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Abstract: 11 

Rapid and accurate biomass and yield estimation facilitates efficient plant phenotyping 12 

and site-specific crop management. A low altitude unmanned aerial vehicle (UAV) was 13 

used to acquire RGB and hyperspectral imaging data for a potato crop canopy at two 14 

growth stages to estimate the above-ground biomass and predict crop yield. Field 15 

experiments included six cultivars and multiple treatments of nitrogen, potassium, and 16 

mixed compound fertilisers. Crop height was estimated using the difference between 17 

digital surface model and digital elevation models derived from RGB imagery. Combining 18 

with two narrow-band vegetation indices selected by the RReliefF feature selection 19 

algorithm. Random Forest regression models demonstrated high prediction accuracy for 20 

both fresh and dry above-ground biomass, with a coefficient of determination (r2) > 0.90. 21 

Crop yield was predicted using four narrow-band vegetation indices and crop height (r2 = 22 

0.63) with imagery data obtained 90 days after planting. A Partial Least Squares 23 

regression model based on the full wavelength spectra demonstrated improved yield 24 

prediction (r2 = 0.81). This study demonstrated the merits of UAV-based RGB and 25 

hyperspectral imaging for estimating the above-ground biomass and yield of potato crops, 26 

which can be used to assist in site-specific crop management. 27 

 28 

Key words: unmanned aerial vehicle; hyperspectral imaging; potato; above-ground 29 

biomass; yield prediction 30 

 31 



 

2 
 

1. Introduction 32 

Potato (Solanum tuberosum L.) is the fourth most important staple food in the world. 33 

Consequently, improving potato production without negative environmental 34 

consequences is important for ensuring global food security. Above-ground biomass 35 

(AGB) is closely related to crop nutrition status and yield; hence, it can be used as an 36 

indicator of crop growth status. Understanding the spatio-temporal dynamics of AGB and 37 

its relationship to yield is essential for developing and implementing site-specific crop 38 

husbandry measures. AGB is commonly measured using manual sampling, which is 39 

extremely time-consuming (Freeman et al., 2007), while yield prediction is largely 40 

dependent on subjective, often inaccurate, and labour-intensive ground-based visits 41 

(Reynolds et al., 2000).  42 

 43 

Remote sensing is an efficient technique for measuring growing season crop canopies 44 

and to provide information on the spatial variability of crop AGB and yield. RGB imaging 45 

is a low-cost solution that can be used for AGB estimation. For example, Bendig et al. 46 

(2014) calculated crop height using a digital surface model (DSM) derived from 47 

unmanned aerial vehicle (UAV) based RGB imaging as an indicator of AGB; however, 48 

model accuracy was cultivar dependent. In addition to crop height, canopy cover and 49 

volume were found to be good predictors of onion dry bulb biomass (Ballesteros et al., 50 

2018). For example, a vegetation index (VI) weighted canopy volume model incorporating 51 

canopy area, height, and VIs derived from RGB imaging produced an accurate prediction 52 

of soybean biomass for different genotypes (Maimaitijiang et al., 2019). With the use of 53 

spectral imaging sensors in agriculture, VIs are commonly used to estimate AGB and 54 

predict yields for wheat (Raun et al., 2001; Yue et al., 2017), barley (Hansen et al., 2002; 55 

Tilly et al., 2015), maize (Gitelson et al., 2003; Shanahan et al., 2001), rice (Swain et al., 56 

2010), and cotton (Bai et al., 2007; Zhao et al., 2007).  57 

 58 

Single broad-band VIs, such as the normalised difference vegetation index (NDVI), 59 

employ limited spectral information (Mutanga and Skidmore, 2004); thus, multiple VIs are 60 

commonly combined as predictor variables. For example, a random forest (RF) model 61 

based on multiple broad-band VIs was developed to estimate wheat biomass by Wang et 62 

https://paperpile.com/c/YoFnEi/Niq3
https://paperpile.com/c/YoFnEi/ugBO
https://paperpile.com/c/YoFnEi/QReH
https://paperpile.com/c/YoFnEi/QReH
https://paperpile.com/c/YoFnEi/TkZO+12V0
https://paperpile.com/c/YoFnEi/4DTr+jxx5
https://paperpile.com/c/YoFnEi/4DTr+jxx5
https://paperpile.com/c/YoFnEi/70jY+DdW4
https://paperpile.com/c/YoFnEi/by7t
https://paperpile.com/c/YoFnEi/by7t
https://paperpile.com/c/YoFnEi/sCP4+NIZT
https://paperpile.com/c/YoFnEi/13g7
https://paperpile.com/c/YoFnEi/oxSg
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al. (2016) and was found to perform better than both artificial neural network (ANN) and 63 

support vector regression (SVR) models. Similarly, an RF model derived using VIs and 64 

crop height-related metrics from a crop surface model was able to predict maize biomass 65 

with a slightly higher accuracy than ANN and SVR models (Han et al., 2019). Narrow-66 

band VIs (Haboudane et al., 2002) have been developed to utilise hyperspectral sensors 67 

and powerful data mining techniques. A partial least squares (PLS) regression model 68 

based on all pairwise two-band NDVI combinations predicted wheat AGB satisfactorily 69 

(Hansen and Schjoerring, 2003). A range of VIs was selected using a support vector 70 

machine (SVM) and the weighted difference vegetation index was found to have the best 71 

predictive power for grassland AGB (Clevers et al., 2007). Due to the lack of three-72 

dimensional (3D) canopy structure information, there are difficulties in using spectral 73 

imaging exclusively to estimate the plant biomass of various heights and densities 74 

(Greaves et al., 2015). For example, a fused multivariate model with plant height and 75 

narrow-band VIs was introduced to predict barley biomass, and showed better 76 

performance than using VIs only (Tilly et al., 2015). Currently, there is limited research 77 

regarding the use of remote sensing to estimate the AGB of potato. The cumulative ratio 78 

of the radiance of the near-infrared and red bands was related to potato crop dry biomass; 79 

however, such a relationship was dependent on crop nitrogen (N) status (Millard et al., 80 

1990). 81 

 82 

Remote sensing methods for crop yield prediction currently rely on broad-band VIs such 83 

as the NDVI (Huang et al., 2013; Prasad et al., 2006; Raun et al., 2001; Vergara-Díaz et 84 

al., 2016). While the NDVI is related to yield, it can be influenced by other factors, 85 

including the soil background and light conditions (Thenkabail et al., 2016). Consequently, 86 

other broad-band VIs have also been used as indicators for crop yield. For example, the 87 

area of the red edge peak was correlated with wheat grain yield by Cao et al. (2015), 88 

while a simple ratio had a higher correlation with wheat yield compared to NDVI and the 89 

photochemical reflectance index (Aparicio et al., 2000). Furthermore, the green 90 

normalised difference vegetation index was highly correlated with corn grain yield 91 

(Shanahan et al., 2001). Using hyperspectral sensors, there are more narrow-band VIs 92 

available for yield prediction. Both stepwise multiple linear regression (MLR) and ANN 93 

https://paperpile.com/c/YoFnEi/oxSg
https://paperpile.com/c/YoFnEi/YK34
https://paperpile.com/c/YoFnEi/mE2K
https://paperpile.com/c/YoFnEi/UBRC
https://paperpile.com/c/YoFnEi/jxx5
https://paperpile.com/c/YoFnEi/8sPT+12V0+KlxE+hqFZ
https://paperpile.com/c/YoFnEi/8sPT+12V0+KlxE+hqFZ
https://paperpile.com/c/YoFnEi/3BS0
https://paperpile.com/c/YoFnEi/PGGY
https://paperpile.com/c/YoFnEi/ohvj
https://paperpile.com/c/YoFnEi/DdW4
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models based on narrow-band VIs predicted corn yield well (Uno et al., 2005). However, 94 

narrow-band VIs lose a large amount of spectral information, which may explain why yield 95 

predictive models based on these VIs are often cultivar specific (Montesinos-López et al., 96 

2017). A chemometric analysis using all bands as predictor variables improved the 97 

prediction accuracy over using VIs alone for wheat yield prediction (Montesinos-López et 98 

al., 2017). Furthermore, improved predictive performance was achieved for citrus yield 99 

using a PLS model with all bands compared to MLR models with narrow-band VIs (Ye et 100 

al., 2007). For potato yield prediction, a soil adjusted vegetation index derived from 101 

satellite imagery was found to correlate with potato yield (Al-Gaadi et al., 2016). The red-102 

edge chlorophyll index 1 (CI1) predicted total potato yield as early as 55 days after 103 

planting (DAP) with a reasonable accuracy (Morier et al., 2015). However, there is limited 104 

research using multiple VIs or the full spectra from UAV-based hyperspectral imaging to 105 

predict potato yield.  106 

 107 

Compared with ground-based and satellite-based remote sensing techniques, UAV-108 

based imaging can achieve satisfactory temporal, spatial, and spectral resolution 109 

(Sankaran et al., 2015). This study applies UAV-based RGB and hyperspectral imaging 110 

to: (1) compare estimations of crop height using the DSM-based method and the full 111 

spectra PLS regression model; (2) predict AGB using the RF model with VIs and crop 112 

height, and compare the performance of the RF model with the full spectra PLS 113 

regression model; and (3) predict yield using the RF model with crop height and VIs, and 114 

compare the performance of the RF model with the full spectra PLS regression model.  115 

 116 

2. Materials and methods 117 

2.1. Study Area 118 

Three experiments were conducted at the Chinese Academy of Agricultural Sciences 119 

research station located in Zhangjiakou, Hebei, China (41º 28 ′28.82 ″N, 115º 03 ′43.91 ″E, 120 

and elevation 1390 m). Experiments varied input levels of N, K, and mixed organic-121 

inorganic compound fertilisers to generate different levels of AGB and yield (Fig. 1). Seed 122 

potatoes were sown on the 6th May 2018 and harvested on the 10th September 2018. 123 

Experiment 1 was comprised of five blocks, each with a different N input level (0, 100, 124 

https://paperpile.com/c/YoFnEi/jYyw
https://paperpile.com/c/YoFnEi/u4sg
https://paperpile.com/c/YoFnEi/u4sg
https://paperpile.com/c/YoFnEi/u4sg
https://paperpile.com/c/YoFnEi/u4sg
https://paperpile.com/c/YoFnEi/xlfi
https://paperpile.com/c/YoFnEi/xlfi
https://paperpile.com/c/YoFnEi/SB82
https://paperpile.com/c/YoFnEi/N5ml
https://paperpile.com/c/YoFnEi/vo7y


 

5 
 

200, 300, and 400 kg ha-1). Within each block, there were twelve plots, each sown with 125 

one of four cultivars including Favorita, Zhongshu10 (Z10), Zhongshu18 (Z18), and 126 

Zhongshu19 (Z19). Experiment 2 contained three blocks, with 12 plots per block. Each 127 

block had different K input levels (0, 75, 150, and 225 kg ha-1) with cultivars including 128 

Zhongshu5 (Z5), Z18, and Shepody. Experiment 3 contained three blocks, with 16 plots 129 

per block. Each block was comprised of a combination of eight different mixed compound 130 

fertilisers (see A1 for the details of the mixed compound fertilisers) and two cultivars (Z5 131 

and Z18). 132 

 133 

The plot size in Experiments 1 and 2 was 8 x 5.3 m, containing six rows with 270 evenly 134 

sown seed potatoes. In Experiment 3, plot size was 6 x 5.3 m containing six rows with 135 

210 evenly sown seed potatoes. Of the six cultivars used, Favorita, Z5, and Z10 are early 136 

maturing, while Z18, Z19, and Shepody are late maturing. A selective herbicide (DuPont 137 

Matrix) was applied at the emergence stage to minimise the effect of weeds on image 138 

analysis. 139 
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  140 

Figure 1. Layout of the experimental plots. Potato cultivars Favorita, Shepody, 141 

Zhongshu5 (Z5), Zhongshu10 (Z10), Zhongshu18 (Z18), and Zhongshu19 (Z19) were 142 

planted in three experimental fields receiving different N, K, and mixed compound fertiliser 143 

treatments. The details of the eight different mixed compound fertilisers are shown in A1. 144 

 145 

2.2. Image acquisition and pre-processing 146 

Both RGB and hyperspectral imaging data were obtained under clear sky conditions on 147 

the 5th July and 6th August 2018, approximately 60 and 90 DAP, respectively. The RGB 148 

images were taken by a lightweight UAV (DJI Phantom 4 Pro) equipped with a 20 mega 149 

pixel camera at a flight altitude of 30 m, equivalent to a spatial resolution of 0.5 cm/pixel. 150 

The flight survey was configured with a 60% side and 80% forward overlap. The imagery 151 

and corresponding position and orientation system (POS) data were used to generate an 152 

orthomosaic image and a DSM of the site using Pix4d software (Lausanne, Switzerland) 153 

and the structure from motion (SfM) algorithm (Colomina and Molina, 2014). The August 154 
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RGB orthomosaic image was then co-registered to the July RGB orthomosaic image 155 

based on 30 unchanged ground features, including fixed irrigation connections and 156 

physical markers, using ENVI 5.3 software (Research Systems Inc., Boulder Co., USA). 157 

Hyperspectral imaging data were captured at a flight altitude of 30 m with 60% side 158 

overlap by a DJI Matrice 600 Pro Hexacopter equipped with a Headwall Nano-Hyperspec 159 

(Headwall Photonics Inc., Bolton, MA, USA) push-broom sensor that offers 272 spectral 160 

bands and 640 spatial pixels within the visible-near-infrared range from 400–1000 nm. 161 

The spatial resolution of the hyperspectral images obtained on the two flight dates differed 162 

slightly; 2.2 cm/pixel for the first flight survey and 3.1 cm/pixel for the second. Radiometric 163 

and geometric corrections were applied to raw image strips using corresponding onboard 164 

navigation information and in-situ grey-white reflectance calibration panels for each flight 165 

to produce georeferenced reflectance images. Each calibrated image strip was then co-166 

registered to their corresponding RGB orthomosaic imagery with at least 20 ground 167 

control points (GCPs) using the nearest neighbour resampling method (with second 168 

degree polynomial interpolation) in ENVI and Interactive Data Language (IDL). Due to the 169 

different flight directions and image spatial resolutions between the two surveys, 16 July 170 

image strips were processed to produce a mosaic image covering the field while 9 longer 171 

and slightly lower resolution image strips were used for the August mosaic. Fixing points 172 

including irrigation pipes, coloured field markers, and small but distinct green vegetation 173 

in between rows were identified from both RGB and hyperspectral image strips as GCPs. 174 

Between 17–25 GCPs evenly distributed across imagery were used for each July image 175 

with an average resampling root mean squared error (RMSE) of 2.3 cm (0.71–1.43 pixels). 176 

Two of the 16 image strips were divided into two sub-images through the wide gap 177 

between plots and rectified separately to avoid high RMSE in the crop areas of the image. 178 

In the August imagery, the potato canopy in most of the plots was closed; crop rows had 179 

merged, and some of the markers were covered by the crop canopy. Less obvious points 180 

were identified between crop gaps. Insufficient GCPs were identified in the fertiliser 181 

experiment plots to ensure an even distribution of GCPs in the image. Instead, selected 182 

small clusters of potato flowers were used as GCPs. Because the image strips are longer 183 

in August, 28–39 GCPs were used for each image. The second degree polynomial 184 

nearest neighbour resampling method was used and yielded very good rectification 185 



 

8 
 

results with an average RMSE of 2.2 cm (0.31–0.82 pixels). The fine-tuned rectified image 186 

strips were then used to produce a hyperspectral mosaic of the field site using the ENVI 187 

mosaic tool. A seamline was designed for each image following crop gaps and 10 pixel 188 

feathering was applied to the overlapping area of neighbouring image strips. All edges of 189 

the image strips with larger RMSE were removed during mosaicing. The hyperspectral 190 

image mosaic showed strong agreement with the corresponding RGB images. 191 

 192 

2.3. Field crop assessment 193 

Field measurements were conducted on the same days as the UAV surveys (5th July and 194 

6th August 2018) to provide ground truth data. Three plants were randomly selected at 195 

the centre of each plot and their heights were measured with a telescopic levelling rod. 196 

The average height of the three plants was then used to represent the canopy height of 197 

each plot. The fresh AGB of another three randomly selected plants at the centre of each 198 

plot from the N fertiliser experiment (Experiment 1) was obtained on the same day. The 199 

corresponding dry weight was obtained after the fresh samples were dried at 80 ºC for 48 200 

h. The AGB per hectare was calculated by: 201 

 202 

AGB = AGBave × n     (1) 203 

 204 

where AGBave is the average biomass of potato plant samples and n is the number of 205 

potato plants per hectare estimated using plot plant density. Similarly, yield data were 206 

measured by weighing the total weight of potato tubers within each plot. These 207 

conversions were necessary because the plot size in Experiment 3 differed from the other 208 

two experiments. 209 

 210 

2.4. Image processing and data extraction 211 

2.4.1. Extraction of spectra from hyperspectral images 212 

To extract the spectra corresponding to the green canopy, it was necessary to generate 213 

a binary mask image by segmenting the green canopy from the soil background. The 214 

excessive green index (ExG) was a robust VI, facilitating contrast enhancement between 215 

the potato canopy and soil background (Li et al., 2019) as follows: 216 

https://paperpile.com/c/YoFnEi/aEm7
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 217 

ExGxy = 2R540 - R465 - R680     (2) 218 

 219 

where R465, R540, and R680 are the reflectance intensities at 465, 540, and 680 nm, in the 220 

blue, green and red regions, respectively, and x and y are the coordinates of a specific 221 

pixel. The Otsu thresholding method (Otsu, 1979) was applied to convert the ExG 222 

greyscale image to a binary image with a zero value assigned to soil background, and the 223 

spectra were extracted from non-zero pixels as a region of interest. An average spectra 224 

value was calculated for each plot.  225 

 226 

2.4.2. Vegetation indices 227 

VIs are mathematical transformations of the spectra at pre-defined wavelengths. With the 228 

use of hyperspectral sensors, many narrow-band VIs have been developed in recent 229 

years for estimating crop biophysical parameters (Silleos et al., 2006). Several VIs have 230 

been applied to potato crops for estimating leaf chlorophyll, leaf area index, ground cover 231 

(Domingues Franceschini et al., 2017), N content (Herrmann et al., 2010; Jain et al., 2007), 232 

and yield (Morier et al., 2015). Based on these studies (Clark et al., 2011; Yue et al., 233 

2017), 13 VIs (Table 1) that showed good correlations with biophysical parameters, potato 234 

crop yield, and the biomass of other crops were selected for use in this study.  235 

 236 

Table 1. Narrow-band vegetation indices (VIs) used in this study.  237 

Vegetation index Equation Reference 

NDVI (normalized difference 

vegetation index) 

NDVI=(R850-R680)/(R850+R680) Rouse et al. (1974) 

MSR (modified simple ratio) MSR=(R800-R670-1)/[(R800+R670)0.5+1] Chen et al. (1996) 

MSAVI (modified soil adjusted 

vegetation index) 

MSAVI=R800+0.5-[(R800+0.5)2-2(R800-R670)]0.5 Qi et al. (1994) 

OSAVI (optimised soil adjusted 

vegetation index) 

OSAVI=(1+0.16)(R800-R670)/(R800+R670+0.16) Rondeaux et al. (1996) 

MCARI (modified chlorophyll 

absorption reflectance index) 

MCARI=[(R700-R600)-0.2(R700-R550)](R700/R670) Daughtry et al. (2000) 

MCARI2 MCARI2=1.5[2.5(R800-R670)-1.3(R800-

R550)]/[(2R800+1)2-(6R800-5R670
0.5)-0.5] 

Haboudane et al. 

(2004) 

https://paperpile.com/c/YoFnEi/dx1S
https://paperpile.com/c/YoFnEi/DSgJ
https://paperpile.com/c/YoFnEi/JX92+4Mvk
https://paperpile.com/c/YoFnEi/N5ml
https://paperpile.com/c/YoFnEi/TkZO+0A1o
https://paperpile.com/c/YoFnEi/TkZO+0A1o
https://paperpile.com/c/YoFnEi/PSZ1
https://paperpile.com/c/YoFnEi/FKRD
https://paperpile.com/c/YoFnEi/FSew
https://paperpile.com/c/YoFnEi/i1dw+N9MG
https://paperpile.com/c/YoFnEi/i1dw+N9MG
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TCARI (transformed chlorophyll 

absorption reflectance index) 

TCARI=3[(R700-R670)-0.2(R700-R550)(R700/R670)] Haboudane et al. 

(2002) 

NDI (normalized difference index) NDI=(R850-R710)/(R850+R680) Datt et al. (1999) 

CI1 (red-edge chlorophyll index 1) CI1=R800/R740-1 Li et al. (2012) 

CI2 (red-edge chlorophyll index 2) CI2=R740/R550-1 Gitelson et al. (1996) 

SIPI (structure-insensitive pigment 

index) 

SIPI=(R800-R445)/(R800+R680) Penuelas et al. (1995) 

TCARI/OSAVI TCARI/OSAVI Haboudane et al.(2002) 

MCARI/OSAVI MCARI/OSAVI Zarco-Tejada et al. 

(2004) 

 238 

2.5. Data analysis 239 

2.5.1. RReliefF algorithm for feature selection 240 

Not all predictor variables are equally important to a machine learning model, and 241 

redundant variables can markedly reduce model performance (Son et al., 2015). 242 

Selection of the optimal predictor variables in this study was based on the RReliefF 243 

algorithm (Kira and Rendell, 1992), also known as the regression version of ReliefF. 244 

RReliefF introduces probabilities that can be modelled by the relative distance between 245 

the predicted values of two observations, and can calculate the quality weights of all 246 

variables as shown in Fig. 2: 247 

https://paperpile.com/c/YoFnEi/i1dw+N9MG
https://paperpile.com/c/YoFnEi/i1dw+N9MG
https://paperpile.com/c/YoFnEi/ZviG
https://paperpile.com/c/YoFnEi/aAwN
https://paperpile.com/c/YoFnEi/uVTR
https://paperpile.com/c/YoFnEi/2XYe
https://paperpile.com/c/YoFnEi/2XYe
https://paperpile.com/c/YoFnEi/6Tn9
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 248 

Figure 2. Explanation of the RReliefF algorithm in pseudo code. 249 

 250 

where: 251 

     diff(A, 𝐼𝑗, 𝑅𝑖) =
|𝑣𝑎𝑙𝑢𝑒(𝐴,𝐼𝑗)−𝑣𝑎𝑙𝑢𝑒(𝐴, 𝑅𝑖)|

（𝐴𝑚𝑎𝑥−𝐴𝑚𝑖𝑛）
   (3) 252 

𝑣𝑎𝑙𝑢𝑒(𝐴, 𝐼𝑗) is the value of A attributes for samples 𝐼𝑗 and 𝑅𝑖, and 𝐴𝑚𝑎𝑥 and 𝐴𝑚𝑖𝑛 are the 253 

maximum and minimum values, respectively, of variable A for m samples. Because 254 

RReliefF considers collinearity among the predictor variables, it has an advantage over 255 

other feature selection methods that are solely based on statistical measures (e.g. 256 

correlation coefficient and signal to noise ratio; Son et al., 2015).   257 

 258 

2.5.2. RF regression 259 
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RF regression was implemented to build prediction models for AGB and yield using VIs 260 

and crop height. RF regression is a supervised machine learning algorithm that combines 261 

a large number of regression trees (ntree), each consisting of a random subset of one 262 

third of the predictor variables (Wang et al., 2016). The ntree value was selected by 263 

optimising the root mean square error of calibration. RF regression was performed as 264 

follows: 265 

(a) Bootstrapped samples were randomly selected from the original calibration dataset 266 

containing approximately two thirds of the randomly selected input variables. The 267 

remainder of the samples were referred to as out-of-bag (OOB) samples.  268 

(b) Following modifications on each node, each regression tree was independently trained 269 

on a bootstrapped subset iteratively with one third of the variables randomly selected until 270 

the forest is grown to ntree.  271 

(c) For each bootstrapped iteration, the OOB data can be predicted by fitting the variable 272 

vector to the trees. The predictions from each tree in the forest were then aggregated by 273 

taking the mean of all trees. The OOB error was calculated following comparisons with 274 

ground truth data.  275 

 276 

RF regression is not sensitive to collinearity among variables, ensuring prediction 277 

accuracy and reducing overfitting (Moisen, 2008). To optimise model calibration, the 278 

number of trees is determined when there is no noticeable improvement in prediction 279 

accuracy with increased trees. An independent dataset was then used to validate the 280 

accuracy and robustness of the RF model. Root mean squares errors for prediction 281 

(RMSEP) and residual prediction deviation (RPD; Valente et al., 2013), defined as the 282 

ratio of the standard deviation of the reference values in the training dataset to RMSEP, 283 

were used to assess model accuracy and robustness. RPD values were classified based 284 

on the published criteria (Yang, 2011): (1) the model is not applicable if the RPD is < 1.5; 285 

(2) the model can only discriminate between low and high value groups if the RPD is 1.5–286 

2; (3) the model can perform coarse quantitative prediction if the RPD is 2–2.5; and (4) 287 

the model can perform prediction accurately if RPD is > 2.5.  288 

 289 

2.5.3. Partial least squares regression  290 

https://paperpile.com/c/YoFnEi/oxSg
https://paperpile.com/c/YoFnEi/wzJD
https://paperpile.com/c/YoFnEi/yVLU
https://paperpile.com/c/YoFnEi/53zU
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By splitting the spectral data into calibration and test datasets, PLS regression 291 

analysis was used to developed multiple prediction models to estimate the 292 

mathematical relationship between a set of independent (X matrix; 𝑁𝑠𝑎𝑚𝑝𝑙𝑒_𝑛𝑢𝑚 x 293 

𝐾𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒_𝑛𝑢𝑚) and dependent variables (Y matrix;  𝑁𝑠𝑎𝑚𝑝𝑙𝑒_𝑛𝑢𝑚 x 1) including crop 294 

height, AGB, and yield. PLS regression decomposes both the dependent (Y) and 295 

independent (X) variables into a number of principal components, and can 296 

accommodate highly correlated variables and over-fitting. The PLS regression model 297 

applies the component projection to find the latent structure of a dataset. By selecting 298 

the optimal number of latent variables (LVs), the regression variables can be reduced 299 

from all wavelengths with heavy collinearity to a few independent principal 300 

components and transformed into scores. The prediction model can be described 301 

using Eq. 4, and the regression coefficients B can be calculated by regressing Y onto 302 

the wavelength scores 𝑇𝐿𝑉𝑠 as shown in Eq. 5: 303 

 304 

𝑌̅ = 𝑋 ∗ 𝐵 + 𝐸 =  𝑋 ∗ 𝑊𝐿𝑉𝑠
∗ ∗ 𝐶 + 𝐸 =  𝑇𝐿𝑉𝑠 ∗ 𝐶 + 𝐸     (4) 305 

𝑊𝐿𝑉𝑠
∗  = 𝑊𝐿𝑉𝑠  ∗  (𝑃′ ∗  𝑊𝐿𝑉𝑠)

−1

        (5) 306 

 307 

where 𝑌̅  represents the estimated dependent variables, X represents the predictor 308 

variables, B represents the regression coefficients, E is the residual error matrix, 𝑊𝐿𝑉𝑠 309 

represents a set of orthogonal projection axes called PLS weights, 𝑇𝐿𝑉𝑠 is the score matrix 310 

determined using the PLS algorithm, and P and C are the loadings of X and Y, 311 

respectively. 312 

 313 

Leave-one-out cross validation (LOOCV) was used to determine the optimal number of 314 

LVs with the optimal coefficient of determination for cross validation (rv
2) and minimum 315 

root mean squares errors for cross validation (RMSECV). A test dataset was used to 316 

validate the accuracy and robustness of the derived PLS model using the coefficient of 317 

determination for prediction (rp
2), RMSEP, and RPD as the criteria for assessing model 318 

performance (Li et al., 2018). 319 

 320 

https://paperpile.com/c/YoFnEi/bsmE
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2.5.4. Crop height estimation 321 

Crop height can be estimated using either a DSM generated from the 3D model of the 322 

UAV imaging (Bendig et al., 2014) or by modelling the spectra extracted from UAV 323 

hyperspectral imaging (Capolupo et al., 2015). The DSM model generated from the 3D 324 

reconstruction of UAV-based RGB imagery is in a TIF image format, and the 16 bit float 325 

intensity value of each pixel represents the absolute height of the object in the pixel. The 326 

digital elevation model (DEM) that represents the absolute elevation of the bare ground 327 

under the canopy was estimated by interpolating values extracted from the neighbouring 328 

bare soil buffer zones between plots, performed using ESRI ArcGIS 10.2.2 and the 329 

ordinary Kriging method (Geipel et al., 2014; Mathews and Jensen, 2013). Crop height 330 

was then estimated as the difference between the DSM and DEM as follows:  331 

 332 

nDSM = DSM – DEM     (6) 333 

 334 

where nDSM is the estimated absolute plant height. Because crop height was measured 335 

between the ground and the top of the canopy, local maxima (high intensity pixels 336 

surrounded by lower intensity pixels), were applied to identify the top of the canopy in the 337 

nDSM (Garrido et al., 1998). Convolution with a sliding window was applied to the entire 338 

nDSM image so that the maxima could be identified for each window, and the average 339 

value of local maxima was used to indicate the crop height in each sampling plot. The 340 

DSM and DEM models were applied to the 60 plots of Experiment 1 (N fertiliser input) 341 

due to the large buffer zone at this site, and ground-truth data measured at 90 DAP were 342 

used to validate model performance. PLS regression of crop height with the full spectra 343 

extracted from UAV-based hyperspectral imagery permits the direct estimation of crop 344 

height without a DEM (Capolupo et al., 2015). The average spectra from Experiments 2 345 

and 3 at both 60 and 90 DAP were used for model calibration (n = 168). As with the 346 

nDSM-based method, the 60 spectra extracted from Experiment 1 at 90 DAP were used 347 

as a test dataset.  348 

 349 

2.5.5. Biomass estimation and yield prediction models 350 

https://paperpile.com/c/YoFnEi/mEBP
https://paperpile.com/c/YoFnEi/rcM0
https://paperpile.com/c/YoFnEi/nt4A
https://paperpile.com/c/YoFnEi/5Wo0
https://paperpile.com/c/YoFnEi/rcM0
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Both PLS and RF regression models were constructed to estimate AGB and predict yield. 351 

The PLS regression model was developed with predictor variables based on the full 352 

wavelength range. Both narrow-band VIs and estimated crop height data were used to 353 

develop the RF regression model while only VIs were used as predictor variables for yield 354 

prediction. The average spectra extracted from Experiment 1 at both 60 and 90 DAP were 355 

used for the development of the biomass estimation models (n = 120), and the total 356 

spectra were split into training and test datasets with a split ratio of 75:25. Separate yield 357 

prediction models were developed for the two flight surveys. Because ground-based yield 358 

data for five plots were not recorded, the remaining 139 average spectra values were 359 

divided into training and test datasets with a split ratio of 75:25. The training spectra for 360 

both AGB and yield predictions were randomly selected to maximise the data range of 361 

the training dataset.  362 

 363 

3. Results 364 

3.1. Ground truth data 365 

The minimum, maximum, mean, and standard deviation of dry and fresh AGB and yield 366 

data are shown in Table 2. The large range of data ensures the robustness of the models 367 

derived from the data. Dry and fresh AGB were highly correlated with each other (r2 = 368 

0.94). The correlation of dry/fresh AGB with yield was not calculated because the spectra 369 

were taken from different plots.  370 

 371 

Table 2. Statistics of ground-truth data for dry and fresh potato above ground biomass 372 

(AGB) and yield for model calibration and test datasets. 373 

Parameters Calibration Prediction 

 Min Max Mean SD Min Max Mean SD 

Dry AGB (ton ha-1) 0.74 9.04 2.85 2.08 0.55 7.04 3.28 2.04 

Fresh AGB (ton ha-1) 2.38 58.36 14.99 13.13 4.02 43.05 17.97 11.93 

Yield (ton ha-1) 1.14 5.84 3.01 0.97 1.22 4.85 2.89 0.97 

 374 
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 375 

Table 3. Summary of the prediction models used in the study 376 

Parameter Models  Variables Model index 

Crop height 

Linear 

regression 

PLSR 

 
nDSM 

Full wavelength 

CH1 

CH2 

Fresh AGB 
RF 

PLSR 
 

Cl1, Crop height and MSR 

Full wavelength 

FA1 

FA2 

Dry AGB 
RF 

PLSR 
 

Cl1, Crop height and MSR 

Full wavelength 

DA1 

DA2 

Yield 

60 DAP 
RF 

PLSR 
 

Cl1, MCARI, height 

Full wavelength 

Y160 

Y260 

90 DAP 
RF 

 
Cl1, MCARI, height, Ratio2, Cl2 Y190 

PLSR Full wavelength Y290 

 377 

3.2. Crop height estimation 378 

The DEM (Fig. 3b) was used to estimate the elevation of bare soil by interpolating the 379 

elevation values from neighbouring buffer zones in the DSM (Fig. 3a), and the resulting 380 

nDSM image (Fig. 3c), representing crop heights, is shown in Fig. 3c. Crop height 381 

estimated using the nDSM with local maxima (Fig. 4d) and the PLS regression model (Fig. 382 

4d) are compared with ground truth data in Experiment 1 at 90 DAP. The nDSM-derived 383 

crop heights show a high correlation with the ground truth data (CH1, Table 3, rp
2 = 0.93, 384 

RMSEP = 6.39 cm) and the RPD value (2.89) indicates robust model prediction. The PLS 385 

regression model with full wavelength variables also performed reasonably well (CH2, 386 

Table 3, rp
2 = 0.85, RMSEP = 7.24 cm, RPD = 2.55), although worse than nDSM method 387 

(Fig. 4e). The PLS regression model statistics are shown in Table 4. The nDSM model 388 

performed better than the PLS regression method, and because the impact of cultivar, 389 

illumination and canopy density on the PLS crop height model was not adequately 390 

investigated in the preliminary study. Hence, the crop height estimated using the nDSM 391 

model was applied for AGB estimation.  392 
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 393 

Figure 3. Sample images of the original digital surface model (DSM) (a), estimated digital 394 

elevation model (DEM) with hot map and elevation scale (b), and the resulting nDSM, 395 

representing crop height (c).  396 

 397 

Table 4. Calibration, leave-one-out cross validation (LOOCV), and independent 398 

prediction statistics of the partial least squares (PLS) regression model for crop height 399 

estimation. 400 

Parameter LVs rc
2 RMSEC (cm) rv

2 RMSECV (cm) rp
2 RMSEP (cm) RPD 

Crop height 9 0.90 4.89 0.87 5.71 0.85 7.24 2.55 

 401 
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 402 

Figure 4. Original RGB image for a single example plot (a), the resulting nDSM image (b) 403 

and the nDSM image with local maxima labelled (c). Comparison of crop heights 404 

estimated using nDSM (d) and PLS regression (e) with ground-based manual 405 

assessment. 406 

 407 

3.3. Estimation of AGB using the RF and PLS regression models 408 

3.3.1. RF regression model 409 

The estimated crop heights using the nDSM method in Experiment 1 were used as 410 

predictors in the RF regression models for AGB estimation from both flight surveys. The 411 

importance of all predictors (VIs and crop heights) was evaluated using RReliefF (Figs. 412 

5b and d). The best prediction accuracy for both dry and fresh AGB was achieved using 413 

only three predictors; CI1 (Table 1), crop height, and MSR (Table 1). No apparent change 414 

in the OOB error was observed when the number of trees reached approximately 300; 415 

hence, this value was used as ntree in the RF model. The prediction results for the test 416 

dataset showed that the RF models can estimate both fresh (FA1, Table 3, rp
2 = 0.90, 417 
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RMSEP = 3.71 ton ha-1, RPD = 3.22) and dry (DA1, Table 3, rp
2 = 0.92, RMSEP = 0.57 418 

ton ha-1, RPD = 3.55) AGB accurately (Figs. 5a and c). Both models showed decreased 419 

prediction accuracy when the AGB was high, probably due to saturation of the spectral 420 

indices at high vegetation densities (Maimaitijiang et al., 2019).  421 

 422 

(a)                                                                 (b) 423 

 424 

(c)                                                                     (d) 425 

Figure 5. Prediction of fresh AGB using the random forest (RF) regression model (a) and 426 

the importance of all predictor variables (VIs and crop height) (b). Prediction of dry AGB 427 

using the RF regression model (c) and the importance of all predictor variables (d).  428 

 429 

3.3.2. PLS regression model 430 
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PLS regression models were developed with full wavelength variables to estimate fresh 431 

(FA2, Table 3) and dry (DA2, Table 3) AGB. Results show that the prediction accuracy is 432 

higher for dry AGB compared to fresh AGB (Fig. 6 and Table 5) with an RPD > 2.5. The 433 

overall performance of the PLS regression models was slightly worse compared to the 434 

RF regression models. The deviation between actual and predicted values is larger than 435 

for the RF regression models, indicating that plant height is significant for AGB estimation, 436 

especially for high canopy densities.  437 

 438 

                             (a)                                                              (b) 439 

Figure 6. Dry (a) and fresh (b) AGB prediction using the partial least squares (PLS) 440 

regression model.  441 

 442 

Table 5. Calibration, LOOCV, and independent prediction statistics using the PLS 443 

regression model for AGB estimation. 444 

Parameter LVs rc
2 RMSEC (ton ha-1) rv

2 RMSECV (ton ha-1) rp
2 RMSEP (ton ha-1) RPD 

Fresh AGB 10 0.85 4.87 0.78 5.99 0.83 5.47 2.18 

Dry AGB 8 0.88 0.72 0.82 0.88 0.88 0.88 2.68 

 445 

3.4. Yield prediction  446 

3.4.1. RF regression model 447 
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Separate RF regression models were constructed based on the VIs and crop height 448 

values derived from the two flight surveys. Both models showed the best prediction using 449 

the optimal predictors selected by the RReliefF algorithm. Due to insufficient unplanted 450 

buffer zones in Experiments 2 and 3, the nDSM method could not be used for crop height 451 

estimation. Therefore, manually measured crop height values were used to validate the 452 

impact of crop height on yield prediction for these experiments. The 60 DAP model 453 

showed insufficient yield prediction accuracy (Y160, Table 3, rp
2 = 0.44, RMSEP = 0.73 454 

ton ha-1, RPD = 1.34) with the predictive variables Cl1, MCARI, and crop height 455 

demonstrating the best performance. The 90 DAP model performed better (Y190, Table 456 

3, rp
2 = 0.63, RMSEP = 0.63 ton ha-1, RPD = 1.55) using crop height and four VIs (Cl1, 457 

MCARI, MCARI/OSAVI, and Cl2) as predictors (Fig. 5). However, the RPD indicates that 458 

the model can only discriminate between low and high yield values rather than providing 459 

accurate yield prediction.  460 

 461 

3.4.2. PLS regression model 462 

The full spectra 90 DAP PLS regression model (Y290, Table 3) showed markedly 463 

improved predictive skill compared to the 60 DAP model (Y260, Table 3; Fig. 7). The rp
2 464 

and RPD values (Table 6) indicate the feasibility of using the full spectra PLS regression 465 

model for coarse yield prediction.  466 

           467 

                             (a)                                                                (b)         468 
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Figure 7. Yield prediction using the PLS regression model based on the spectra taken 60 469 

(a) and 90 (b) days after planting (DAP)  470 

 471 

Table 6. Calibration, LOOCV, and independent prediction statistics of the PLS regression 472 

model for yield prediction. 473 

Date LVs rc
2 RMSEC (ton ha-1) rv

2 RMSECV (ton ha-1) rp
2 RMSEP (ton ha-1) RPD 

60 DAP 6 0.80 0.42 0.77 0.46 0.69 0.56 1.75 

90 DAP 11 0.80 0.43 0.66 0.57 0.81 0.42 2.29 

 474 

4. Discussion 475 

Limited research is available regarding the prediction of AGB and yield for potato crops 476 

using remote sensing techniques. Previous potato crop studies used either a single 477 

(Millard et al., 1990) or unnamed cultivar (Al-Gaadi et al., 2016; Morier et al., 2015). They 478 

found that model performance based on a single broad-band VI with potato AGB varied 479 

with N fertiliser treatment (Millard et al., 1990), and was insufficient for yield prediction 480 

(Al-Gaadi et al., 2016). Low-altitude UAVs with a hyperspectral imaging sensor, as used 481 

in the present study, provide a high spatial and spectral resolution. Six potato cultivars 482 

were planted under different treatments of N, K, and mixed organic-inorganic compound 483 

fertilisers, providing varied AGB and yield data and ensuring the robustness of the derived 484 

models. Reflectance spectra can be impacted by illuminations; however, using multiple 485 

VIs can reduce this effect by calculating the relative difference or ration among 486 

wavelengths. Furthermore, flight surveys were carried out on two occasions under 487 

different light conditions, further improving the robustness of the crop height and AGB 488 

estimations.  489 

 490 

Manual assessment of crop heights is time consuming; thus, only a small portion of crops 491 

can be measured, leading to inaccuracies. As a high-throughput phenotyping method, 492 

UAV-based imaging was introduced to estimate potato canopy height. The nDSM-based 493 

method provides a low-cost solution compared to hyperspectral imaging techniques; 494 

however, interpolation for DEM estimation requires a large unplanted buffer zone within 495 

https://paperpile.com/c/YoFnEi/1KbI
https://paperpile.com/c/YoFnEi/SB82+N5ml
https://paperpile.com/c/YoFnEi/1KbI
https://paperpile.com/c/YoFnEi/SB82
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the target field, which is not always practical in commercial farming. In this study, the 496 

nDSM method could not be used to estimate crop heights in Experiments 2 and 3 because 497 

of the lack of a buffer zone. Alternatively, the DEM may be obtained by imaging the bare 498 

ground with a UAV before crop emergence, which should be applied in further study. 499 

Although this requires a sufficient number of ground control points and measurements 500 

using Real Time Kinetic Global Navigation Satellite System equipment (Geipel et al., 501 

2014), it is more practical for commercial farms and flexible for different experimental 502 

designs. In previous studies, only the mean, standard deviation, and maximum and 503 

minimum crop height could be measured automatically using the nDSM method, while 504 

individual crop heights still required manual extraction (Han et al., 2019; Holman et al., 505 

2016; Tilly et al., 2015). The local maxima algorithm enables the automated identification 506 

of the maximum height of individual plants in the nDSM image and is more accurate than 507 

averaging the nDSM image, which invariably leads to underestimation (Aasen et al., 2015; 508 

Han et al., 2019).   509 

 510 

RF regression was successfully applied to AGB estimation using VIs as predictor 511 

variables and performed better than MLR, SVM, and ANN (Han et al., 2019; Wang et al., 512 

2016). Our results show that both RF and PLS regression models demonstrate 513 

satisfactory prediction accuracy for AGB. A combination of two VIs (CI1 and MSR) and 514 

crop height were identified as the key predictors by RReliefF. Consistent with previous 515 

studies (Freeman et al., 2007; Tilly et al., 2015), crop height was highly correlated with 516 

AGB and the inclusion of crop height with VIs improved the accuracy of the AGB 517 

prediction. However, importance of crop height as a predictor was lower than Cl1, which 518 

can most likely be attributed to the multiple varieties of potato used in this experiment. 519 

The canopy morphology of different potato varieties differ. For example, Favorita has a 520 

lower, more widespread canopy compared with Z18. Similar conclusion can be found in 521 

the study of Bendig et al. (2014) that cultivar difference such as lodging and non-lodging 522 

is one constraint for biomass prediction of barley by crop height. Furthermore, both early 523 

maturing (Favorita, Z5 and Z10) and late maturing varieties (Z18, Z19 and Shepody) were 524 

used in this study. When the potato plant grows to a certain height, the canopy will 525 

continue to grow and spread. For late maturing cultivars, it is possible that the canopy 526 

https://paperpile.com/c/YoFnEi/nt4A
https://paperpile.com/c/YoFnEi/nt4A
https://paperpile.com/c/YoFnEi/I9Hb+YK34
https://paperpile.com/c/YoFnEi/I9Hb+YK34
https://paperpile.com/c/YoFnEi/YK34+oxSg
https://paperpile.com/c/YoFnEi/YK34+oxSg
https://paperpile.com/c/YoFnEi/jxx5+Niq3
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was not yet well developed, despite reaching its maximum height. This conclusion is also 527 

consistent with the study of Bendig et al. (2014), which showed the cultivar difference is 528 

one constraint for biomass prediction by crop height. Predictive skill was lower for fresh 529 

as compared to dry AGB. This was probably due to the varied weather conditions on flight 530 

survey days resulting in different water contents in the fresh AGB. However, this would 531 

not impact the estimation of plant height (Tilly et al., 2015). CI1 was the most important 532 

VI for estimating AGB in this study. This index is not directly related to AGB (Tilly et al., 533 

2015); however, it shows good correlation with chlorophyll, N content, and leaf area index 534 

(Clevers et al., 2012; Gitelson et al., 2003), which are all related to AGB (Babar et al., 535 

2006; Holben et al., 1980). The PLS regression models based on full wavelengths 536 

performed worse than the RF regression models. We attribute this to the lack of crop 537 

height information and redundancy in some wavelengths. The application of VIs with 538 

selected wavelengths rather than a full spectra for AGB estimation can also facilitate the 539 

conversion from hyperspectral to multispectral cameras using selected bands, leading to 540 

a potential reduction in camera cost. 541 

 542 

Yield prediction models using VIs as predictors showed insufficient accuracy for both flight 543 

surveys, although the accuracy was still greater than those obtained in previous studies 544 

using a single VI (Al-Gaadi et al., 2016; Morier et al., 2015). PLS regression models based 545 

on the full wavelength spectra make full use of the rich spectral information from 546 

hyperspectral imaging data, overcoming the limitations of using a few selected spectra. 547 

Similar conclusion was also found in the study of Montesinos-López et al. (2017), which 548 

showed using statistical models with all bands simultaneously increased the prediction 549 

accuracy more than using VIs along. When RReliefF analysis was applied to assess the 550 

importance of each individual wavelength (Mahlein et al., 2013), most of the key 551 

wavelengths for both fresh and dry AGB estimation were within the near infrared region 552 

(Figs. 8a and b), explaining why near infrared VIs could predict biomass with good 553 

accuracy. Yield is affected by many factors and its prediction can be more complicated 554 

as compared to AGB. Figure 8c shows that the key wavelengths for yield prediction are 555 

located across the visible and near infrared range, except for the red-edge region, 556 

illustrating why the VIs selected in this study were not adequate for yield prediction. 557 

https://paperpile.com/c/YoFnEi/jxx5
https://paperpile.com/c/YoFnEi/jxx5
https://paperpile.com/c/YoFnEi/jxx5
https://paperpile.com/c/YoFnEi/6FWV+70jY
https://paperpile.com/c/YoFnEi/T7zv+QUcK
https://paperpile.com/c/YoFnEi/T7zv+QUcK
https://paperpile.com/c/YoFnEi/SB82+N5ml
https://paperpile.com/c/YoFnEi/kzXg
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Further study is required to include more VIs within the visible region to improve current 558 

RF regression models. The inclusion of crop height resulted in improved model accuracy 559 

for yield prediction. However, it should be noted that the lack of unplanted buffer zones in 560 

the K and mixed compound fertiliser experiments meant that only manually observed data 561 

were evaluated. Crop heights derived from nDSM should be incorporated into prediction 562 

models because they are likely to be more accurate than manually estimated crop heights 563 

from limited sampling. Further studies will also investigate the significance of the volume 564 

metric derived from the multiplication of the plant height and the area covered by the plant 565 

for both AGB and yield prediction, which were successfully used for estimating the AGB 566 

of soybean and maize (Han et al., 2019; Maimaitijiang et al., 2019). Prediction accuracy 567 

of the PLS regression model at 90 DAP is satisfactory in this study; however, further 568 

research is needed to understand the relationship between prediction accuracy and 569 

survey timing relative to crop development. Both AGB and yield estimation models were 570 

investigated and developed under similar sowing density across all plots. Future study is 571 

essential to design the experiments and introduce sowing density as variable to 572 

understand its impact.  573 

 574 

 575 

(a)                                                            (b) 576 
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 577 

                              (c) 578 

Figure 8. Predictor importance of each individual wavelength for the prediction of fresh 579 

(a) and dry (b) AGB and yield (c).  580 

 581 

5. Conclusion 582 

This study used a low altitude UAV equipped with RGB and hyperspectral imaging 583 

sensors to predict potato biomass and yield. Multiple VIs derived from hyperspectral 584 

imaging data and plant heights measured using an nDSM-based method were used as 585 

predictor variables in RF and PLS modelling. CI1, crop height, and MSR were selected 586 

as the most important predictors. In terms of AGB, the RF regression model had better 587 

prediction accuracy compared to the PLS regression model based on the full spectra. 588 

Conversely, the PLS regression model performed better than the RF regression model in 589 

predicting potato yield. Yield prediction using survey data one month prior to harvesting 590 

was satisfactory.  591 

 592 

We conclude that UAV-based hyperspectral imaging is a promising remote sensing 593 

technique for predicting potato AGB and yield, and can be adopted for site-specific crop 594 

management.  595 
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 603 

Appendix A. Supplementary data 604 

Treatment* 

F1 F2 F3 F4 

Compound fertilizer 

(CF, kg ha-1) 

(N:P2O5:K2O 

=15:15:15) 

F1+Soil 

Conservation 

fertilizer (SCF, kg 

ha-1) 

F1+Soil 

Conservation 

fertilizer 

(SCF, kg ha-1) 

F1+Organic 

-inorganic fertilizer 

(OIF, kg ha-1) 

Base 

Fertilizer 
CF300 CF300+SCF300 CF300+SCF150 CF300+OIF300 

Treatment* 

F5 F6 F7 F8 

F1+Organic-inorganic 

fertilizer 

(OIF, kg ha-1) 

F1+Compound 

microorganism 

(CM, kg ha-1) 

F1+Compound 

microorganism 

(CM, kg ha-1) 

F1+25%F1 

Base 

Fertilizer 
CF300+OIF150 CF300+CM80 CF300+CM160 CF600 

*CF: Sino-Arab Chemical Fertilizers Co. Ltd. (SACF), N:P2O5:K2O = 15:15:15; SCF: 605 

Guizhou Bao Tu Ecological Recycling Agriculture Technology Co. Ltd., N:P:K = 6:4:10; 606 

OIF: Yunnan Tumama Fertilizers Co.,Ltd, N:P2O5:K2O = 8:8:14, Organic matter ≥ 12%; 607 

CM: Bacillus subtilis / Bacillus licheniformis, complex fermentation, microbial propagules 608 

≥ 0.2 billion per gram. 609 
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