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Abstract- In this paper, an admittance-based controller
for physical human-robot interaction (pHRI) is presented
for to perform coordinated operation in the constrained
task space. An admittance model and a soft saturation
function are employed to generate a differentiable ref-
erence trajectory to ensure that the end-effector motion
of the manipulator complies with human operation and
avoids collision with surroundings. Then an adaptive
neural network (NN) controller involving integral barrier
Lyapunov function (IBLF) is designed to deal with tracking
issues. Meanwhile, the controller can guarantee the end-
effector of the manipulator limited in the constrained task
space. A learning method based on radial basis function
neural network (RBFNN) is involved in controller design
to compensate for dynamics uncertainties and improve
tracking performance. IBLF method is provided to prevent
violations of the constrained task space. We prove that all
states of the closed-loop system are semi-globally uniformly
ultimately bounded (SGUUB) by utilizing Lyapunov sta-
bility principles. At last, the effectiveness of the proposed
algorithm is verified on a Baxter robot experiment plat-
form.

Note to Practitioners— This work is motivated by the
neglect of safety in existing controller design in pHRI,
which exists in industry and services, such as assembly,
medical care, etc. It is considerably required in controller
design for rigorously handling constraints. Therefore in
this paper, we propose a novel admittance-based human-
robot interaction controller. The developed controller
has the following functionalities: 1) Ensuring reference
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trajectory remaining in the constrained task space: a
differentiable reference trajectory is shaped by the desired
admittance model and a soft saturation function; 2) Solving
uncertainties of robotic dynamics: a learning approach
based on RBFNN is involved in controller design; 3)
Ensuring the end-effector of the manipulator remaining
in the constrained task space: different from other barrier
Lyapunov function (BLF), IBLF is proposed to constrain
system output directly rather than tracking error, which
may be more convenient for controller designers. The
controller can be potentially applied in many areas: 1)
it can be used in the rehabilitation robot to avoid injuring
the patient by limiting the motion; 2) it can ensure the end
effector of the industrial manipulator in a prescribed task
region. In some industrial tasks, dangerous or damageable
tools are mounted on the end-effector, and it will hurt
human and bring damage to the robot when the end-
effector is out of the prescribed task region; 3) it may bring
a new idea to design controller for avoiding collisions in
pPHRI when collisions occur in the prescribed trajectory

of end-effector.

Index Terms—Adaptive neural network control, physical
human-robot interaction (pHRI), admittance control, integral
barrier Lyapunov function (IBLF), motion constraint.

I. INTRODUCTION

In recent years, as robots transition from industrial appli-
cations to service areas, social robots become more and more
significant in our daily life [1]-[6]. In view of security of
pHRI, the significance of methods for interaction control is
increasing [7]-[10]. Control design in pHRI tasks is much
more complicated than that in non-interactive scenarios. Such
as rehabilitation robots, they should not only guide motion
of patient limb but also comply with forces exerted by patient
for compliance. Only the motion control method may not meet
requirements for complex tasks in pHRI.

Considering a classical pHRI scenario as in Fig. 1, human
and robot perform coordinated operation in the constrained
task space. Robot can be a rehabilitation robot or an industrial
manipulator, and human operates the end-effector of robot for
recovering in rehabilitation or performing some tasks collab-
oratively. The main difficulty in such tasks lies in controlling
manipulator complying with operator and constraining it in the
predefined task space simultaneously. In order to solve issues
of compliance in pHRI, various control methods have been
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Fig. 1: A typical human-robot interactive scenario in the
constrained task space.

proposed. In [11], hybrid position/force control is proposed
firstly to achieve compliant interaction by controlling terminal
position and contact force simultaneously. Then some studies
have made extensions to this control scheme for solving pHRI
problems [12]-[14]. In [15], impedance control is proposed
firstly by Hogan to express the relationships between contact
force and state in a prescribed impedance model. Compared
with hybrid force/position control, impedance control does not
require control transitions between contact and non-contact
situations and has the better performance in robustness. De-
pending on the causality of the controller, there are two ways
to implement impedance control, which are often referred as
impedance control and admittance control in literature [16]. In
recent years, impedance control and admittance control have
become two of the most efficient control methods in pHRI
[17]-[19]. In [20], an adaptive admittance control is proposed
to enable human interacting with robot whose behavior likes a
prescribed admittance model under control design. In [21], an
adaptive admittance control method without external sensors
is proposed to enable pHRI for manipulators in the industrial
environment. In [22], a learning impedance controller is pro-
posed to control robotic system following a given impedance
model and achieve interactive control objective for pHRI. In
[23], a unified torque-impedance controller is proposed for
the pneumatically actuated antagonistic manipulator joint. The
controller has good performance for both operations of trajec-
tory tracking and torque control and can handle the contact loss
fast and accurately in pHRI. In [24], a hybrid passivity-based
cartesian force/impedance controller is proposed for robots to
realize the accurate force tracking, handle unexpected contact
loss and avoid chattering behavior. Although admittance con-
trol can improve the performance in pHRI, such method does
not guarantee operational security since admittance control
can only regulate interactive force without constraining the
position of manipulators. Emphatically, a major obstacle in
the field of application is that position constraints are not
considered in the above design. Therefore, position constraints
should be considered in the control design to ensure security
during pHRI, .

Due to actual physical device limitations [25]-[28], system

performance and safety requirements [29]-[32], output or
states in most systems should be constrained in practice [33]-
[37]. Therefore, it is considerably significant to maintain sys-
tem’s outputs in desired constraints [38]-[41]. For a nonlinear
system of manipulators, output constraints can be regarded
as position constraints. In recent years, BLF is proposed for
solving output constrained issues in complex systems [42]. In
[43], an asymmetric time-varying BLF is employed in strict
feedback nonlinear systems to ensure the time-varying output
constraints. In [44], an adaptive control scheme is developed
for nonlinear stochastic systems with unknown parameters. All
the states of the systems are required to be constrained in
bounded compact sets with log-type BLF. In [45], the output
constraint problem of uncertain nonstrict-feedback systems is
handled by utilizing a BLF. In [46], fan-type BLF is used
to maintain output in constraints under systematic control
design for strict-feedback nonlinear systems. In [47], tan-type
BLF is incorporated with a novel fault-tolerant leader-follower
formation control scheme to ensure the angle constraints.
Compared with the conventional log-type BLF and fan-type
BLF, controllers with a novel IBLF can constrain state signals
directly, rather than error signals [48]. From the engineering
point of view, the initial states of robots can be relaxed to
the whole constrained space. Therefore, in this paper, IBLF is
used to guarantee the end-effector of the manipulator in the
constrained task space.

The uncertainty of manipulator dynamics cannot be ignored
in robot controller design [49]-[51]. To solve uncertainty
issues, NNs are widely used to estimate unknown parame-
ters of system in literature [52]-[55]. In [56], adaptive NNs
are used to approximate uncertainties in rehabilitation robot
dynamics and adapt the interactions between robot and pa-
tient. In [57], an adaptive NN control is used to research
the multirate networked industrial process control problem
in double-layer architectures. In [58], a fuzzy NN learning
algorithm is proposed to identify the uncertain plant model
and the tracking performance of the controller is guaranteed.
Compared with other NN control methods [59], RBFNN
performs better in approximating unknown model of a non-
linear function because it is a local approximation network
with simple structure and fast convergence speed.

Based on above discussion, in this paper, an IBLF and a
soft saturation function are jointly designed to guarantee the
manipulator end-effector within the constrained task space in
two lines: controller design and path planning. An admittance-
based controller for pHRI, involving in IBLF and RBFNN
learning method, is designed for solving uncertainties in
dynamics. Meanwhile, the controller can guarantee the end-
effector of the manipulator in the constrained task space
and improve the compliance of interaction. Compared with
existing works, the main contributions of this paper include:

1) Compared with traditional admittance control [60], a

soft saturation function is employed to further shape the
tracking reference trajectory which generates from the
desired admittance model, and the reference trajectory
will be ensured in the constrained task space;

2) A learning method based on RBFNN is proposed to

approximate uncertainties in manipulator dynamics, and



an adaptive NN admittance controller is designed to
track the reference trajectory precisely;

3) Compared with common BLF, such as log-type BLF
and tan-type BLF [43]-[47], IBLF is used to constrain
output signals directly, rather than error signals. From
the engineering point of view, setting proper position
constrained boundary is more effective and convenient
in a pHRI scenario. When we use other BLF methods
considering constraining position error, unknown time-
varying human reference trajectory may generate a time-
varying constrained boundary, which may be out of
our desired constrained task region. Therefore, setting
prescribed position constrained boundary is required in
pHRI applications to guarantee the manipulator perform-
ing coordinated operation within the constrained task
space.

The rest of this paper is organized as follows: In Section
II, system dynamic model and preliminaries are demonstrated.
In Section III, constrained space and reference trajectory are
shaped and an adaptive NN admittance controller is designed.
In Section IV, experiments are designed to verify the effec-
tiveness of the proposed method. In Section V, we summarize
research results.

II. PRELIMINARLIES AND PROBLEM FORMULATION
A. Problem Formulation

A typical pHRI in the constrained task space is shown in
Fig. 1. The motion of manipulator needs to comply with hu-
man motion, and excessive interaction force brings uncomfort-
able feelings to human. Meanwhile operational safety should
be ensured to avoid unexpected collisions with surroundings
out of the constrained region. Our control objective is to design
a controller for the manipulator which can track the shaped
virtual trajectory and can simultaneously guarantee that: (1)
the end-effector of the manipulator remains in the constrained
task space strictly; (2) all error signals are SGUUB which
is defined in [56]; (3) desired admittance relationship of the
manipulator can be achieved under our proposed controller.

B. Dynamics Modelling of Manipulator System

The dynamics of an m-link manipulator system in the joint
space can be described as [56]:

M(q)qg+C(q,4)q +g(q) =T — T (1)

where M(q) € R™>*™ denotes the inertia matrix; C(q,q)q €
R™ is the Coriolis and Centripetal torque; g(gq) € R™
denotes the gravitational torque; ¢,4,4 € R™ denote the
joint position, velocity and acceleration vector, respectively;
T. € R™ denotes the interactive torque from human or contact
environment, and 7 € R™ denotes the control input to the
manipulator system.

The forward kinematic function ®(¢) can map joint an-
gle g to end-effector position x of the manipulator system.
Therefore, x = ®(g) can represent the forward kinematics of
the manipulator. Differentiating the forward kinematics with
respect to time, we can obtain X = J(g)q, where J(q) € R™"*™

denotes the Jacobian matrix in manipulator system. Based on
inverse kinematics, ¢, and ¢ can be calculated as follows:

g=J"(g)x
i=J (@)% +T"(g)% ®)

where x = [z1,72,...,7,]T is the position vector of end-
effector for manipulators in the task space and n is the
dimension of the end-effector coordinates. We consider the
manipulators with known forward kinematic function ®(q)
and Jacobian matrix J(g) € R™ ™ in this paper. J*(q)
denotes the pseudoinverse matrix of J(gq). x, x, ¥ € R™ are
position, velocity and acceleration vectors in the task space,
respectively.

Substituting (2) into (1), we can obtain the dynamics of an
n-dimension manipulator system in the task space:

M.(q)i +C.(q,9)x +g.(q) =f —f. 3)

where M,(q) € R"*",C,(¢q,q) € R™*™ and g,(q) € R”
denote the inertia matrix, Coriolis and Centripetal matrix and
gravity vector in the task space, respectively. f, € R™ denotes
external force, which is 0 when there is no contact between
end-effector of manipulator and human or environment, and
f € R” denotes the control input to the manipulator. These
matrices and vectors can be calculated as follows:

M. (q) =J"" (@M(q)J " (q)
C.(q,9) =J""(q)(C(g,q) —M(9)J " (9)J (9))J " (q)
2.(q) =J""(9)e(q)
f= J+T(q>f
foe=T" (@ 4)

Remark 1: In this paper, all the control tasks are designed
and achieved in the task space. It will be more convenient
to design the controller for pHRI in the task space directly.
Therefore, it is necessary to transform the dynamics of a
manipulator in the joint space into the dynamics in the task
space.

C. Radial Basis Function Neural Network

RBFNN is commonly utilized to estimate uncertainties in
model dynamics, which contains three layers, i.e., the input
layer, the hidden layer and the output layer. RBFNN belongs
to linear parameterized neural networks, which can be shown
as follows [61]:

Hy(Z) =W[Si(Z),i=1,2,..,v ()

where Z = [z1,29,...,2,] € RP denotes the input vectors
and p is the dimension of Z, v is the total number of
RBFNN, W; = [wy,ws, ..., w;]T € R! denotes weight vectors
in neural networks and [ is the number of RBFNN nodes,
Si(Z) = [51(Z),52(Z),...,5(Z)]T € R! denotes the basis
functions, and s;(Z),j = 1,2, ...,] denotes neuron activation
functions. RBFNN is a particular network which uses Gaussian
radial basis functions as the basis functions:
T
5(2) = expl — 0L 2 0d)) 5

Sj

1,2,...,1



where 0; = [0;1,02,...,0;,]T is the centers of the receptive
field and ¢; is Gaussian function’s widths. There exist optimal
weights W which yields:

Hi(Z) = WiTS,(Z) + ¢ (7)

where ¢; is the approximation errors. The ideal weight vectors
W7 is an artificial quantities for analytical purposes, which is
defined as the value of W; that minimizes |¢;|:

W; = arg mm{sup lei|} (8)
W.ER! zeq,

D. Useful Properties, Assumptions and Lemmas

Property 1: The inertia matrices M(q) and M (q) are sym-
metric positive definite [56].

Property 2: The matrix M, (q)
metric [56].

Assumption 1: For the desired trajectory vectors x; =
[Tdq,,Zdy,--- 2a,]T and constraints k., i = 1,2,...,n
there exist positive constants kq4,, ¢ = 1,2,...,n, such that
| 24, |< ka, < ke,, YVt >0.

Assumption 2: There exists a positive constant f, such that
[ fe lI< fe, VE >0 [56].

Lemma 1: [62] For any constants k.,, : = 1,2,...,n, Let
X ={x eR":|z(t) |< ke,, ©=1,2,...,n,t >0} CR"
and X := R! x y C R be open sets. Then, consider the
system as follows:

—2C,(q,q) is skew sym-

1= h(t,n) €))

where 7 := [w,z]T € X, and h : Ry x R — R*7 is piecewise
continuous in ¢t and locally Lipschitz in n uniformly in ¢,
on ]R+ x N. Let Xi = {Q?Z € R : | .’L’Z(t) |< kci, i, =
1,2,...,n,t > 0} C R. Suppose that there exist functions
U:R' Ry and V;:x; — Ry,i=1,2,...,n continuously
differentiable and positive definite in their respective domains,
such that

Vi =00 as |z;| — ke, (10)
T (lwl) < Uw) < 2(llwl) (11)
where v, and 2 are class K, functions. Let V(n) :=
S Vi(z;) + U(w), and z;(0) € x. If the inequality holds:
V= 87‘/ <
n
in the set x € x, where p and C are positive constants, then
x(t) € x Vt € [0, 00).

Lemma 2: For ensuring the output of system remaining in

the constrained task space, we introduce IBLF candidate as

—uV +C (12)

I )

where z; = x; — w;, and w; is a continuously differentiable
function satisfying |w;| < kc,,¢ = 1,2,...,n. It is known
that V' is a continuously positive differentiable functions over
the set {|z;| < k., }. As for |z;| < ke,,i = 1,2,...,n, there

Pz,

i W

is

2 K222
5 <V < W (14)
Proof: Define
(pkZ,)
i _— 15
A P )
we can get that

, . k2 — p? — 2
Opi(p; @) _ e P @i (16)

ap k2, — (p+ @i)?

which is positive in the set |p + w;| < k.,. Since p;(0, w;)
for |w;| < k., and p;(p,w;) is increasing with p in the set
|p + wi| < kc,, we can easily get that

/ pi(p, wi)dp < zipi(2i, @i) 17
0
for |z; + w;| < k.,. Therefore we can get
2 2
dp < 5 18
/ k2 — p—|—wz) p*k‘fi—a}f (18)
Then we define
F pk?. 22
Zi) = * d - =X
900~ [ =
“_plpt @)
= —————d 19
| w e "
And
09(z;) 272
9z k2 —ax? (20)

over the compact set {|z;| < ke, }, where k2 — 27 > 0. When

z; < 0, we have 8%(2 ) < 0. When z; > 0, we have 2222 ~ ¢
Since z; = 0, g(z;) = 0. Further, there is g(z;) > 0 over the
compact set {|z;| < k., }. Therefore we can get

zi pk? 22
—_— —dp> =
/0 R —(prw)r 72

Combining above analysis, Lemma 2 can be proved. [ ]

2L

III. CONTROL DESIGN
A. Constrained Space and Reference Trajectory Shaping

To ensure interaction safety, the end-effector of manipulator
system should remain within the constrained task space all
the time. We firstly shape the reference trajectory to ensure
the reference trajectory within the constrained task space
subjectively. In order to obtain the reference trajectory x,, we
firstly consider a desired admittance model in the task space
as follows:

Mgx 4+ Dgx + Ks% = f, (22)

where X = X,.—xg4, X,- is an intermediate variable vector, and x4
is the desired trajectory vector. M4, D4, K4 are desired inertia,
damper and stiffness matrices of the desired admittance model,
respectively. X, can be obtained when K4, D4, M, and x4 are
available and f, can be online measured. For simplicity, we



decompose the admittance model into each dimension in the
task space and Z,, can be obtained from the admittance model
equation

Ko @i+ Kq, it + K, % = fo, i=1,2,3  (23)

where K,,,, Kq4,, K, are positive constants to guarantee the
desired admittance relationship at the end-effector and z; =
Zr, —Tq,. For ensuring the reference trajectory remaining in the
constrained region, we obtain x,., by a soft saturation function
as follows:

if |z, | < nk,
Ty, =4 —0;(1 —el@r: +’7k D0 ke, if T, < —nke,
0;(1— e(”k =8 ) /0y Lok, A ., > ke,
(24

where ¢ = 1,2,3 and 6; = (1 — n)k.,, n (0 <K np < 1)isa
constant very close to 1 and selected to satisfy:

\xdi (t)‘ < kd,; < T]k'ci Vit >0 (25)

where kg4, and k., are defined in Assumption 1. It is
obvious that the soft saturation function ensures x,, be twice
differentiable and constrained in the task space. The soft
saturation function ensures the subjective mobile intention of
robotic manipulator x,, never goes beyond the constrained
boundary and the constraint is preliminarily implemented in
path planning. If x; tracks x,, precisely, the constraints are
never violated and admittance relationship can be achieved in
the constrained task space.

B. Control Design with Output Constraint

Because human motion intention is uncertain within the
constrained space during pHRI, only reference trajectory shap-
ing cannot ensure the end-effector of robotic manipulators
within the constrained space. Besides, unsatisfactory tracking
performance under controller will cause large overshoot, which
results in that the output of manipulator system is over
constraints. Therefore based on the reference trajectory shap-
ing via constructing soft saturation function, other effective
methods on constraining system output should be employed
in controller design. In our work, IBLF is developed to ensure
the output remaining in the predefined task space. To facilitate
analysis and explanation, we define x; = x,xo = x. The
dynamics of manipulator system (3) can be rewritten in state-
space form as follows:

X’l = X2

. 1 .

Xo=M,(q)" (f —f. —8,(q¢) — Culqg,9)x2)  (26)
We define error variables z; and zo as follows:

i1 =X1 — X,

22 =X — « (27)
where z1 = [21,,21,,--+,21,]| s 22 = [22,,225,--+522,]7,
and a = [a1,q9,...,a,]T denotes virtual control variable
vectors.

One of control objectives is to maintain system output x;

<

ke, = 1,2,3. To avoid violating constraints, we consider
IBLF candidate as follows:

Vi= —d 28
= Z / e L
The time derivative of V; ylelds
’ - 1; cl P 8Vvl .
Vi = k2 T +Z o (29)
i=1 "¢ Lrs
where
oV, k2
=1, (e = N) 30
axn o (ka - Z‘i G
ke, ke, . ri ) (ke, — T,
)\i: Ci ln( C’L+Zl’t+xl)( Ci xz) (31)
2211‘ (kQ 2 xTi)(kCi + xm)
Remark 2: In (31),
v . v — k2
lim kcz In (kcq, + 2n + xrq,)(kcm Irq,) — Ci
71,2022y, (kQ — R T xﬂ')(kci + ‘,I:""i) ka - LL’%
. Therefore, the singularity for this term will not happen.
We design the virtual control variable «; as follows:
o = —kiz, + ———5—— (32)

2
k2.

where k;,i = 1,2,...,n are positive constants. Substituting
(32) into (29), we can get

. kiz? k2 " 21,29, k2
Vl _ i c7 + i“2i"Vc; (33)
1=1 ]{;21 o 1z 1:21 k?‘z 756%7
Then we design V5 as follows:
L r
Vo=V + S M. (9)z2 (34
the derivative with time of V5 is
. 1 7
V2 V1 +ZQ (q)ZQ + ingr (q)z2
ki zl k2 zlizgikgi
- ) k2 — a2
i=1 =1 ¢ Li
+z(f—f. - ( ) — Cu(q,q)x2
) 1
— M. (q)&) + 525 Mo (q)2 (35)
and design the control input f = f,,, as follows:
lekfl
k2 72%
2,’12 kc2
—x2
f’m = kzz 12 7K2Z2 +fe+gac(q)
z1 k2
',
+Ca(g,9)a + My (g)cx (36)

where the positive gain matrix Ko > 0. The model-based
controller can ensure that z; and z» will converge to zero and
x; can remain in the predefined constrained space. The proof
of stability is shown in Appendix I. From the engineering point
of view, model-based control input (36) cannot be designed in



practical applications [56]. To address the uncertainty issue in
the dynamic model, RBFNN is utilized to approximate un-
certainties of manipulators. RBFNN can improve the tracking
precision when the manipulator system tracks x,.. An adaptive
NN control input is proposed as follows:

2
lek"’l

5.2
kCI T3,

2
2121602

2 _ 2
k2, —=1,

Koz +f, +W'SZ)  (37)

2
Zlnkcn

2 _ 2
kcn Tin

where W is the estimated weight of RBENN, S(Z) denotes
the basis function and Z = [¢7,4",a”,a”]" is the input
variable. The adaptive updating laws are designed as follows:

Wi =~ (8i(2)2, + W) (38)

where I';,4 = 1,2,...,n are positive definite symmetric

matrices and (; are small positive constants. Ww's (Z) is used
to estimate W*7'S(Z) which is defined as follows:

W7TS(2) =g,(q) + Co(g. @) + Mo(g)cc —€  (39)

where € is approximation error and W* is the optimal weight
of RBFNN. The W = W — W* denotes the error of weight.
The adaptive NN controller with the adaptation law can ensure
that 21, , z2 and V~V¢ are SGUUB [56] and x;, can remain in
the constrained task space. The analysis of stability is carried
out by a new BLF candidate V3 = Vo + 3 > W, T 'W,.
The proof of stability is shown in Appendix II.

Theorem 1: For the manipulator system, given the initial
conditions are bounded, the proposed controller (37) with
adaptive law (38) ensures that z;, , z2 and V~Vi are SGUUB
[56] and z;, can remain in the constrained task space. The
closed-loop error signals will remain within the compact sets
.,, Q., and Q;, respectively and defined by

0, = {z €R" | s | < VHi=1,2,0}  (40)
H
Q., = R™ < f—1 41
=Hee® el < \s—aray) @
- - H
I IXn < .
O = {W e R | W] < Am<r_1)} (42)

where H = 2(V3(0) + Cs/us). Cs and pg are given in (51).
The proof of convergence is shown in Appendix III.

Remark 3: The proposed control architecture is shown in
Fig. 2. Under our proposed controller, the control objective
is achieved that the manipulator can track the shaped virtual
trajectory precisely in the task space via neural network learn-
ing approach, and all error signals are SGUUB, which means
that the desired admittance relationship of a manipulator can
be achieved. On the other hand, the controller simultaneously
guarantees that the end-effector of manipulator system remains
in the constrained task space strictly by virtual trajectory
shaping and IBLF method.
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Fig. 2: Control architecture.
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Fig. 3: Experimental platform: it is composed of Baxter robot,
Kinect camera, a master computer, a slave computer, etc.

IV. EXPERIMENTS

In this paper, Baxter robot is employed to verify our
proposed control algorithm. The robotic manipulator has 7
flexible joints with advanced sensors, including position, ve-
locity, torque sensors. Joint sensor resolution is 14 bits with
360 degrees (0.022 degrees per tick resolution). Every joint can
be driven by a torque controller. The designed experimental
platform shown as Fig. 3 is composed of a Baxter robot, a
Kinect camera, a master computer, a slave computer, etc.

Two computers are used in the experimental system. The
master computer is employed to receive datas from Baxter
robot, run main programs and send control command to robot.
The slave computer receives datas from the master computer,
calculates NN compensation and transfers calculation results
to master computer by user datagram protocol (UDP).

Experiment is desired to verify that the manipulator can
interact with human operator when the manipulator is operated
within the constrained space obediently. In addition, the end-
effector of manipulator can remain in the constrained space to
ensure safety. In this experiment, we only use the right arm
of the Baxter robot and operate the robotic manipulator in the
task space.

A. The Design and Setting of Experiment

In control design part, we design an adaptive NN admit-
tance controller with output constraint and have analysed
the stability of the system with the proposed controller by
Lyapunov method. We transform force control input f into
torque input 7 in the joint torque controller as T = J” (q)f
according to (4), J© (q) can be obtained from ROS packages.
In this part, we apply the designed torque controller on
Baxter robot to verify the proposed algorithm in experi-
ment. Initially, the end-effector stays in the initial position



Desired trajectory

Fig. 4: Schematic diagram of tracking test.

x(0) = [-0.13(m),—0.4(m),0.74(m)]. Control parameters
are chosen as ky = 17.7,ky = 15,k3 = 22 and Ky =
diag[5.1,12,4.5]. After our repeated verification, the number
of RBFNN nodes is chosen as Node = 729. In this num-
ber settings, we can obtain great estimated results and the
computing time is within acceptable range. The centers of
RBFNN nodes are evenly designed between the upper and
lower bounds of the motion range and speed limits separately
in joint space and task space, in [—1.7,1.7] x [-2.1,1.0] x
[-3.1,3.1]x[0.0,2.6] x[-3.1,3.1] x[-1.6,2.1] x[-3.1, 3.1] X
[-0.5,0.5] x [-1,0] x [0.5,1.5] and [—2.0,2.0] x [—2.0, 2.0] x
[-2.0,2.0] x [-2.0,2.0] x [—4.0,4.0] x [-4.0,4.0] X
[—4.0,4.0] x[—0.5,0.5] x[—0.5,0.5] x[—0.5, 0.5]. The settings
of centers can ensure the RBFNN traversing the whole joint
space, task space and operating speed space which generates
good estimated results. All initial values of RBFNN weights
are set as 0. Parameters of adaptive law are I'; = 100Ino4e
and ¢; = 0.002. The desired trajectory in the task space is
described by

x4, (t) = (0.15sin(507/t) — 0.1)(m)
xq,(t) = (0.2 cos(50m/t) — 0.6)(m)
xq.(t) = (0.2sin(507/t) 4+ 0.75)(m) 43)

Then, reference trajectory x,- can be obtained by the predefined
admittance model and the soft saturation function. Parameters

of admittance model are designed as k,,, = 1, kg, = 10
and ki, = 30,2 = 1,2,3. Parameter of soft saturation
function is chosen as n = 0.97 and it is obvious that

ka, = max{|zq, (t)}.

Remark 4: In experiments, the maximum external forces
are 16.5N, 24N and 28.5N separately in X-axis, Y-axis
and Z-axis. External forces can not exceed thresholds under
normal operation. The disturbance force will not influence the
experimental performance by setting stiffness parameters of
admittance model as 30 N/m.

B. Case 1. Tracking test.

In this part, we only consider the end-effector of Baxter
robot tracking the reference trajectory without interaction as
shown in Fig. 4. The tracking performances in X-axis, Y-axis
and Z-axis are shown in Fig. 5(a), Fig. 5(c) and Fig. 5(e),
where the green, red and black lines represent the actual,
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Fig. 6: Schematic diagram of human-robot interaction within
the constrained space.

reference and desired trajectories, respectively. The tracking
error results are shown in Fig. 5(b), Fig. 5(d) and Fig. 5(f)
correspondingly. The position tracking performance in the task
space is shown as Fig. 5(i). It is obvious that the manipulator
under the our proposed controller shows a good tracking
performance in real time. The reference trajectory x,. in every
axis is the same as the desired trajectory x4 without interaction.
Control force are shown in Fig. 5(g). External forces caused by
small disturbances are near zero which can be ignored shown
as Fig. 5(h). It shows that neural learning approach can solve
uncertainties in dynamics of manipulator system, whose results
are in a good tracking performance.

C. Case 2. Human-robot interaction test within the con-
strained space.

In this part, the robotic manipulator interacts with a human
operator to perform tasks collaboratively. The control objec-
tive is to make the robotic manipulator comply with human
operator and within the predefined constrained space as shown
in Fig. 6. Constraints are set as k., = 0.3(m), k., = 1(m)
and k., = 1.2(m) in each dimension, respectively. The human
operates the manipulator towards constrained boundaries in X-
axis, Y-axis and Z-axis orderly. The tracking performances
in X-axis, Y-axis and Z-axis are shown in Fig. 7(a), Fig.
7(c) and Fig. 7(e) where the green, red, black and blue
lines represent the actual, reference, desired trajectories and
constraint, respectively. The tracking errors in three axes
converge to zero indicated from Fig. 7(b), Fig. 7(d) and
Fig. 7(f), correspondingly. The position tracking performance
in the task space is shown in Fig. 7(i). It is obvious that
the reference trajectory x, varies with the external force.
According to the admittance model and the soft saturation
function, the reference trajectory is obtained to comply with
the mobile intention of human and maintain the end-effector
within constrained boundary. Above results demonstrate that
our proposed controller ensures the end-effector tracking the
reference trajectory in real time within the constrained space.
As shown in Fig. 7(g), control forces in three axes are in
proper values whether there is interaction or not during the
task. As shown in Fig. 7(h), interaction forces in three axes
are in proper values which will not bring uncomfortable
feelings to human operators. On the basis of results, we can
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In this part, Kinect camera and quick response (QR) code
are utilized to get the obstacle location and we transfer the
obtained data to the master computer. The obstacle location at
Kinect coordinate system can be transformed to the coordinate
at Baxter coordinate system through a transformation matrix.
We place the Kinect on the head of the Baxter robot and
paste a QR code on the edge of the obstacle so that the ! ‘ ‘ ‘ !
Kinect camera can obtain the position information of the T s - R I s
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obstacle which is in front of Baxter robot, shown in Fig. 8.
For simplicity, we only avoid collisions in X-axis and do not
consider the constraint in Y-axis and Z-axis in this experiment.
Using our proposed method, we get the constrained boundary
in X-axis k., = 0.35m in advance by the Kinect camera
and common filtering algorithm. In other words, our control
objective in this experimantal part is that the end-effector of
Baxter robot cannot beyond the constrained boundary in X-
axis to avoid collisions with obstacle. As shown in Fig. 9,
human operator interacts with the end-effector of Baxter robot
and move it towards the obstacle. The experiment results are
shown in Fig. 10. We can see that the end-effector cannot be
operated beyond the constrained boundary under our proposed
controller. Larger interaction force cannot drive the robot
colliding with the obstacle either. The tracking performances
of X-axis, Y-axis and Z-axis are shown in Fig. 11(a), Fig.
11(c) and Fig. 11(e) where the green, red, black and blue
lines represent the actual, reference, desired trajectories and
constrained boundary, respectively. The tracking error results
are shown in Fig. 11(b), Fig. 11(d) and Fig. 11(f) correspond-
ingly. It is similar to Case 2 that the reference trajectory varies
with the external force in X-axis. According to the admittance
model and the soft saturation function, the reference trajectory
is obtained to comply with the mobile intention of human and
keep the end-effector within the constrained boundary. It is
obvious that the end-effector of Baxter robot is constrained
within the constrained boundary to avoid collisions with the
obstacle. In this experiment, because of no interaction in Y-
axis and Z-axis, the reference trajectories x,- on these axes are
the same as the desired trajectory x4. The position trajectory
performance in the task space is shown in Fig. 11(i), where
the blue plane respects the obstacle. As shown in Fig. 11(g),
control forces in three axes are in proper values whether there
is interaction or not during the task. The interaction force
is shown as Fig. 11(h) which will not bring uncomfortable
feelings to human operators. On the basis of results, we can
give a summary that the proposed method can ensure operated
safety during the process of pHRI, and the end-effector of the
robotic manipulator can avoid the obstacle successfully in the
task space rely on the additional visual sensory information.

E. Conclusion of Experiments

On the basis of above analysis and compared experimental
results, we can conclude that the proposed control algorithm
can ensure the end-effector of the manipulator complying
with operators and ensure operation safety. It has great per-
formances of tracking and complying when the manipulator
is operated within the constrained task space. We can draw
the conclusion that the end-effector of Baxter robot does not
exceed the constrained space, and collisions can be avoided
relying on visual feedback under our proposed controller
design. The achieved admittance relationship makes the end-
effector of Baxter robot reflect compliance in pHRI.

V. CONCLUSION

In this paper, a shaping reference trajectory by a soft
saturation function has been designed in path planning. An

admittance-based controller involving IBLF has been applied
in pHRI and RBFNN learning method has been proposed to
approximate dynamics uncertainties. Our proposed controller
has guaranteed the end-effector of the manipulator in the
constrained task space and improved the compliance of in-
teraction. The effectiveness has been verified on Baxter robot
experiment platform in three cases. In our future work, we will
further research on the redundancy problem of manipulator
and focus on time-varying constrained BLF methods. We will
also try to propose an advanced controller for pHRI to avoid
collisions in a dynamical scenario where the obstacle position
is time-varying.
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APPENDIX I
Proof: Substituting (32) and (36) into (35), we can get
. k22 k2
Vo=—) S5 — Liei 2 TKyzo (44)
—a?
i=1 Ci Li
Considering Lemma 2, we can get:
<3 [ K
Z 4
(» + 20 )? P — 2y RoZa
< *#2V2 (45)
where p5 is a constant defined as
. . 2)\min(K2)
o = min ( - min (&), 7> (46)
i=1,2,...,n Amax(Mz(q))

To ensure gy > 0, control parameters k; and positive gain
matrix Ko should be satisfied

min(k’i) > 0, /\min(KQ) >0,i=1,2,...,n

It is obvious that V5 will converge to zero. Hence z; and zo
will converge to zero and x; can remain in the predefined
constrained space according to the Lemma 1.

|

APPENDIX II

Proof: To prove the stability of close-loop system, we
construct a new IBLF candidate V3 as follows:

I~ T
%:%+§;Wiri Wi (47)
where W = W — W* denotes errors of weights, then differen-
tiating V3 yields:

. k2?2 k2 "2y, 29. k2
V — i Ci K i Cj T _
3 v ka — mi P ka — xi +ZZ (f fe
—8.(q9) — C.(q,9)x — M (q)x)

+S W T W (48)

i=1



Substituting (37) into Vg, we obtain

kzlk

Vs= - K2 — o p——— *12K222+22(W 5(2)

-9-2

i=1

R/ Z)za, + W) (49)

Since inequality relation:

1 1, _
23" € < §Z2TZ2 + 5”6”2
& T Pi * 52
—piWi Wi < SH(IW I = Wil
where ||€]| < ||€||, € is the upper limit of error. We further
have
pk; k: 1
—————d K, — -I)z
Z/ ot % (K = gD
4;01 * 12
*Z LW’ Z*HW I” *||€||
< —/A3V3 + (3 (50)
where
. . 2(>‘min(K2 - %1))
Mg:mln(lmln ki), ;
7,:1,2,...,71( ) )\max(MI(q))
min (Ll))
i=1,2,...,n Amax(]-‘z_ )
- SO’L * (12 ]- —12
- N L, - 51
G =32 FIWe + 5l &)

To ensure p3 > 0, gain parameters k;, positive gain matrix Ko
and ¢; should be chosen to satisfy:

1
min(k;) > 0, Amin (K2 — 51) > 0,min(p;) >0,i=1,2,...,n

|
APPENDIX III
Proof: Multiplying (50) by e#3? yields
Vaehst < —pgVaelst 4 Cyetst (52)
- (Vae®") < Caet! (53)
Integrating the above inequality, we obtain
C- C
Vaehst — V3(0) < —2epst — 22 (54)
H3 H3
C:- C C-
Vs < (13(0) — —2)e et + =2 <V(0)+— (59
H3 M3 H3
Therefore, we have
C
P<V(0)+ = (56)
2%

Hence, z;, converges to the compact set {2,,. Bounds for z,
and W, can be proven similarly. ]
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