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Uncertainty and Disturbance Estimator-Based
Control of a Flapping Wing Aerial Vehicle with

Unknown Backlash-like Hysteresis
Zhao Yin, Wei He, Okyay Kaynak, Chenguang Yang, Long Cheng, Yu Wang

Abstract — Robust and accurate control of a flapping-wing
aerial vehicle (FWAV) system is a challenging problem due
to the existence of backlash-like hysteresis nonlinearity. This
paper proposes uncertainty and disturbance estimator (UDE)-
based control with output feedback for FWAV systems. The
approach enables the acquisition of the approximate plant
model with only a partial knowledge of system parameters. For
the design of the controller, only the bandwidth information of
the unknown plant model is needed. which is available through
the UDE filter. The stability analysis of the closed-loop system
with the UDE-based controller is presented. It is shown that
the proposed control scheme can ensure the boundedness of
the control signals. A number of numerical simulations are
carried out to demonstrate the satisfactory trajectory tracking
performance of the proposed method.

Index Terms — Uncertainty and disturbance estimator
(UDE); Flapping wing aerial vehicle (FWAV); Hysteresis;
Backlash.

I. INTRODUCTION

IN recent years, unmanned aerial vehicles (UAVs) have
received significant attention from both engineers and

researchers. In this wide research area, flapping-wing aerial
vehicles (FWAVs) have received a special attention due to the
features of small size and low energy consumption. [1]–[3].
There are a number of superiorities of an FWAV. For example,
it can combine precise and highly maneuverable hovering with
energy efficient forward flight, it can, with its high biomimetic,
be used to drive away birds to avoid damage to crops, and
it can be useful in military reconnaissance because of its
convincing camouflage. Therefore, study of advanced FWAV
technologies is very meaningful and timely [4], [5].

In this paper, we study the FWAV system with motor,
which is the main drive mode. The hysteresis phenomenon
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is therefore unavoidable due to the presence of the gear sets.
The design of a controller that will compensate the backlash
hysteresis is therefore a necessary task to ensure the stability of
the system. Backlash hysteresis is quite a common problem in
many systems such as electromagnetism, mechanical actuators
and gear systems [6]–[12]. It is caused by inertia, magnetism,
or friction when the actuated motion direction is reversed,
and often severely affects system performance in the form of
inaccuracies, oscillations, and instabilities. Extensive studies
can be seen in the literature that propose new models and new
control approaches to compensate for backlash-like hysteresis
in nonlinear systems. In [13], the authors propose adaptive
neural network controllers for a 3-DOF robotic manipulator to
solve the problem of backlash hysteresis with state feedback
and output feedback. The authors present an adaptive output
feedback controller for a class of nonlinear systems with
unknown backlash-like hysteresis in [14] and verify that the
control method proposed can compensate the influence of
hysteresis. In [15], the Preisach model, a well-known model,
is investigated to deal with problem of elastic robot joints
with hysteresis and backlash. The hysteresis is considered as
external factor, like a disturbance in [16], and a disturbance
observer is used to estimate it, as a result of which a good
compensation effect is obtained. This method is very succinct,
it does not need to a reformulation of the plant model.

In most instances, some uncertain terms cannot be mea-
sured. In the FWAV system disturbance is also unknown.
Therefore, there can be seen numerous control schemes and
methods proposed in literature to estimate these uncertainties
[17]–[26]. The use of a neural network in the controller is
proposed in [27] to approximate the unknown terms, and
it is demonstrated that the approach can result in a good
approximation effect. An adaptive controller is designed in
[28] to alleviate the problem of unknown system parameters,
and a disturbance observer is used to compensate them. In an
earlier work, a backstepping scheme is presented to design an
effective controller for flexible joint robotic manipulators in
[29]. In that paper, the authors apply an adaptive controller to
compensate for system uncertainty and unknown but bounded
disturbance. An adaptive fuzzy output feedback control law
is designed in [30]. In [31], an uncertainty and disturbance
estimator (UDE)-based robust power flow controller is devel-
oped for electrical power system to realize power delivery
to the grid precisely. In [32], a strategy based on UDE is
developed to solve the effect of hysteresis nonlinearity and
improve the performance of the positioning control of the
piezoelectric stage. The UDE-based control is a method, which
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does not require the linear parameterizations and external
interference information. Furthermore, the scheme has good
robustness property with a straightforward structure. In recent
years, more and more studies can be seen in literature that
investigates the use of the UDE approach in different ways,
such as in connection with a nonlinear system [33], sliding
model control [34], electrical power system [31], piezoelectric
stages [32], and so on [35]–[40]. Similar to these efforts, this
article proposes a robust control strategy that is based on a
UDE for FWAV systems to improve the performance in the
presence of uncertainties and disturbance.

Regarding the UDE works, the novelty and the contribution
of this paper lie in applying and validating the UDE-based
control strategy to FWAV systems, which is a challenging
problem. Moreover, for the first time in the literature, we have
disclosed that the challenging problem of designing an output
feedback controller using UDE can be converted into the
design of a low-pass filter. Compared to those existing control
methods, the main contributions of this paper are highlighted
as follows:

(i) Hysteresis phenomenon is considered due to the presence
of the gear sets in an FWAV that is driven by a motor;

(ii) UDE-based control law for FWAV systems with output
feedback is derived to resolve the uncertain terms;

(iii) The proposed control method results in a good and robust
performance, and the desired trajectory tracking is at-
tained. Additionally comparative arguments are provided
to obtain the best control parameters.

The rest of the paper is organized as follows: Section II cov-
ers the problem formulation and the preliminaries using some
necessary lemmas, properties and assumptions. The UDE-
based controller design with output feedback and stability
analysis are illustrated in section III. Simulation studies are
presented in Section IV. Section V concludes the paper.

II. PROBLEM FORMULATION AND PRELIMINARIES

A. Problem Formulation

The dynamics of FWAV can be expressed as [5]:

M(q)q̈+C(q, q̇)q̇+G(q) = F(τ) (1)

The terms of the above equation are defined as follows:
q = [qt qr]

T = [x y z α β γ]T , M =[
Mt 03×3

03×3 Mr

]
, C =

[
03×3 03×3

03×3 Cr

]
, G =

[
Gt

03×1

]
,

F(τ) = R(q)ϕ(τ) =

[
RIB(qr) 03×3

03×3 I3×3

]
ϕ(τ), where

qt = [x y z]T is the position states in the inertial frame
and qr = [α β γ]T denotes the attitude angles of the
body frame. Mt = mI3×3 is the mass matrix. Mr = IpT
and Cr = IpṪ+L, where Ip presents the moment of inertia

matrix and T =

 1 0 − sin(β)
0 cos(α) cos(β) sin(α)
0 − sin(α) cos(β) cos(α)

. L is a

square matrix and defined as: (Tq̇r) × Ip(Tq̇r) = Lq̇r,
Gt = [0 0 −mg]T denotes the gravity vector. F(τ) is

input function, and ϕ(τ) repsents the backlash hysteris in-
put nonlinearity. RIB(qr) = (RBI(qr))

−1, where RBI =

CB2C21C1I is the rotation matrix,
where

CB2 =

 1 0 0
0 cos(α) sin(α)
0 − sin(α) cos(α)


C21 =

 cos(β) 0 − sin(β)
0 1 0

sin(β) 0 cos(β)


C1I =

 cos(γ) sin(γ) 0
− sin(γ) cos(γ) 0

0 0 1


The front view and side view of our FWAV model are shown
in Fig. 1. The wing frame (XW , Y W , ZW ) is used to describe
flapping, rotation and deviation angles associated with the
stroke plane. (XB, Y B , ZB) is the body frame.
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Fig. 1. Front and side view of FWAV model

The backlash hysteresis nonlinearity can be described by
[41]:

µ = ϕ(τ) =


h(τ −B), τ̇(t) > 0 and µ(t) = h(τ(t)−B)

h(τ +B), τ̇(t) < 0 and µ(t) = h(τ(t) +B)

ϕ(t ), otherwise
(2)

where ϕ(τ) denotes the backlash operator, h is the slope of the
lines, B is the backlash distance and ϕ(t ) means no change
occurs in ϕ(τ). However, this function is discontinuous and
not applicable to a controller design that requires continuous
signals. A continuous function to describe the backlash hys-
teresis is defined as [42]:

dui

dt
= χi|

dτi
dt

|[hiτi − ui] + κi
dτi
dt

, i = 1, 2 (3)

where χ, κ and h are constants and h > κ. The equation can
be solved explicitly as

ui(t) = hiτi(t) + di(τ) (4)
di(τi) = [µi(0)− hiτi(0)]e

−χi(τi−τi(0))sgn(τ̇i)

+e−χiτisgn(τ̇i)

∫ τi

τi(0)

[βi − hi]e
−χiζsgn(τ̇i)dζ (5)

The solution indicates that (3) can be used to model a class
of backlash-like hysteresis ,where the parameters are χi = 1,
hi = 3.15, κ = 0.35, τ(t) = x sin(2.3t), x = 2.5, 3.5, 4.5.

The backlash hysteresis input nonlinearity ϕ(τ), can be
written as
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ϕ(τ) = Haτ +D(τ) (6)

where

Ha = diag{h1, h2, . . . , h6} > 0

and D(τ) = [d1(τ1), d2(τ2), . . . , d6(τ6)]
T and |di(τi)| ≤ d∗i

with ||D(τ)|| ≤ D∗ =
√
d∗21 + d∗22 + . . .+ d∗26 . The control

objective is to design a stable UDE-based controller for the
flapping wing robot so that it follows a desired trajectory.
The following assumptions and lemma will help achieve our
objective.

Assumption 1: [41] The desired trajectory is known, con-
tinuous and bounded.

Assumption 2: [43] The slopes of the backlash like hys-
teresis Ha is unknown, but there exists positive constants h̄∗

a

and h∗
a such that h∗

a ≤∥ Ha ∥≤ h̄∗
a and ∥M∥ ≤ m∗.

Lemma 1: [44] A Lyapunov Function candidate V(x) is
bounded if the inital condition V(x(0)) is bounded, V(x) is
positive definite and continuous and if

V̇(x) ≤ −ρV(x) +C (7)

where ρ > 0 is a constant matrix, and C > 0 a constant vector.

III. CONTROLLER DESIGN

A UDE-based robust controller for an FWAV system is
presented in this section. The control objective is to track the
desired position and angle trajectories of the FWAV in the
presence of backlash hysteresis. The scheme is basically a state
feedback controller with UDE-based. It is assumed the state
information of q and q̇, and the actual trajectories are available.
The case when the velocity information is not available is also
considered, naming it as the output feedback control scheme,
as shown in Fig. 2.

The dynamics of the FWAV can, by the use (1) and (6), be
rewritten as

q̈ = M−1(q)[R(q)(Haτ +D(τ))−C(q, q̇)q̇−G(q)](8)

The generalized tracking error variable qe is defined as

qe = q− qd (9)

where qd is the desired trajectory. Its time derivative is defined
as

q̇e = q̇− q̇d (10)

And the filtered error is defined as

qz = q̇e +Λqe (11)

where Λ = ΛT > 0. Then define the following stable linear
reference model as

q̈d = −Adq̇d −Bdqd −Cdc (12)

where c = [ct, cr]
T = [cx, cy, cz, cα, cβ , cγ ]

T ∈ R6 is
a piecewise continuous and uniformly bounded command,
Ad ∈ R6×6, Bd ∈ R6×6 and Cd ∈ R6×6 are selected to
satisfy the ideal specification of the closed-loop system.

In this paper, the desired error dynamics about qe is

q̇z = −Kqe (13)

where K = KT > 0 denotes the error feedback gain.

According to (8), (11), (12) and (13), we can obtain that

M−1[R(q)(Haτ +D(τ))−C(q, q̇)q̇

−G(q)] +Adq̇d +Bdqd +Cdc

= −(K+Λ)q̇e −KΛqe (14)

Then these uncertain terms can be denoted and rewritten as a
new dynamic equation

−(K+Λ)q̇e −KΛqe

= Adq̇d +Bdqd +Cdc+ ud + bτ (15)

where

ud = M−1(x)[R(q)(Haτ +D(τ))

−C(q, q̇)q̇−G(q)]− bτ (16)

Then through the transpose, there is

bτ = −(K+Λ)q̇e −KΛqe

−Adq̇d −Bdqd −Cdc− ud (17)

where b is an equivalent control parameter associated with the
control performance, then the uncertain terms can be obtained
as ud = q̈ − bτ , which denotes the uncertainties can be
derived from the known part of dynamics and control signal.
We can know that they cannot be used to design a controller
straightly. Therefore, assume that the frequency range of a
signal is restricted, and the signal can be approximated by
using a filter with the proper bandwidth, then the process of
UDE-based control is designed in [35], which is presented to
handle the problem of system uncertainty. Meanwhile, assume
that Gf (s) is a proper stable filter with the gain and zero phase
shift over the spectrum of ud and zero gain elsewhere. Then,
the uncertain terms ud can be approximated as

ûd = L−1 {Gf (s)} ∗ ud = L−1 {Gf (s)} ∗ (q̈− bτ) (18)

where ûd is an estimate term of ud, “ ∗ ” represents the
convolution operation, and L−1{·} denotes the inverse Laplace
transform of “ · ”.

Remark 1: The theoretical principle of the filter selection is
that, the filter Gf (s) should be designed with the unity gain
and zero phase shift over the spectrum of ud and zero gain
elsewhere [35]. In [36], [45], the authors offer the detailed
guideline of the filter selection. However, the parameters of
filter cannot be selected too small because of the hardware
limitations in practice. In addition, the sensor noise with
high frequency would be caused by the filter with too wide
bandwidth, and it might degrade the performance of the UDE-
based controller. Thus, how to choose a proper filter depends
on the specific application including the hardware capability
and the practical necessity.

Replacing ud with ûd in (17) results in

bτ = −(K+Λ)q̇e −KΛqe −Adq̇d −Bdqd −Cdc

−L−1 {Gf (s)} ∗ (q̈− bτ) (19)

Furthermore, the UDE-based controller can be obtained from
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Fig. 2. The proposed UDE-based control strategy with output-feedback

(19) as

τ =
1

b

{
L−1

{ 1

1−Gf (s)

}
∗ (−(K+Λ)q̇e

−KΛqe −Adq̇d −Bdqd −Cdc)

−L−1
{ sGf (s)

1−Gf (s)

}
∗ q̇

}
(20)

Since the above controller (20) requires full states q, and q̇
to be measured. However, some state information cannot be
obtained in the absence of velocity sensors. In that situation,
an output feedback control law can be derived from (20) as

τ =
1

b

{
L−1

{ 1

1−Gf (s)

}
∗ (−KΛqe −Adq̇d −Bdqd

−Cdc)− L−1
{ s

1−Gf (s)

}
∗ (K+Λqe)

−L−1
{ s2Gf (s)

1−Gf (s)

}
∗ q

}
(21)

Obviously, the degree of the filter Gf (s) in (21) should not be
less than 2 to guarantee the structure of control be realized,
i.e., [s2Gf (s)]/[1−Gf (s)] should be suitable.

Consider the following Lyapunov candidate function

V1 =
1

2
qT
z qz (22)

Differentiating (22) with respect to time, along with (11) and
(17) yields,

V̇1 = qT
z q̇z

= qT
z (q̈e +Λq̇e)

= qT
z (ud + bτ − q̈d +Λq̇e) (23)

with the UDE-based controller (21), and substituting (19) into
(23), we can obtain

V̇1 = qT
z (−Kqz + ud − ûd)

= −qT
z Kqz − qT

z ũ (24)

where ũd = ud − ûd is the estimated error of the uncertainty
terms, in the accordance with the (18), the estimated error can

be proposed as

ũd = ud ∗ L−1{1−Gf (s)} (25)

Since we assume that Gf (s) is a strictly suitable stable filter
with proper bandwidth. Then, we can obtain

V̇1 ≤ −qT
z Kqz +

1

2
qT
z qz +

1

2
ũ2

≤ −qT
z (K− 1

2
I)qz +

1

2
ũ2

≤ −ρV1 +C1 (26)

where ρ1 and C1 are define as

ρ1 = min{2(K− 1

2
I)} (27)

C1 =
1

2
ũ2 (28)

Proof: Multiplying (26) by qρ1
e t, we have

d

dt
(V1e

ρ1t) ≤ C1e
ρ1t (29)

By integrating the equation and according to (22), we have

1

2
∥qz∥2 ≤ V1(q(0)) +

C1

ρ1
(30)

It is clear that ∥qe∥ can be reduced by increasing the control
parameter K and designing the filter Gf (s) to reduce the
estimation error ũ. if the estimation error ũ converges to zero,
then the error signal qe converges to zero too. According to
the claim that the filter Gf (s) is designed as a strictly proper
stable filter in [35], we can obtain that ∥ũ∥ ≈ 0. Therefore,
the error signal qe is uniformly bounded according to Lemma
1. �

Hence, we can obtain that z converges to a compact which is
semiglobal uniformly bounded. Due to qz = q̇e +Λqe, that
is, q̇e = −Λqe + qz, using the same proof method we can
obtain that qe ≤ qe(q(0)) +

qz

Λ .
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IV. NUMERICAL SIMULATIONS

In this part, simulations are implemented to verify our
proposed controllers. The parameters of FWMAV model are
listed in Table I.

TABLE I
PARAMETERS OF THE FWAV SYSTEM

Parameter Description Value
m Total mass of the model 5.60g
w Body width 24mm
l1 Body length 77.5mm
l2 Wing length 53mm
Ixx Moment of inertia 575gmm2

Iyy Moment of inertia 576gmm2

Izz Moment of inertia 991gmm2

Comparing the system with the plat model in (8), the
reference model is chosen as

q̈d = −Adq̇d −Bdqd − Cdc (31)

where Ad = diag[200, 200, 200, 500, 500, 500],
Bd = diag[500, 500, 500, 800, 800, 800], and
Cd = diag[100, 100, 100, 200, 200, 200]. The desired
position ct of FWAV can be chosen as

cx(t) = 100 sin(πt)

cy(t) = 100 sin(πt)

cz(t) = 100 sin(πt)

(32)

and the desired attitude cr of FWAV are chosen as
cα(t) = 2 sin(2t)

cβ(t) = 2 sin(2t)

cγ(t) = 2 sin(2t)

(33)

The initial conditions for all states are given
as q(0) = [10, 10, 10, 0.5, 0.5, 0.5]T , q̇(0) =
[0.01, 0.01, 0.01, 0.01, 0.01, 0.01]T . In the next several
subsections, some tables are drawn to denote the tracking
performance by using different kinds errors, such as Root
Mean Square Error (RMSE) and Mean Absolute Error
(MAE). And the detail formula expression of these errors are
as follows:

RMSE =

√√√√ 1

N

N∑
i=1

(Yi − Yid)2 (34)

MAE =
1

N

N∑
i=1

∥Yi − Yid∥ (35)

where Yid denotes the reference value, and Yi as the actual
value.

A. Comparison with different controllers

In this section, we compare our output feedback con-
troller (21) with PD controller and DOB-based controller.
The PD controller is designed with τpd = −Kpe−Kdė,
where Kp = diag[200, 200, 200, 500, 500, 500], Kd =

diag[500, 500, 500, 500, 500, 500]. Other simulation parame-
ters are selected as b = 2, K = [500, 500, 500, 800, 800, 800].
In this case, we choose a second-order low-pass filter Gf (s) =
1/[(Ts)2 +

√
2Ts+ 1], and T is selected as a small positive

value to guarantee that the bandwidth covers the frequency
spectrum of ud. Consequently we choose T = 0.01. Es-
pecially, the internal-model-embeded DOB is considered for
comparison, and for fair comparison, the filter is chosen the
same as UDE control which is also a second-order filter.
Then, the different errors which reflect the different tracking
performance are shown in TABLE II. From TABLE II, we can
see that there are three different controllers in total, and every
controller branches off into two different errors that the first
column denotes RMSE, and the second column shows MAE,
respectively. From this table, we can conclude that all kinds of
errors of the PD controllers is the greatest and the UDE-based
controller is the smallest.

Furthermore, in order to make the data that in the table more
intuitive and visible. We select two rows of data (the third
row and the sixth row) to have a draw for comparison from
the position and angle information in the table respectively. It
can be seen from Fig. 3 and 4 that the errors converge to a
small value close to zero. And we can obtain that the tracking
line can track the desired trajectory indirectly. However, it is
clear that the errors are smaller with the controllers proposed
in this paper, compared with the PD control. In addition, we
can also state from Fig. 3 and 4 that the DOB-based control
performance is not good with a violent oscillation at the
beginning of the tracking process. This is not easy to realise
it in practice. Therefore, it can be concluded that the control
approach suggested in this article is a more preferable one in
tracking performance than other controllers. Furthermore, the
DOB also needs a larger control effort compared to the UDE.
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Fig. 3. Comparison of errors of position with different controllers (The data
z in the third row of the TABLE II).

B. Comparison with compensation effect

In this section, we compare our output-feedback controller
(21) with the controller without backlash hysteresis compen-
sation. The simulation parameters are selected to be the same
as in the last section.

The comparison of different errors of output-feedback con-
trollers with compensation and without compensation are
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TABLE II
THE DIFFERENT ERRORS OF STATES OF THE FWAV SYSTEM WITH DIFFERENT CONTROLLERS

PD Control DOB Control UDE Control
x 3.0220 2.5383 1.7654 1.2604 1.9491 1.6408
y 5.3401 4.7160 1.6265 1.1903 1.9493 1.6408
z 10.1548 9.7324 2.1196 1.5851 1.9366 1.6337
α 0.3905 0.3383 0.0353 0.0260 0.0220 0.0188
β 0.3378 0.2918 0.0325 0.0242 0.0189 0.0157
γ 0.4435 0.3816 0.0604 0.0464 0.0240 0.0199
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Fig. 4. Comparison of errors of attitude with different controllers (The data
γ in the sixth row of the TABLE II).

shown in the TABLE III. It is the same as the last section,
the first subcolumn denotes RMSE, and the second subcolumn
shows MAE. It is obvious that all the numbers of errors of
the controller without backlash hysteresis compensation are
larger than the controller with compensation from these data.
Moreover, in order to make the data that in the table more
intuitive and visible. We select two rows of data (the first row
and the fourth row) to have a draw for comparison from the
position and angle information in the table respectively like
IV-A. It can be seen from Fig. 5 and 6 that the errors of the
controllers with compensation are less than the without one,
and the error line is very unsmooth with high-frequency spikes
for the controller without compensation. Therefore, we can
see that the control approach proposed in this paper is more
viable to solve the backlash problem, and that it is necessary
to consider the compensation of backlash hysteresis.

TABLE III
THE DIFFERENT ERRORS OF STATES OF THE FWAV SYSTEM WITH

BACKLASH COMPENSATION OR NOT

With Compensation Without Compensation
x 1.9491 1.6408 2.0673 1.7067
y 1.9493 1.6408 2.0674 1.7075
z 1.9366 1.6337 2.0496 1.6887
α 0.0220 0.0188 0.0591 0.0502
β 0.0189 0.0157 0.0520 0.0462
γ 0.0240 0.0199 0.0651 0.0573
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Fig. 5. Comparison of errors of position with compensation and uncompen-
sation. (The data x in the first row of the TABLE III).
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Fig. 6. Comparison of errors of attitude with compensation and uncompen-
sation. (The data α in the fourth row of the TABLE III).

C. Comparison with different frequencies

In this section, we compare our output feedback control
performance (21) with different frequencies. The simulation
parameters are selected the same as section IV-A. Furthermore,
the filter parameter T is adjusted as 0.01, 0.1, 1, respectively,
and the corresponding cut-off frequency is 15.91Hz, 1.591Hz,
0.1591Hz.

The comparison of different errors of controller with d-
ifferent frequencies with output-feedback are shown in the
TABLE IV. From this table, it can be observed that the all
kinds errors of controller are reduced by choosing a larger
bandwidth. The more distinct consequences can be seen in the
Fig. 7 and 8 which is selected from TABLE IV (the first row
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and the fourth row), it is obvious that the errors are smaller
and smoother when a higher frequency is selected. From these
two figures, another important conclusion we can derive is that
when the frequency is chosen as 15.91Hz, the tracking errors
are remarkably smaller than 1.591Hz and 0.1591Hz. This is a
reasonable phenomenon after consulting the literature, and in
practice 15.91Hz is a logical frequency for experiment.
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Fig. 7. Comparison of errors of position with different frequencies (The data
x in the first row of the TABLE IV).
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Fig. 8. Comparison of errors of attitude with different frequencies (The data
α in the fourth row of the TABLE IV).

V. CONCLUSION

In this paper, we propose the UDE-based control for FWAV
systems with backlash-like hysteresis. The output-feedback
controller is presented in the controller design part. The UDE-
based control is used to estimate the model uncertainty and
to compensate the unknown hysteresis. Its main advantage is
that the controller design does not require any knowledge
of the uncertainty and the disturbance, except the infor-
mation about their bandwidth. Extensive simulation results
are presented, through which the validity of the proposed
approach is verified. It is seen that the trajectory tracking
performance is excellent. A number of comparative studies
with different control methods are then presented, as well
as with different cut-off frequencies, and whether backlash
hysteresis compensation is used or not. By a thorough analysis

of the simulation results, a number of deductions are arrived
at. As future work, experimental implementation of the UDE-
based control method is considered, as well as the use of the
approach in other fields.
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