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Reinforcement Learning Control of a Flexible
Two-link Manipulator: An Experimental

Investigation
Wei He, Hejia Gao, Chen Zhou, Chenguang Yang, and Zhijun Li

Abstract—This paper discusses control design and experiment
validation of a flexible two-link manipulator (FTLM) system
represented by ordinary differential equations (ODEs). A rein-
forcement learning (RL) control strategy is developed that is
based on actor-critic structure to enable vibration suppression
while retaining trajectory tracking. Subsequently, the closed-loop
system with the proposed RL control algorithm is proved to be
semi-global uniform ultimate bounded (SGUUB) by Lyapunov’s
direct method. In the simulations, the control approach presented
has been tested on the discretized ODE dynamic model and
the analytical claims have been justified under the existence of
uncertainty. Eventually, a series of experiments in a Quanser lab-
oratory platform are investigated to demonstrate the effectiveness
of the presented control and its application effect is compared
with PD control.

Index Terms—Reinforcement Learning, Vibration Control,
Robots, Flexible Structure, Neural Networks.

NOMENCLATURE

XOY The inertial frame of reference
xiOyi The rotating coordinate system, i = 1, 2.
Mi The mass of the ith link
mi The tip mass of the ith link
Li The length of the ith link
li The same length of each element for the ith link
EIi The bending rigidity of the ith link
ρi The mass per unit length of the ith link
Ihi The ith hub moment of inertia
Iti The ith tip load moment of inertia
Ioi The ith link moment of inertia
θi(t) The angular position of the ith hub
ωi(xi, t) The elastic deformation at xi
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τi(t) The control torque of the ith hub
Yi(xi, t) The position at xi of the ith link under XOY
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i
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I. INTRODUCTION

Recently, advanced adaptive control is a research frontier
of robotics and distributed artificial intelligence [1], [2]. Vi-
bration suppression of flexible robots has been an ongoing
interest for many researchers due to its potential astronautical
[3], biomedical [4] and industrial applications [5] such as
extravehicular activities, surgery, and rescue operating. Due to
their light weight, low energy consumption, flexible operation
and fast response, flexible robots are ideal candidates for
using in dynamically demanding applications [6], [7], [8].
The main control goal of the flexible system is to achieve
precise positioning, therefore, the damping of oscillations, also
referred to as vibration suppression, attributed to low stiffness
is imperative [9], [10].

It is well known that flexible robots are distributed pa-
rameter systems, which are generally represented by partial
differential equations (PDEs) [11], [12]. This also contributes
to the complexity and difficulty of vibration control design
based on PDEs model [13], especially when there exists
model uncertainty [14]. Due to the intractability of distributed
parameter systems, only particular solutions are available (e.g.
for the uncertain infinite dimensional distributed systems case,
dimensionality reduction and approximation can be employed
to handle this). For this reason the establishment of discretized
model, also referred to as transformation of PDEs model to
ODEs model [15], [16], [17], is the primary motivating factor
for studies leading to better understanding of flexible vibra-
tion mechanisms and identifications of appropriate vibration
control strategy.

Owing to highly adverse effects of elastic vibration, con-
siderable efforts have been made to build dynamical model of
flexible robots, such as finite difference method (FDM) [18],
lumped parameter method (LPM) [19], assumed mode method
(AMM) [20], finite element method (FEM) [21], etc. [22]. The
dynamic modeling problem of a planar cable-actuated system
was addressed using lumped-mass method in [23]. An efficient
modeling technique using Lagrange’s equation was introduced
in [24], from the computational point of view and/or also
valid in the cases of varying cross sections, of large link
deformations and of time-varying geometrical.
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The technical challenges associated with the vibration
control problem have also attracted the attention of many
scholars [25], [26], [27]. For conventional proportion-integral-
derivative (PID) control, there is a contradiction between
“speediness” and “overshoot” in the closed-loop system. Ad-
ditionally, the closed-loop dynamic properties are sensitive to
the change of PID gains [28]. Therefore, when the controlled
object is in a constantly changing environment, PID gains need
to be adjusted according to the change of the environment.
Therefore, numerous researchers have used adaptive method
to control the flexible structure [29], [30]. In [31] and [32],
the authors proposed adaptive control scheme for a robot via
sliding mode method. In addition, a number of authors have
dealt with adaptive neural network (NN) control problem for
a class of uncertain nonlinear systems [33], [34], [35]. Some
other control methods have also been applied to nonlinear
systems [36], [37], [38]. In [39], the authors proposed an
adaptive dynamic programming (ADP) approach for a class
of nonlinear, time-varying, indefinite and complex systems.
In [40], an adaptive model-free robust control strategy was
presented for a humanoid robot with flexible joints.

Some of the methods involve an efficient adaptive vibration
control techniques with online learning ability known as RL
control [41], [42]. RL is bridging the gap between traditional
adaptive control and bio-inspired learning techniques [43]. It
is shown how a system consisting of two neuron-like adaptive
elements can solve a difficult learning control problem [44].
Actor-critic algorithms, however, had eluded satisfactory con-
vergence analysis until a heuristic analysis was introduced in
[45]. Later, in [46], actor-critic algorithms and their conver-
gence analysis were discussed. Strictly speaking, training NNs
to find approximate solutions is the key to solve the uncertain
dynamical equations. An online adaptive synchronous policy
iteration algorithm which involves both actor and critic NNs
are used in results such as [47], [48] and [49] to solve optimal
control problems for continuous-time nonlinear systems. From
a practical point of view, extension of the RL strategy in [50],
[51] and [52] to solve the optimal tracking control problem
is of critical importance. In [53], a novel ADP reinforcement
learning (RL) control, which combines RL and optimal control
theory to develop an optimal policy on-line is implemented
for a humanoid robot arm. The successful real-time learning
results presented in [54] and [55] are also highly encouraging
for the applicability of RL in practice.

As a matter of fact, the challenge of the control problem for
FTLM is to track the desired position with minimum vibration.
This paper concentrates on an efficient modeling technique to
achieve the transformation of PDEs model to ODEs model and
is concerned with developing an online adaptive RL algorithm
built on actor-critic structure, to achieve the mentioned control
objectives of FTLM systems with uncertain dynamics. Closed-
loop stability while learning the parameters is guaranteed via
Lyapunov design techniques [56], [57]. A primary contribu-
tion of this paper is to successfully present an experimental
investigation of the proposed RL control on Quanser Flexible
Link System.

The paper is organized as follows: subsequent to the p-
resentation of the discretized dynamic model for the FTLM

system a RL controller and discussions about convergence and
stability analysis are investigated. Then, the performance of the
approach is tested for the tracking control and vibration control
of a flexible two-link robotic manipulator through simulations
and experiments.

II. PROBLEM FORMULATION

The Quanser Flexible Link System described in Fig. 1 which
connects the FLEXIBLE module with the physical model and
realizes real-time monitoring is a simplified model of a FTLM
system. The purpose of the paper is to propose a control
scheme to position the robot tip in a plane as rapidly as
possible with minimum elastic deflection. Table I lists the main
parameters associated with the Quanser laboratory platform.

(a) Laboratory setup

(b) Schematic showing details

Fig. 1. The flexible two-link manipulator

Fig. 2 shows the coordinate axes and symbols in dynamic
modeling. Due to the detailed PDE model given in [58], the
following governing and boundary equations are directly used:

ρiŸi(xi) = −EIiω′′′′
i (xi), (1)

τ1 = Ih1θ̈1 − EI1ω
′′
1 (0), (2)

(It1 + Ih2)τ2 = It1Ih2θ̈2 − Ih2EI1ω
′′
1 (L1)

−It1EI2ω′′
2 (L2). (3)

o(t)Ÿ1(L1) + ȯ(t)Ẏ1(L1) + EI2v̇1(t) = EI1ω
′′′
1 (L1), (4)

ρ2L2[Ẏ1(L1)]
2 sin θ2 cos θ2 − EI1ω

′′
1 (L1)

+EI2Ẏ1(L1)v2(t) sin θ2 + EI2ω
′′
2 (0)
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TABLE I
PARAMETERS ASSOCIATED WITH THE QUANSER LABORATORY PLATFORM

Symbol Definition Value Unit
M1 Mass of link 1 0.49 kg
M2 Mass of link 2 0.42 kg
mh2 Mass of drive joint 2 1.00 kg
mt2 Tip mass of link 2 0.157 kg
L1 Length of link 1 0.35 m
L2 Length of link 2 0.30 m
Ih1 Inertia of hub 1 0.0063 kgm2

Ih2 Inertia of hub 2 0.0026 kgm2

Io1 Inertia of link 2 0.02 kgm2

Io2 Inertia of link 2 0.013 kgm2

It2 Tip inertia of link 2 0.0064 kgm2

Y

XO

y1

x1

hub
L1

x2

y2

L2

Y1(x1,t)

Y2(x2,t)

Desired position

Playload

θ 1(t)

θ 2(t)

1(x1,t)ω

2(x2,t)ω

Fig. 2. Coordinate axes and symbols in dynamic modeling

−Ih2[θ̈1 + θ̈2]− It1[θ̈1 + ω̈′
1(L1)]

−m2Ẏ1(L1) sin θ2[2L2θ̇2 + ω̇2(L2)] = 0, (5)
m2Ÿ2(L2) = EI2ω

′′′
2 (L2), (6)

It2[θ̈1 + θ̈2 + ω̈′
2(L2)] + EI2ω

′′
2 (L2) = 0, (7)

ωi(0) = ω′
i(0) = 0, i = 1, 2. (8)

where

Y1(x1) = x1θ1(t) + ω1(x1),

Y2(x2) = x2θ2(t) + ω2(x2) +

∫ t

0

[Ẏ1(L1, ξ) cos θ2(ξ)]dξ,

o(t) = (M2 +m2) sin
2 θ2(t) +m1 +M2,

v1(t) = cos θ2(t)

∫ t

0

ω′′′
2 (0, ξ)dξ,

v2(t) =

∫ t

0

[ω′′′
2 (L2, ξ)− ω′′′

2 (0, ξ)]dξ.

ωi which satisfies (1)-(8) can be described via AMM:

ωi(xi, t) =

µi∑
j=1

Fij(xi)pij(t), i = 1, 2. (9)

where Fij(xi) denotes the assumed spatial mode shapes, pij(t)
is the time-varying variable, and µi is the order of finite-

dimensional model. Considering ( βL )
4 = ρ

EIω
2, the general

solution of Fij(xi):

Fij(xi) = Bij [cos(βijxi)− cosh(βijxi)

−γij(sin(βijxi)− sinh(βijxi))]. (10)

where βij is the solution of the following function:

[1 + cos(βij li) cosh(βij li)]

−mhiβij
ρi

[sin(βij li) cosh(βij li)− cos(βij li) sinh(βij li)]

−
Itiβ

3
ij

ρi
[sin(βij li) cosh(βij li) + cos(βij li) sinh(βij li)]

+
Itimhiβ

4
ij

ρ2i
(1− cos(βij li) cosh(βij li)) = 0. (11)

The time function pij(t) is shown as follows:

pij(t) = exp(jνijt), (12)

Then, we can obtain γij :

γij =
mhiβijk1 + ρik2
mhiβijk3 + ρik4

(13)

where k1 = cos(βij li) − cosh(βij li), k2 = sin(βij li) −
sinh(βij li), k3 = sin(βij li) − sinh(βij li) and k4 =
cos(βij li) + cosh(βij li).

When mti = 0, Bij = 1/
√
L; when mti > 0,

Bij =
1√

L+
4ρimti(sin(βij li) sinh(βij li))2

[mhiβijM3−ρiM4]2

(14)

Define the state as q = [θ, p]T , where θ = [θ1, θ2]
T ,

the flexible generalized coordinate vector is represented by
p = [p11, ..., p1n1 , p21, ..., p2n2 ]

T , where N = n1 + n2. A
linear dynamic model is achieved via Lagrange equations:

A(q)q̈ +O(q, q̇)q̇ +H(q) = τ(t). (15)

where τ ∈ R(N+2) = [τ1, τ2, 0, ..., 0]T denotes the control
force at each joint. A(q), O(q, q̇) ∈ R(N+2)×(N+2) are the
inertia matrix, the matrix of coriolis and centripetal forces,
respectively. H(q) ∈ R(N+2) represents the stiffness matrix.

III. CONTROL DESIGN

The actor-critic algorithm is an adaptive iterative method
which consists of a strategy evaluation section and a strategy
improvement section. The actor neural network uses radial
basis function (RBF) NN to gradually accumulate the system
experience to generate the appropriate control strategy, and
the critic neural network is used to approximate the evaluation
function for the current strategy. The actor-critic structure is
shown in Fig. 3.

A. Design for Critic Neural Network

By comparing the difference between the output of the
controlled object and the reference input, the critic neural
network tests the performance of the current control strategy
and generates rewards/punishments as the feedback value for
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Fig. 3. Actor-critic structure

adaptive learning. Introduce a long-term cost function:

I(t) =

∫ ∞

t

e−
m−t
ψ φ(m)dm. (16)

where ψ represents a constant to discount the future cost. φ(t)
is an instant cost function:

φ(t) = (q − qr)
TD(q − qr) + τTRτ. (17)

where D > 0 and R > 0, and qr is the desired state. To
achieve optimal control, we need to minimize the cost-to-go.

A RBFNN is a function approximator, which has advantages
of parallel computing, fault tolerance and self-learning. For a
continuous function f(Z) : Rk → R, the RBFNN is as

f(Z) =WTS(Z). (18)

where Z ∈ Ω ⊂ Rk represents the input, W ∈ Rℓ is the weight
with nodes number ℓ > 1. S(Z) = [s1(Z), s2(Z), ..., sℓ(Z)]

T

is the basic function, where

si(Z) = exp[
−(Z − ui)

T (Z − ui)

η2i
], i = 1, 2, ..., ℓ. (19)

where ui = [ui1, ui2, ..., uik] is the center of receptive
field and ηi is the width of the Gaussian function. In addition,
RBFNN can be an approximation of any continuous function
over a compact set Ωz ⊂ Rk to any desired precision.

f(Z) =W ∗TS(Z) + ϵ, ∀Z ∈ Ωz. (20)

where ϵ is a bounded approximation error.
Define I = W ∗T

c Sc(Zc) + ϵc and Î = ŴT
c Sc(Zc) with

Zc = z1 = q − qr, Sc(Zc) is the basic function of the critic
NN. According to (17), the approximation error of the cost-
to-go function can be represented as

γ(t) = φ(t)− 1

ψ
Î(t) +

˙̂
I(t). (21)

As the constant ψ → ∞, γ(t) can be obtained:

γ(t) = φ(t) +
˙̂
I(t) = φ(t) +▽Î(t)Żc. (22)

where ▽ is defined as the gradient to Zc. Design the updating
law of the critic NN:

˙̂
Wc = −σc

∂Ec

∂Ŵc

. (23)

where Ec = 1
2γ

T γ. Substituting (22) into (23), we have

˙̂
Wc = −σcγ(t)

∂γ

∂Ŵc

= −σcγ(t)
∂[φ(t)− 1

ψ Î(t) +
˙̂
I(t)]

∂Ŵc

= −σcγ(t)[−
1

ψ

∂Î

∂Ŵc

+
∂

∂Ŵc

∂Î

∂Zc
Żc]

= −σc(φ(t) + ŴT
c Λ)Λ. (24)

where σc > 0 represents the learning rate, Λ = −Sc
ψ +∇ScŻc.

B. Design for Actor Neural Network
The actor neural network consists of a RBFNN and the

appropriate control strategy is generated by gradually accu-
mulating the system experience.

Given the tracking errors z1 and z2 as z1 = q − qr, z2 =
q̇−α1, where define α1 = q̇r−K1z1, K1 ∈ R(N+2)×(N+2) =
KT

1 > 0, we have

ż1(t) = z2 + α1 − q̇r = z2 −K1z1, (25)
ż2(t) = A−1[τ −H(q)−O(q, q̇)q̇]− α̇1. (26)

Consider a Lyapunov function V1 = 1
2z
T
1 z1.

V̇1 = zT1 ż1 = zT1 z2 − zT1 K1z1. (27)

To deal with zT1 z2 in (27), define V2 = V1 +
1
2z
T
2 Az2, so

V̇2 = zT1 z2 − zT1 K1z1

+zT2 [τ −O(q, q̇)q̇ −H(q)−Aα̇1]. (28)

Therefore, design the desired control torque as

τ1 = −z1 −K2z2 +H(q) +O(q, q̇)q̇ +Aα̇1. (29)

where K2 ∈ R(N+2)×(N+2), λmin(K2) > 0. However,
since the system dynamics information H(q), O(q, q̇)q̇ and
Aα̇1 is unavailable, we propose an actor neural network to
approximate the system uncertainties.

τ2 = −z1 −K2z2 +W ∗T
a Sa(Za) + ϵa. (30)

where Ŵa and W ∗
a are the estimated value and the optimal

value of the weight and Ŵa = W̃a + W ∗
a with Za =

[qT , q̇T , qTr , q̇
T
r , q̈

T
r ], Sa(Za) is the basic function of the

actor NN and ϵa is the estimation error of the actor NN.
Therefore, the control input can be described:

τ3 = −z1 −K2z2 + ŴT
a Sa(Za). (31)

Define the current estimation error as

ζa = W̃T
a Sa(Za). (32)

Then, design the error with the actor neural network

ea = ζa +KI(Î(t)− Id(t)). (33)

where Id(t) = 0 represents the ideal value of cost-to-go and
KI ⊂ RN+2 > 0. Subsequently, design:

Ea =
1

2
eTa ea. (34)

Design the updating law for the actor neural network as

˙̂
Wa = −σa

∂Ea

∂Ŵa

. (35)

Substituting (34) to (35), we have

˙̂
Wa = −σa

∂Ea
∂ea

∂ea
∂ζa

∂ζa

∂Ŵa

= −σa(ζa +KI Î)Sa(Za). (36)
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where the learning rate σa > 0. When ζa is unknown, a new
updating law is defined as

˙̂
Wa = −σa(ŴT

a Sa(Za) +KI Î)Sa(Za). (37)

C. Stability Analysis

Design Vc as

Vc =
1

2
W̃T
c W̃c. (38)

Substituting (24) to (38),

V̇c = W̃T
c

˙̃Wc = W̃T
c

˙̂
Wc = −σcW̃T

c (φ(t) + ŴT
c Λ)Λ. (39)

Lemma 1: [59] T is a finite moment at the end of the
reinforcement learning process. When T is infinite, there is a
feasible method (gradient descent) to make the cost function
converge to a smaller range at the minimum.

That is, γ(t) ≤ ~, where ~ is a small constant. Thus, φ(t) ≤
1
ψ I − İ + ~. Then, we have

φ(t) ≤ W ∗T
c

Sc
ψ

+
ϵc
ψ

−∇IŻc + ~

≤ W ∗T
c

Sc
ψ

+
ϵc
ψ

−∇(W ∗T
c Sc(Zc) + ϵc)Żc + ~

≤ −W ∗T
c Λ + εc. (40)

where εc = ϵc
ψ +∇ϵcŻc+~, and εc is bounded, ∥εc∥ ≤ εc,max.

Combining (39) and (40), we have

V̇c ≤ −σcW̃T
c (W̃cΛ + εc)Λ

≤ −σcΛTΛW̃T
c W̃c − σcW̃

T
c εcΛ

≤ −σcΛTΛ
2

W̃T
c W̃c +

σc
2
εTc εc (41)

Introduce a Lyapunov function as

V =
1

2
zT1 z1 +

1

2
zT2 Bz2 +

1

2
W̃T
a W̃a +

1

2
W̃T
c W̃c. (42)

So its derivative is expressed as

V̇ = zT1 ż1 + zT2 Bż2 + W̃T
a

˙̃Wa + W̃T
c

˙̃Wc. (43)

Substituting (24) and (37) to (43), we have

V̇ ≤ −zT1 K1z1 − zT2 K2z2 + zT2 (W̃
T
a Sa − εa)

−σaW̃T
a Sa(Ŵ

T
a Sa(Za) +KI Î)

−σcW̃T
c (W̃T

c Λ + εc)Λ. (44)

As Î =W ∗T
c Sc(Zc) + W̃T

c Sc(Zc), we can obtain

ÎT Î ≤ 2(W ∗T
c Sc)

TW ∗T
c Sc + 2(W̃T

c Sc)
T W̃T

c Sc. (45)

Substituting (45) to (44), we have

V̇ ≤ −zT1 K1z1 − zT2 (K2 − E)z2 −
σa − 1

2
∥ W̃a ∥2∥ Sa ∥2

−σcΛ
TΛ− 2σaK

2
I ∥ Sc ∥2

2
∥ W̃c ∥2

+
σa
2

∥W ∗
c ∥2∥ Sc ∥2 +σaK

2
I ∥W ∗

c ∥2∥ Sc ∥2

+
1

2
∥ ϵa ∥2 +

1

2
∥ εc,max ∥2

≤ −aV + b (46)

where E presents a identity matrix and

a = min(K1,K2 − E,
σa − 1

2
b2s,

σcb
2
Λ − 2σaK

2
I ∥ Sc ∥2

2
)

b =
σa
2

∥W ∗
a ∥2∥ Sc ∥2 +σaK

2
I ∥W ∗

c ∥2∥ Sc ∥2

+
1

2
∥ ϵa ∥2 +

1

2
∥ εc,max ∥2 (47)

where bs ≤∥ Sa ∥ and bΛ ≤∥ Λ ∥. In order to ensure a > 0,
the following conditions need to be considered.

λmin(K1) > 0, λmin(K2 − E) > 0, λmin(σa − 1) > 0,

λmin(σcb
2
Λ − 2σaK

2
I ∥ Sc ∥2) > 0.

Theorem 1: When there exists the bounded initial states,
z1, z2, W̃a and W̃c are semi-global uniform ultimate bounded
(SGUUB). Besides, z1, z2, W̃a and W̃c, will ultimately remain
within Ωz1 , Ωz2 , ΩW̃a

and ΩW̃c
respectively, defined as

Ωz1 = {z1 ∈ RN+2 |∥ z1 ∥≤
√
P}, (48)

Ωz2 = {z1 ∈ RN+2 |∥ z2 ∥≤

√
P

λmin(B)
}, (49)

ΩW̃a
= {W̃a ∈ Rℓ×(N+2) |∥ W̃a ∥≤

√
P}, (50)

ΩW̃c
= {W̃c ∈ Rℓ |∥ W̃c ∥≤

√
P}. (51)

where P = 2(V (0) + b
a ), a > 0 and b > 0.

Proof: Multiplying (46) by eat yields

d

dt
(V eat) ≤ beat. (52)

Based on (52),

V ≤ (V (0)− b/a)e−at + b/a ≤ V (0) + b/a. (53)

It is obvious that 1
2z
T
2 Bz2 ≤ V (0)+ a

b , 1
2z
T
1 z1 ≤ V (0)+ b

a ,
1
2W̃

T
a W̃a ≤ V (0) + b

a and 1
2W̃

T
c W̃c ≤ V (0) + b

a , then

∥ z1 ∥2≤ 2(V (0) + b/a), (54)

∥ z2 ∥2≤ 2
V (0) + b/a

λmin(B)
, (55)

∥ W̃a ∥2≤ 2(V (0) + b/a), (56)
∥ W̃c ∥2≤ 2(V (0) + b/a). (57)

By the above theoretical discussion, the closed-loop system
is proved to be semi-global uniformly ultimately bounded
(SGUUB), with output error converging to a residual set.

IV. SIMULATIONS

To observe the performance comparison of traditional con-
trol and the RL control presented in this paper for flexible two-
link manipulator systems, simulation results without control,
with PD control and RL control are offered. The detailed
parameters are specified as Table I.

A. Simulation Results Without Control

Based on the analytical and numerical method, free vibra-
tion of the FTLM system with rotating motion is analyzed.
When there is interference τi shown in Fig. 4, flexible links
are affected by external force so that they are not steady with
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continuous vibration. The reference trajectories θid and the
tracking trajectories θi for the open-loop system are shown
in Fig. 4. Based on the discretized model, when we give the
system a small disturbance, The angular positions θi increase
gradually, even exceeding the desired angular position. The
tracking trajectory will be far from the expected value without
control.
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Fig. 4. Tracking trajectories and control torques of the open-loop system

B. Simulation Results using PD Control

Based on the established ODE model with the initial states
q = 0, design a PD controller with two control gains Kp =
[5, 5]T and Kd = [1.5, 1.5]T :

τi = −Kp(θi − θid)−Kdθ̇i, i = 1, 2. (58)

Based on θi, τi shown in Fig. 5 and tip position Y (x, t)
shown in Fig. 6, θi is steady in 2 s and θ1 has a large
overshoot within the range of -0.2 to 0.2 rad and Y (L, t) has
a large vibration within the range of -0.05 to 0.05 m when
t = 1, 5, 10, 15 s.

Using the PD controller, the system can track the desired
trajectory. However, there occurs a large vibration which is
not allowed in practice engineering. Therefore, suppressing
vibration is an urgent problem to be solved.

C. Simulation Results for Reinforcement Learning Control

Considering a RL control:

τi = −z1 −K2z2 + ŴT
a Sa(Za). (59)

The principle of actor-critic algorithm is that the actor neural
network generates a control input according to the actor
function, then the critic neural network evaluates the control
performance according to the critic function. Then, adjust the
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Fig. 5. Tracking trajectories and control torques using PD control

(a) Tip position for the first link (b) Tip position for the second link

Fig. 6. Tip positions using PD control

action function to increase the selection probability of the
control input with good performance. Subsequently, adjust
the value function to make the value function more in line
with expectations. At first, the actor neural network randomly
generates control inputs, and the critic neural network scores
randomly. After repeated iterations, the critic neural network
is more and more accurate, and the control performance of the
actor neural network is getting better and better.

Model parameters are selected as n1 = n2 = 2. In addition,
256 nodes and 64 nodes are considered in actor and critic
neural network, respectively. The center parameters are chosen
as either -1 or 1. ηa = 2, ηc = 0.5, Ŵai = 0 (i = 1, 2, ..., 256)
and Ŵci = 0 (i = 1, 2, ..., 64). Learning rates σa and σc are
chosen as 100 and 0.1 respectively. Additionally, the control
gains K1 = 3, K2 = 8, and KI = 50. In the cost function,
Q = R = 0.1E7×7.

Based on θi, τi shown in Fig. 7 and tip position Y (x, t)
shown in Fig. 8, θi is steady in 1 s and large overshoots of θ1
when t = 1, 5, 10, 15 are reduced to a small neighborhood
of zero via RL control.
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Fig. 8. Tip positions using reinforcement learning control

V. EXPERIMENTS

In the Quanser Two-Link Flexible Plant described in Fig.
9(a), the SRV02 device consists of DC motor loaded with
solid aluminum frame and a harmonic gear gearbox. Quanser
SRV02 incorporates a Faulhaber Coreless DC Motor model
2338S006 which is a high efficiency, low inductance motor
and can obtain a much faster response than a conventional
dc motor. Besides, the SRV02 have an optical encoder (The
resolution is 4096 times per rotation in orthogonal mode)
installed that measures the angular position of the load shaft
θi. The strain gauge provides a tip vibration measurement αi.
The tachometer can be used to measure the velocity. In addi-
tion, the experimental platform also includes other important
components, including multi channel linear current amplifier,
filter device, data acquisition board and host. VoltPAQ-X1
amplifier processes sensor signals θi and αi. Subsequently,
A-D conversion is carried out in the data acquisition board
which is connected with the host computer. Then, the control
algorithm is implemented and control torques signals are
generated.

As shown in Fig. 9 (b), the central position is displayed.

Fig. 9 (b-f) the specification of the Quanser Two-Link Flexible
Plant shows the max. displacement (+/- 90 degrees) of Axis
1, 2, respectively.

(a) Quanser Two-Link Flexible
Plant

(b) Central position

(c) Max. displacement-case 1 (d) Max. displacement-case 2

(e) Max. displacement-case 3 (f) Max. displacement-case 4

Fig. 9. specification of the Quanser Two-Link Flexible Plant

The PD and RL controller are designed by MATLAB
Simulink models shown in Fig. 10 and Fig. 11, respectively. In
the PD Simulink shown in Fig. 10, the amplitude of reference
trajectories θid (i = 1, 2) are chosen as 15◦ and 10◦, respec-
tively. Gains are set as Kp = [5, 8]T , Kd = [0.01, 0.01]T . In
the RL Simulink shown in Fig. 11, control gains are chosen
as K1 = 3, K2 = 8, and KI = 50. The other parameters are
same as Section IV.

Fig. 10. Simulink diagram for PD control

The real time plots θi and αi of PD control are revealed
in Fig. 12 and Fig. 13, respectively. As for the tracking
performance of PD control, θ1 shown in Fig. 12 (a), has an
overshoot of -1◦ to 1◦ during t = 0 s to t = 2 s and an
overshoot of -2.5◦ to 2.5◦ deg during t = 10 s to t = 12 s.
θ2 shown in Fig. 12 (b), has an overshoot of -3◦ to 3◦ during
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Fig. 11. Simulink diagram for RL control

t = 0 s to t = 4 s, an overshoot of -4.5◦ to 4.5◦ during t = 10
s to t = 14 s and an overshoot of -1◦ to 1◦ during t = 15 s to
t = 17 s. As for the vibration suppression performance of PD
control, α1 shown in Fig. 13 (a) and α2 shown in Fig. 13 (b),
reach a steady-state finally with a vibration range from -0.6◦

to 0.6◦.
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(a) Tracking trajectory for the first link
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(b) Tracking trajectory for the second link

Fig. 12. Tracking trajectories for PD control

The real time plots θi and αi of RL control are revealed
in Fig. 15 and Fig. 16, respectively. As for the tracking
performance of RL control, θ1 shown in Fig. 15 (a), tracks
the desired trajectory accurately and quickly. The rise time
has been greatly reduced, and large overshoots have also been
resolved. θ2 shown in Fig. 15 (b), has an overshoot of -1◦ to
1◦ during t = 0 s to t = 4 s and an overshoot of -2◦ to 2◦

during t = 10 s to t = 14 s. And the overshoot during t = 15
s to t = 17 s shown in Fig. 12 (b) are removed. As for the
vibration suppression performance of RL control, α1 shown in
Fig. 16 (a) and α2 shown in Fig. 16 (b), reach a steady-state
finally with a vibration range from -0.1◦ to 0.1◦. Therefore,

[d
e
g
]

(a) Elastic vibration for the first link

[d
e
g
]

(b) Elastic vibration for the second link

Fig. 13. Tip deflections for PD control

(a) PD control for the first link

(b) PD control for the second link

Fig. 14. PD control inputs

the vibration suppression performance is also multiplied.
Comparing the experimental results of PD and RL control

strategy, it can be observed that the vibration of the flexible
two-link manipulator reaches ±4.5◦ during the trajectory
tracking process, and the vibration attenuation time reaches
4 seconds under PD control. The RL approach will control
the maximum vibration of the flexible two-link manipulator
at ±2◦. In addition, the end vibration is only suppressed
within ±0.6◦ in half tracking period (10 seconds), while the
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Fig. 15. Tracking trajectories for reinforcement learning control
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(a) Elastic vibration for the first link
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(b) Elastic vibration for the second link

Fig. 16. Tip deflections for reinforcement learning control

RL control can suppress the end vibration within ±0.1◦ in
half tracking period (10 seconds). Therefore, the RL control
strategy has feasibility and stability in suppressing vibration,
especially in engineering with high precision requirements.

VI. CONCLUSIONS

In this paper, we present a RL controller for vibration
suppressing of a FTLM system while trajectory tracking. The
RL controller consists of an actor neural network, where
the appropriate control strategy is generated by gradually

(a) Reinforcement control for the first link

(b) Reinforcement control for the second link

Fig. 17. Reinforcement control inputs

accumulating the system experience, and a critic neural net-
work, where the evaluation function for the current strategy is
approximated. The persistent feasibility and stability of the RL
controller are proved. We thereafter detail an implementation
of the RL controller on a Quanser test platform, where its
application effect is compared with PD control. In a compre-
hensive manner, the experimental results indicate the practical
applicability of the RL controller.

In the future, the application of reinforcement learning
technology to other complex flexible structures will be a
worthwhile research direction. We also will further consider
a integral term to the Quanser platform and introduce a PI
or PID controller as the comparison. In addition to tracking
control, reinforcement learning can also be used to complete
fixed-point control in location space. Future works will focus
on optimizing vibration control performance while achieving
fixed-point control.
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