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ABSTRACT (228) 
In this paper we explore the recreation of existing musical compositions by representing 
the music as a series of unique musical bars, and other bars that can be replicated 
through various algorithmic transformations, inside the Interactive Generative Music 
Environment software, or IGME. This re-composition approach is intended to explore 
whether the pre-existing music could have been created using the processed based 
approaches offered by the IGME software. If music can be expressed by algorithmic 
processes then we propose that original works of music can be expressed or created in 
the same way. Such a justification can provide a rationale for creating the unique 
compositional processes and workflows that IGME affords to those looking to compose 
with generative and algorithmic music techniques, and avoid many of the pitfalls of 
generative music. 
 

Music can be imported into IGME and automatically analysed to find unique bars, 
and bars that have been transformed from them.  The overall timeline can be visualised 
to quickly demonstrate the structure of the music, using colour to differentiate unique 
musical ideas, and arrow-arcs to show the relationships between different parts. Such a 
process reduces the overall entropy of the music data and provides an educational 
insight into macro level music structures. Each of the techniques are explained and 
examples given. In addition, data sets have been pre-computed for several genres of 
music, showcasing the distribution of different types of techniques.  

1. INTRODUCTION  
 

IGME (the Interactive Generative Music Environment) is a music sequencer that 
supports the exploration of generative and algorithmic music techniques. Unlike code or 
patch-based systems, it provides an easy to use interface for exploring generative and 
algorithmic music techniques, that is built on common music software paradigms. Many 
existing generative music systems use workflows that are not familiar to non-
programmer music composers. A more detailed overview of IGME (previously named 
IGMSE) is given in (Hunt, Mitchell and Nash, 2017 and 2018). The core design 
principles of IGME are:  
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1. Integrates algorithmic techniques for musical composition inside familiar score 
editing and music sequencing workflows.  

2. Provides full version control, for revisiting and comparing material.  
3. Uses graphical controls (WIMP) rather than code-based interfaces. 
4. Takes a modular approach to composition, while retaining a linear timeline.  
5. Uses a multi-layered assembly stage that assembles the final score from individual 

parts.  
An impediment of generative music systems is that they often fail to form high level 

structure, and are often highly stochastic in nature (Hunt et al, 2017). This is seen in 
large existing systems such as Jukedeck (Langkjaer-Bain, 2018), Aiva (Zulić, 2019), 
and Melodrive (Collins, 2018) focusing on replacing the human completely, with 
cutting edge machine learning. The, overarching aim of IGME is to create a system that 
supports human and computer composition. The aim is that by combining the best 
aspects of generative music with the careful control of a human operator that more 
structured forms of generative music can be created. Therefore, it is worth considering 
how much of the music should be unique and how these ideas should be developed 
through the piece. Therefore, the principal aim of this research is to assess whether 
existing music (composed by humans) can be encoded and represented by algorithms 
using the tools afforded by IGME. From this we can understand what techniques other 
general music sequencing software should adopt, for supporting interactive generative 
music. 

 
Figure 1: Arrange view inside IGME 

IGME considers composition in terms of three distinct musical parts: human created 
content, computer generated content, or a mixture of both. A part within IGME is 
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similar to the idea of a MIDI clip in other music software (the differences are discussed 
in section 3).  The IGME program is divided into two main views: the arrange view 
(Figure 1) and edit view (Figure 2). The arrange view focuses on arranging and 
sequencing individual parts (e.g. MIDI clips), using design principles found in other 
common music sequencers. The edit view (or detail view) allows the user to edit the 
individual music sequences, and/or specify the algorithmic effects for each part. A 
range of algorithmic effects are implemented by IGME, that can either augment human 
composed music, or generate computer created music.  

 

Figure 2: Edit view inside IGME. 

The aim of this research is to look at how existing pieces of music can be 
represented and encoded using the IGME environment. The paper therefore considers 
two differing but similar research tasks.  The first explores specific examples of music 
in detail, whereby the music can be represented more closely by; original ideas, and a 
series of transformations. The second looks at automatically analysing larger datasets to 
provide generalised metadata about musical structure. The concept of expressing music 
as patterns and processes has been explored previously by Nash (2014) using the 
Manhattan environment, and shares a number of parallels with this work. 

 
The main body of text is broken down into five sections. Section 3 explores some of 

IGME’s unique features that are crucial to this research. The various techniques for 
transforming and relating groups of musical parts are explained in section 4, each shown 
with examples of this process. Following this section 5 discusses the data pipeline for 
computing analysis automatically. Section 6 examines the output of a complete analysis 
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of a single song, revealing insight into its musical structure. Lastly datasets are computed 
for various types of music and these are summarised in section 7.   

2. BACKGROUND 
 
In general, musical structure is often composed by following some set of rules. Moore 
(2001, p 433) notes that it is these rules that characterise different genres of music. 
Rules can be understood in terms of stylistic choices that determine or constrain 
elements of the music which are often inferred rather than formally defined (Herremans 
and Sörensen, 2012).  For example, most tonal music is constrained to a given musical 
key (Temperley, 2007). However, certain genres of music, for example music composed 
using species counterpoint have well defined formal rules (Fux and Wollenberg, 1992). 
Furthermore; Minimalism, Serialism and other process-based forms of music are a 
genre of music that focuses on representing music composition as a process or series of 
algorithms, the research here considers music that does not identify as belonging to such 
a genre. In a general sense, this research attempts to find patterns in the structure of 
composed music. 
 

Lerdahl and Jackendoff’s (1983) generative theory of tonal music (GTTM) 
organises music into a four-level hierarchy; motives, phrases, periods, and larger 
sections. Several authors have attempted to automate the GTTM, notably Hamanaka 
(2006), however a full automated implementation of the GTTM remains unexplored. 
Rothfarb (2010) notes that the phrase level generally considers music to be 4 measures 
in length. The research here considers segmenting music mostly into motives, where the 
smallest division of hierarchy is fixed to a single measure. 

 
The Manhattan music programming environment (Nash, 2014) uses a pattern-based 

sequencer paradigm in which code is situated in repeating musical patterns to 
manipulate the music during playback, as an explicit interaction model that considers 
music as the synthesis of patterns and processes, sympathetic to the key roles of rules 
and repetition throughout musical practice and history. Through a series of studies 
(études), the tool has been used to encapsulate pieces across various genres and eras of 
Western music (baroque, minimalism, romantic, popular, etc. – from Bach to Stravinsky 
to Hendrix) – recomposed as expressions of arranged patterns (musical seeds) and 
transformative or generative processes (procedural code). Used currently as a 
pedagogical tool, this model is designed to foster analytical thinking in students through 
manual analysis and reinterpretation through code, but is also the basis of other work on 
automated analysis and the practical exploration of data models in music. 

 
Formal frameworks for analysing music have existed for a long term, notably 

Schenkerian analysis. Despite work by Marsden (2010), traditional Schenkerian 
analysis has only had limited success in being automated and remains too 
computationally expensive. More cutting-edge research in machine learning has 
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explored automated music analysis in other ways (Huang, 2016). Deep learning, despite 
its promises of delivering exemplar solutions to the problem, provides a ‘black box’ 
approach that provides little metadata explaining the process, which is both important 
and useful for music. Rudin (2019) notes that more emphasis should be placed on 
making interpretable models for big data, rather than using black box algorithms. 
 

Notable researchers, such as David Cope (Cope, 1991, 1996), has produced multiple 
works in the area of list programming for generating music. Starting with smaller 
fragments of music and combining them through various procedures to produce larger 
works. This work takes the opposite approach (starting at the end result, and working 
back to the start).  
 

3. TERMINOLOGY: 
A part in IGME is very similar to a MIDI clip in other musical sequencing software, 
however an individual part in IGME is made of 3 distinct sub-components. These are 
the seed, parameters, and result. The seed is the musical material that is edited by the 
user. The parameters are a series of processes (effects and algorithms) that are applied 
to the seed, to produce a result. Note the result is the musical material that is audible to 
the user. Without specifying any parameters, the result is identical to the seed. The seed 
material can also be supplied from a previous part’s result (discussed below) or by a 
seed generator (generative effect). 
 

A reference part in IGME is whereby the content of a given part is referenced (or 
taken) from another part. In this relationship the seed material of a given part B is 
specified from part A’s result, therefore part B is referencing part A. Note that the 
reference part can have exactly the same content as its parent, or modify it (through 
various transformations). Looking closely at the score in Figure 3, the second bar is a 
direct duplicate of the first bar. Therefore, inside IGME part 2 could be notated as a part 
that references (in this case) part 1 (Figure 4 middle). This representation shows more 
explicitly the structure of the music. This could also be expressed as a repeat as shown 
in Figure 4 right. However, this common music sequencing paradigm fails to work 
when a bar of music is repeated in a non-consecutive manor, as shown in figure 5. 
Referencing can be used to represent musical structure in a more visual way, and is 
therefore argued as crucial concept for this work. 
 

 
Figure 3: musical score. 
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Figure 4: Left: Two parts the same. Middle: Part 2 referencing part 1. Right: 

Part 1 repeated once. 

 
Figure 5: Part 3 is referencing part 1. 

With reference parts there is a one-to-many mapping, whereby an individual part 
may be referenced many times, in figure 6, part 1 is referenced by parts 2, 3, and 4. 
 

 
Figure 6: One part being referenced multiple times. 

4. TECHNIQUES 
IGME is a music composition environment, and consequently there are a range of 

tools for generating music through both stochastic and algorithmic techniques. Many of 
the stochastic techniques are not relevant in this research, as existing music cannot be 
expressed statistically, as the musical decisions would have been fixed during 
composition. Instead, a subset of the tools offered by IGME are used to determine and 
express musical structure. Namely the following techniques; duplication, transposition, 
transformations, arpeggiation and note-mapping can be automated. Each of these tools 
will be described in the next section alongside a working example. All of these 
techniques (except arpeggiation) make use of part referencing, whereby a part’s initial 
content is taken from a previous part and then has some further process applied.  
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Figure 7: Score for the examples shown in this section. 

 

Figure 8: IGME part representation of the score in figure 3. 

4.1. DUPLICATION 
Is the technique of duplication (repeating) previous musical ideas, these are expressed in 
IGME through simple references (previous section). 

4.2. TRANSPOSITION 
Transposition is simply the process by which all notes are chromatically transposed by a 
given value. In Figure 7, the second third bar of music is the first bar of music repeated 
and transposed by +5 semitones. Therefore, more structural semantics can be shown, if 
this is expressed as a reference part with a transpose process applied. 

4.3. TRANSFORMS: 
A transform process applies one of 4 simple procedures to a given part, these are; 

retrograde (playing the sequence backwards), inversion (inverting the pitches), 
retrograde-inversion (both together), rotate left or rotate right (note that rotating left and 
right together is nullified). In Figure 8 part 4 is set to reference part 1 and then have the 
retrograde plugin added. 
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4.4. NOTE MAPPING: 
Note mapping is analogous to find and replace. A note map is simply a mapping that 

defines what notes in one sequence are replaced by in another sequence. For example, in 
figure 7 the pattern of notes in bar 5 is similar to bar 1, however the 2 A4’s are replaced 
with G5’s. This is expressed with a reference part and the note map plugin applied (Figure 
9). With this process all occurrences of note A4 are replaced. 

 

Figure 9: note mapping interface. 

The famous guitar hook introduction of Guns N’ Roses’ Sweet Child O’ Mine (1987), 
provides ample opportunity to demonstrate the note map technique. The arpeggiated 
sequence of notes in bar 1 repeats in a block of 8. Bars 3 and 4 take the initial idea and 
replace the low D with an E. Bars 5-6 substitute the same note with a G, a score is 
provided in figure 10. Applying the note map process for bars 3 and 5, and applying 
reference duplication for bars 2,4,6,7, and 8, we end up with just 1 unique part, and 7 bars 
of transformations. This is visualised in Figure 11. 
 

 

Figure 10: First 8 bars from Sweet Child O’ Mine. 
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Figure 11: IGME representation of Figure 14. 

4.5. ARPEGGIATION: 
Unlike the other techniques discussed so far, arpeggiation attempts to reduce the 

overall musical data in a single part by expressing it as a collection of pitches, and the 
settings for an arpeggiator. For example, the sequence in Figure 12 can be encoded as 4 
notes and the arpeggiator plugin with up as the play order, 1/16 for the speed, for 1 bar, 
and in 1 octave. Figure 13 shows the editor set up in IGME to replicate this. 
 

 
Figure 12: Simple arpeggiated idea. 

 
Figure 13: Part with an arpeggiator plugin applied. 
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5. DATA PIPELINE AND AUTOMATED ANALYSIS 
 

An individual song in IGME is analysed by the following automated procedure. A song 
selected for analysis is first imported in MIDI format and decoded into IGME’s internal 
representation (note that for the purpose of this study songs are limited to those in a 4/4-
time signature, discussed further in section 8). Each MIDI track is given a track 
comprising of a sequence of individual parts. A track is split into parts based on bar lines, 
so the smallest possible part is a single bar, notes that cross bar lines are expressed such 
that the part takes up multiple bars of music. Note length and note onsets are quantised 
so that they are rounded to the nearest 1/32 note. Other details are lost by the process such 
as dynamic markings. Without making these modifications the complexity of doing this 
analysis would be implausible.  

 
The general expression of two parts A and B is the relationship that relates B to A. 

This process therefore tries to find the set of procedures that modifies part A so that it 
produces the exact same musical output as part B. The processes outlined below automate 
this process using the techniques (discussed in section 4) to discover musical structure. 
 

5.1. DUPLICATION ANALYSIS 
The duplication analysis tried to find and group parts that have identical content. 

This works from left-to-right from the first track to the last. The process starts by taking 
the first part on track 1, and comparing it with every other part on the timeline. Note 
only parts that have the same number of events are compared, greatly reducing the 
overall complexity. 

 
As the process works from left-to-right the overall number of comparisons decreases. 

When the first track is complete the process repeats starting with the first part on track 2. 
Only parts on track numbers greater than the current track need to be compared. When a 
match is found a reference is made between the two parts. 

5.2. TRANSPOSITION ANALYSIS 
The transposition analysis is similar to the duplication analysis, but the part is 

chromatically transposed incrementally from -12 semitones to +12 semitones before 
being compared with other parts. Essentially running the duplication test 24 times. This 
is expressed as a reference part, with a transpose plugin.  

5.3. TRANSFORMS ANALYSIS 
The transform analysis stage checks to see if the relationship between the two clips 

can be represented by a simple musical transform. This process is quicker than the first 
two analysis stages as parts that have already been marked as duplicate or transposed are 
removed from the task queue. Only parts that have the same number of events are 
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compared, as the transformation process does not alter the quantity of different events. 
Given two parts, A and B, this process would iteratively compute the 4 transforms on part 
A, and check to see if the output matches part B, if this is true then part B is set to reference 
part A, and the relevant transform parameter is added to part B. 

 

5.4. NOTE MAPPING ANALYSIS 
This process looks to see if a given part can be represented by referencing another 

part, and substituting certain notes so that the result is the same. A number of checks are 
first made, these include, ensuring the two parts have the same total number of notes, the 
same rhythmic structure, and the part cannot be expressed by other simpler techniques. A 
list of notes that occur in each part are first computed, (we will call these list L1 and L2). 
A set of possible combinations are computed, by iteratively taking a single note from L1, 
and each note from L2, whereby the total number of comparisons is the size of L1 
multiplied by the size of L2. A recursive function is then used to test each of the 
transforms on sequence A (original) and comparing it with sequence B (target). If a match 
is found the function exits and returns a list of the note mappings that transform part A to 
part B. If this process is successful then part B is set to reference part A, and the relevant 
note map parameter is added to part B. The note mapping process is CPU intensive and 
is run last. 

5.5. ARPEGGIATION ANALYSIS 
The arpeggiation analysis checks to see if a given part can be expressed as a smaller 

set of core notes and settings for an arpeggiator. The automated analysis first takes a given 
part and removes all the duplicate notes from the sequence, therefore leaving only a set 
of unique notes. The arpeggiator effect is then added, and the settings are iteratively 
worked through. At each iteration the output is computed and compared to the original, 
if it matches the original then the part is converted to an arpeggiated part.  

 

5.6. OVERALL ANALYSIS 
Pieces within IGME can either be analysed individually or in bulk. When computing 

an individual analysis, the parts are given a unique colour and the entire composition 
can be visualized.  As an additional feature, once the analysis of the piece is computed. 
IGME can remove all but the unique ideas, therefore revealing just the raw building 
blocks that make up the rest of the song. 

The analysis computes and represents the overall music into 2 overall categories, 
these are unique parts and representable parts. Within representable parts, several 
variants are grouped, these are duplicated parts, transposed parts, transformed parts, 
arpeggiated parts, and note map parts. 

Duplication has a higher priority than the other techniques. In many instances a part 
can, be expressed as either a duplication of the same part previously, or as a 
transposition. For example, in a given 4 bar section there might be 2 unique parts and 2 
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parts that are expressed as transpositions of the first 2. When this 4-bar section repeats 
again, the 4 parts would be expressed as duplications in respect to the first 4 bar section. 

6. EXAMPLES 
6.1. SECRET OF THE FOREST 
To give an overview of the automated analysis process discussed previously (before 
discussing analysing large corpuses), this section looks at a single piece of music in 
detail. Secret of the forest is a song composed by Yasunori Mitsuda (Mitsuda, 1995). The 
song has previously been deconstructed and analysed by Yu (2016). There are a number 
of sections in this piece that can be expressed and represented using the tools offered by 
IGME, that disseminate musical structure in the piece. Overall the piece has roughly 
10% unique parts, and the remaining 90% can be expressed through the processes 
discussed in sections 4 and 5. Table 1 shows the overall distribution of parts found by 
this analysis process. No transformation parts were discovered so these are excluded 
from table 1. Figure 18 shows a visualisation of the overall piece. Duplicate parts are 
given the same colour, making patterns in the structure easier to distinguish, light blue 
is used to show unique parts, which are mostly present at the start of the piece. 
 
 

  
Number 
of Parts 

Unique 
Parts Duplicate  Transposed Arpeggiated 

Note 
Mapped 

Counts 579 60 496 14 6 3 
Percentage 100.00% 10.36% 85.66% 2.42% 1.04% 0.52% 

Table 1: Analysis results for Secret of the Forest. 

 
Figure 18: Visualisation of a section from the piece. 

Although the analysis process performs optimally on this piece of music, there are a 
number of reasons why the piece cannot be analysed further. Tracks 1, 2, and 8 are 
percussion, and repeat a single idea throughout. Track 3 is a bass part and contains a lot 
of representable content, some of the content on this track is similar in structure 
however it is not easy to represent within IGME using current techniques, the same 
conclusion is true of tracks 4 also. Track 5 is almost exclusively 2 note chords, as all of 
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the parts have the same structure this can all be represented through transforms. Tracks 
6, 7, and 9, contain the bulk of the material, the unique ideas are different enough that 
they are mostly inexpressible by other means.  6 of the 7 parts on track 10 can all be 
expressed as arpeggiated parts. The final 2 tracks are mostly melodic ideas. From these 
60 parts the rest of the song can be assembled. 

 
   

 
Figure 19: All of the unique ideas (building blocks) for secret of the forest. 

 

 
Figure 20: Musical score of repeating idea. 

One of the more interesting structural ideas found when analysing the song was the 
repeating idea shown in figure 20, this is first used from bar 33. The same idea is 
repeated 4 times, but is chromatically transposed each time. The 4-bar section is then 
repeated 6 times throughout the piece. The repeated 4-bar sections are expressed as 
duplication (of the earlier section) rather than 1 part and 3 transpositions, as they did on 
the first occurrence. 
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7. DATA SETS 
7.1. HUMAN COMPOSED MUSIC 

 
To understand how the processes discussed in sections 4 and 5 can be applied to 

existing music it is important to analyse a large selection of it. To compute the datasets 
for this research, a large selection of MIDI files in different genres were gathered from 
various free online MIDI databases. These were then grouped by genre and analysed in 
bulk using the pipeline discussed in Section 5. Section 6 looked at analysing a single piece 
whereas this section applies the same process but for multiple pieces of work. Table 2 
shows the results.  
 

 
Table 2: Analysis results for various genres of music, whereby N is the number 

of files analysed. 

 
The representable value is expressed as the percentage of parts that can be computed 
from another part (i.e. not unique). Initial observations of the data revealed that the 
Classical dataset scored the lowest for representability, unlike other styles of music is 
often instrumental, meaning that the music is perhaps more complex to accommodate 
for the lack of vocals. Pop, Rap, and dance music have high representable scores, 
perhaps as these genres of music make use of loops. Jazz has slightly more 
representability than classical but less than pop and rock. Video game music scores the 
highest overall. The results could be interpreted, that more popular forms of music (rock 
and pop) tend to express music in a simpler structure that conforms to the bar level 
hierarchy, whereas jazz and classic tend to follow more nuanced levels of structure that 
is not sufficiently captured by this process.  Despite their low overall scores, Classical 
and Bach contain more transposed and arpeggiated parts then any of the other datasets. 
 
The transformation (retrograde, inversion, rotation) technique is clearly in its current 
configuration either; unable to represent the music (incorrect model), or is just simply 
not used that often as a technique. Given the relatively high duplication score for almost 
all datasets, it is worth considering if current musical composition software makes this 
duplication either; easier to do, or make its representation obvious. Additionally, we 
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suggest that these duplicated ideas are intentional and crucial for developing structured 
(non-stochastic) music. 
 

7.2. GENERATIVE MUSIC 
In addition, the output of a series of generative music programs was captured and used 

to create a large dataset of generative music. Based on work by (Francis, 2018) a selection 
of the example programs provided were compiled and run 1000 times each to produce 
1000 pieces of music for each technique (see table 3). Even though the focus of this study 
was to test whether or not existing music could be represented by the techniques discussed 
in this paper, it is worth considering if and how generative music (composed by other 
programs) fits with this model. 
 

 
Table 3: Output for different generative program types analysed. 

 
The representability scores for the generative dataset vary widely. Firstly, the mostly 

stochastic techniques (fractal and windchime) have low representability scores, meaning 
these music types sound predictably chaotic in nature. On the other end of the scale Jazz 
and Blues have higher representability scores than their real-world counterparts. The 
counterpoint data set has a number of differences with the Bach data set, notably the 
generative set has less duplication, but much more transposition. 

 
The findings in the section perhaps confirm why generative music is seen as either 

structureless (too stochastic) or repetitive. Therefore, a balance needs to be struck 
between repeating and developing existing ideas, and creating new ones. From the 
findings above, it would seem that this remains a challenge. It could also be suggested 
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that generative music techniques are mostly suited to generating lower levels of musical 
hierarchy and that the human composers should focus on developing and arranging these 
lower levels to form higher level structure. 

8. CONCLUSION 
8.1. LIMITATIONS  
The analysis processes used in the research considers musical structure to be grouped 
into bars, while this works for certain styles of music, much of the musical structure 
operates at smaller micro (rather than macro) levels. This is true of Classical music in 
which sequences may by asynchronous with bar lines. However as discussed previously 
this coarse resolution approach is designed to reduce the complexity of the research 
objectives. However, this automated approach paves the way for more formal methods 
of analysis such as Schenkerian analysis. Nash’s (2014) Manhattan software (which has 
many parallels with this work) provides the ability to encode music at the micro and 
macro level thus providing a more complete representation of musical structure, 
although such representation must be encoded manually. 

 
The system itself is still in a beta development stage and some limitations do present 

themselves. A major limitation is the inability to work with time signatures other than 
4/4, and of course pieces that modulate to and from a different time signature. Such 
pieces are omitted from the data sets discussed in section 8.  Many pieces of music 
cannot be represented sufficiently using IGME and there are two principle reasons for 
this. Firstly, the pattern-recognition capabilities of IGME are themselves limited, and 
are demonstrated here as a proof of concept. Developing these techniques for future 
work will undoubtedly increase the representable score of music, further highlighting 
the importance of patterns in music. Secondly, and for perhaps good reason certain 
music cannot be simply compounded into primitive rules. 

8.2. FUTURE WORK 
This research has several novel uses. Firstly, it allows a user interacting with the software 
to analyse music in a visually stimulating way. We can also use generalised metrics about 
music to assess why for example generative music is often seen as structureless, by 
analysing and comparing it with a style it is trying to replicate. This also might be used 
as a tool for learning a piece of music. Whereby a student can extract the individual pieces 
of music and practice these over, later slotting them the logical timeline to realise the full 
piece of music. 
 

Ultimately the focus of this research was to assess whether existing pieces of music 
can be represented by a series of unique musical bars, and subsequent representations. As 
this paper has demonstrated this is indeed the case, with stronger emphasis for dance, folk 
and rap genres of music. Therefore, it is entirely possible to compose new pieces of music 
that intentionally use these types of processes. The number of techniques explored in this 
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paper fail to capture all aspects of musical structure, however future work may look to 
address some of the shortcomings of this research. 
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