, m+ ∈ mE and M ∈ ME. Using (7.3), we have

Ξ (m±) � E(m±) + ε < E(M) − ε �Ξ (M),

from which it follows that Ξ has a local maximum in (m−, m+), although it need not be located
at M. A similar result holds for adjacent M− <m<M+ where m ∈ mE and M−, M+ ∈ ME.

Thus, Ξ preserves the local extremizers of E in the sense that Ξ has a local
minimizer/maximizer between any two adjacent local maximizer/minimizer of E, respectively.
Note, however that it is possible that Ξ has more extremizers than E.

The following counterexample shows that the condition that E have only finitely many local
extremizers is essential.
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Example 7.3. The energy

E(H̄) =
⎧⎨
⎩H̄2 sin

1

H̄
for H̄ ∈ (0, 1],

0 for H̄ = 0,

is continuous (in fact it is absolutely continuous and thus differentiable a.e., cf. e.g. [31, p. 179,
209]). However, it is clear that it has infinitely many local extremizers, only finitely many of which
can be distinguished for any tolerance ε > 0.

(c) Specification of local extremizers
It might be that, rather than approximating an energy, we are concerned only with approximating
its extremizers. For example, we might desire that a system have local minimizers at specified
values of H̄, with the precise energy being unimportant. Suppose we want an energy with local
minimizers at

0 � m1 <m2 < · · ·<mK � 1, (7.4)

for some integer K> 1. (The trivial case K = 1 is considered below.) Then, we pick
M1, M2, . . . , MK−1 such that

mk <Mk <mk+1,

for k = 1, . . . , K − 1, and set

FP(H̄) =
( K∏

k=1

(H̄ − mk)

)(K−1∏
k=1

(H̄ − Mk)

)
, (7.5a)

so that the roots of FP are precisely m1, M1, m2, M2, . . . , MK−1, mK. Now let

EP(H̄) = EP
0 +

∫ H̄

0
FP(x) dx, (7.5b)

for some EP
0 ∈ R. Then, the local minimizers of EP are precisely m1, m2, . . . , mK.

To see this, note first from (7.5) that m1, m2, . . . , mK are extremizers of EP. From (7.5a),

FP(0) = (−1)2K−1

( K∏
k=1

mk

)(K−1∏
k=1

Mk

) {
= 0 if m1 = 0,

< 0 if m1 > 0.
(7.6)

On the other hand, for H̄ ∈ (m1, M1), from (7.5a), FP(H̄)> 0 since it is the product of the positive
factor H̄ − m1 and 2(K − 1) negative factors. From this, we deduce that m1 is indeed a local
minimizer of EP. It is clear from (7.5) that the same is true for m2, . . . , mK.

(When K = 1, we choose FP(H̄) = H̄ − m1; it is clear that the resulting EP has a unique minimizer
at m1.)

We can now approximate the polynomial energy EP as per §6a,b. Note the K degrees of design
freedom that results from the ability to choose Mk, k = 1, . . . , K − 1 and EP

0 in (7.5b).
From the reasoning above, it is clear that an energy with local maximizers at (7.4) can be

obtained by changing the sign of (7.5a).

(d) Approximating derivatives of the energy
In reality, one is rarely concerned with prescribing a system’s energy. Instead, one typically desires
to specify equilibria, reaction forces and stiffnesses. In other words, it is not quite the energy
landscape but rather its first and second derivatives that are prescribed.
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However, as the following simple example illustrates, the derivative of an approximate energy
need not approximate the derivative of energy. Consider the energy

E(H̄) = δ sin

(
H̄
δ

)
,

for some δ > 0, and suppose we wish to approximate it to error ε > δ.
Since

|E(H̄)|< δ < ε,

the constant polynomial
EP(H̄) = 0,

approximates this energy to the desired accuracy. From theorems 6.2 and 6.3, we can construct a
lattice system whose energy approximates E up to an additive constant. (In this case, the lattice
‘system’ is trivial since there is only one lattice, i.e. I = 1; see [18, Section 5]). So we have

Ξ (H̄) = E0,

for some constant E0.
Thus, the derivatives of both the polynomial approximation of the energy and the lattice

energy are

EP′
(H̄) =Ξ ′(H̄) = 0.

However,

E′(H̄) = cos

(
H̄
δ

)
,

and, when ε > 1, it is not true that ∣∣E′(H̄) −Ξ ′(H̄)
∣∣< ε,

since ∣∣E′(0) −Ξ ′(0)
∣∣= 1> ε.

Thus, the derivative of an approximate energy need not approximate the true derivative of the
energy.

Moreover, this is true even if we allow for different tolerances for the energy and its derivative.
To see this consider the following slight modification of example 7.3:

Example 7.4. The energy

E(H̄) =
⎧⎨
⎩H̄ sin

1
H̄

for H̄ ∈ (0, 1],

0 for H̄ = 0,

is continuous in [0, 1]. Its derivative,

E′(H̄) = sin
(

1

H̄

)
− 1

H̄
cos

(
1

H̄

)
,

exists in (0, 1], but not at 0. However, for any tolerance, no polynomial can approximate E′ in (0, 1]
since

lim sup
H̄→0

E′(H̄) = ∞.

Thus, in order to approximate the first or second derivative of the system energy one would
have to repeat the analysis in §§5 and 6 for the expressions in (4.8), which analysis we shall
present elsewhere. In the meantime, we remark that examples such as the two presented above
are pathological and the derivatives of reasonable energies can indeed be approximated. We
demonstrate this computationally in §8.
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8. Examples of bespoke system design
We now proceed to demonstrate the ability to tailor the energy landscape by presenting four
examples of bespoke nonlinear elastic responses designed as described above:

(i) A monostable system with specified nonlinear stiffness (Example 1 in §8c).
(ii) A bi-stable system with specified local minima (Example 2 in §8d).

(iii) A multi-stable system with specified local minima (Example 3 in §8e).
(iii) A multi-stable system with specified snap-through loads (Example 4 in §8f).

Although the analysis is valid for H̄ ∈ [0, 1], for the computational examples, we choose to limit
the extension to H̄ ∈ [0, 0.8] for the following reason: Because the truncated Taylor expansions
in §5b are less accurate when H̄ → 1, the designer can account for this by a priori choosing to
work with less than the maximum possible extension. This decreases (in L∞) the remainder terms
in (6.4) and consequently allows a larger D to satisfy that inequality. From (6.7), this increases the
minimum spacing between the ψs and thus increases the robustness of the design. Here we have
picked H̄ ∈ [0, 0.8] as an illustrative example.

(a) Design
The system is designed as follows. First, for each lattice, the continuous non-dimensional
geometric and material variables and the continuous dimensional parameter, Υ , are determined
subject to the restrictions

0.1 � ψ < 1, (8.1a)

0.25 � ϕ̄ � 4, (8.1b)

0< δ̄± � 10, (8.1c)

− 10 � ε̄±, ῡx±, ῡxy± � 10 (8.1d)

and 0<Υ . (8.1e)

(Note that (8.1a) does not apply to ψ1, which is not a design variable and is chosen to be 1.)
These restrictions, which incorporate (3.9a,b) and (4.4b), ensure that the lattice system is physically
feasible. However, the precise numerical values in (8.1) are arbitrary.

Note that at this stage the system is independent of length scale and material. The non-
dimensional variables can be steered towards preferred regions in the design space, e.g. a
preference that helices of different handedness exhibit similar bending stiffnesses, desiring ϕ̄ ∼ 1
or requiring that the pre-strain magnitudes are similar between lattices. However, no preference
has been imposed on the following examples; the restrictions in (8.1) are deemed sufficient.

In a second stage, the dimensional geometric variables, N, M and l are recovered to satisfy ψ
(determined in the previous step) in accordance with (4.2c), subject to the restrictions

5 � N, M � 100 (8.2a)

and 50 � l � 150, (8.2b)

which again are arbitrary but ensure that the designs are feasible.
Length-scale dependence is introduced through l, and material dependence through the

remaining physical variables d11± and w±. These are chosen to satisfy the known system
parameters ϕ̄ and Υ for each lattice in accordance with (3.6e) and (4.4a). The material coefficients
are restricted to control system feasibility; the unbounded nature of Υ is used to determine
appropriate materials and also gives an indication of design feasibility at the interested length
scale. A modified Newton’s method is used to optimize over the continuous variables (Stage 1)
and a genetic algorithm is used to optimize over the discrete variables (Stage 2). It should be noted
that the algorithm can also be run in reverse order, i.e. given an envelope on banding numbers
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or/and material length or/and width restrictions, the lattice material parameters can be tuned to
achieve the required system response.

(b) Implementation
Next we highlight some details of the implementation. As demonstrated in §5, the strain energy
function of a lattice system can be approximated by a truncated Taylor polynomial. The accuracy
of the approximation depends on the order of the expansion, which, in turn, determines the
minimum number of lattices required, as detailed in §6. Systems exhibiting complex behaviours
require higher-order polynomials to approximate them to within the predefined tolerance, and
consequently require more lattices. In the presence of restrictions (8.1) and (8.2) on the geometric
and material parameters, the system will often need to be expanded to an order higher than
the target polynomial so that the system response is within the predefined tolerance and the
parameter restrictions are satisfied. We describe such a system as over-expanded. Example 2
(§8d) is an exactly expanded system, Example 3 (§8e) is under-expanded. Examples 1 and 4 (§8c,f,
respectively) are over-expanded.

To highlight the errors associated with the framework presented in this paper, as opposed to
the approximation method, we use Lagrange interpolation to generate the target polynomials.
The nature of the numerical framework we have presented allows for discrete implementation of
the approximation constraints; the target polynomial may be replaced by discrete target points,
assuming the behaviour at locations other than the target points is not of interest. See, [32,33] for
a comprehensive discussion on interpolation and approximation techniques of smooth functions
by polynomials.

When it is not the energy per se but rather its first or second derivative (i.e. reaction force
or stiffness, respectively) which are prescribed, the highest prescribed derivative is chosen to
be matched where integration constants are inherently determined from the chosen material
coefficients (cf. (3.8)).

We are now ready for the examples. Each of these represents only a single point in a solution
space whose richness allows the designer to explore and optimize designs in accordance with
requirements. The non-uniqueness of the solution space maximizes both the range of applicability
of the algorithm and the physical plausibility within the design space itself.

(c) Example 1: monostable system with prescribed nonlinear stiffness
A monostable system is designed to exhibit a nonlinear stiffness which is the third-order Lagrange
polynomial of the data points

(H̄,Ξ ′′) ∈ {(0, 1), (0.27, 5), (0.53, 4), (0.80, 8)} , (8.3)

to a tolerance of ±0.2 kN mm−1. A single stable equilibria exists at H̄ = 0.
The system is composed of four lattices (over expansion), where an energy expansion of

O(H̄8) and a stiffness expansion of O(H̄4) captures the prescribed stiffness function to within the
specified tolerance over the entire domain. The geometric and material parameters of this system
are presented in the electronic supplementary material, table S1.

The target stiffness, the actual stiffness, the polynomial stiffness and the absolute error in the
approximation are shown in figure 4a. The resulting sixth-order reaction force and seventh-order
monostable system energy are shown in figure 4b.

(d) Example 2: bi-stable system with specified local minima
A bi-stable system is designed to exhibit stable equilibria (i) in the interior, at H̄ = 0.6, and (ii)
on the boundary H̄ = 0, in accordance with (4.8). The second-order target reaction force is the
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Figure 4. Example 1: a four-lattice monostable system with nonlinear stiffness prescribed to be the Lagrange polynomial
of (8.3) with tolerance of ±0.2 kN mm−1. The absolute error between the actual and target stiffnesses is shown as a solid
green line, and between the polynomial (Taylor) and target stiffnesses as a dashed blue line. (a) System stiffness and absolute
error and (b) system reaction force and energy. (Online version in colour.)

0 0.2 0.4

H
–

0.6 0.8

0 0.2 0.4 0.6 0.8

0.2 0.4

H
–

0.6 0.8

en
er

gy
 (

kJ
)

system actual energy, X – X0
system Taylor energy, EP – EP

0

0

0

0.5

1.0

1.5

er
ro

r 0.2

–0.2

0

–2

re
ac

tio
n 

fo
rc

e 
(k

N
)

2

4

6

8

10
target force, E¢
system actual force, X ¢
system Taylor force, EP¢

(a) (b)

Figure 5. Example 2: a two-lattice bi-stable system with local minima specified to be at H̄ ∈ {0, 0.6}. Target reaction force is
the Lagrange polynomial of (8.4) to a tolerance of±0.2 kN. The absolute error between the actual and target reaction forces is
shown as a solid green line, and between the polynomial (Taylor) and target reaction forces as a dashed blue line. (a) System
reaction force and absolute error and (b) system energy. (Online version in colour.)

Lagrange polynomial of the data points

(H̄,Ξ ′) ∈ {(0.25, 1), (0.5, −1), (0.8, 0)} , (8.4)

to a tolerance of ±0.2 kN.
The system is exactly expanded using two lattices, the resulting second-order bi-stable target

reaction force, actual reaction force, polynomial reaction force and the absolute error in the
approximation are shown in figure 5a. The system’s corresponding fourth-order bi-stable energy
profiles are shown in figure 5b.

As discussed in §7c, the even roots of the stiffness polynomial are stable, i.e. two equilibria
exist for the quadratic reaction force, one stable and one unstable, as shown in figure 5. It should
be noted that due to the relatively benign nonlinearity in the system only two lattices with an
expansion of O(H̄4) exactly matching the order of the target polynomial is required to capture the
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Figure 6. Example 3: a four-lattice multi-stable system with a nonlinear stiffness. The target reaction force is the Lagrange
polynomial of (8.5) to a tolerance of ±0.05 kN, with stable equilibria specified at H̄ ∈ {0, 0.32, 0.64}. The absolute error
between the actual and target reaction forces is shown as a solid green line, and between the polynomial (Taylor) and target
reaction forces as a dashed blue line. (a) System reaction force and absolute error and (b) system energy. (Online version in
colour.)

O(H̄3) target force function to within the specified tolerance over the entire domain. The geometric
and material parameters of this system are presented in the electronic supplementary material,
table S2.

(e) Example 3: multi-stable system with specified local minima
Extension of the requirements to design a bi-stable system to be multi-stable is trivial within the
current framework. In this example, two internal and one boundary stable equilibria are selected
in accordance with equation (4.8). The target reaction force is defined as the Lagrange polynomial
of the data points

(H̄,Ξ ′) ∈ {(0, 2), (0.16, 0), (0.32, 0), (0.48, 0), (0.64, 0), (0.8, 4)} , (8.5)

to a tolerance of ±0.05 kN, with stable equilibria specified at H̄ ∈ {0, 0.32, 0.64}. The system
is composed of four lattices, the resulting fifth-order multi-stable target reaction force, actual
reaction force, polynomial reaction force and the absolute error in the approximation are shown
in figure 6a. The system’s corresponding multi-stable energy profiles are shown in figure 6b.

As discussed in §7c, even roots of the stiffness polynomial are stable. The depth of the energy
wells associated with the stable equilibria are particularly shallow in this example, hence the
resulting transition force between the energy wells is also rather small. Consequently, a tighter
tolerance has been enforced to ensure all equilibria of interest are captured. Within the current
framework, it is trivial to adjust the constraints in this manner. The tighter tolerance coupled with
the predefined bounds on the material parameters has required an over-expansion of O(H̄8) to
match the target reaction force O(H̄6) to within the specified tolerance.

The geometric and material parameters of this system are presented in the electronic
supplementary material, table S3. The effect of insufficient over-expansion can be observed at
the extension limit, H̄ = 1, and highlights the underlying assumption of the algorithm. Although
the polynomial expansion can be tailored to match the target function to within a given tolerance,
if the order of expansion is not sufficient to capture the actual nonlinear response over the entire
domain the two responses will diverge; the polynomial response may remain within the tolerance
band while the actual response does not. This behaviour is exacerbated with decreasing number
of lattices (and thus expansion order) as well as over restrictive material parameter bounds,
resulting in the point of divergence moving closer to the origin (expansion point), a common
feature of low-order Taylor expansions.
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Figure 7. Example 4: A six-lattice multi-stable system with prescribed snap-through loads. The target reaction force is the
Lagrange polynomial of the data points in (8.6) to a tolerance of ±1 kN, with an unstable equilibrium specified to exist for
H̄ ∈ {0.16, 0.696}. Snap-through loads have been specified as 5 ± 1 kN and 20 ± 1 kN. The absolute error between the actual
and target reaction forces is shown as a solid green line, and between the polynomial (Taylor) and target reaction forces as a
dashed blue line. (a) System reaction force and absolute error and (b) system energy. (Online version in colour.)

(f) Example 4: multi-stable system with specified snap-through loads
This example presents a multi-stable system where the transition force required to snap between
stable regimes as well as their extensional position have been specified. Limit points, i.e. a local
maximum in the reaction force, are defined by specifying both a root in the stiffness and the
desired magnitude on the reaction force. Care must be taken to ensure this point is a local
maximum.

In addition to prescribing the magnitude and location of limit points, three stable equilibria
have (optionally) been specified in between them, one below the first snap-through load, H̄ = 0,
one (anywhere) between the two snap-through loads and one at the extension limit H̄ = 1,
such that the system’s preferred stable configuration changes when each snap-through load is
exceeded. Specifying monotonically increasing snap-through loads and their associated stable
equilibria in this manner allows loading thresholds experienced by the system to be preserved
upon unloading; the elastic system behaves as a reusable sensor.

The sixth-order target reaction force polynomial is defined as the Lagrange polynomial of the
data points

(H̄,Ξ ′) ∈ {(0, 0), (0.16, 5), (0.48, 0), (0.696, 20)} (8.6a)

and (H̄,Ξ ′′) ∈ {(0.16, 0), (0.696, 0)} , (8.6b)

with the snap-through loads specified as 5 ± 1 kN and 20 ± 1 kN at H̄ = 0.16 and H̄ = 0.696,
respectively. Accordingly, an over-expanded system of six lattices with an expansion of O(H̄11)
has been employed to capture this highly nonlinear behaviour over the entire domain to within a
tolerance of ±1 kN in the reaction force, as shown in figure 7a. The system’s corresponding multi-
stable energy profiles are shown in figure 7b. Under the restrictions (8.1) and (8.2), a significantly
higher level of expansion is needed to control the behaviour of the system to within the given
tolerance over the entire domain, mitigating the effects observed in figure 6a. This demonstrates
how increasing the nonlinearity through addition of limit points and/or raising the order of
target polynomial by a single degree may require more than the addition of a single lattice
so that the system is sufficiently over-expanded. Equally, a reduction in the number of lattices
may be achieved through relaxation of the bounds on the material parameters. The geometric
and material parameters of this system are presented in the electronic supplementary material,
table S4.
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9. Conclusion
Fully exploiting the paradigm shift from the linear-only to linear-and-nonlinear structural
responses remains an open challenge. To address this challenge, and highlight the new
opportunities it presents, we have developed a systematic approach to designing bespoke,
elastically nonlinear, one-dimensional extensional responses. We achieve this by harnessing the
behaviour of the helical lattice structure proposed by Pirrera et al. [18] and demonstrating how a
hierarchical system comprising several lattices coupled together offers a route to obtain bespoke
elasticity via a robust design process. We show how an increase in the geometric complexity of
the system increases the richness in response by identifying how each unique lattice (i.e. one that
possesses a unique geometric parameter ψ which is the scaling factor between local and global
extension) added to the system extends the possible response types. This permits the formulation
of a basis that spans polynomial energies to arbitrary accuracy in L∞. We use this framework to
demonstrate how several desirable responses, such as multi-stability and snap-through buckling,
can be achieved and explore the requirements for their existence.

The design space for the helical lattice system proposed here is extremely robust. The energetic
description of the system permits an exploration of the interplay between pre-strain, geometry
and stiffness. The non-dimensional approach allows behaviours to be considered at various
geometric length scales, characteristic material stiffnesses and system curvatures. This leads
to a description that is applicable for both structural (from civil to MEMS length scales) and
meta-material-like requirements.
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