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In a robot-assisted surgery, a skillful surgeon can perform the operation excellently through flexible
wrist motions and rich experience. However, there are little researches about the relationship between
the wrist motion and electromyography (EMG) signal of surgeon. To this end, we introduce a clas-
sification framework of wrist motion to recognize the common wrist motion of the surgeon based on
EMG signals. Generally, surface EMG (sEMG) signal has been widely used in prosthetic hand control
and medical clinical application. Hence, in this paper, we utilize sSEMG signals to evaluate the wrist
motions. Eight channels of SEMG signals are captured through a MYO armband from the forearm of
the subject. Different kinds of features based on EMG signal, root-mean-square, waveform length, and
autoregressive are used to recognize wrist motion through linear discriminant analysis method. We
test the impacts on recognition performance from the different SEMG features and different sampling
moving windows length. Experimental results have verified the recognition performance of the pre-
sented approach. It is validated that the RMS feature can achieve best recognition performance with
all different sampling moving windows length in comparison with the WL feature and AR feature.
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1. Introduction

As the development of control, information science and mechanism etc., robots provide more
and more advantages in our life [1][2]. Especially, medical robots are widely utilized to the clinic
operation, and rehabilitation [3][4]. In recent researches, electromyogram (EMG) signals are
introduced to show the human’s motor characteristics in the application of robots. In general,
EMG signal implies the summation of motor unit action potentials from the human’s muscle fiber
[5][6]. Different muscles can generate various EMG signal for indicating the different motions.
EMG signal has been widely utilized as the indicator of muscle activation [7], in EMG-based
shared control for human-machine interaction [8][9], muscle signals powered wearable walking
robots [10], and motion pattern recognition of human hand [11]. In this paper, we aim to recognize
the wrist motion by using EMG signals and explore the impact on recognition performance by
using different EMG-based features.
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With the developments of sensor technology, computer science and human-machine interface,
the EMG-related technologies are greatly enhanced, especially, surface electromyogram (SEMG)
signals are contributed to the applications in various areas, such as motion patterns recognition,
clinic application in medicine [12], and EMG-based human-machine interaction [13][14]. In a
word, EMG-based techniques have great potential deserving research in our lives. However, the
traditional capture technologies of EMG signals need to implant the EMG sensors into the skin.
It has some limitations in practice. Compared with traditional capture technologies of EMG
signals, the capture of SEMG signals just need some electrode sensors are attached to the skin
without implantation under the skin. It is a very convenient way to collect sSEMG signals. Since
the EMG signals can be captured and decoded the patterns of muscle activation feasibly, it
has led to increasing research upsurge in the world [15][16][17]. For a skillful surgeon, they can
perform excellently the complex operation through their wrist motion and rich experience. Due
to surgeons always keep a gesture of fingers close together when they hold the instruments, the
movements of hand mainly depend on the motion of wrist. In this process, we take common
wrist motion of surgeon into consideration and explore the relationship of these motions and
EMG signals.

For motion recognition, it is crucial to select correct feature(s). Many significant achievements
have been demonstrated that proper EMG-based feature can enhance the recognition perfor-
mance of motion [18][19][20]. Generally, time-domain features and frequency-domain features are
widely used in EMG-based motion classification. In [21], mean absolute values (MAV) method
were used to extract the feature information for the purpose of evaluation of muscle synergies. In
time-dmain method, variable features of EMG signals could improve the accuracy of recognition
for multiple finger motions [22]. In addition, multiple feature based on time-domain can make
a difference in the aspects of enhancing the performance of classification. In [23], the authors
utilized five different time-domain features to recognize the motion patterns and obtained a sat-
isfactory experimental results. Bhattacharya et al. developed a effective multi-feature selection
algorithm to detect the motion patterns and to control limb prosthses [24]. Additionally, the re-
searchers are very interested in selection of different kinds of EMG signals’ feature. Moreover, in
[25], in order to improve the recognition accuracy of lower limb motion, a top and slope method
was used to characterize the SEMG signal’s feature. It is concluded that EMG-based character-
istics, such as time-domain features, can be used as the feature to indicate the characteristics of
EMG signals and can be utilized in the human-machine application as an indicator.

After obtaining the proper features of EMG signal, the key work is how to recognize the
motion patterns by using these features. For the purpose of enhancing the classification accuracy
of the motion, more and more researchers have proposed many feasible approaches in recent
decades [26][27]. In [28], the authors proposed an integration method of Bayesian and neural
networks (NN) to classify the motions for human-robot interfaces. The authors developed an
optimized NN method to evaluate motion pattern by using EMG signals [29]. As the development
of fuzzy theory, some achievements of fuzzy logic were developed to deal with the problems
of motion patterns classification [30]. Since the difference of human subjects’ characteristics,
some researchers try to recognize the motion from the aspects of independent of subjects. In
[31], a decoding model method wasused to decode the patterns information of wrist and hand
motions. Recently, deep-learning techniques have promoted the development of machine learning
applications, and EMG-based area is no exception. For example, the deep learning approach was
utilized to classify the sleep stage [32]. In [33], a novel convolutional neural network (CNN) was
proposed to decode the wrist movements based on the characteristics of raw EMG signals. Indeed,
these methods are used to recognize the motion patterns successfully. However, those significant
achievements are still hard to be utilized in real applications. In this work, we explore to find
a simple framework to for recognizing the motion patterns in order to improve the analysis
efficiency. Based on the inspiration of above-mentioned feature selection and motion recognition
approaches [34][35], we develop a framework to explore the relationship between wrist motion
patterns and EMG signals for surgeon.



Specially, the main contribution can be concluded as below.

e A recognition framework of wrist motion for surgeon is developed to integrate linear dis-
criminant analysis (LDA) method with three different EMG-based features.

e An analysis of influence of different SEMG signals’ feature and different sampling mov-
ing window length for recognizing the motions of surgeon. The proposed framework can
effectively recognized the wrist motion patterns by a simple classifier.

The rest paper’s structure is organized as following. Section 2 presents the presented ap-
proach in terms of data preprocessing, feature selection, and classification. Section 3 validates
the developed approach and details the results in terms of the influence of different feature and
sampling moving window length for the motion recognition. Section 4 concludes the conclusion
and provides an outlook of the future of motion recognition.

2. Proposed Method

In this paper, four different kinds of typical wrist motions for surgeon are considered. This
work aims to explore the relationship of wrist motion patterns and EMG signals. As shown in
Fig. 1, it shows the proposed framework of the wrist motions recognition for surgeon. Specially,
it mainly includes signals preprocessing module and motion recognition module. As shown in
the figure, it should be preprocessed the captured raw sEMG signals at first, then we extract the
sEMG signals feature to classify the wrist motion. Through this framework, we can recognize
the specific motion pattern of surgeon.
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Figure 1. The wrist motion framework.

2.1 Data Preprocessing and feature selection

As shown in Fig. 2, it is seen that a human subject wears MYO armband on subject’s forearm
to capture sEMG signals with 200 Herz. The MYO armband has eight detection channels.
Correspondingly, we can obtain 8-channel sSEMG signals. In this paper, four common wrist
motions of surgeon are considered, therefore we define the different wrist motion M as below:

M1 wrist flexion.
M- M?2 WI“%S’E extension. (1)
M3 wrist to the left.

M4 wrist to the right.
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Figure 2. Four kinds of wrist motions.

We utilize root mean square (RMS) feature [36][37], waveform length (WL) feature [38][23]
and autoregressive model (AR) feature [39][40] as the feature of sSEMG signals. Representations
of RMS, WL, and AR can be represented as below.

where L,.,,s denotes the sampling moving window’s length of RMS feature. x; is the captured
raw sEMG signals. RM S(j, k) is the feature value in j-th channel for the k-th sample.

WL(j, k) = Z Az;. (3)

where Ax; = x; — x;_1. Ly denotes the sampling moving window’s length of WL feature.
W L(j, k) represents the feature value of WL in j-th channel for the k-th sample.
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where 7, is order of AR coefficients. a; is the coefficients. 5 denotes the residual white noise.
We define L, is the sampling moving window’s length of AR feature for the k-th sample.
Based on Egs. (2)-(4), the feature of SEMG signals can be defined as

RMS = [RMS1, RMS2, ..., RMSj, ..., RMSS] (5)
WL = [WL1, WL2, ..., WLj, ..., WLS] (6)
AR = [AR1, AR2, ..., ARj, ..., ARS] (7)

where RMS demote the RMS feature of sEMG signals. j = 1, 2,..., 8 represent the sEMG
signals’ capture channel. WL demote the WL feature of sEMG signals. AR demote the RMS
feature of SEMG signals.



As shown in Fig. 3, it can be seen that there are eight channels sEMG signals and their
corresponding feature. Fig. 3 (a) indicates the characteristic of raw sEMG signals. Figs. 3 (b)-
(d) are the AR, WL, and RMS feature of SEMG signals, respectively.
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Figure 3. SEMG signals preprocessing.

Therefore, the input of the proposed framework can be defined as

I=[F;,M]" (8)

where F; = [RMS WL AR]. M = [M1 M2 M3 M4].

2.2 Classification

In this classification section, LDA method is introduced to recognize the wrist motion with relat-
ed to RMS feature, WL feature, and AR feature. As above mentioned, M; = [M1, M2, M3, M4]
is the wrist motion’s recognition results. F; = [RMS, WL, AR] denote the sEMG signals’ fea-
ture.

Inspired by [41][42], posterior probability p(M;|F') is presented as below:

p(M;)p(Fr|M;) ()

PORIED =7 )

where p(F7) denotes the prior probability of F7. When we get the maximum of posterior prob-
ability p(M;|F)maz, the recognized wrist motion M;|,—p(ar,|F),... 15 determined.

max

p(Fr|M;) denotes the contingent probability. We assume that contingent probability p(Fr|M;)
obey the multivariate probability distribution. And one has
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Table 1. The experimental parameters.

Experiment Experiment 1 Experiment 2
Size of training set 20000*8 20000*8

Size of testing set 500*8 400*8

Types of feature Fy RMS, WL, AR RMS, WL, AR
order of AR coefficients g 4 4

Size of moving window L 20, 50, 100, 500 20, 40, 50, 80, 100, 200

where r is the number of feature for sSEMG signals. fi; denotes the mean vector with related to
M;. C,, represents the covariance matrix of wrist motions My, My, Ms, M.
Take the logarithm of both sides on Eq. (10), the maximum of posterior probability p(K;|F')maz

can be determined. By using the linear discriminant function (LDF) (k) which is introduced as

O(k) = F fig + ¢ (11)

. 1A s Lo
where fi, = Crliig. Cqg = —gquml,uk
At last, the recognition results of wrist motion can be obtained after maximizing the LDF

(k).

3. Experiments and results

In order to verify the performance of the presented approach, four comparative experiments are
performed. The experimental configuration is presented as below:

e Hardware configuration. MYO armband with 8 sensors (200 Hz) is used to capture the
raw sEMG signals. A working station configurates a i7-3770T CPU with 2.50GHz, 12 GB
internal storage for the experiments.

o Software environment. MATLAB and Visual Studio 2013 are operated on Windows 7 op-
eration system. MATLAB is used to analyse the experimental data. Visual Studio 2013 is
utilized to capture sEMG signal through bluetooth communication with the MYO arm-
band.

There are two healthy subjects with age 22-30 years old are taken part in the experiments.
The subjects are requested to do the motions with maximal angle in a sequence of M1, M2, M3,
and M4. It is noted that the position of MYO for the 2 subjects is same. They are asked to
finish every wrist motion two times within two minutes. The subjects are informed of the details
of the experiment in advance. In the process of experiments, they are requested to take a break
with thirty minutes. Three features RM S, WL, AR are tested to estimate the recognition per-
formance for each motion. Furthermore, we discuss the influence of different length of sampling
moving window. The experimental parameters are presented in Table 1.

For validating the effectiveness of the presented approach, accuracy (ACC) is introduced in
this paper, it can presented as

Sumeorrect

ACC = (12)

Sumtotal

where Sumcorrect 1S the number of correct recognized wrist motion. Sumyy denotes the total
number of sampling data.



Table 2. Classification results of wrist motions
with RMS feature, WL feature, and AR feature
with moving window length L = 100 in experi-

ment 1.

Gesture/Feature =~ RMS WL AR
M1 0.8244 0.7843  0.4102
M2 0.8091 0.7435 0.3838
M3 0.7551  0.7219  0.4080
M4 0.7829  0.7194  0.3502

Table 3. Classification results of wrist motions
with RMS feature, WL feature, and AR feature
with moving window length L = 50 in experi-
ment 2.

Gesture/Feature RMS WL AR

M1 0.8325  0.7550  0.4010
M2 0.7944  0.7194 0.3374
M3 0.81331  0.7188 0.3176
M4 0.7904  0.7301  0.3466

3.1 Influence of different feature

In the experiments, we test the influence of different feature using RMS, WL, and AR.

Fig. 4 and Table 2 show the experimental results of experiment 1 with sampling moving
window length L = 100. The recognition accuracies of M1 and M2 are almost the same when
using RMS feature. It can be seen that RMS feature achieves the best recognized performance
for each wrist motion. The performance of recognition is the worse when using WL feature. AR
feature has the worst performance of recognition in comparison with those of RMS feature and
WL feature.

1 M2 M3
RMS WL AR RMS WL AR RMS WL AR RMS WL AR
Classification results with different features for experiment 1.

Figure 4. Classification results of wrist motions with different features for experiment 1.

In experiment 2, Table 3 and Fig. 5 show the classification results. It can be seen that the
classification result for M1 is best with RMS feature, WL feature, and AR feature. The recogni-
tion accuracies of M2 and M4 are almost the same when using RMS feature and AR feature. For
each wrist motion, it can be concluded that the RMS feature achieves the highest recognition
accuracy.

Taken together, classification accuracy is the highest with RMS feature in Figs. 4-5. In addition,
the recognition performance is different when the subjects perform a same motion. For example,
it can be seen that the recognition performance of experiment 2 is better than that of experiment
1 according to the experimental results from Tables 2-3 for wrist motion M3. That is to say, the
strength of sSEMG signals of experiment 2 is stronger than that of experiment 1 for Motion M3
since of the muscle activation is different between two different subjects.
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Figure 5. Classification results of wrist motions with different features for experiment 2.

3.2 Influence of different moving window length

In this section, we mainly analyse the influence of different moving window for the recognition
performance.
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Figure 6. Accuracy of M1 by using different feature for experiment 3.
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Figure 7. Accuracy of M2 by using different feature for experiment 3.
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Figure 8. Accuracy of M3 by using different feature for experiment 3.
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Figure 9. Accuracy of M4 by using different feature for experiment 3.

In experiment 3, we verify the recognition performance with moving window length L =
20, L =50, L =100, and L = 500. Figs. 6-9 show the recognition accuracy of different moving
window length for each wrist motion. For wrist motions M1-M4, the recognition accuracies are
highest when the length of moving window is 100 no matter which feature is used. However, the
performance is worst when the moving window length is 500. In this sense, the accuracy gets
higher as the length of moving window increases when 20 < L < 100. It can be seen that the
recognition performance with RMS feature is best when using RMS feature and WL feature for

M1-M4.
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Figure 10. Accuracy of M1 by using different feature for experiment 4.
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Figure 11. Accuracy of M2 by using different feature for experiment 4.

For experiment 4, the recognition performance with moving window length L = 200 is best in
comparison with the moving window length are L = 20, 40, 50, 80,and 100. When the moving
window is determined, the recognized accuracy are highest when using the RMS feature. In this
experiment, it can be seen that the accuracy is higher as the moving window length increases.
In this sense, the accuracy has a relative positive correlation with the length of moving window
for M1-M4 when 20 < L < 200.

Based on the above-mentioned analysis, it is essential to analyse the impacts of the length
of moving window and different feature of SEMG signals . From the experimental results of
experiments 1-4, it can be concluded that the recognition performance is best when using RMS
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Figure 12. Accuracy of M3 by using different feature for experiment 4.
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Figure 13. Accuracy of M4 by using different feature for experiment 4.

feature. The influence of different length of moving window should be analysed according to the
actual sSEMG signals and its feature. It is noted is that the optimal window length changes from
person to person, and also a qualitative observation is that the best or most efficient window
length cannot be too small neither too big.

4. Conclusion and discussion

We develop a wrist motion recognition framework based on sSsEMG signals in this work. RMS, WL,
and AR are used as the feature of sSEMG signals. These features are used as the input sample
to train the classifier by using the LDA approach to recognize different wrist motions. Four
comparative experiments are performed to validate the effectiveness of the developed method.
The experimental results demonstrated that the proposed framework with RMS feature can
obtain the best recognized performance in comparison with that of WL feature and AR feature.
Furthermore, there is a relative positive correlation between the length of sampling moving
window and the recognition accuracy within certain range. In this sense, the researcher can
choose a relative greater length of sampling moving window for motion recognition.

Although MYO software provides the own function to detect the hand gesture, but it is very
different between its basic motions of MYO’s demo and the common wrist motions of surgeon.
Since surgeon always keeps a gesture of fingers close together when they hold the instruments,
the movements of hand mainly depend on the motion of wrist. We mainly consider four common
motions M1, M2, M3, and M4. Actually, other wrist motions can be recognized. In this work, we
collect the common wrist motions of surgeon, and extract the EMG signals in a self-made way,
so the size of sample data is limited. In this sense, in future work, we will consider the larger size
of sample data and achieve a better performance, i.e. accuracy and variance. Furthermore, more
different feature extraction algorithms and integration of those feature extraction algorithms
would be considered to reflect the robustness of SEMG signals’ feature. Due to the sampling data
sets become larger and larger, some dimensional reduction techniques and deep learning method
will be introduced to deal with the problem of data preprocessing. Since the characteristic of
sEMG signals is different from person to person, the difference of individuals will be estimated in



statistics, we will add the different motions of more subjects and test thedeveloped approach in
the extensively recognized data set [43]. In addition, multimodal infromation and the application
of EMG should be considered in more actual areas, such as [44][45][46][47].
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