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Summary

Nitric oxide (NO) is perfectly suited for the role of a redox signallingmolecule. Akey route forNO

bioactivity occurs via protein S-nitrosation, and involves the addition of aNOmoiety to a protein

cysteine (Cys) thiol (–SH) to form an S-nitrosothiol (SNO). This process is thought to underpin a

myriad of cellular processes in plants that are linked to development, environmental responses

and immune function.Herewecollate emerging evidence showing thatNObioactivity regulates

a growing number of diverse post-translational modifications including SUMOylation, phos-

phorylation, persulfidation and acetylation.Weprovide examples of howNOorchestrates these

processes to mediate plant adaptation to a variety of cellular cues.
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I. Introduction

More than 200 reversible protein post-translational modifica-
tions (PTMs) have been identified to date, massively expanding
the proteome and, by extension, enabling a plethora of protein
functions (Minguez et al., 2012), providing an escape from
genetic incarceration. Typically, PTMs target amino acid
residues embedded within conserved motifs (Tompa et al.,
2014). In this context, redox signalling is rapidly emerging as a
key regulator of plant protein function associated with a myriad
of plant processes. The small gaseous molecule, nitric oxide
(NO), is a central player in redox signal transmission, mediating
its redox functions predominantly through S-nitrosation/S-
nitrosylation: the addition of a NO moiety to a cysteine (Cys)
sulfhydryl/thiol to form an S-nitrosothiol (SNO) (Lindermayr
et al., 2005; Besson-Bard et al., 2008b; Leterrier et al., 2011;
Yun et al., 2016). This redox-based modification has been
shown to regulate development, environmental responses and
plant immunity. The emerging evidence suggests that NO
orchestrates some of these processes through regulating the
deployment of diverse PTMs. Here, we highlight some of these
recent developments.

II. SUMOylation

SUMOylation, the covalent attachment of the small ubiquitin-
like modifier (SUMO) to target proteins is emerging as a key
modulator of eukaryotic immune function. In plants, SUMO1/
2-dependent processes have been proposed to control the
deployment of host immunity (Lee et al., 2008a; van den Burg
et al., 2010; Saleh et al., 2015). Recently, a key role for
S-nitrosation in the control of SUMOylation has emerged (Skelly
et al., 2019). Following the pathogen triggered nitrosative burst,
increasing NO levels were shown to drive S-nitrosation of
Arabidopsis SUMO E2 enzyme, SCE1, at Cys139. The SUMO-
conjugating activities of both SCE1 and its human homologue,
UBC9, were both blunted by this PTM (Fig. 1a). Accordingly,
mutation of Cys139 resulted in the accumulation of SUMO1/2
conjugates (Fig. 1b), disabled immune responses and increased
pathogen susceptibility (Skelly et al., 2019). Collectively, these
findings established that S-nitrosation of SCE1 at Cys139 enables
NO bioactivity to promote immune activation by relieving
SUMO1/2-mediated suppression. This discovery is important
because it suggests a new paradigm for the regulation of
SUMOylation. The global control of this PTM is predominantly
thought to occur at the level of each substrate via complex local
machineries (Bossis & Melchior, 2006). By contrast, these new
findings uncovered a novel, parallel and complementary mech-
anism by establishing that total SUMO conjugation is addition-
ally regulated directly by SNO formation at SCE1 Cys139.
Significantly, this Cys residue is evolutionary conserved and
specifically S-nitrosated in human UBC9, implying that this
immune-related regulatory process might be conserved across
phylogenetic kingdoms (Skelly et al., 2019). Therefore, NO
bioactivity conveyed through S-nitrosation is a key regulator of
SUMOylation, a ubiquitous eukaryotic PTM.

III. Phosphorylation

The emerging data suggest that NO is also a major regulator of
phosphorylation-dependent signalling cascades.NOaccumulation
can trigger the activation of protein kinases (PKs) as well as the
phosphorylation of numerous proteins related to diverse cellular
processes (Besson-Bard et al., 2008a; Frederickson Matika &
Loake, 2014; Del Castello et al., 2019). NO-dependent PKs
include Ca2+-dependent PKs (CDPKs), sucrose nonfermenting
1-related PKs (SnRKs), mitogen-activated PKs (MAPKs) and
phosphoinositide-dependent PKs (PDKs). However, the mecha-
nism(s) by which NO modulates the activity of these target PKs
remain unclear.

NO is thought to indirectly mediate the activation of MAPKs
and CDPKs through the mobilisation of cytosolic free Ca2+

(Besson-Bard et al., 2008b). Yet, the subtlemechanisms underlying
this process also remain to be determined. Direct S-nitrosation has
not been confirmed for SnRKs (Wawer et al., 2010), nor reported
for MAPKs or CDPKs. However, the activity of tomato cell-death
regulator PDK1 was found to be inhibited by S-nitrosation of a
critical catalytic Cys residue. Additionally, the activity of MAPKs
may be modulated by tyrosine nitration, as suggested by prelim-
inary experiments (Ling et al., 2012). Indeed, MAPKs become
activated by MAPK kinases (MAPKKs) through dual phosphory-
lation of the Thr–X–Tyrmotif in the activation loop. It is therefore

SA-dependent genes
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Substrate

C139-SH C139-SNO
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Fig. 1 Nitric oxide (NO) regulates SUMOylation through S-nitrosation of
SUMO-conjugating enzyme. (a) In the absence of NO, SUMO (small
ubiquitin-like modifier) conjugating enzyme (SCE1) SUMOylates key
substrates with SUMO1/2 contributing to the repression of salicylic acid
(SA)-dependent genes and, by extension, the suppression of immunity in the
absence of pathogens. (b) Pathogen recognition triggers a nitrosative burst
leading to NO accumulation, which results in the S-nitrosation of SCE1 at
cysteine (Cys)139. This redox-based post-translational modification inhibits
SCE1activity blocking SUMO1/2SUMOylation.Consequently, this enables
the expression of SA-dependent genes and the subsequent activation of
plant immunity.
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tempting to speculate that nitration of the Tyr residue within the
activation loop could interfere with its phosphorylation by
MAPKKs and, consequently, negatively modulate MAPK activity.

Finally, NO might modulate phosphorylated PK and, more
generally, phosphorylated proteins through the redox regulation of
protein phosphatases (PPs). This process is well established in
animals and affects major phosphatases, including tyrosine phos-
phatases (Nakamura & Lipton, 2019). In this context, either
activation, inhibition or a protective effect of the PP against
oxidation-induced inactivation has been observed, depending on
the specific PP. However, to date, no NO-dependent PP has been
characterised in plants. So, this would be an interesting area for
future exploration.

More generally, it is tempting to speculate that the post-
translational modification of residues by NO or NO-derived
compounds could trigger steric hindrance, altering the interaction
with and phosphorylation by upstream kinases. For instance, S-
nitrosation of the phosphotransfer protein AHP1, involved in
cytokinin signalling, suppresses its phosphorylation, repressing
cytokinin signalling (Feng et al., 2013). The reciprocity of this
mechanism could also be possible: phosphorylation of a given
protein could also impact its subsequent S-nitrosation.

IV. Histone acetylation and methylation

Chromatin structure in eukaryotic organisms is very dynamic and is
altered during growth and development and in response to
environmentally stimuli. Modification of histone proteins induces
chromatin remodelling to control transcription, replication,
recombination and repair (Bannister & Kouzarides, 2011).
Adjustment of histone acetylation or methylation, catalysed by
histone acetyltransferases/histone deacetylases (HDAs) and
methyltransferases/demethylases, respectively, are integral to these
processes (Servet et al., 2010; Shen et al., 2015). Recently, it has
been demonstrated thatNO affects histone acetylation by targeting
and inhibiting histone deacetylase (HDA) complexes (Mengel
et al., 2017). Genome-wide NO-dependent H3K9/14ac profiling
in Arabidopsis seedlings identified NO-regulated histone acetyla-
tion of genes integral to immunity, abiotic stress and chloroplast
function, suggesting that NO bioactivity might regulate gene
expression by modulation of chromatin structure (Mengel et al.,
2017). A direct effect of NO on enzymes catalyzing DNA or
histone methylation/de-methylation in plants has not been
reported. However, genes encoding these enzymes are induced by
NO or differentially expressed in plants with impaired NO
homeostasis (Shi et al., 2014; Hussain et al., 2016; Kovacs et al.,

2016). Moreover, NO accumulation has been shown to induce
global DNA hypomethylation, resulting in altered expression of
chromatin remodelling enzymes (Ou et al., 2015). This implies an
indirect effect of NO on chromatin methylation mechanisms in
plants. Overall, the emerging data suggest that NO bioactivity
might play important roles in the nucleus, however, the molecular
details still require further investigation.

V. Crosstalk between NO, ROS and H2S

Nitro-fatty acids are reactive signalling mediators that are formed
when unsaturated fatty acids, typically oleic or olenic acid, react
with NO or reactive nitrogen species (RNS) (Kelley et al., 2008;
Corpas et al., 2013). Recently, nitro-oleic acid has been found to
activateNADPHoxidase (RBOH), altering reactive oxygen species
(ROS) production (Arruebarrena et al., 2020); this implies a novel
signal link between NO-based and ROS-based signalling. It is
alreadywell established that the isoenzymeRBOHD is S-nitrosated
at Cys890 inhibiting the activity of this enzyme and thus curbing
pathogen-triggered oxidative burst to limit the extent of HR-
associated cell death (Yun et al., 2011). Additionally, the main
enzymatic source of peroxisomal hydrogen peroxide (H2O2),
glycolate oxidase, is also inactivated by S-nitrosation (Ortega-
Galisteo et al., 2012) and possibly also nitration (Lozano-Juste
et al., 2011), suggesting dualNO-dependent regulation.NO-based
PTMsmay also affect several ROS scavenging enzymes and some of
these, for example, ascorbate peroxidase (APX) and superoxide
dismutase (SOD), were found to be inversely regulated by S-
nitrosation and nitration (Yang et al., 2015; Kolbert & Feigl,
2017). Thus, NO-related PTMs may act as an on–off switch for
antioxidant enzyme activities.

In addition to NO, hydrogen sulphide (H2S) andH2O2 are also
recognised as redox signal molecules in both animal and plant cells.
They can also affect protein function through their redox
interactions with critical thiols (–SH) on side groups of Cys
residues, leading to PTMs. H2O2 causes oxidation of cysteinyl
thiols to sulfenic acid, also identified as S-sulfenylation (Huang
et al., 2019), whilst H2S results in persufidation (Hancock, 2019;
Corpas et al., 2019). Surprisingly, many of the targets for these
molecules are key enzymes involved in ROSmetabolism (Table 1).

In summary, the emerging evidence suggests that NO-related
PTMs modulate enzymes involved in both ROS production and
scavenging, suggesting thatNO tightly regulates ROS homeostasis.
Beyond direct protein modifications, NO may also compete for
direct targets of both ROS and H2S-based PTMs, indicating the
possibility of multilevel regulation.

Table 1 Representative examplesof enzyme involved in reactiveoxygen species (ROS)metabolismwhoseactivities are regulatedbybothnitric oxide (NO)and
hydrogen sulfide (H2S).

Enzyme NO H2S References

Ascorbate peroxidase (APX) Activity upregulated Activity upregulated Begara-Morales et al. (2014); Aroca et al. (2015)
Catalase Activity

downregulated
Activity
downregulated

Ortega-Galisteo et al. (2012); Corpas et al.
(2019)

Respiratory burst oxidase homologue protein D
(RBOHD)

Activity
downregulated

Activity upregulated Yun et al. (2011); Shen et al. (2020)
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VI. NO regulation of the N-end rule protein
degradation pathway

Transcriptional responses to reduced oxygen (hypoxia) are achieved
by oxygen-dependent degradation by the ubiquitin proteasome

system (UPS) of transcription factors mediated through the N-end
rule (Gibbs et al., 2016; Dissmeyer et al., 2018). This pathway of
targeted proteolysis relates the stability of a protein to thenature of its
N-terminus. The arginine (Arg) branch of the N-end rule results in
exposure of Cys at theN-terminus, which can undergo S-nitrosation
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Fig. 2 Nitric oxide (NO) regulates a series of diverse post-translational modifications/signalling systems. Integrative schematic representation of cross-talk
between NO and various post-translational modification/signalling systems. A major route for NO bioactivity is through protein S-nitrosation (SNO) to form
S-nitrosated proteins. NO-modified regulators modulate downstream processes through diverse chemical modification systems. Chemical modifications
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HAD, histone deacetylase; PKs, protein kinases; PRMT5, protein argininemethyltransferase 5; RBOH, respiratory burst oxidase homologue (NADPHoxidase);
SCE1, SUMO E2 enzyme; SUMO, small ubiquitin-like modifier.
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or oxidation to sulfenic or sulfonic acid, triggering arginylation of the
target protein by arginyl-tRNA transferases (ATEs). These enzymes
transfer Arg fromArg-tRNA to the Nt alpha-amino group of theNt
residue, leading to N-recognin-mediated ubiquitination and subse-
quent degradation (Varshavsky, 2011).

Group VII ethylene response factors (ERFs) are important
regulators of oxygen sensing, as they become substrates of the
N-end rule pathway. Significantly, group VII ERFs are also
degraded in the presence of NO and oxygen and may thus serve as
NO and oxygen sensors regulating NO function in a number of
developmental processes (Gibbs et al., 2014). Thus, oxygen sensing
during hypoxia (reduced oxygen levels), occurring, for example, in
flooded roots, also requires low levels of NO in order to stabilise
group VII ERFs, which orchestrate cellular responses, ameliorating
the impact of hypoxia. Under hypoxia, as the oxygen level
decreases, typically, NO levels increase (Gupta et al., 2005),
presenting a problem. It has recently been shown that ethylene can
enhance group VII ethylene response factor (ERFVII) stability
before hypoxia by increasing the NO-scavenger Phytoglobin1
(Hartman et al., 2019). This ethylene-mediated NOdepletion and
consequent ERFVII accumulation might enable preadaptation of
plants before hypoxia. In summary, the emerging findings suggest
that NO-dependent modification of sentinel proteins embedded
within the N-end rule protein degradation pathway may under
some circumstances enable NO perception, while depletion of this
molecule by Phytoglobin1 supports preadaptation to hypoxia.

VII. NOregulationofmethylation linked topre-mRNA
splicing

Recently, a novel mechanism of NO cross-talk with protein arginine
methylation, a common post-translational modification that regu-
lates multiple biological processes has been identified in plant stress
responses (Hu et al., 2017). Arginine methyltransferases (PRMTs),
utilise S-adenosyl-L-methionine as donor of a methyl group trans-
ferred to target arginine residues. PRMTs play wide roles in the
biology of the cell, including pre-mRNA splicing and mRNA
translation (Blanc & Richard, 2017). Plant PRMTs are known to
control key developmental processes including growth, flowering, the
circadian cycle and also response to salinity (Ahmad & Cao, 2012).
Amongnine PRMTfamilies, PRMT5 is localised to both the nucleus
and the cytoplasm and is one of the most highly conserved and
broadly expressed genes in multicellular eukaryotes. Recently, stress-
induced NO-dependent S-nitrosation of Arabidopsis PRMT5 at
Cys125 has been demonstrated, and increases the methyltransferase
activity of this enzyme (Hu et al., 2017). Enhanced S-nitrosation of
PRMT5 in plants with loss-of-function mutations in S-nitrosoglu-
tathione (GSNO) reductase (GSNOR) (Feechan et al., 2005; Lee
et al., 2008b; Chen et al., 2009) suggests that this enzyme is indirectly
regulated byGSNORactivity,which controls global levels ofGSNO,
a natural NO donor. Importantly, through its effect on PRMT5
activity, NOmodulates pre-mRNA splicing during plant stress. This
process might represent a novel post-transcriptional mechanism by
whichNOdiversifies the stress-inducedproteome through regulation
of functional transcripts and formation of new splice variants
mediated by S-nitrosation of PRMT5 (Frungillo & Spoel, 2017).

Whether S-nitrosation of other PRMT Cys residues, Cys260 and
Cys425 (Hu et al., 2017), is biologically relevant, requires further
investigation, in addition to how S-nitrosation might potentially
affect other PRMT5 functions in plants, that is control of circadian
rhythms (Hong et al., 2010). Interestingly, rat PRMT1 is also under
redox control through reversible oxidation of Cys residues to sulfenic
acid by H2O2, resulting in concentration-dependent inhibition of
methyltransferase activity (Begara-Morales et al., 2015). Thus, in the
wider context of redox signalling, it is intriguing to speculate that
plant PRMTs might also be modulated by ROS.

VIII. Conclusions

It is nowbecoming apparent that amajor route forNObioactivity is
through the manipulation of key PTMs, for example SUMOyla-
tion, phosphorylation, persulfidation and acetylation (Fig. 2). By
targeting key Cys residues, which function as regulatory redox
switches, for oxidative modification, principally through S-nitro-
sation,NOis able tomodulate the functionsof theseubiquitous and
fundamental PTMs, tailoring cellular responses to diverse chal-
lenges. The identification and subsequent characterisation of these
strategically evolved redox switches will present exciting future
opportunities to shape protein function towards advantageous
outcomes. For example, redox switches could be designed and
implemented by emerging gene editing strategies to potentially
control a plethora of key biological processes underpinning a variety
of important agricultural traits. The ability of NO to regulate the
regulator may be at the heart of these new technologies.
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