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Abstract: To improve the effectiveness of air combat decision-making systems, target intention has
been extensively studied. In general, aerial target intention is composed of attack, surveillance,
penetration, feint, defense, reconnaissance, cover and electronic interference and it is related to the
state of a target in air combat. Predicting the target intention is helpful to know the target actions
in advance. Thus, intention prediction has contributed to lay a solid foundation for air combat
decision-making. In this work, an intention prediction method is developed, which combines the
advantages of the long short-term memory (LSTM) networks and decision tree. The future state
information of a target is predicted based on LSTM networks from real-time series data, and the
decision tree technology is utilized to extract rules from uncertain and incomplete priori knowledge.
Then, the target intention is obtained from the predicted data by applying the built decision tree. With
a simulation example, the results show that the proposed method is effective and feasible for state
prediction and intention recognition of aerial targets under uncertain and incomplete information.
Furthermore, the proposed method can make contributions in providing direction and aids for
subsequent attack decision-making.

Keywords: state prediction; LSTM networks; intention recognition; decision tree; data missing;
interval-valued

1. Introduction

In modern air combat, the vigorous development of aviation science and military technology
leads to more and more severe threats of aerial targets. Meanwhile, due to the application of high-tech
technology of Unmanned Combat Air Vehicle (UCAV), such as space early warning systems, radar
stealthy composites, artificial intelligence technology, etc., the complexity of a battlefield environment
including uncertainty and incompleteness is increasing [1]. Therefore, predicting target state and
recognizing intention previously can favor making adequate preparations for air combat autonomous
attack and defense decision-making systems. Furthermore, state prediction and intention recognition
of aerial targets also have great contributions on increasing the operational efficiency of weapon
systems and saving the resources of air combat. Hence, state prediction and intention recognition
of aerial targets are important sections of air combat decision support systems, and they have been
playing vital roles in future command and control systems [2].

In recent years, many decision support research results have been carried out on military fields
to satisfy the requirement of combat decision-making systems. In [3], a rough set theory-based
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multi-criteria decision-making (MCDM) model was proposed, in which the exceptional importance
of the software application to decision-making in the security forces operations was demonstrated.
In [4], a hybrid MCDM model in the determination and evaluation of the criteria for selecting an
aircraft was presented for the protection of air traffic. A decision support system is an enabling
technology leading to numerous disruptive changes in the military field. Using decision support
systems reasonably and effectively can greatly enhance the competitiveness in combat decision-making
systems. As important parts of decision support systems, state prediction and intention recognition
technology can make use of detected information to reflect the actual situation and lay a foundation
for decision-making in air combat. Some works can be found in related literature. In [5], a novel
method based on support vector machine and Bayesian filtering was studied for online lane change
intention prediction in road vehicle driving. To predict the air combat data effectively and accurately,
a target state prediction method was introduced in [6] for an aerial target based on the autoregressive
integrated moving average (ARIMA) model. An intention prediction method was studied for the
aerial target based on an improved grey incidence analysis method in [7]. An algorithm for assessment
of the target maneuvering intention in beyond-visual-range air-combat was proposed in [8], in which
the target maneuvering intention was divided into nine categories and the characteristic parameters
of the target were extracted according to target real-time data being measured and predicted; then
the threat level and maneuvering intention could be estimated. Aiming at the difficulty to quantify
the mapping relationship between attribute features and combat intentions under the condition
of insufficient knowledge of domain experts, a method of combat intention recognition based on
deep neural networks was proposed in [9]. In [10], a self-learning method based on decision tree
was studied to solve naval vessel intention recognition problem. Although state prediction and
intention recognition problems of aerial targets have been studied in recent years, the uncertainty or
incompleteness, especially the condition of existing simultaneously in air combat environments is
seldom discussed in existing research results.

Long short-memory term (LSTM) network is an improvement over the general recurrent neural
network (RNN) [11]. Unlike traditional RNNs, LSTM networks are suitable for learning from
experience to classify, process and predict time series when there are very long time lags of unknown
size between important events [12–16]. Based on the recent success of LSTM networks for time series
domains, a convolutional and LSTM recurrent units-based deep framework was proposed in [17]
for activity recognition. To predict the time series of traffic and user mobility in telecommunication
networks, a random connectivity LSTM model was put forward in [18]. In air combat, the state data of
a target is also a kind of time series. Thus, to solve the aerial target state prediction problem, LSTM
networks are employed in this paper. After state prediction, a decision tree is used to extract the rules
from the uncertain and incomplete historical data, then the intention of an ariel target is calculated
based on the predicted state data and decision tree classification rules. As a decision support tool,
a decision tree employs a tree-like graph or model of the decision and its possible consequences,
containing chance event outcomes, resource costs and utility [19]. In addition, a decision tree is widely
applied in operations research, particularly in decision-making analysis, to help determine a strategy
most probable to achieve a goal, but is also a useful tool in machine learning [20–22].

In this paper, to solve the difficulties of aerial target intention prediction with uncertainty
and incompleteness, the state prediction approach and intention recognition methods are designed
synthetically. Firstly, the target state data is predicted based on the LSTM networks from the real-time
series data collected through multi-sensors. Then, the improved decision tree theory is used to extract
the rules from historical data and is applied to handle the information system with uncertainty and
incompleteness. Finally, the intention is recognized by inputting the predicted state data to the built
decision tree.

In the rest of the paper, the air combat situation is illustrated, then the definition of air combat
uncertainty and incompleteness are elaborated in Section 2. In Section 3, the state prediction method
based on LSTM networks is presented. Then, the intention recognition decision tree is generated with
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the uncertain and incomplete historical data based on information entropy, which is displayed in
Section 4. The simulation results are shown in Section 5. The conclusion is summarized in Section 6.

2. Problem Statement

In the modern air combat environment with uncertainty and incompleteness, the air combat data
consists of real-time data and priori knowledge [23]. The real-time data is obtained through various
kinds of sensors in the air combat process. As to the priori knowledge, it is the historical information
and rules in the past air combat. The aerial target state information can be predicted according to the
air combat situation and the motion properties of the target. The future state data can be obtained
through the analysis of the real-time data in air combat. Furthermore, the intention recognition rules
are acquired by the means of priori knowledge and the intention can be recognized.

In this paper, the intention of a target is divided into attack, surveillance, penetration, feint,
defense, reconnaissance, cover and electronic interference. Because of the regularity of aerial target
intention, different target states can reflect the various results. For example, the high speed targets are
more aggressive with a larger possibility of attack intention when the target sight direction towards
the UCAV.

The air combat situation diagram between the target and UCAV is shown in Figure 1 [24].

Figure 1. Air combat situation diagram.

In Figure 1, the line between the target and UCAV is the target line of sight. A is the angle between
target line and due north, which is called the azimuth of a target. D is the distance between target and
UCAV. V is the velocity of the target and Ha is the heading angle of target, the angle between target
velocity and target line of sight. For convenience, the H means the height difference in this paper.
Obviously, the air combat situation factors are numerical data.

Apart from the above state factors of a target, the intention of a target is also related to the
operational task supplementary of the target, such as air-to-air radar status, marine radar status,
disturbing state and disturbed state. These factors of operational task are nonnumerical data lies on a
nominal scale, which can be expressed as 0 and 1. For instance, the range of air-to-air radar status and
marine radar status are {0, 1}, where 0 represents that the radar is on the off state and 1 represents that
the radar is on the open state.

Thus, all major factors of air combat situations and operational task supplementary shall be taken
into consideration, from which other factors can be derived. The advantage is that the state of UCAV
is not indispensable. The tree chart of target intention characteristic description in air combat is shown
in Figure 2.
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Figure 2. The tree chart of target intention characteristic description in air combat.

The objective of this paper consists of two parts. The first part is to design a target state prediction
algorithm based on real-time data. The second part is to extract rules from the priori knowledge, and
identify the intention in accordance with the predicted state data.

The state prediction and intention recognition system diagram is shown in Figure 3.

Figure 3. The intention prediction system diagram.

It should be noted that the priori knowledge maybe uncertain and incomplete due to the
complexity of air combat and the confusability of the target. The uncertainty and incompleteness are
defined as follows:

• Uncertainty: The specified value of aerial target state is hard to obtain accurately because of
the limitation of sensors and rapidity of air combat. In such cases, only a specific range can be
detected by multi-sensors. Hence, some state information is expressed as interval-valued number
in this paper to describe the uncertainty of air combat.

• Incompleteness: In the air combat process, some information of a target may can not be detected
due to the application of innovative military technology. In addition, missing data may happen to
historical data. Therefore, the priori knowledge is incomplete.

3. State Prediction based on LSTM Networks

LSTM network is a recurrent neural network (RNN) architecture introduced by Hochreiter and
Schmidhuber in 1997. Compared with traditional RNNs, LSTM networks contain four interacting
layers, which are called cell state, forget gate, input gate and output gate [24]. According to the
knowledge of [25], the structure of LSTM networks is shown as follow:



Entropy 2020, 22, 279 5 of 19

In Figure 4, Ct and Ct−1 are the cell states, ht and ht−1 are the hidden layer states and xt is
the input.

Figure 4. The structure of LSTM networks.

Obviously, the key of LSTM networks is the self-connected memory cell state, the horizontal
line running through the top of the LSTM networks structure. The LSTM networks can add or delete
information to the cell state based on the structures called gates. Under the control of gates, the
information is passed optionally in the cell state. In LSTM networks, the gates consist of a sigmoid
neural net layer σg(x) = 1

1+e−x and a pointwise multiplication operation [25].
Firstly, the forget gate layer decides the deleted information from the cell state. From Figure 4, the

output of a forget gate can be expressed as [25]

ft = σg(Wf · [ht−1 xt] + b f ) (1)

where Wf is the input weight matrix and b f is the bias weight matrix of forget gate layer. [ht−1 xt] is a
vector.

If ft = 1, the information of ht and xt is retained completely, while ft = 0 means completely losing
the information. Namely, the greater ft means the more information is retained.

The next step of LSTM networks is to determine what new information will be stored in the cell
state. This step has two parts. Firstly, which values will be updated is decided by the input layer. Then,
the output of input gate it can be expressed as [25]

it = σg(Wi · [ht−1 xt] + bi) (2)

where Wi is the input weight matrix and bi is the bias weight matrix of input gate layer.
Next, a tanh layer generates a vector of new candidate values C̃t, we have [25]

C̃t = tanh(WC · [ht−1 xt] + bC) (3)

where WC is the input weight matrix and bC is the bias weight matrix of cell state.
Then, these two parts will be combined to create an update to the cell state and obtain Ct. We

have [26]

Ct = ft · Ct−1 + it · C̃t (4)
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Finally, what LSTM networks is going to output ot should be confirmed. The output gate layer
decides the output parts of the cell state. It can be expressed as [25]

ot = σg(Wo · [ht−1 xt] + bo) (5)

where Wo is the input weight matrix and bo is the bias weight matrix of output gate layer.
Then, LSTM networks put the cell state through tanh function and multiply it by the output of

the sigmoid layer. Thus, LSTM networks only output the selected parts [26].

ht = ot · tanh(Ct) (6)

In general, the real-time numeric data of a target is essentially a time series which can be
expressed as f (1), f (2), ... , f (t). The function of LSTM networks is predicting f (t + 1) based
on f (1), f (2), ... , f (t).

To solve the lack of the training data problem in real-time air combat, suppose that there are N
time-lagged observations f (1), f (2), ... , f (N) in the training set and we need the one-step-ahead
prediction. In order to avoid the problem of limited training sample and improve the predict accuracy,
a network with p input nodes and one output node is used in this section. Hence, we have N − p
training patterns.

Assume the size of the time window is p, the first training pattern is composed of f (1), f (2), ... ,
f (p) as the inputs and f (p + 1) as the target output. The second training pattern is composed of f (2),
f (3), ... , f (p + 1) as the inputs and f (p + 2) as the target output. By that analogy, the last training
pattern is f (N − p− 1), f (N − p), ... , f (N − 1) for the inputs and f (N) for the target output. The
additional benefit is that we can make full use of the real-time data to train the LSTM networks. So
far, the aerial target state prediction training model is established. Finally, f (N − p), f (N − p + 1), ... ,
f (N) are chosen as the input pattern, and the output f (N + 1) is the predicted state data.

For nonnumeric data of factors, the observations is expressed as fn(1), fn(2), ..., fn(t). Due
to the high-performance early warning radar, we assume that the operational task supplementary
information of target is same as last time. Namely, we have

fn(N + 1) = fn(N) (7)

where fn(t)(t = 1, 2, ..., N) are the nonnumeric observations of target operational task supplementary.
The structure of aerial target state prediction is shown as Figure 5:

Figure 5. The structure of aerial target state prediction.

As mentioned above, the state factors and operational task supplementary are chosen as the
intention features in this paper. Hence, for each feature, the predicted value can be obtained by the
prediction model, and the next step is intention recognition.
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4. Target Intention Recognition based on Decision Tree and Information Entropy

After the state has been predicted, intention recognition is considered according to the
predicted state information. Hence, intention recognition is also an important part of an air combat
decision-making system of UCAV.

Because of the incompleteness and the uncertainty of air combat, it is hard to extract the rules
from historical data. In this paper, the incompleteness is denoted as the missing data (null value) that
may exist in historical data, and the uncertainty can be expressed as interval number. The purpose is
to build a decision tree based on an incomplete and interval-valued historical information decision
table. Moreover, the input of this part is the predicted value of a target state prediction model, and the
output is the target intention.

A decision tree is a flowchart-like structure, in which each internal node represents a test of an
attribute, each branch represents the output of the test, and each leaf node represents a class label [27].
The paths from root to leaf represent classification rules. A decision tree has been widely used in
classification, information retrieval and dimensionality reduction, and there are broad prospects for
development. It can be trained in either supervised or unsupervised ways, depending on the task.

The two major problems in building a decision tree are node splitting order selection and how to
choose the best split criterion of nodes. In this paper, a decision support degree is applied for node
splitting order selection and split criterion is determined by the information entropy of partitioning.

The structure of decision tree generation for aerial target intention recognition is shown as
Figure 6:

Figure 6. The structure of decision tree generation for aerial target intention recognition.

As is well known, the priori knowledge of air combat S = (U, A ∪ D) is a kind of incomplete
information system, where U is a finite nonempty set of statistics objects of historical data. A is a
finite nonempty set of condition attributes namely, the threat factors, and D is a finite nonempty
set of decision attributes, namely, the intention of aerial target in historical data. ∃ai ∈ A, ai = ∗,
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where the special symbol "*" denotes that the value of an attribute is unknown. On the other hand,
∀di ∈ D, di 6= ∗.

To handle the incomplete information, the following existing definitions are needed.

Definition 1. Let S = (U, A ∪ D) be an interval-valued attributes based incomplete system, where A is the
set of condition attributes, D is the set of decision attributes and ∗ /∈ D. A similarity relation SIM(R)(R ⊆ A)

on U is defined as follows [28]

SIM(R) = {(u, v) ∈ U ×U|∀a ∈ A, f (u, a) = f (v, a) or f (u, a) = ∗ or f (v, a) = ∗} (8)

where f : U → A is the mapping from U to A.

According to the definition of SIM(R), if (u, v) ∈ U ×U are in SIM(R), they are perceived as
similar. Namely, they may have the same properties with respect to R in reality.

In the similarity relation SIM(R), ∀u ∈ U, Let Sp(U) = {∀v ∈ U|(u, v) ∈ SIM(R)}, where Sp(U)

is called the consistent block of U. In other words, Sp(U) is the maximizing set of indistinguishable
object [24].

Actually, the process of intention recognition is extracting rules from historical knowledge and
identifying the intention based on the predicted value. On the basis of this, building an incomplete
decision tree is a classification issue. In the literature, the guessing technologies are often used in
the building of an incomplete system decision tree [29]. In this paper, a condition attribute decision
support degree with respect to the decision attribute is defined as follow:

Definition 2. Let S = (U, A ∪ D) be an interval-valued attributes based incomplete system, where A is the
set of condition attributes, D is the set of decision attributes and ∗ /∈ D. R ⊆ A, U/R = R1, R2, ..., Rm,

U/D = D1, D2, ...Dn, let |U/R| =
m
∑

i=1
|Ri|, the decision support degree DSD(R, D) of condition attribute R

to decision attribute D is defined as [30]

DSD(R, D) = 1−

m
∑

i=1

n
∑

j=1
|Ri ∩ Dj| × |Ri − Dj|

|U/R| × (|U| − 1)−
n
∑

l=1
(|Dl | × (|Dl | − 1))

(9)

Decision support degree indicates the support level of condition attribute R to partition U/R.
The large value of decision support degree lies in the better effect of classification based on condition
attribute R. Thus, the attribute with greater decision support degree should be split preferentially.

For air combat incomplete interval-valued information system, the set of condition attributes is

Aac = {A, D, V, Ha, H, Ars, Mrs, Ds, Dds} (10)

where A, D, V, Ha, H, Ars, Mrs, Ds and Dds are the azimuth, distance, velocity, heading angle,
height, air-to-air radar status, marine radar status, disturbing state and disturbed state of target. In
Aac, ∀ai ∈ Aac, ai = ∗ or ai = [aL

i , aU
i ], aL

i , aU
i ∈ R and aL

i ≤ aU
i , aL

i , aU
i are the endpoints of interval

number ai.
If the set of decision attributes is the intention set, we have

Dac = {A, S, P, F, D, R, C, E} (11)

where A, S, P, F, D, R, C and E express attack, surveillance, penetration, feint, defense, reconnaissance,
cover and electronic interference.
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For numeric data in Aac, we define

VA = {East, South, West, North}
VD = {Short, Medium, Long}
VV = {Slow, Medium, Fast}

VHa = {Small, Medium, Large}
VH = {Low, Medium, High}

(12)

where VA, VD, VV , VHa and VH are the ranges of azimuth, distance, velocity, heading angle and height.
For nonnumeric data in Aac, we define

VArs = {0, 1}
VMrs = {0, 1}
VDs = {0, 1}
VDds = {0, 1}

(13)

In (13), VArs and VMrs are the ranges of air-to-air radar status and marine radar status, 0 represents
that the radar is on the off state and 1 represents that the radar is on the open state. VDs is the range of
disturbing state, 0 means that the target is not jamming the UCAV and 1 means that the target is on the
jamming state. VDds is the ranges of disturbed state, 0 means that the target is not being jammed by
UCAV and 1 means that the target is being jammed by UCAV.

Therefore, the first step is to determine the condition attribute class of interval number ai =

[aL
i , aU

i ] ∈ Aac. The fuzzy inference is used to solve this problem. As an online decision support tool,
fuzzy inference theory has contributed to achieve classification tasks, process simulation and diagnosis
and process control [31].

Take the a∗i as the representative point of the interval [aL
i , aU

i ], which is given by

a∗i =

∫ aU
i

aL
i

yµi(y)dy∫ aU
i

aL
i

µi(y)dy
(14)

where µi(y) is the membership function of attribute i.
Then, the condition attribute class of ai is obtained by the membership function and a∗i , the

membership functions of azimuth, distance, velocity, heading angle and height are designed as
Figures 7–11:

Figure 7. The membership function curve of azimuth.
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Figure 8. The membership function curve of distance.

Figure 9. The membership function curve of velocity.

Figure 10. The membership function curve of heading angle.

Figure 11. The membership function curve of height.
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In this way, the air combat incomplete interval-valued information system is converted to
a traditional information system and the node splitting order can be selected by the decision
support degree.

The next step is to determine the best split criterion (selecting the cutpoint) of nodes, and this part
is required to consider the air combat incomplete interval-valued information system renewedly.

Definition 3. [30]: Cutpoint, for an interval-valued condition attribute a = [aL, aU ] (finite interval), cutpoint
is the threshold C(aL ≤ C ≤ aU) which splits the interval-value condition attribute a into two branches
(a1 = [aL, C] and a2 = [C, aU ]).

It is supposed that condition attribute B of an air combat state is chosen to split. The nonempty
elements is bi = [bL

i , bU
i ] ∈ Aac(i = 1, 2, ..., M), where M is the number of the attribute sample. Then

the sequence of 2M points can be obtained by sorting the endpoints of bi in ascending order. Delete
the repetitive endpoints and the midpoints of each two neighbor points of the sequence are defined as
the alternative cutpoints. The objective is to select the optimal cutpoint from the alternative cutpoints
and it is determined by the information entropy of partitioning.

Assume that the decision attribute of selected condition attribute B is DB = {D1, D2, ..., Dk},
where k is the classes number of decision attribute. The information entropy of selected condition
attribute B is defined as [32]

I(B) = −
k

∑
j=1

∣∣Dj
∣∣

|DB|
log

∣∣Dj
∣∣

|DB|
(15)

where | · | expresses the number of elements in a set.
As the selected condition attribute B can be divided into two subset B1 and B2 by an alternative

cutpoint C, where C > B1 and C ≤ B2. The information entropy of partitioning IEP(B, C) is defined
as [33]

IEP(B, C) =
|B1|
|B| · I(B1)+

|B2|
|B| · I(B2) (16)

If one of the alternative cutpoint C∗ makes the IEP(B, C∗) minimums among all alternative
cutpoints of selected condition attribute B, the alternative cutpoint C∗ is marked as optimal cutpoint.

Finally, the decision tree is generated by the decision support degree-based node splitting order
and split according to the optimal cutpoint of each condition attribute until all the non-empty elements
of node are belong to the same class.

The whole decision tree generation algorithm is summarized in Algorithm 1.
At this point, the rules extraction is accomplished from the uncertain and incomplete priori

knowledge, and the future aerial target intention can be recognized on the basis of predicted state data
from LSTM networks and the generated decision tree.

5. Simulation Results

For the purpose of proving the effectiveness of the proposed method as to aerial target state
prediction and intention recognition, the simulation data is given in Table 1, Table 2 and Table 3.

Table 1 is the real-time numeric data of an aerial target. In this paper, a typical scenario of the
target with attack intention is considered. It is assumed that the azimuth basically remains unchanged,
the distance between target and UCAV is reduced gradually, the velocity of target is increased to
a stable value, and the heading angle fluctuates in a certain range and the height is decreased to a
narrow range.
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Algorithm 1 Decision tree generation algorithms in air combat incomplete interval-valued information
system.
Input: The air combat incomplete interval-valued information decision table of priori knowledge.
Output: A decision tree.

1: Determine the condition attribute classes of all interval number based on fuzzy inference;
2: Generate a fuzzy incomplete decision table;
3: for each episode do
4: Calculate the decision support degree according (9) of each condition attribute;
5: Choose the attribute with maximum decision support degree as the split node;
6: Count the alternative cutpoints of selected condition attribute;
7: Calculate the information entropy of partitioning of each alternative cutpoint based on (15)
8: and (16);
9: Choose the alternative cutpoint with minimum information entropy of partitioning as the

10: optimal cutpoint to split the condition attribute;
11: Delete the split condition attribute from incomplete interval-valued information decision table
12: and fuzzy incomplete decision table.
13: until All the condition attributes are split and all the non-empty elements of node are belong to
14: the same class.
15: Output: A decision tree.

Table 1. Real time numeric data of aerial target.

Time Azimuth Distance Velocity Heading angle Heigh
(mil) (km) (m/s) (◦) (km)

1 2230.0 310.0 220.0 12.0 15.8
2 2245.0 297.0 242.0 11.0 13.2
3 2257.0 291.0 228.0 14.0 11.7
4 2300.0 280.0 241.0 13.0 10.1
5 2364.0 267.0 255.0 10.0 8.6
6 2413.0 251.0 267.0 8.0 7.4
7 2467.0 235.0 263.0 5.0 6.0
8 2489.0 214.0 285.0 14.0 5.2
9 2488.0 199.0 274.0 4.0 4.5
10 2514.0 178.0 286.0 7.0 3.7
11 2516.0 154.0 293.0 11.0 3.2
12 2524.0 138.0 285.0 10.0 3.1
13 2517.0 120.0 284.0 9.0 2.8
14 2536.0 97.0 292.0 10.0 2.5
15 2528.0 75.0 291.0 6.0 2.6

Table 2 is the real-time nonnumeric data of aerial target.

Table 2. Real time nonnumeric data of aerial target.

Time Air-to-air Marine radar Disturbing disturbed
radar status status state state

15 1 0 1 0

Table 3 is the historical data of past air combat.
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Table 3. Given knowledge of air target intention. (the bold is used to mark off decision attribute and
condition attributes).

Index Azimuth Distance Velocity Heading angle Height
(mil) (km) (m/s) (◦) (km)

1 [2200.0,2300.0] [100.0,110.0] [300.0,320.0] [10.0,30.0] [4.0,5.0]
2 ∗ [45.0,55.0] [320.0,330.0] [320.0,350.0] ∗
3 [2200.0,2300.0] ∗ [300.0,330.0] [30.0,40.0] [2.0,2.5]
4 [2800.0,3000.0] ∗ [270.0,290.0] [330.0,350.0] [3.6,4.0]
5 [2800.0,2850.0] [260.0,290.0] [315.0,320.0] [80.0,90.0] [7.7,8.0]
6 [2800.0,2850.0] [240.0,260.0] [300.0,315.0] ∗ [6.7,7.2]
7 [750.0,810.0] [180.0,190.0] [150.0,170.0] [60.0,80.0] [6.0,6.5]
8 [820.0,830.0] [180.0,185.0] ∗ [70.0,90.0] [6.5,7.7]
9 ∗ [160.0,180.0] [110.0,120.0] [40.0,60.0] ∗

10 [820.0,860.0] [200.0,220.0] [120.0,140.0] [50.0,70.0] [5.4,6.0]
11 [4000.0,4100.0] [50.0,60.0] [210.0,220.0] [60.0,90.0] [3.4,3.6]
12 [4020.0,4050.0] [35.0,45.0] [210.0,250.0] [70.0,100.0] [2.0,2.6]
13 [2600.0,2800.0] [30.0,40.0] [280.0,300.0] [140.0,160.0] [2.0,3.0]
14 ∗ [0,20.0] [300.0,320.0] [160.0,180.0] [2.0,2.4]
15 ∗ [25.0,35.0] [290.0,300.0] [210.0,240.0] [0,3.0]
16 [2400.0,2500.0] [150.0,160.0] [230.0,240.0] ∗ [4.4,5.0]
17 [1700.0,1800.0] [50.0,60.0] [300.0,320.0] [20.0,30.0] [5.0,5.4]
18 [600.0,800.0] [160.0,180.0] [120.0,140.0] [150.0,170.0] [9.6,10.6]
19 [5000.0,5200.0] ∗ [220.0,240.0] ∗ [8.0,9.0]
20 ∗ [150.0,160.0] [230.0,240.0] ∗ [10.0,10.6]
21 [810.0,860.0] [200.0,220.0] [200.0,220.0] [200.0,210.0] ∗
22 ∗ [180.0,200.0] [120.0,150.0] ∗ [6.0,7.2]
23 [2800.0,2900.0] [160.0,180.0] [140.0,170.0] ∗ ∗

Index Air-to-air Marine radar Disturbing Disturbed Intention
radar status status state state

1 1 0 1 0 A
2 1 ∗ ∗ 0 A
3 1 ∗ 1 ∗ A
4 1 1 1 1 A
5 1 1 ∗ ∗ S
6 1 1 1 ∗ S
7 1 1 0 ∗ R
8 1 1 0 0 R
9 1 1 0 ∗ R

10 1 ∗ 0 1 R
11 ∗ 1 0 ∗ C
12 1 1 ∗ 0 C
13 1 1 1 1 P
14 1 ∗ 1 1 P
15 ∗ 1 1 1 P
16 1 ∗ 1 0 F
17 1 0 1 ∗ F
18 0 1 ∗ 0 D
19 ∗ 0 0 0 D
20 0 ∗ 0 0 D
21 0 ∗ 0 0 D
22 1 1 ∗ ∗ E
23 ∗ 1 1 0 E

In Table 3, "*" denotes that the value of the corresponding air combat attribute is unknown.
In order to utilize the real-time data to train the LSTM networks, we choose the size of time

window p = 4. The number of cells of LSTM networks is 12.
Furthermore, in order to demonstrate the efficiency and feasibility of the proposed state prediction

approach, ARIMA method [6] is compared with LSTM networks method in this part. We choose the
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real-time numeric data of time 1 to time 14 as the training set, time 15 as the test set to test the predicted
results. The simulation results are shown in Tables 4 and 5.

Table 4. The state predicted value at time 15 of ARIMA and LSTM networks.

Predicted value

Method Azimuth Distance Velocity Heading angle Height
(mil) (km) (m/s) (◦) (km)

ARIMA 2996.0 65.7 297.7 9.6 1.7
LSTM networks 2512.5 71.8 294.3 9.3 2.6

Table 5. The performance comparisons of ARIMA and LSTM networks.

Error

Method Azimuth Distance Velocity Heading angle Height

ARIMA 468.0 9.3 6.7 3.6 0.9
LSTM networks 15.5 3.2 3.3 3.3 0

Test time (s)
Method Azimuth Distance Velocity Heading angle Height

ARIMA 3.13 2.20 2.34 3.77 1.69
LSTM networks 2.42 2.11 2.65 0.86 0.92

From the performance comparisons of ARIMA and LSTM networks, prediction accuracy of LSTM
networks is significantly better than ARIMA. For example, the predicted result of ARIMA in the
azimuth is totally wrong. On the other hand, the training time using LSTM networks is one of the
drawbacks but the state prediction can be parallelized on military systems with high performance
computer systems.

The output of LSTM networks and the predicted state data of target are shown in Table 6.

Table 6. The predicted state data of target.

Time Azimuth Distance Velocity Heading angle Height
(mil) (km) (m/s) (◦) (km)

16 2526.0 60.7468 284.9901 8.4227 2.4236

Time Air-to-air Marine radar Disturbing Disturbed
radar status status state state

16 1 0 1 0

In Table 6, the predicted values of azimuth, distance, velocity, heading angle and height are
obtained by the LSTM networks.

In accordance with fuzzy inference, a fuzzy incomplete decision table of historical numeric data
part is generated as Table 7.
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Table 7. The fuzzy incomplete decision table of historical numeric data part. (the bold is used to mark
off decision attribute and condition attributes).

Index Azimuth Distance Velocity Heading angle Height Intention
(mil) (km) (m/s) (◦) (km)

1 East Medium Fast Small Low A
2 ∗ Short Fast Small ∗ A
3 East ∗ Fast Small Low A
4 South ∗ Fast Small Low A
5 South Long Fast Medium Medium S
6 South Long Fast ∗ Medium S
7 North Medium Medium Medium Medium R
8 East Medium ∗ Medium Medium R
9 ∗ Medium Slow Medium ∗ R

10 East Long Slow Medium Medium R
11 West Medium Medium Medium Low C
12 West Short Medium Medium Low C
13 South Short Fast Large Low P
14 ∗ Short Fast Large Low P
15 ∗ Short Fast Large Low P
16 South Medium Medium ∗ Medium F
17 East Short Medium Small Medium F
18 North Medium Slow Large High D
19 West ∗ Medium ∗ Medium D
20 ∗ Medium Medium ∗ High D
21 East Long Medium Large ∗ D
22 ∗ Medium Slow ∗ Medium E
23 South Medium Medium ∗ ∗ E

From Tables 3 and 7, the partitions of all condition attributes can be obtained

U/A = AE, AS, AN , AW , U/D = DS, DM, DL, U/V = VS, VM, VF,
U/Ha = HaS, HaM, HaL, U/H = HL, HM, HH . U/Ars = Ars0, Ars1,

U/Mrs = Mrs0, Mrs1, U/Ds = Ds0, Ds1, U
/

Dds = Dds0, Dds1.

where AE, AS, AN and AW are the partitions of East, South, North and Westin condition attribute
azimuth, DS, DM and DL are the partitions of Short, Medium and Long in condition attribute distance,
VS, VM and VF are the partitions of Small, Medium and Fast in condition attribute velocity, HaS, HaM
and HaL are the partitions of Short, Medium and Large in condition attribute heading angle, HL, HM
and HH are the partitions of Low, Medium and High in condition attribute height, Ars0 and Ars1 are
the partitions of 0 and 1 in condition attribute air-to-air radar status, Mrs0 and Mrs1 are the partitions
of 0 and 1 in condition attribute marine radar status, Ds0 and Ds1 are the partitions of 0 and 1 in
condition attribute disturbing state, Dds0 and Dds1 are the partitions of 0 and 1 in condition attribute
disturbed state.
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Then, we have

AE = {1, 2, 3, 8, 9, 10, 14, 15, 17, 20, 21, 22}, AS = {2, 4, 5, 6, 9, 13, 14, 15, 16, 20, 22, 23},
AN = {2, 7, 9, 14, 15, 18, 20, 23}, AW = {2, 9, 11, 12, 14, 15, 19, 20, 22}.

DS = {2, 3, 4, 12, 13, 14, 15, 17, 19}, DM = {1, 3, 4, 7, 8, 9, 11, 16, 18, 19, 20, 22, 23},
DL = {3, 4, 5, 6, 10, 19, 21}.

VS = {8, 9, 10, 18, 22}, VM = {8, 11, 12, 16, 17, 19, 20, 21, 23},
VF = {1, 2, 3, 4, 5, 6, 7, 8, 13, 14, 15}.

HaS = {1, 2, 3, 4, 6, 16, 17, 19, 20, 22, 23}, HaM = {5, 6, 7, 8, 9, 10, 11, 12, 16, 19, 20, 22, 23},
HaL = {6, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23}.

HL = {1, 2, 3, 4, 9, 11, 12, 13, 14, 15, 21, 23}, HM = {2, 5, 6, 7, 8, 9, 10, 16, 17, 19, 21, 22, 23},
HH = {2, 9, 18, 20, 21, 23}.

Ars0 = {11, 15, 18, 19, 20, 21, 23},
Ars1 = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 19, 22, 23}.

Mrs0 = {1, 2, 3, 10, 14, 16, 17, 19, 20, 21},
Mrs1 = {2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 18, 20, 21, 22, 23}.

Ds0 = {2, 5, 7, 8, 9, 11, 12, 18, 19, 20, 21, 22},
Ds1 = {1, 2, 3, 4, 5, 6, 10, 12, 13, 14, 15, 16, 17, 18, 22, 23}.

Dds0 = {1, 2, 3, 5, 6, 7, 8, 9, 11, 12, 16, 17, 18, 19, 20, 21, 22, 23},
Dds1 = {3, 4, 5, 6, 7, 9, 10, 11, 13, 14, 15, 17, 22}.

According to (9), the decision support degree of each condition attribute with decision attribute
(intention I) can be calculated, which is given by

DSD(A, I) = 0.5836, DSD(D, I) = 0.6154, DSD(V, I) = 0.6538,
DSD(Ha, I) = 0.5746, DSD(H, I) = 0.5938, DSD(Ars, I) = 0.3493,
DSD(Mrs, I) = 0.3561, DSD(Ds, I) = 0.4933, DSD(Dds, I) = 0.5219.

Hence, the condition attribute velocity is selected to be split firstly.
Back to Table 3, sort the endpoints of velocity elements in ascending order and delete the repetitive

endpoints, we have

110, 120, 140, 150, 170, 200, 210, 220, 230, 240, 250, 270, 280, 290, 300, 315, 320, 330

The alternative cutpoints are

115, 130, 145, 160, 185, 205, 215, 225, 235, 245, 260, 275, 285, 295, 307.5, 317.5, 325

The corresponding information entropy of partitioning can be obtained with (15) and (16), which
is shown as follows.

2.0353, 1.9372, 1.8260, 1.8132, 1.5516, 1.5516, 1.5516, 1.5688, 1.5688,

1.4681, 1.4093, 1.4093, 1.4093, 1.5240, 1.6618, 1.8064, 1.8567.

where the minimum information entropy of partitioning is 1.4093, and the first corresponding
alternative cutpoint is 260.0. Therefore, the cutpoint 260.0 is chosen as the optimal cutpoint.

Repeat the process until the decision tree is generated, which is shown in Figure 12.
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Figure 12. The decision tree of uncertain and incomplete priori knowledge in air combat.

Finally, after inputting the predicted state data into the decision tree, the intention of the target is
recognized as attack, and it is consistent with the simulation scenario.

From the LSTM networks predicted results, the predicted model can effectively predict the
variation trend of real-time numeric data. The suitable time window can also solve the lack of training
data problem. In addition, the generated decision tree based on the uncertain and incomplete priori
knowledge indicates that the proposed method is also applicable to deal with the uncertainty and
incompleteness in air combat. Thus, the method presented is practical and effective in intention
prediction of aerial targets.

6. Conclusion

As the basis of future air combat autonomous decision-making systems, intention prediction of
aerial target makes a positive contribution to unmanned systems. In this paper, a state prediction
and intention recognition method is developed. The future state information of a target is predicted
based on LSTM networks from real-time series data, and the uncertainty and incompleteness of priori
knowledge is expressed as an interval-valued number and null value in an air combat information
system. To generate a decision tree based on the uncertain and incomplete historical data, a decision
support degree is applied for node splitting order selection and a split criterion is determined by the
information entropy of partitioning. Then, the target intention is obtained by the predicted data and
the built decision tree. The simulation result shows that the deserved algorithm can predict state and
recognize intention of an aerial target. Therefore, the proposed method could handle the air combat
information system, in which there is a great deal of uncertainty and incompleteness. However, the
relationship between target state and intention needs to be further explored. For future work, air
combat attack decision-making based on target intention is worth considering.
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