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Abstract

The control of robots with a compliant joint motion is important for reducing colli-
sion forces and improving safety during human robot interactions. In this paper, a
multi-hierarchy control framework is proposed for the redundant robot to enable the
robot end-effector to physically interact with the unknown environment, while provid-
ing compliance to the joint space motion. To this end, an impedance learning method is
designed to iteratively update the stiffness and damping parameters of the end-effector
with desired performance. In addition, based on a null space projection technique, an
extra low stiffness impedance controller is included to improve compliant joint motion
behaviour when interaction forces are acted on the robot body. With an adaptive dis-
turbance observer, the proposed controller can achieve satisfactory performance of the
end-effector control even with the external disturbances in the joint space. Experimen-
tal studies on a 7 DOF Sawyer robot show that the learning framework can not only
update the target impedance model according to a given cost function, but also enhance
the task performance when interaction forces are applied on the robot body.

Keywords: robot interaction control, impedance control, impedance parameters
learning, null space, disturbance observer

1. Introduction

In recent years, the potential of physical interactions in human robot co-existent
scenarios has elicited large interests in industry and academia, leading to the recent
growth of a variety of research topics such as physical human-robot interactions (pHRI)
[1, 2, 3, 4], human intention estimation [5, 6, 7], haptic identification [8, 9] and so forth.
Traditionally, industrial robot are controlled based on a high stiffness to guarantee the
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motion precision. Robots are fixed in cages to avoid any contacts with the surrounded
people, because the rigid collision may lead to large forces and even cause damage to
human. Hence, a critical issue of the controller design for human robot interaction is to
provide compliance to guarantee the safety and the flexibility of the robot [10, 11, 12].

In general, the robot flexibility can be achieved by redundant degrees of freedom
(DOF) robots [13, 14, 15, 16]. For example, in a human pick-and-place task, additional
control objectives such as collision avoidance can be accomplished besides the main
tasks. This is achieved by using the null space projection of the kinematically redundant
manipulator, or so-called null motion [17]. In a pHRI scenario, however, it is likely
that an interactive/external force is applied on the robot body unpredictably. In this
case, the kinematic level control commands may fail to drive the robot immediately to
move away from its current position. Therefore, it is desirable to have a multi-priority
framework at the dynamic torque control level.

In [18], a null space based force control algorithm was designed according to the
system dynamic property. In [19], by employing a minimal null-space projection, a
velocity controller was developed to ensure the stability of the robot in an extended
operational space. In [20], a compliant dynamic control approach was presented by
introducing specific coordinates of the null motion. In the studies mentioned above,
the dynamics of the whole robot body can be represented by two parts, the end-effector
dynamics and the null motion dynamics. However, to design a null space velocity
controller is challenging since it needs to build a map between the joint velocities and
the null space velocities, whose inverse solution may not be unique.

On the other hand, impedance control has been widely used by actively regulat-
ing the dynamic behaviour between force and position at the interaction points [21].
A Cartesian impedance based torque control with a prescribed impedance model was
proposed in [22]. A predefined passivity-based impedance model was developed for
a flexible joint robot using the singular perturbation method [23]. Note that in the
impedance controllers mentioned above, the impedance parameters were fixed with a
specified impedance model. However, a predefined impedance model might be conser-
vative in many scenarios, especially when interacting with an unknown environment.
Without the knowledge of environment model, the design of impedance controller with
appropriate control performance is challenging. Hence, it is necessary to learn proper
impedance parameters as well as the reference trajectory to achieve desired interaction
performance. A natural actor-critic learning method was employed to find the optimal
impedance parameters in a contact task [24]. In [25], a policy improvement reinforce-
ment learning based variable impedance control was developed to optimize a selected
cost function with specified task performance. In [26], an admittance based control al-
gorithm was proposed to enable the robot to follow the human movement by estimating
the human motion intention.

Motivated by the above discussion, in this paper, we aim to develop a multi-hierarchy
impedance learning control framework, which enables the robot end-effector to inter-
act with unknown environments without using priori environmental information. The
proposed control scheme is mainly developed based on a technique of null space pro-
jection, which divides the robot dynamics into two subsystems. Meanwhile, a minimal
parametric set is employed to represent the null space motion by using a joint space
decomposition approach. In comparison to our previous study in [27] where a PID-
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like controller was used, the proposed scheme enables the robot to perform compliant
joint movement when external forces are applied. Additionally, a learning framework
is further developed to iteratively update the impedance parameters for the robot to in-
teract with the unknown environment. The developed impedance learning framework
is much simpler than the actor-critic based reinforcement learning method in [24, 25],
and updates the stiffness and damping parameters simultaneously.

It should also be noted that uncertainties may inevitably exist in a robotic system
due to the factors like external disturbances, measurement noises and frictions, which
have a major influence on the control accuracy. Approximation-based techniques like
neural network or fuzzy logic systems can be used to solve the problem [28, 29, 30, 31].
However, the increased computational cost may prevent the applications for real-time
systems. Another widely used approach to address the external disturbances is adaptive
disturbance observer (DOB) [32, 33, 34]. Comparing with neural network, the DOB
is a more effective method for on-line applications. A DOB was designed to deal with
the negative effects of the disturbances of a flapping wing micro aerial vehicle [35].
In [36], a nonlinear disturbance observer was designed for the estimation of unknown
disturbances as well as unmeasured states. In [37], a high-order disturbance observ-
er was used for a mobile wheeled inverted pendulum by using optimal gain matrices.
The disturbance observers combining with sliding mode control were also designed for
discrete-time systems [38, 39]. Inspired by the idea of DOB, in this paper, an adaptive
DOB is further developed to compensate for the disturbances caused by system uncer-
tainties and external forces during the motion of the robot. The proposed approach is
able to enhance the tracking accuracy of the multi-hierarchal control scheme. The main
contributions of the proposed control scheme are listed as below.

• Develop a multi-priority algorithm to enable the redundant robot to perform com-
pliant joint movements without affecting the tracking control of the end-effector
by using a null space projection technique.

• Enable the robot to interact with an unknown environment without using priori
environmental information by employing an iterative impedance learning algo-
rithm.

• Integrate an adaptive disturbance observer to compensate for the external distur-
bances caused by measurement noises, external forces and frictions. Therefore,
the tracking accuracy of the proposed control scheme is guaranteed.

The rest of this paper is organized as follows. Preliminaries of the redundant robots
and learning framework are given in Section 2. The control design procedure is p-
resented in Section 3, where the control objectives and stability analysis are included.
Experimental results are presented in Section 4 to testify the proposed impedance learn-
ing algorithm and the null-space motion controller. Conclusions are given in Section
5.

2. Preliminaries

2.1. System Description of Redundant Robots
The robot system studied in this paper is a n DOF redundant robot manipulator

while the workspace of the manipulator is m dimensional with m < n. Through the
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Figure 1: A robot interacts with an environment

well known forward kinematic equation, the relationship between end-effector velocity
and joints velocity can be derived as follows

ẋ = J(q)q̇ (1)

where q ∈ Rn and q̇ ∈ Rn denote the joint position and its first order derivative,
respectively, ẋ denotes the velocity of the end-effector, while J(q) ∈ Rm×n denotes
the Jacobian matrix of the robot.

For a redundant manipulator, the inverse solution of joint velocity is not unique due
to the joint redundancy.

A general inverse solution of (1) can be expressed as follows,

q̇ = J#(q)ẋ+Nξ (2)

where J#(q) ∈ Rn×m is a generalized inverse satisfying J = JJ#J , N = I −
J#J , and ξ ∈ Rn is an arbitrarily selected vector. Note that there are many kinds
of generalized inverse J#(q), and one choice is the weighted generalized-inverse as
below [17]

J# = W−1J JT (JW−1J JT )−1 (3)

with WJ ∈ Rn×n being a selected weighting matrix.
Note that the rank of the null space matrix N is r = n−m which means N is not

of full rank and this may cause degradation of the control performance [19]. To deal
with this problem, an auxiliary velocity vector ϑ is introduced by using a joint space
decomposition algorithm as follows,

q̇n = Nξ = Z(q)ϑ (4)

where q̇n is defined in (2), which denotes the null motion, Z(q) is a n×r matrix, which
is of full column rank and chosen to satisfy J(q)Z(q) = 0, while ϑ ∈ Rr is a minimal

4



null-space velocity vector [19].
To obtain the relation between the null-space velocity ϑ and joint velocity q̇, the

generalized inverse is employed as below,

ϑ = Z#(q)q̇ (5)

where Z# ∈ Rr×n is a weighted generalized inverse matrix of Z, which is defined by

Z# = (ZTWZZ)−1ZTWZ (6)

with WZ ∈ Rn×n being a weighting matrix.
Until now, the inverse kinematics can be represented by combining (2) and (4)

as q̇ = J#(q)ẋ + Z(q)ϑ. In addition to the kinematics, the robot dynamics can be
formulated by using Lagrangian method,

M(q)q̈ + C(q, q̇)q̇ +G(q) + τe = τ (7)

where M(q) ∈ Rn×n is the inertia/mass matrix, C(q, q̇) ∈ Rn×n and G(q) ∈ Rn
denote Coriolis and centrifugal matrix and gravity term, respectively. τe ∈ Rn is
external joint torque while τ ∈ Rn is the joint driving torque. Note that in a human-
robot interaction scenario, the external torque τe applied on the joint may be caused by
two kinds of forces, i.e., an interaction force fe ∈ Rm applied on the end-effector and
a contact force fi ∈ Rm applied on the links, which are depicted in Fig. 1. Here, τe
can be represented as a net torque as below [40]

τe = JT (q)fe +

k∑
i=1

JTi (q)fi (8)

where fi denotes the ith a contact force at the robot body, and Ji is the manipulator
Jacobian matrix associated with ith contact force.

2.2. Impedance Control

Assume that the robot end-effector is contacting with the environment, for example,
a vertical bar connecting with a mass-damping-spring model as depicted in Fig. 1,

Me(t)ẍ(t) + Ce(t)ẋ(t) +Ge(t)x(t) = fe(t) (9)

where Me ∈ Rm×m, Ce ∈ Rm×m and Ge ∈ Rm are the inertia matrix, damping
matrix and stiffness matrix, respectively, the subscript e denotes the ‘environment’ and
fe(t) is the force applied on the end-effector. Note the above model is often used to
describe the environment in interaction scenarios, e.g., an elastic ball [8] or a human
limb in human-robot interactions [1]. Also, note that the model is unknown in a real
implementation and it is only used for analysis.

In order to control the robot to interact with the environment, a Cartesian impedance
control model is considered as follows

Md(ẍd − ẍr) + Cd(q, q̇)(ẋd − ẋr) +Gd(q)(xd − xr) = fe(t) (10)
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where Md ∈ Rm×m is a selected inertia matrix, Cd ∈ Rm×m is a selected damping
matrix andGd ∈ Rm is a selected stiffness matrix, xd ∈ Rm is the desired end-effector
trajectory, while ẋd ∈ Rm and ẍd ∈ Rm are the desired velocity and acceleration,
respectively. xr ∈ Rm is a reference trajectory in Cartesian Space, ẋr ∈ Rm and
ẍr ∈ Rm are the first and second order derivatives of xr, respectively.

Generally, if the environmental parameters are known accurately, we can obtain
the reference trajectory xr directly from the impedance model (10). However, it is
extremely hard to acquire an accurate environmental model in some practical scenarios,
e.g., human limbs. Without suitable parameters, the reference trajectory xr can not be
generated appropriately, so the interaction with the unknown environment may fail. In
this regard, a learning mechanism is necessary to find the robot’s impedance parameters
Md(t), Cd(t) and Gd(t) for obtaining desired interaction performance.

2.3. Impedance Learning Scheme

Lemma 1. Let us consider a linear time-varying system as below [41]

ζ̇(t) = A(t)ζ(t) + B(t)u(t)

r(t) = C(t)ζ(t)
(11)

where ζ(t) is a state space vector, u(t) is the input of the system, A(t), B(t) and C(t)
are time-varying parametric matrices. The control input is chosen to update iteratively
as

uk(t) = uk−1(t) + λ[ṙd(t)− ṙk(t)] (12)

where k denotes the iteration step, rd(t) is the desired output and λ ∈ R is a param-
eter satisfying ||I − λB(t)C(t)||∞ < 1, with I being an identity matrix of a proper
dimension.

If the initial condition is chosen to rk(0) = rd(0) with det |C(t)B(t)| 6= 0, then
we can conclude from [41] that the system (11) is convergent with rk(t) → rd(t)
uniformly in the period t ∈ [0, tf ] with k →∞, where tf is the iteration period.

To employ the above betterment scheme to learn the impedance parameters, a cost
function ℵ ∈ R is designed to evaluate the performance of the impedance control.
An example of the cost function can be selected as a combination of position tracking
errors and interaction forces to regulate the interaction performance.

To make the environmental dynamics (9) be coherent with the linear system form
in (11), the environment model (9) can be rewritten as below δ̇1

δ̇2
δ̇3

 =

 0 I 0
−M−1e (t)Ge(t) −M−1e (t)Ce(t) 0

0 0 0


×

 δ1
δ2
δ3

+

 0
−M−1e
I

 fe(t)
(13)

where δ1(t) = x(t), δ2(t) = ẋ(t) and δ3(t) =
∫ t
0
fe(r)dr. More compactly, the above
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Figure 2: Control block of the overall system

equation can be rewritten as

ζ̇(t) = Aζ(t) + Bfe(t)
r(t) = C(t)ζ(t)

(14)

where ζ =

 δ1
δ2
δ3

, B =

 0
−M−1e
I

 andA =

 0 I 0
−M−1e (t)Ge(t) −M−1e (t)Ce(t) 0

0 0 0

.

C is a mapping matrix, which is designed according the requirement of the task.
According to (12), the desired interaction force fe(t) in (14) should be updated by

fke (t) = fk−1e (t)− λ(ṙk(t)− ṙd(t)) (15)

where λ is the gain parameter defined in (12), which guarantees ṙk(t) → ṙd(t) when
k → ∞. In this way, the error between rk(t) and rd(t) can be reduced by iteratively
updating fe in terms of Lemma 1. And it can further converge to zero if rk(0) equal to
rd(0).

To achieve this objective, here we design a cost function θ = ||r(t)− rd(t)||2 ∈ R,
where || · ||2 is 2-norm. Then the iterative law can be designed as

fke (t) = fk−1e (t)− α(∂θk(t)/∂fke (t))T (16)

where α ∈ R is a selected learning rate. Comparing with (15) and (16), we have

α(∂θk(t)/∂fke (t))T = λ(ṙk(t)− ṙd(t)) (17)

This equation gives the relationship between the designed cost function θ and the out-
put error of ṙk. Also, the partial derivative of (10) with respect to fe yields

∂fke (t)T

∂Ckd (t)
= ėkx,

∂fke (t)T

∂Gkd(t)
= ekx (18)
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where ex = xd − xr.
Based on the above two equations, here we can design the learning law of the

impedance parameters as follows

Ckd = Ck−1d (t)− α
′

C

(
∂θk(t)

∂Ckd (t)

)T
= Ck−1d (t)− α

′

C

(
∂fk(t)

∂Ckd (t)

)T (
∂θk(t)

∂fk(t)

)T
= Ck−1d (t)− αC ėkx(ṙk(t)− ṙd(t))

Gkd = Gk−1d (t)− α
′

G

(
∂θk(t)

∂Gkd(t)

)T
= Gk−1d (t)− α

′

G

(
∂fk(t)

∂Gkd(t)

)T (
∂θk(t)

∂fk(t)

)T
= Gk−1d (t)− αGekx(ṙk(t)− ṙd(t))

(19)

where αC = λα
′

C/α ∈ R, αG = λα
′

G/α ∈ R, with α
′

C and α
′

G being the designed
learning rates.

Remark 1. The adaptation of impedance parameters in (19) is designed to iteratively
adjust the interaction force towards a direction that the cost function θ can be gradu-
ally reduced. Note that in this paper, we only update the parameters Cd and Gd, while
Md is chosen as the apparent inertia since an arbitrary Md may lead to instability of
the system.

Remark 2. The designed cost function θ = ||r(t) − rd(t)||2 plays a role to keep the
balance between fe and ex by updating the impedance parameters. For instance, if we
select the cost function as θ = ||aex − b

∫ t
0
ef (s)ds||2, ef = fe − fd with fd being

the desired interaction force, while a and b are positive constants, the adaptation is
to find a balance between ex and

∫ t
0
ef (s)ds and to make θ as small as possible. In

this respect, the learning algorithm is to provide a stable adaptation of the reference
trajectory, to make the interaction force become smaller. However, if the robot end-
effector is in contact with an environment surface, there will be always a counterforce
applied on the robot, thus the interactive force may not converge to zero.

3. Control Design for the Redundant Robot

3.1. Control Objective

Through the impedance learning in the last section, a group of impedance parame-
ters Md, Cd and Gd can be obtained and the reference trajectory xr, ẋr and ẍr can be
calculated from the impedance model (10).

Note that for a redundant robot, the inverse solution of joint velocity is not unique
since the DOF of the task space is less than the DOF of joints. In other words, we have
multiple solutions of the joint velocity. In this paper, we develop a multi-hierarchy
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robot motion controller by employing the null space projection. The control framework
of the proposed controller is illustrated in Fig.2. There are mainly two components of
the controller, i.e., an outer loop impedance learning controller which responses for
learning appropriate impedance parameters, and an inner loop robot motion controller
which is able to control the robot with multi-priority tasks. Specifically, the objectives
of the robot motion control are twofold:

i) Design a first-priority controller to track a predefined trajectory xr in task space
with learned impedance parameters, such that desired impedance behaviours of
the end-effector could be achieved.

ii) Design a second-priority controller in the null space of the main task to provide
compliant joint motion under interactive contact force.

3.2. Extended Velocity and Decoupled Dynamics

From equations (2) and (4), the joints’ motion is composed of two components,
corresponding to the task space velocity and the null space velocity. For ease of the
system analysis, an extended velocity vector ẋe is introduced by including both the
task velocity and null space velocity as

ẋe =

[
ẋ
ϑ

]
= Jeq̇ =

[
J(q)
Z#(q)

]
q̇ (20)

where Je(q) =

[
J(q)
Z#(q)

]
. Let J#

e (q) be the generalized inverse of Je(q) with

J#T
e (q) =

[
J#T (q)
ZT (q)

]
. It is trivial to have J#

e (q)Je = I and JeJ#
e (q)Je = Je.

From the equation (20), the mapping between ẋe and q̇ is obtained. The time
derivative of (20) yields ẍe = Jeq̈ + J̇eq̇. Then, we can decouple the dynamics of
the robot (7) into two subsystems, i.e., the task space dynamics and the null space
dynamics.

Premultiplying J#T
e on both sides of (7), and taking q̇ = J#ẋ + Z(q)ϑ into con-

sideration, we can reformulate the system as below

J#T
e τ = Ξe(q)ẍe + ηe(q, q̇)ẋe + J#T

e G(q)

+ J#T
e τe

(21)

where

Ξe = J#T
e MJ#

e =

[
J#TMJ# J#TMZ
ZMJ# ZTMZ

]
ηe =

[
η11 η12
η21 η22

] (22)
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with

η11(q, q̇) = (J#TC(q, q̇)− J#TMJ#J̇)J#

η12(q, q̇) = (J#TC(q, q̇)− J#TMJ#J̇)Z

η21(q, q̇) = (ZTC(q, q̇)− ZTMZŻ#)Z

η22(q, q̇) = (ZTC(q, q̇)− ZTMZŻ#)J#

Note that in (22), the matrix Ξe is not diagonal, thus the off-diagonal terms are
coupled. To control the motion of the task space and null space independently, we
need to properly address these terms. Inspired by the work in [18], an inertia-weighted
generalized inverse is introduced by selecting WJ = WZ = M in (3) and (5), such
that {

J# = M−1JT (JM−1JT )−1

Z# = (ZTMZ)−1ZTM
(23)

Note J(q)Z(q) = 0 according to (4), then we have J#TMZ = ZMJ# = 0. Thus,
Ξe becomes

Ξe =

[
J#TMJ# 0

0 ZTMZ

]
(24)

From (24) we can see that Ξe is a block diagonal matrix. Thus the dynamics of task
space motion and null motion are decoupled in the acceleration level. Then controllers
for the two subsystems can be designed individually.

Let us define Ξx = J#T
e MJ#

e = (JM−1JT )−1 and Ξϑ = ZTMZ, then the force
control terms can be rewritten as bellow,{

Fx = Ξxẍc + ηx + gx(q) + J#T τe

Fϑ = Ξϑϑ̇c + ηϑ + gϑ(q)
(25)

where Fx denotes the task space control force, Fϑ denotes the null space control force

with
[
Fx
Fϑ

]
= J#T

e τ =

[
J#T

ZT

]
τ , ẍc, ϑ̇c are commanded acceleration trajectories

which will be designed later, ηx = η11ẋ + η12Z
#q̇, ηϑ = η21ẋ + η22Z

#q̇, gx(q) =
J#TG(q), gϑ(q) = ZTG(q).

3.3. Controller Design for the Task Space Motion
As discussed above, the control goal of the task space motion is to follow a prede-

fined trajectory. Prior to the controller design, error signals are designed as below

e = x− xr (26)

z = ẋ− ẋs (27)

where ẋs = ẋr +Kae with Ka being a positive definite matrix.
The acceleration command xc is defined as below,

ẍc = ẍs − Ξ−1x (Kp + ηx)z (28)

10



where Kp is a positive definite matrix. Here, ηx is introduced to deal with the Coriolis
and centrifugal force of the task space.

Substituting (28) into (25), we have the following task space control law

Fx = Ξx(ẍs − Ξ−1x (Kp + ηx)z) + ηx + gx(q) + J#T τe (29)

However, τe may not be available due to the lack of the sensors, which will resulted
in the degradation of the control performance. To compensate for the external distur-
bances and improve the tracking performance, an adaptive disturbance observer τ̂e is
developed to replace τe in (29). Moreover, the adaptation law is designed as below
[42],

˙̂τe = Γ−1J#z (30)

where Γ is a designed positive definite matrix.

Remark 3. Note that the task space tracking errors caused by the interaction forces
can also be eliminated by choosing a high gain controller, but this may often lead to
oscillation phenomenon. Through estimation of the disturbance, the adaptive distur-
bance observer can be a more effective method to reduce the tracking errors.

Combining (21) and (29), we can obtain the error dynamics in the task space as
below

Ξxż = −(Kp + ηx)z + J#T τ̃e (31)

where τ̃e = τe − τ̂e.

3.4. Controller Design for the Null Space Motion
In order to accomplish the second control objective, namely, to guarantee a com-

pliant joint motion without affecting the main task when interactive contact forces are
acted on the robot, the null space acceleration command is chosen as below

ϑ̇c = ϑ̇d + Ξ−1ϑ ((Kv + ηϑ)ϑ̃+ ZTKφq̃) (32)

where ϑd ∈ Rr is the desired null motion, ϑ̃ = ϑ − ϑd, Kv ∈ Rr×r and Kφ ∈ Rn×n
are selected gain matrices, and ηϑ is designed to deal with the Coriolis and centrifugal
torque in the null space.

Substituting (32) into (25), we have

Fϑ = Ξϑ(ϑ̇d + Ξ−1ϑ ((Kv + ηϑ)ϑ̃+ ZTKφq̃)) + ηϑ + gϑ(q)

= Ξϑϑ̇d + (Kv + ηϑ)ϑ̃+ ZTKφq̃ + ηϑ + gϑ(q)
(33)

Then the closed-loop dynamics of the robot can be derived based on (21) and (33) as

Ξϑ
˙̃
ϑ+ (Kv + ηϑ)ϑ̃+ ZTKφq̃ = ZT τe (34)

We can see from (34) that, although Ξϑ and ηϑ are reserved by the robot dynamics,
the impedance behaviour of the null space motion can be preserved by selecting proper
Kv and Kφ. Note that the external force τe in (8) is composed by two parts, i.e.,
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τe1 = JT (q)fe and τe2 =
∑k
i=1 J

T
i (q)fi. By multiplying ZT (q) on both sides of

τe1 and considering JZ = 0, we can obtain ZT (q)τe1 = ZT (q)JT (q)fe = 0. This
implies that the force applied in the main task space will not transfer to the null space.

Remark 4. To achieve an appropriate null space motion, the desired null space ve-
locity should be specified. A possible choice is to set the desired null space velocity as
zero to allow the robot to maintain the initial configuration. More commonly null space
motions can be obtained using an optimization method with specified performance cri-
terion, such as maximized manipulatability or minimized joint effort [43].

Combining the control commands in (31) and (33) with the definitions of Fx and Fϑ in
(25), we can rewrite the control torque as

τ = τt + τn (35)

with

τt= JT
(

Ξx(ẍs − Ξ−1x (Kp + ηx)z) + ηx + gx(q) + J#T τ̂e

)
τn= Z#T

(
Ξϑϑ̇d + (Kv + ηϑ)ϑ̃+ ZTKφq̃ + ηϑ + gϑ(q)

) (36)

From the above analysis, we can see that the control torque consists of two parts, which
are responsible for controlling the task space motion and the null space motion. The
control block of the overall system is depicted as shown in Fig. 2.

3.5. Stability Analysis
To prove the stability of the hierarchical control framework, a conditional stability

analysis was performed in previous studies [43, 44]. In this section, the stability proof
is performed based on the conditional stability and the following theorem is presented.

Theorem 1. Given a redundant robot with the dynamics described in (7) and under an
assumption of constant (or slowly time-varying) unknown external torque, the control
laws proposed in (29), (33) and (35), and the adaptive law in (30) can guarantee the
tracking control of the desired task space trajectory xr under the interaction forces,
while providing a complaint behaviour of null motion in joint space when interactive
contact forces are acted on the robot body.

proof: Let us consider a Lyapunov function Vx ∈ R as

Vx =
1

2
zTΞxz +

1

2
τ̃Te Γτ̃e (37)

The time derivative of (37) can be derived as

V̇x = zTΞxż +
1

2
zT Ξ̇xz + τ̃Te Γ ˙̃τe (38)

Substituting (31) into (38), we have

V̇x = zT (−(Kp + ηx)z + J#T τ̃e) +
1

2
zT Ξ̇xz + τ̃Te Γ ˙̃τe (39)
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during the interaction, by assuming that the interactive contact force is fixed or changed
slowly. Substituting the adaptive law (30) into (39) and considering that Ξx − 2ηx is a
skew-symmetric matrix, then we can derive

V̇x = −zTKpz − τ̃Te J#z + zTJ#T τ̃e (40)

Note that τ̃Te J
#z = ((τ̃Te J

#z)T )T = (zT (τ̃Te J
#)T )T = zTJ#T τ̃e, where the prop-

erty a = aT holds for a given constant scalar a. Therefore, the terms τ̃Te J
#z and

zTJ#T τ̃e are cancelled by each other in (40) and we have that

V̇x = −zTKpz ≤ 0 (41)

From (41) we can see that V̇x is negative unless z equals to zero. This means that
Vx will decrease until z = 0. According to LaSalle’s invariance principle [45], we
can derive that z is asymptomatically stable, and τ̃e is uniformly ultimately bounded.
According to the definition of z, we can also obtain that e = 0 and ė = 0, which imply
that tracking of the end-effector position is achieved.

A conditional stability is employed to prove the stability of the null space motion
control. In a subset of C = {q̃, ϑ̃, τ̃e, z = 0, e = 0}, a positive definite Lyapunov
candidate VC is considered as follows,

Vϑ =
1

2
ϑ̃TΞϑ(q)ϑ̃+

1

2
q̃TKφq̃ +

1

2
τ̃Te Γτ̃e (42)

Taking the time derivative of (42), we have

V̇ϑ = ϑ̃TΞϑ(q)
˙̃
ϑ+

1

2
ϑT Ξ̇ϑ(q)ϑ+ q̃TKφ

˙̃q + τ̃Te Γ ˙̂τe (43)

Substituting (34) into (43), we have

V̇ϑ = ϑ̃T
(

(−(Kv + ηϑ)ϑ̃− ZTKφq̃ + ZT τe

)
+

1

2
ϑT Ξ̇ϑ(q)ϑ+ q̃TKφ

˙̃q + τ̃Te Γ ˙̂τe

(44)

Having reminded that Ξ̇ϑ − 2ηϑ is skew-symmetric, while ˙̂τe = 0 in terms of ˙̂τe =
Γ−1J#z and z = 0, we can obtain

V̇ϑ = −ϑ̃TKϑϑ̃− ϑ̃TZTKφq̃

+ q̃TKφ
˙̃q + ϑ̃TZT τe

(45)

From ˙̃q = J#T e+Zϑ̃ and e = 0 in the subset C, we have that ˙̃q = Zϑ̃. Then, (45) can
be derived as

V̇ϑ = −ϑ̃TKϑϑ̃+ ϑ̃TZT τe (46)
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Figure 3: An overview of the experimental set-up

Here, the stability of the system can be analysed in two cases,ZT τe = 0 andZT τe 6= 0.
In the case ZT τe = 0, (46) can be written to

V̇ϑ = −ϑ̃TKϑϑ̃ ≤ 0. (47)

Thus, ϑ is asymptotically stable in the subset C in terms of the Lasalle’s theorem.
This implies the convergence of all system states into an invariant set in {z = 0, e =
0, ϑ̃ = 0, ZTKφq̃s0}. According to the above mentioned discussion, we can conclude
that system variables e, z and ϑ are asymptotically stable, which shows that both the
first priority task space control goal and the second priority null space control goal are
achieved. This completes the proof.

Remark 5. With the above stability analysis, it is possible to prove asymptotic con-
vergence to zero of the task-space error and the force estimation error. However, this
requires the external torque applied on robot body to be a slowly time-varying vec-
tor, which may be not easy to achieve in a real experimental environment condition.
Nevertheless, the stable tracking performance can still be guaranteed in a small neigh-
bourhood around zero of the tracking errors as long as the external force τe is bounded
[46].

4. Experimental Studies

4.1. Experimental Set-up

To further investigate the effectiveness of the proposed impedance learning and
control algorithm, experimental studies are conducted on a Sawyer robot as shown in
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Figure 4: A screenshot of the experiment

Fig. 3. The Sawyer robot is a collaborative robot developed with built-in software
development kits (SDK) and sensitive torque/position sensors, which allow the robot
to work safely around people.

An overview of the experimental set-up is depicted in Fig. 3. The robot platform is
a redundant robot which equips with 7 series elastic actuators (SEA) joints providing
torques maximumly at [80, 80, 40, 40, 9, 9, 9] Nm with respect to each joint. 3 joints
are equipped on the wrist, 2 joints are on the elbow and 2 joints are on the shoulder.
The controller runs in a server computer (Z230, HP, US) with a 3.5Ghz×8 XEON
CPU, a 16 GB memory and a 500 GB hard disk. We develop the controller by Robot
Operating System (ROS) under the Ubuntu system, with a Sawyer intera SDK provided
by the manufacturer. In the experiment, the controller sends control torque to the robot
through Ethernet connection at a frequency of 500Hz.

4.2. Verification of the Robot Motion Controller

In order to verify the tracking control performance of our proposed controller in
the presence of interactive contact forces, two experimental cases are conducted on the
Sawyer robot, i.e., a set-point regulation case and a trajectory tracking case.

4.2.1. Set-point regulation case
In the first experimental case, the robot end-effector is controlled to maintain at a

given position in the Cartesian space, while an interactive contact force is applied by
human to push or to pull the elbow of the robot during the control period. The pro-
posed null space controller with consistent generalized inverse is employed to ensure
the compliant interaction in joint space without disturbing the end-effector motion,
while the adaptive disturbance observer is employed to improve the control accuracy.
The end-effector is controlled in x, y, z directions such that 4 DOFs remain for the
redundancy of the joints. In this experiment, the control parameters are chosen to be
Kp = [1000, 1000, 1000, 50, 50, 50] and Bp = [30, 30, 30, 2.8, 2.8, 2.8], Kv = 10I ,

15



0 10 20 30 40 50 60

time(s)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

ac
tu

al
 tr

aj
ec

to
ry

 (m
)

x

y

z

Free Movement Period Free Movement
Period

Interaction Period

Figure 5: The tracking trajectory of in x, y and z
direction

0 10 20 30 40 50 60

time(s)

-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1

tra
ck

in
g 

er
ro

r (
m

)

x
y
z

Free Movement
Period

Interaction Period Free Movement
Period

Figure 6: The tracking errors in x, y and z direc-
tion

0 10 20 30 40 50 60

time(s)

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

3

jo
in

t a
ng

le
(ra

d)

Joint 1

Joint 2

Joint 3

Joint 4

Joint 5

Joint 6

Joint 7

Free
Movement

Period

Interaction Period Free Movement
Period

Figure 7: The profiles of joint positions

0 10 20 30 40 50 60

time(s)

-10

-5

0

5

10

15

20

25

30

35

40

jo
in

t t
or

qu
e 

(N
m

)

Joint 1
Joint 2
Joint 3
Joint 4
Joint 5
Joint 6
Joint 7

Free Movement
Period

Interaction PeriodFree Movement
Period

Figure 8: The profiles of control torque τ

10 20 30 40 50 60

time(s)

-15

-10

-5

0

5

10

15

20

25

30

D
O

B 
to

rq
ue

 (N
m

)

Joint 1

Joint 2

Joint 3

Joint 4

Joint 5

Joint 6

Joint 7

DOB Response

Free Movement
Period

Free Movement
Period

Interaction Period

Figure 9: The response of the disturbance observ-
er

0 10 20 30 40 50 60

time(s)

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

R
M

SE

RMSE(proposed)

RMSE(without DOB)

interaction period

Figure 10: The RMSE of the tracking errors

16



0 5 10 15 20 25 30 35 40 45 50

time(s)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

ac
tu

al
 tr

aj
ec

to
ry

 (m
)

z
y
x

Free Movement
Period

Interaction Period Free Movement Period

Figure 11: The tracking trajectory performance of
the robot

0 5 10 15 20 25 30 35 40 45 50

time(s)

-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1

tra
ck

in
g 

er
ro

r (
m

)

x

y

z

Free Movement PeriodInteraction PeriodFree Movement
Period

Figure 12: The tracking errors of the robot
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Figure 13: The profile of the joint angles
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Figure 14: The profile of the control torque
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Figure 15: The output of the disturbance observer
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Figure 16: The RMSE of the tracking errors

Bv = 0.4I . In this experimental case, the robot end-effector is controlled to be at a
desired position of xd = [0.552, 0.154, 0.212], and ẋd = [0, 0, 0]. The initial join-
t position is qd = [0.52,−0.63,−0.71, 1.83, 0.91, 0.74, 1.02] which is kinematically
compatible with the end-effector position. Screenshots of the experiment are shown in
Fig.4, from which we can see that interactive contact forces are applied at a point close
to the elbow of the robot by a human user.

The experimental results are depicted in Figs. 5-9. The interactive contact forces
are applied at the time of 17s and last for about 20s to drive the robot away from the
initial position. From Fig. 5 we can see that the end-effector is holding at a fixed
position in all directions in the free movement period. Also, the tracking errors almost
converge to zeros as observed in Fig. 6. In the interaction period, the interactive
contact forces are applied. We can see that the robot is able to maintain the end-effector
position and only slight movements are observed. The profiles of all robot joints are
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depicted in Fig. 7 as well as the control torques in Fig.8, from which we can see that
the impacts of the interactive contact force are prominent. Both the joint position and
the control torque remain almost steady during the free movement period, but change
obviously during the interaction period. Additionally, we can see two peaks in Fig.8,
which shows that the robot arm is pushed by external forces during the the interaction
period. However, although the joint positions have changed largely, the end-effector
can still maintain at a fixed position. The responses of the disturbance observer (DOB)
are presented in Fig. 9. To further show the effectiveness of the proposed controller,
comparative experimental studies are carried out based on the proposed controller and a
controller in [47], where a conventional null space controller is employed without using
the DOB. A root mean square error (RMSE) is introduced to evaluated the tracking

performance as φ =
√∑3

i=1(x(i)− xd(i))2/3. The comparative results are depicted
in Fig.10, where the RMSE profile of the proposed controller is demonstrated by the
red line, and the comparative controller by the blue line. We can see that RMSE of the
proposed controller is much smaller than the comparative controller in [47]. For the
proposed controller, the maximum RMSE value is 0.0303, which is half smaller than
the comparative controller.

4.2.2. Trajectory tracking case
In the second experimental case, the robot is controlled to follow a trajectory in the

Cartesian space as xd = [0.435, 0.135, 0.22+0.05 sin(0.3t)], ẋd = [0, 0, 0.015 cos(0.3t)].
Note that the robot end-effector is commanded to track a sinusoidal trajectory in z di-
rection while the commands in x and y directions are set to fixed constants. The control
parameters are chosen the same as in the first experimental case. The interactive con-
tact forces are applied to the robot during the tracking procedure. In this case, the
proposed robot controller should guarantee that the tracking in the main task will not
be disturbed by the interactive contact force. The experimental results are depicted in
Figs.11-16. From Fig.11 we can see that the end-effector follows the reference trajec-
tory well. The tracking errors are very close to zero during the free movement period,
while remaining as a small value during the interaction period as shown in Fig. 12.
Figs.13-14 show the profile of the joint angles and control torques. We can see that
during the interaction period, the joint angles apparently changed under the interactive
contact forces. At the same time, control torques also increase significantly in response
to the interactive contact forces. The outputs of the DOB are depicted in Fig.15, where
we can see that the disturbance observer has successfully predicted and compensated
for the external disturbances. Comparative studies are also carried out based the same
controllers as in the set-point regulation case. As shown in Fig. 16, the RMSE of the
proposed controller is smaller than the comparative controller.

To further show its effectiveness, we conduct the experiment with a number of trial-
s, to assess the performance of the disturbance observer. The upper subfigures in Figs.
17-19 show the tracking performance in the Cartesian space, while the lower subfigures
show the tracking errors with and without using the adaptive disturbance observer. We
can see that, the proposed control scheme ensures consistent and satisfactory tracking
performance, and tracking errors are much smaller than that without using the adaptive
disturbance observer.

18



0 5 10 15 20
0.2

0.4

0.6

0.8

tr
ac

ki
ng

 tr
aj

ec
to

ry
 (

m
)

x

0 5 10 15 20
time(s)

-0.01

0

0.01

0.02

0.03

tr
ac

ki
ng

 e
rr

or
 (

m
)

without DOB

with DOB
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without using disturbance observer
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Figure 18: The tracking performance with and
without using disturbance observer

0 5 10 15 20

0

0.1

0.2

0.3

tr
ac

ki
ng

 tr
aj

ec
to

ry
 (

m
)

z

0 5 10 15 20
time(s)

-0.02

0

0.02

tr
ac

ki
ng

 e
rr

or
 (

m
)

with DOBwithout DOB
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without using disturbance observer

4.3. Impedance Learning Results

In this section, we verify the validity of the proposed impedance learning scheme
based on both numerical simulations and experiments.

4.3.1. Simulations
In the simulation, a 3 DOF redundant robot is employed to track a desired trajec-

tory in a vertical plane using the proposed impedance control framework. The robot
contacts with the environment such that there are reaction forces exerted on the robot
end-effector. The objective of the impedance learning is to achieve the desired perfor-
mance on interaction forces and tracking errors. To simplify the learning process, we
only employ the impedance control in x direction and the motion in y direction is set
to a fixed value, such that only one dimensional impedance parameter is considered.

The simulated environmental model is described in (9) with the parameters chosen
to be Me(t) = 0.0, Ce(t) = 1.0 and Ge(t) = 10.0. Note that environmental param-
eters are unknown for users and they are only used for the simulation purpose. The
desired trajectories are chosen to be xd = 0.2 − 0.2e−t, ẋd = 0.2e−t. To control the
interaction motion, impedance control is used to track the desired trajectory while to
maintain the interaction forces. The initial impedance control parameters are selected
to be C0

d = 15, G0
d = 10. The gain parameters αC and αG are selected to αC = 2 and

αG = 2.
To achieve a balance between the interaction force and tracking errors, the cost

function is designed to be θk(t) = ||10ex(t) − 3
∫ t
0
ef (s)ds||2 with C = [10, 0, 3]

and fd = 0. Then, iterative learning is employed to find a minimum cost function
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to optimize the tracking performance. Simulation results are performed as shown in
Figs.20-25 with 30 iterations. For each figure, there is a colour bar on the right hand
side, which shows that the colour of the result curves shifts from light blue to dark blue
as the iteration number increases.

As seen from Fig.20, the interaction force decreases when the iteration number
increases and finally converges to a value near 2N . Additionally, the tracking errors
become smaller when the iteration number increases, and converge to a small neigh-
bourhood near zero, as shown in Fig.22. The iterative learning profiles of the stiffness
parameter Gd and damping parameter Cd are depicted in Fig.23 and Fig.24, respec-
tively. As shown in Fig.23, the stiffness is initialized as Gd(k = 1) = 10 and then
increases gradually as the iteration number increases. For most of the iterations, the
stiffness increases in the first 3 seconds then converges in the rest of the time. Also,
the damping parameter achieves its peak value in the period of the 1-2 seconds in most
of the iterations, and finally converges to the initial value in 5-10 seconds. This is rea-
sonable since the desired trajectory xd is a saturation function, which rises in the first 3
seconds then converges to a fixed value in the rest of the time. Therefore, the stiffness
Gd becomes larger to result in a smaller interaction force in the beginning. On the other
hand, the increase of damping could result in a smaller value of ẋr as the damping pa-
rameter is related to the velocity. When the desired trajectory xd saturates and the robot
stops moving, the damping parameter has reduced to a small value to obtain a smaller
interaction force. From Fig.25 we can further observe that the cost function decreases
significantly when the iteration number increases, reaching about 5 times less than its
first iteration. Hence, the above results have illustrated that the proposed impedance
learning framework is effective to iteratively update the impedance parameters to adapt
to the environment interaction force.

4.3.2. Experiments
The impedance learning experiment is performed on the Sawyer robot with the pro-

posed robot motion controller which has been verified in Section 4.2. The experiment
set-up is depicted in Fig. 26. In this experiment, the Sawyer robot is controlled to touch
a flexible cardboard fixed on the table as shown in Fig. 26. The robot end-effector is
initialized at about 30cm above the blue board, then follows a straight line to touch
the blue board. When the robot contacts the blue board, the end-effector will continue
to move for a short distance, which results in counteracting forces on the end-effector.
The forces can be collected by the built-in torque sensors of Sawyer robot. In this
experiment, totally 20 trials are conducted to learn the impedance parameters and the
multi-priority control scheme is adopted to control the robot.

The desired trajectory in the vertical direction (z direction) is given as xd = 0.031+
0.3e−t with t = 10, which is also depicted in Fig.27. In this way, the robot can quickly
move close to the board in the first 5 seconds, then contacts with it in the next 5 seconds.
The cost function is chosen as θk(t) = ||20ex(t) − 3

∫ t
0
ef (s)ds||2. The proposed

impedance learning algorithm is employed with 20 iterations.
The experimental results are depicted in Figs. 28-32. Fig. 28 shows the evolution of

the integration of the interaction forces, which can be observed increasing rapidly after
contact with the surface, and reaching about 37N at the end of the first iteration. When
the iteration number increased, the profile of the interaction force becomes lower than
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Figure 26: The experiment set up of the impedance learning

the previous iteration and finally reduces to about 27N at the last interaction. Figs.29-
30 show the evolution of the stiffness and damping parameters and Fig.31 shows the
evolution of the reference trajectory. Both the stiffness parameters and damping pa-
rameters are iteratively increased when the iteration number increases. The evolution
of the reference trajectory is depicted in Fig. 31, from which we can see that the refer-
ence trajectory of the 20th iteration is about 1.5cm higher than the 1st iteration, which
implies the reference trajectory is successfully updated to reduce the reaction forces.
Besides, the evolution of the cost function depicted in Fig.32 shows that the cost func-
tion decreases iteratively. Fig. 28 and Fig. 32 have verified the effectiveness of the
proposed learning algorithm, where the decrease of the cost function and interaction
force are presented. As we can also see in Fig. 29 and Fig. 30, in the last a few iter-
ations, the added values of both stiffness and damping parameters obviously decrease.
Thus, convergence of these parameters can be achieved.

5. Conclusion

This paper develops an interaction control framework for redundant manipulators
to provide compliance in the robot joint space, such that compliant physical interaction
is ensured without affecting the main task. To achieve this goal, we develop two sub-
controllers, i.e., a task space impedance controller, and a null space motion controller.
The impedance learning algorithm is employed to adjust the impedance parameters of
the task space controller without using a priori environment information, and desired
interaction performance is achieved with a lower level of interactive contact force.
Moreover, an adaptive disturbance observer is employed to compensate for the external
disturbance to improve the tracking accuracy. The experimental results on a 7 DOF
Sawyer robot show that the learning framework is able to adjust the target impedance
model according to the environmental force while the task execution performance is
enhanced when other interaction forces are applied on the robot body.
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Figure 28: The evolution of the interaction force
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Figure 29: The evolution of the stiffness parame-
ters
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Figure 30: The evolution of the damping parame-
ters
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Figure 31: The evolution of the reference trajec-
tory
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Figure 32: The evolution of the cost function θ
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[20] C. Ott, A. Dietrich, A. Albu-Schäffer, Prioritized multi-task compliance control
of redundant manipulators, Automatica 53 (2015) 416–423.

[21] F. Ficuciello, R. Carloni, L. C. Visser, S. Stramigioli, Port-hamiltonian modeling
for soft-finger manipulation, in: Intelligent Robots and Systems (IROS), 2010
IEEE/RSJ International Conference on, IEEE, 2010, pp. 4281–4286.

[22] C. Ott, Cartesian impedance control: The rigid body case, in: Cartesian
Impedance Control of Redundant and Flexible-Joint Robots, Springer, 2008, pp.
29–44.
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