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Abstract 

This work concerns the development of a flat plate perfusion model to study biofilms 

derived from human tongue biota. The model has been derived from a previous sorbarod 

model, via a flat plate model (used to study wound organisms), to the model described in 

this thesis. The specific technical objectives were; 1. To measure biofilm pH in real time, 2. 

To extend VOC analysis by SIFT-MS to six biofilms in parallel and 3. To enable photodynamic 

interventions and optical monitoring of bioluminescent and non-bioluminescent organisms. 

The specific scientific objectives were; 1. To validate the model by comparison of in vivo and 

in vitro case studies, 2. To characterise the in vivo biofilm ecology and compare with ecology 

in vitro, 3. To compare existing and novel anti-malodour preparations and biofilm disrupting 

agents (including D-amino acids) and 4. To assess and aid the development of a novel 

handheld surface plasmon resonance based device for measuring oral volatile compounds.  

The results demonstrated that the biofilms transplanted from human donors are 

stable and reproducible, and that profiles of volatile compounds are retained in the 

transplanted biofilm, with high and low malodour individuals producing high and low 

malodour biofilms (profiles are indistinguishable by χ2 analysis at p < 0.1). The model was 

used to evaluate a novel formulation which was shown to be more effective than similar 

active compounds and controls (p < 0.05). In a further experiment, exposure of biofilms to 

D-amino acids during the growth phase was shown to cause significant (P<0.05) effects on

microbial and EPS composition compared with controls.

Finally, the model in conjunction with SIFT-MS has been used to assess the 

performance of a novel surface plasmon resonance based biosensor. This biosensor has been 

shown to distinguish high and low malodour biofilms both in vitro and in vivo. 

In conclusion it has been demonstrated that the flat plate perfusion system is a 

stable, reproducible and accurate model covering many of the main aspects of a real tongue 

biofilm, and it has many advantages when compared with other published biofilm models.  
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1. Introduction

1.1 Microbial Biofilms 

It is over three centuries since Antony van Leeuwenhoek described the use of 

his improved microscope to view a sample of tooth plaque retrieved from an elderly 

Dutchman (Dobell and Leeuwenhoek 1960). He saw "an unbelievably great 

company of living animalcules, a-swimming more nimbly than any I had ever seen up to 

this time". Despite the amount of time passed, knowledge of the prokaryotic world remains 

meagre to say the least, with barely one percent of existing bacterial species formally 

described (Pace, 1997). Even within this tiny snapshot of the global microbiome, a large 

proportion of research has been focused on medically significant bacteria. Most 

pathogenic bacteria by their nature overwhelm mixed normal flora and predominate at 

the site of infection. Methods to identify or examine these bacteria have relied on primary 

isolation and study of a monoculture in vitro, on laboratory culture media. These modes 

of growth by bacteria are far removed from what is commonly seen throughout nature. 

For example, surveys of 16S rRNA genes reveal that although approximately 107 

bacteria exist in one gram of soil, only between 1 and 10% are cultivable 

(Colwell and Grimes 2000; Kaeberlein et al., 2002). It has been claimed that this 

is because the correct mix of nutrients or specific conditions that 

these organisms require has not been supplied, or that they are somehow 

in a 'dormant' state.  However, recent research has shown that some of them 

have lost the ability to produce crucial compounds such as siderophores and 

thus rely on their neighbours for growth (Lewis et al., 2010). The mixed culture is 

thus growing as a microbial aggregate within the soil. If we look wider at 

examples of microbial colonization throughout nature, we see that 

diverse complex bacterial communities are ubiquitous. Biofilms exist on  
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abiotic surfaces such as rocks, minerals and air-water interfaces and almost all biotic 

ones. The human body itself is colonised by microbial biofilms over the majority 

of its epithelial surface. They are structurally and dynamically complex biological 

systems that share many attributes with both macro scale ecosystems and 

multicellular organisms (Stoodley et al., 2002).  

The first stages of biofilm development have been extensively studied 

both qualitatively and quantitatively. Any surface in contact with liquid containing organic 

matter will quickly gain a conditioning film of organic molecules (Bryers, 1987). Marshall 

et al., (1971) were the first to suggest a model based on the Derjaguin–Landau–

Verwey–Overbeek (DLVO) theory of colloid stability, which is itself a combination of 

the effects of Van der Waals attraction and the double layer force. This model 

has been subsequently developed to include both hydrophobic: hydrophilic 

and osmotic interactions to give the so-called extended DLVO theory (van Oss, 

1995). This theory is however a simplistic approximation of actual processes as it 

neglects entirely any dynamic effects that are due to directed processes by living 

organisms. It is these directed processes that have more recently been studied in 

various species. 

Following inoculation, binding and early colonisation, the biofilm develops and 

matures and nature of it changes in significant ways. Whilst growth has been stochastic in 

nature, it begins to become more deterministic, as organisms that are capable of 

interaction and are in close enough proximity begin communication with chemo-

attractants and pheromones through quorum sensing. This leads to changes in growth rate 

and gene expression and the biofilm begins to behave as a true community (Allison et al., 

1998). This has been seen in both motile gram negatives such as Escherichia coli and Vibrio 

spp. and non-motile organisms such as Staphylococcus aureus and Mycobacterium spp.  

(Stoodley et al., 2002). Microcolonies and water-channels can appear, and cells alter their  
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physiochemical processes to suit the micro-niches they inhabit; both by autogenic 

and allogenic succession (Marsh, 2000).  In fully mature biofilm, quorum sensing 

(McLean et al., 1997; Labbate et al., 2004; Parsek and Greenberg 2005) 

and horizontal gene transfer (Roberts et al., 1999; Hannan et al., 

2010) have been demonstrated, along with distinct organismal, ecological 

and functional organization (Wilmes et al., 2009). 

1.1.1 The monolayer biofilm 

The initial stage of the formation of complex microbial communities is usually the 

formation of a monolayer biofilm. This is defined as a biofilm where all cells or small clumps 

of cells are bound to a surface and none to other cells. Formation initially progresses 

stochastically with cells attaching, detaching and reattaching. In many species, type IV pili 

have been shown to be important in this process (Klausen et al., 2003) as have flagellae. In 

E.coli fimbrae such as curli have been shown to also have a role ((Vidal et al., 1998). In other 

species or variants, surface proteins such as esp (Toledo-Arana et al., 2001)  bap (Cucarella et 

al., 2001) and Ag43 (Klemm et al., 2004) have been shown to be involved in initial surface 

binding.  As more cells become permanently attached, the process becomes more 

deterministic. Moorthy and Watnick (2004) showed that in Vibio cholerae as type IV pilus 

attachment progresses, flagella expression is reduced. Van Dellen et al., (2008) suggested 

that this in turn caused a change in membrane potential that mediated the change from 

transient to permanant attachment. In E.coli the conditionally synthesised EPS adhesin PGA 

appears to mediate this transition (Agladze et al., 2005). In Caulobacter crescentus the 

flagellum cells are removed by a protease and replaced by a specific holdfast polysacccharide 

that binds tightly to the surface (Li et al., 2005).  

As time progresses, further spread of the monolayer biofilm occurs by both pilus 
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associated twitching motility and clonal growth (Klausen et al., 2003).Eventually 

surface colonies merge to form a confluent carpet of cells. In most cases, when 

sufficient nutrients and other favourable conditions are available, the biofilm will then 

go on to develop into a complex three dimensional matrix of cells and exracellular 

material. 

1.1.2 Extracellular Polymeric Substances (EPS) 

The matrix surrounding and produced by biofilm cells was originally thought to consist 

almost entirely of polysaccharides, and in fact the abbreviation EPS reflected this. The 

‘Extracellular Polysaccharides’ were seen as a combination of capsule, which was a simple 

extension of the cell wall, and slime, an amorphous, viscous substance surrounding the cells 

(Wilkinson, 1958). This misconception was for the most part due to the fact that cells were 

being examined either in simple plate culture or in the planktonic state. The glycocalyx, as it 

became known, was well described by Costerton and Irvin (1981) but even in this work 

and in another published the same year (Costerton et al., 1981), the group was 

beginning to notice other filamentous structures in the extracellular matrix. As techniques 

improved, the first indications that it might not be as amorphous as it first appeared 

then emerged (see Characklis and Wilderer 1989).  In the next decade, cryoscanning 

electron-microscopy (i.e. Cherepin, 1992) , Atomic Force Microscopy (Beech, 

1996) and transmission electron microscopy  (Jacques and Gottschalk, 1997) 

using monoclonal antibodies to stabilise the capsule) were all used to image 

biofilms, with varying degrees of success. In parallel to this work, non-microscopic 

techniques were providing evidence of the nature of the EPS. A number of 

studies used genetic mutants that either over or under-expressed 

polysaccharides (Danese et al., 2000) and alginates (Franklin and Ohman, 1996; 

Hentzer et al., 2001; Tielen et al., 2005) to examine the nature of the EPS matrix. 

Additionally, methods of mathematically modelling biofilms, (Wimpenny and Colasanti,  
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1997; Van Loosdrecht et al., 2002) suggested a heterogeneous mosaic model.  However, 

the underlying problem was that as the matrix consisted of over 90% water, any 

visualisation techniques which involved dehydration and fixation were bound to destroy 

much of the 3D structure being studied. Fortunately, it was around this time that Confocal 

Scanning Laser Microscopy (CSLM) was becoming more readily accessible. The 

technique, described in more detail later (section 2.5), facilitated an explosion in 

knowledge and further work (Lawrence et al., 1998; Wingender et al., 1999; Neu and 

Lawrence 2014a; Schlafer and Meyer 2015). It became apparent that not only was there a 

multitude more constituents to the EPS to be considered, but the function and 

purpose of the matrix was far more extensive than previously thought. 

It is now obvious that a complex three-dimensional structure is probably the most 

important defining characteristic of a biofilm. The EPS is a combination of 

polysaccharides, phospholipids, proteins, glycoproteins and nucleic acids. It not 

only aids adhesion, aggregation, cohesion and retention of water, but it protects 

the colony, facilitates absorption of organic and inorganic compounds and acts as a 

nutrient source between species. Perhaps most importantly, though, is the contribution 

to the ecology of the biofilm. Initially the presence of DNA in the matrix was thought 

to be merely a contamination from lysed cells, but evidence suggests that in certain 

species it is important in biofilm formation (Whitchurch et al., 2002) and in 

some cases is under the release of quorum sensing systems (Allesen-Holm et al., 

2006). Acylhomoserine Lactone (AHL) has also been frequently detected in the 

EPS matrix suggesting other quorum based intercommunication between 

bacteria (Tan et al., 2015). Factors such as this become unimportant at high maximum 

specific growth rate (µmax) as organisms tend to downregulate or switch off completely 

any mechanisms or pathways which are unnecessary when nutrients are in good supply and 

all conditions are favourable (Magasanik, 1961).
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1.1.3 Complex multilayer biofilms 

In the conventional model of biofilm growth and development (Figure 1.1) the thick 

biofilm may be removed by mechanical forces (liquid shear, or toothbrush or other abrasive 

forces) so that the biofilm continues to grow but reaches pseudo-steady state as parts grow, 

but other parts are rapidly removed.  

Figure 1.1: Conventional conception of “thick biofilm” 

When the removal process is due to fluidic shear, then the removal rate is close 

to being constant; however the biofilm matrix is heterogeneous due to (a) diffusion 

layers or gradients for gases (oxygen, carbon dioxide, ammonia) and (b) diffusion layers or 

gradients for carbon-energy nutrients. Mathematical modelling of diffusion and 

hydrodynamic flow can show how different microenvironments can favour the growth of 

some types (e.g. aerobes and anaerobes) and may account for pH changes that form 

across the depth of the biofilm. The conventional concept considers the substratum (e.g. 

tooth surface) and biofilm matrix and cells, to be two different entities or compartments. 
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The finding that perfusion biofilms behave differently to the conventional model (and the 

repercussions of that finding) suggest that specific conditions can allow for fairly constant 

steady state conditions to occur which can be maintained for several weeks. The perfusion 

biofilm can be described as a small vessel of tethered cells within a rapid moving steam 

of growth medium. The substratum (e.g. cellulosic strands) and the channels and voids 

are well integrated over the mm-cm scale and the term “biofilm matrix” now includes 

the substratum as well (figure 1.2).  

Figure 1.2: The perfusion biofilm 

In a thick film biofilm diffusion of rate limiting factors (oxygen and nutrients) will 

govern the growth rate and metabolism of the cells and are the most important factors that 

determine the behaviour or physiological state of the deeper parts of the biofilm. This ceases 

to be the case in a free-flowing loose matrix “perfusion” biofilm where the modelling 

becomes much simpler since perfusion rate replaces diffusion rate. The consequences of this 

are that the perfusion biofilm matrix can be considered to be homogeneous (at the mm-cm 

scale), and that all the cells in the system are formed from the inner attached layer that grows 

continuously (providing that the physicochemical conditions and flow rate remain constant). 

At each generation, daughter cells are pushed nearer to the micro-flow channels within the 
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matrix, and daughter cells are eventually sheared off. Fast growth rates may be achieved in 

practice (McKenzie, 2007) as well as in theory and it is most likely that the residence time 

for the mother layer is potentially many years, whilst the half-life of detached cells in the 

vessel is relatively short, especially at high flow rates. In contrast, a thick film biofilm will 

increase the diffusion barrier and favour an inner core of anaerobes and an outer core of 

aerobes, with facultative anaerobes throughout. Cells above the inner layer will continue to 

grow and multiply within the matrix volume, wherever they may be located in the matrix. 

The outside layers with shorter diffusion distance to the main nutrient source will grow 

faster than the inside layers.  

Diffusion barriers to the products of microbial metabolism, including acids, bases and 

hydrogen ions, will increase along with diffusion barriers to substrates. For substrates such 

as glucose or sucrose the acid production for oral streptococci and other fermentative 

species would soon create a pH gradient, with the inside layers having a lower pH than the 

outside layers (McKenzie, 2007). It should be noted that long or tubular perfusion 

matrix systems can also show marked gradients along the vertical down-flow axis 

(McKenzie 2007), but this is less so for a flat 1 cm2-sized matrix where all cells are 

subjected to all chemical components equally within a short period of time, maintaining 

overall homogeneity of the micromozaic of microbial aggregates or microcolonies.  

The tongue surface is composed of pits, crypts and fissures so that any biofilms that 

develop deep in a pit are growing constantly and the pressure of growth would tend to push 

cells towards the lumen end of the pit. However, the biofilm growing on the tongue surface 

will not have a distinct eternal layer of mother cells because the substratum itself (i.e. the 

mucosal epithelial cells) are slowly but constantly desquamating producing unattached cells, 

which may degenerate and lyse, to be ultimately ejected from the micro-vessel pit.  
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The concepts of compartments is also important in understanding biofilms: For a thick 

biofilm (such as a thick biofilm on the tongue surface and down crypts or pits) will have (1) 

bulk salivary phase, (2) a thin salivary surface film that will rapidly flow across the surfaces 

of the tongue and be rapidly replaced with a mean residence time measured in seconds 

rather than minutes, (3) the biofilm matrix volume contains fluid (called matrix fluid) which, 

in contrast to the abovementioned 2 layers has a much slower mean residence time. This 

slow removal of the inner matrix volume allows reaction products of the cells to build up to 

a high concentration, and any protein hydrolysis reactions (such as breakdown of 

glycoproteins) to go more to completion over a given unit of time (e.g. per hour). The matrix 

volume (matV) of a biofilm for a tongue with low microbial population (<107 cells cm-2) will 

be a thin biofilm, (matVthin) whilst a population of 108-109 cells would be denoted as a 

thick biofilm (matVthick). The biofilm area will remain the same, but its matrix volume will be 

thicker the higher the amount of biofilm components (cells, EPS and solutes). As with a 

chemostat the dilution rate, D = f/V and its units are expressed as per time unit (h-1). 

The effects of thickness, volume and flow rate on the mean residence time (= 1/D) 

expressed as hours suggests that all reactions will build up to higher degrees of completion, 

including glucose to lactate, urea to ammonia and bicarbonate to carbon dioxide. In addition 

carbonic anhydrase can permit phase changing reactions such as HCO3
2-  >>> CO2 (gas) and H2O 

with the effect of removing a weak acid (allowing the pH to rise). Likewise the 

reaction equilibrium between urease and urea is of interest (Mack and Villars, 1923).

(NH2)2CO  +  H2O      urease     NH3  +  H2NCOOH  2NH3 (gas)   +   CO2  (gas) 

Equation 1.1: Urease reaction 

Urease is a naturally occurring enzyme that catalyzes the hydrolysis of urea to unstable 

carbamic acid. Rapid decomposition of carbamic acid occurs without enzyme catalysis to 
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form ammonia and carbon dioxide (equation 1.1). D e p e n d i n g  o n  t h e  p H ,  t he 

ammonia will likely escape to the atmosphere unless it reacts with water to form 

ammonium ion (NH4
+) according to the following reaction: 

NH3 (gas)  +  H2O NH4
+   +  OH- 

Equation 1.2: Formation of ammonium ions 

HCO3
-   +   H+  H2CO3  CO2   +   H2O 

Equation 1.3: Carbonic anhydrase reaction 

The reaction rate of carbonic anhydrase is one of the fastest of all enzymes, and its 

rate is typically limited by the diffusion rate of its substrates. Typical catalytic rates of the 

different forms of this enzyme range between 104 and 106 reactions per second (equation 

1.3), whilst the reverse reaction is relatively slow in the absence of a catalyst. This enzyme is 

found quite widely in nature including some species of oral bacteria and a mammalian 

source found in saliva (Supuran, 2004).  

It has been shown (Saad, 2006) that by taking tongue scrape samples and 

re-suspending them into sterile distilled water (rather than weak tryptone buffer) it is 

possible to measure the matrix pH providing measurements are taken quickly (within 2 

minutes of collection). When these data were plotted against malodour scores of 20 

subjects, a strong relationship was seen (figure 4.6) with respective R2 values between 

0.7444 and 0.7834. These results suggest that malodour generation is associated with an 

increase in the mean pH of the tongue biofilm whereas there was only a weak 

negative correlation (R2 approximately 0.4) between the pH of saliva and malodour 

parameters. 

The carbon dioxide is reversibly hydrated as shown in equation 1.3 and this reaction is 

catalysed by carbonic anhydrase (Smith et al., 1999). 
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Although there are publications regarding the co-measurement of salivary pH and 

malodour parameters, and reports of tongue surface pH (salivary layer) and malodour, 

there are none that have been described relating tongue biofilm matrix pH and malodour 

with the exception of Saad and Greenman (Patent app. WO2008GB02466). The reasons 

that an increase in biofilm pH may result in an increase in malodour parameters could 

include: (1) the pH optima for transformation of substrates into VC/VSC could be higher 

than neutral (2) the higher pH of the tongue favours volatility of VC/VSC (3) the higher 

pH of the tongue could favour the optimal pH of collective proteolytic activity.  

It is also possible that there is no causal relationship between a high pH and 

malodour but rather the other way round; a high malodour generating biofilm (indicative 

of protein and peptide metabolism) may have the tendency to cause the pH to increase. A 

high biofilm density will produce more amines, ammonia or other basic products and 

produces an alkaline condition. Yet another explanation could be that a thicker biofilm 

(that correlates with higher malodour) could hold a larger dead space volume of 

salivary coating/biofilm fluid; analogous to Kleinberg’s concept of residual salivary film 

(Kleinberg and Codipilly, 1995) with a longer mean residence time of molecules than 

occurring within a thin biofilm. The larger volume of salivary coating coupled with its 

longer turnover will shift the pH equilibrium towards base as salivary CO2 is released 

from the main bicarbonate buffer (CO2/HCO3
-). 

1.1.4 The Oral Biofilm 

In a natural human birth, the neonate leaves the uterus sterile, but as soon as contact 

is made with the vaginal canal and the outside environment, colonization by bacteria begins 

(Collado et al., 2012; Costello et al., 2012). As the epithelial surface inside and outside 

the body becomes exposed to this environment and the organisms in it, a microbiome is 

built up.  By the time this process has completed, prokaryotic cells outnumber eukaryotic 
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cells by an order of magnitude. The habitats of the human body are extremely varied and 

this leads to the development of distinct microbial populations. These characteristic 

populations have varying diversity at the habitat level (alpha diversity) and varying diversity 

between the same habitats across subjects (beta diversity). Changes in diversity in either 

direction can be indicative of disease (The Human Microbiome Project Consortium, 2013). 

The environment of the human oral cavity has been extensively studied and the microbiome 

found there has been shown to be richer in variety and more conserved than others in the 

body (Stahringer et al., 2012). The first work to investigate microbial interactions during 

early biofilm formation was by Kolenbrander with various teams. (Whittaker, Klier and 

Kolenbrander, 1996; Kolenbrander and London, 1993; Kolenbrander and Andersen, 1986; 

Kolenbrander, Andersen and Moore, 1990; Kolenbrander and London, 1992). Simple assays 

utilised the decrease in turbity associated with species-to-species binding to characterise 

these interactions. The earliest colonizers of the biofilm are overwhelmingly streptococci, 

followed by Actinomyces, Capnocytophaga, Haemophilus, Prevotella, Propionibacterium and 

Veillonellae (summarised in figure 1.3).  All of these organisms possess specific cell surface 

associated adherence proteins which recognise protein, glycoprotein, or polysaccharide 

receptors on various oral surfaces, including other cell types. This strategy of attaching to 

bacteria already immobilised to hard or soft tissues may provide secondary colonisers with 

similar advantages as enjoyed by primary colonizers.  

 The oral cavity consists of a number of different habitats, including the hard and soft 

palates, the tongue, cheeks and tonsils, plus the teeth and gingival sulcus, all providing 

differing conditions and colonized by different populations of bacteria. Overall these 

comprise of over 600 prevalent taxa (Dewhirst et al., 2010). They are lubricated and irrigated 

by salivary fluid and this influences biofilm formation both positively and negatively. Some 

factors inhibit microbial growth and mediate microbial killing (eg. histatin), or bind to 



Figure 1.3: Oral biofilm co-attachment showing early colonisers as identified by Kolenbrander et al. 
(1993) (Reproduced with permission of the American Society for Microbiology)

microorganisms to facilitate their clearance from the oral cavity (eg. agglutinins). 

Conversely, salivary components serve as receptors in oral pellicles for microbial 

adhesion to host surfaces and serve as microbial nutritional substrates (Scannapieco, 

1994)  

There are many oral diseases or conditions in which the oral microbiome is 

implicated, including dental caries, periodontal disease, endodontic 

infections, dento-alveolar infections, salivary gland infections, tonsillitis and oral malodour.  

In many of these cases, the etiological agents are not single pathogens but a 

consortia of microorganisms causing a shift from 'health' to 'disease' (Kuramitsu et al. 

2007). In the case of oral malodour, its severity is likely to be associated with greater 

species diversity in the mouth (Donaldson et al. 2005). 

13 
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1.1.5 Bacterial Second Messengers 

Second messengers are signalling molecules that act within cells in response to a 

primary trigger that is external in origin. In eukaryotes this primary trigger is usually a 

hormone or neurotransmitter, but in microbial cells a wide range of environmental stimuli 

can act as a primary messenger. Second messengers are thus principle components of 

intracellular signal transduction cascades. In recent years much biofilm research has 

focussed on the role of cyclic dimeric (3’→5’) guanosine monophosphate (C-di-GMP). 

C-di-GMP was first identified as the activator of cellulose synthase in

Gluconacetobacter xylinum (formally Acetobacter xylinum) by Ross et al., (1987). This 

important molecule has been shown to affect motility, virulence and cause an overall shift to 

and from planktonic to sessile modes of growth. Tal et al., (1998) showed that intracellular 

turnover of C-di-GMP is controlled by the dual action of diguanylate cyclases (DGC) and 

phosphodiesterases (PDE). In the seminal work of Simm et al., (2004), it was shown that these 

enzymes are identified by GGDEF and EAL domains respectively. These domains had 

previously been identified in diverse bacterial strains and were designated domains of 

unknown function;  DUF1 and DUF2 (Galperin et al., 2001). Later work by Slater et al., (2000) 

and Ryan et al., (2017) showed that a further domain, HD-GYP was associated with C-di-GMP 

downregulation.  The cycle is illustrated in Figure 1.4. Briefly, the phosphodiesterases 

dissociate C-di-GMP into either a linear diguanine polyphosphate (pGpG) or guanosine 

monophosphate (GMP) which is then converted to guansine trIphosphate (GTP). GTP 

recycled to C-di-GMP by the diguanylate cyclases. The consequences of up and 

downregulation of both C-di-GMP and GTP are shown in Figure 1.5. 

It is now apparent that a significant messaging and regulation system had been 

discovered. GGDEF, EAL and HD-GYP motifs have now been identified in all major bacterial 

phyla (Romling et al., 2013) and over 900 proteins expressing these domains have been 
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Figure 1.4: Modulation of C-di-GMP by GGDEF, EAL and HD-GYP domain proteins. 

identified (Schultz et al., 1998; Tatusov, 2001). Although details vary, the overarching 

purpose of the C-di-GMP system appears to be the transition between motile and 

sessile modes of colonisation. Increased C-di-GMP levels correspond to reduced 

motility and increased production of EPS (particularly alginates and 

polysaccharides) and fimbriae, and increased cell to cell communication (Römling et 

al., 2005).  However, knowledge of stimuli and effectors of C-di-GMP signalling remains 

Figure 1.5: Effects in the balance; upregulation and downregulation of C-di-GMP and GTP. 

GGDEF 

EAL 

HD-GYP 
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sparse. A number of effectors in various organisms have been shown to carry the PilZ motif 

(Amikam and Galperin, 2006). This is a   ̴ 100 amino acid protein domain that appears to be 

involved with production of alginate in Pseudomonas aeruginosa (Merighi et al., 2007), motility 

in Borrelia burgdorferi (Freedman et al., 2010), Caulobacter crescentus (Christen et al., 2007) 

and Vibrio cholera (Pratt et al., 2007) and fimbriae expression and biofilm production in 

Klebsiella pneumoniae (Wilksch et al., 2011). In Shewanella oneidensis MR-1, it has been 

suggested that C-di-GMP acts through MxdB, a membrane associated glycosyl transferase that is 

essential for cell attachment specifically to the matrix and not the substratum (Thormann et al., 

2006). Degenerate EAL and GGDEF domains have also been identified as effectors. LapD is an 

inner membrane effector protein that binds C-di-GMP via a degenerate EAL domain and induces 

the expression of biofilm adhesion LapA (Newell et al., 2009, 2011). C-di-GMP has also been 

shown to bind to riboswitches in limited cases (Sudarsan et al., 2008; Lee et al., 2010). Of the 

few strict anaerobes studied, Clostridium perfringens has been shown to possess C-di-GMP 

mediated expression of Type IV pili (Hendrick et al., 2017).  

The potential hinted at by the ubiquity of C-di-GMP binding domains and the 

multitude of C-di-GMP dependent systems has yet to be realised. The full extent of this 

signalling network and the proteins and RNAs that may be involved remains a mystery. A full list 

of known receptors and effectors can be examined at http://

ncbi.nlm.nih.gov/Complete_Genomes/c-di-GMP.html and a summary of 

current understanding of c-di-GMP binding is given by Chou and Galperin (2016).   

In terms of external stimuli a similar state of affairs exists. Few environmental signals that 

regulate C-di-GMP mediated pathways have been identified. One exception is nitric oxide, 

which has been shown to increase C-di-GMP levels in Shewanella oneidensis (Plate and 

Marletta, 2012), Legionella pneumophila (Carlson et al., 2010) and Vibrio fischeri (Wang 

http://ncbi.nlm.nih.gov/Complete_Genomes/c-di-GMP.html
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et al., 2010) through the GGDEF-EAL domain containing haem NO/oxygen-binding 

(H-NOX) proteins. Thormann et al., (2005, 2006) have suggested that, in S. 

oneidensis, a reduction in oxygen levels leads to biofilm detachment and dispersal 

though C-di-GMP pathways, although this is unconfirmed. 

It is obvious that these mediators and effectors are merely the tip of a large iceberg 

and the C-di-GMP mediation network will provide extensive potential for study for many 

years to come. In this respect the C-di-GMP signalling network within the tongue biofilm has 

barely been scraped. Oral organisms about which the presence of C-di-GMP related protein 

domains are known are shown in Table 1.1. This table was created by searching the 

database referenced earlier (Romling et al., 2013; Chou and Galperin, 

2016) for instances of oral organisms from the known oral microbiome (Kilian et al., 

2016). Of the organisms showing relevant domains, only Porphyromonas 

gingivalis and Treponema denticola have been investigated for C-di-GMP 

mediated traits. P. gingivalis mutants lacking GGDEF proteins showed reduced 

FimA protein production and fimbrial display, leading to corresponding reduction 

in biofilm production and host cell invasion  (Chaudhuri et al., 2014). 

Similarly, T. denticola deletion mutants for a PilZ-like protein named TDE0214 has 

been shown to be deficient in biofilm formation and virulence (Bian et al., 2013). 

Interestingly, one other oral organism, Streptococcus mutans, has shown C-di-GMP 

biofilm mediation and this is through a non-GGDEF domain protein (Yan et al., 2010). 

As far as other common oral microbes are concerned, any role of C-di-GMP and 

mechanisms by which modulation may occur are unknown. A large number of significant oral 

organisms, such as Actinomyces sp., Bacteroides sp., Bergeyella sp., Enterococci, 

Eubacterium so., Fusobacterium sp., Neisseria sp., Prevotella sp., Tannerella sp. and 

Veillonella sp. have simply not been examined for the presence of relevant protein 

domains, nor investigated for the presence of intracellular cyclases. 
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Table 1.1: Distribution of GGDEF, EAL, HD-GYP and PilZ domains in the genomes of oral bacteria, 
where known (compiled from published data) 

Do not contain GDDEF/EAL 
domains 

Do contain GDDEF/EAL 
domains 
Campylobacter concisus 
Halothiobacillus neapolitanus 
Halothiobacillus sp. 
Lactobacillus reuteri 
Lactobacillus salivarius 
Porphyromonas gingivalis 
Ralstonia solanacearum 
Selenomonas sputigena 
Staphylococcus epidermidis 
Treponema denticola 

Actinobacillus succinogenes 
Aggregatibacter actinomycetemcomitans 
Atopobium parvulum 
Bifidobacterium longum 
Corynebacterium durum 
Cryptobacterium curtum 
Enterococcus faecalis 
Filifactor alocis 
Fusobacterium nucleatum 
Haemophilus influenzae 
Haemophilus parainfluenzae 
Lactobacillus fermentum 
Lactobacillus helveticus 
Lactobacillus johnsonii 
Lactococcus lactis 
Moraxella catarrhalis 
Prevotella denticola 
Prevotella melaninogenica 
Rothia dentocariosa 
Rothia mucilaginosa 
Streptococcus dysgalactiae 
Streptococcus gordonii 
Streptococcus mitis 
Streptococcus mutans 
Streptococcus sanguinis 
Streptococcus suis 
Streptococcus thermophilus 
Streptococcus uberis 
Tannerella forsythia 
Veillonella parvula 

1.1.6 Treatments based on modulation of C-di-GMP 

The ubiquity of C-di-GMP pathways in diverse taxa, and the specificity of the signalling 

network to prokaryotic cells has led many to suggest C-di-GMP as a potential target for 

antimicrobial treatment. Effectiveness of hypothetical agents can be proved in principium 

using mutant strains that either over or under express GDDEF and EAL domains. This has 

been shown with Ps. putida (Gjermansen et al., 2006), Ps. aeruginosa (Christensen et 

al., 2013), S. oneidensis (Thormann et al., 2006), Vibrio vulnificus (Nakhamchik et al., 2008) 

and others. However, identification of actual agents has proved harder.

johngreenman1
Highlight
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  Sambanthamoorthy et al. (2011, 2012, 2014) have used high-throughput screening to 

identify compounds that antagonise DGC enzymes, and several of these have shown 

promising biofilm dispersal properties in V. cholera, Ps. aeruginosa and Staph. aureus. Ma 

et al., (2011) on the other hand, have protein engineered a potential bioreactive 

compound.  Opoku-Temeng and Sintim’s groups have also identified several potential 

small compounds that can permeate cells and influence C-di-GMP levels in bacteria (Zheng 

et al., 2014; Opoku-Temeng and Sintim, 2016a, 2016b; Opoku-Temeng et al., 2017). The 

most promising of these have been hydroxybenzylidene-indolinones . This is an active and 

promising area of study with the potential to produce novel and important broad-

spectrum antimicrobials and anti-biofilm agents. 

1.2 Oral Pathology and Malodour 

Oral malodour is a common condition defined by the presence of odorous volatile 

compounds and/or sulphur compounds (VCs, VSCs) on the breath of individuals, noticeable 

by independent objective judges and considered as objectionable by others. It affects 

humans worldwide, although tolerance of levels and opinion on what is considered 

objectionable varies greatly between countries and cultures. Volatile sulphur compounds 

(VSCs) such as H2S, CH3SH and (CH3)2S and (CH3)2S2 are the main contributors to oral 

malodour (Tonzetich, 1971). Other VOCs such as indole, skatole, cadaverine and putrescine 

are also present, but are not considered as objectionable due to their low volatility or 

high smell threshold (Tonzetich and Richter, 1964;Tonzetich et al., 1967). It is 

widely accepted that the primary source for the production of these compounds is the 

microbial community of the dorsoposterior surface of the tongue (Hartley et al., 1996b; 

Hess et al., 2008). VSCs are produced through the putrefactive action of 

microorganisms on sulphur-containing substrates namely cysteine, cystine, glutathione or
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methionine within proteins and peptides. Other endogenous and exogenous substrates 

and precursors in the oral cavity include exfoliated oral epithelium, salivary 

corpuscules, saliva, blood and food debris (Massler et al., 1951; Tonzetich and 

Kestenbaum, 1969; Tonzetich, 1977). Figure 1.6: Production of VOCs by oral bacteria 

shows a schematic summary of these processes. 

There have been several microbiological studies investigating the composition of 

the tongue microbiota of individuals with oral malodour. Additionally, there have 

been metabolic studies of groups of oral organisms to identify those with the propensity 

to cause malodour. A summary of this work is shown in table 1.2. 

Figure 1.6: Mechanisms of VOC production by oral bacteria 
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The first of these studies was by Persson et al., (1989) and used gas 

chromatography to measure the production of sulphides from known species incubated 

in serum. Next, Hartley et al., (1996) compared samples cultured from the tongue 

dorsum of low and high malodour individuals. Loesche and Kazor (2002) published a 

useful summary of the microbiology of halitosis and Tyrrell et al.,(2003) published a 

comprehensive study of eight subjects with oral malodour that gave frequencies of 

occurrence of a range of VOC producing organisms.  Salako and Philip, (2010) 

used Halimeter and OralChroma to analyse the headspace of vials various 

organisms to identify VSC producers. Haraszthy et al., (2007, 2008) completed two rRNA 

based studies that first drew attention to Solebacterium moorei as a potential 

aetiological agent of malodour and Seerangaiyan et al., (2017) also used 16S rRNA 

gene sequencing in a study study that identified some novel VOC producing 

organisms.  
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1.3 Treating Oral Malodour 

Approaches to combat oral malodour go back to ancient times and have extended 

over many cultures and religions throughout history. The use of toothpastes has played a 

significant part in oral hygiene for many centuries despite early formulations falling short of 

delivering antibacterial active compounds. Since the introduction of fluorides more than 50 

years ago in toothpastes, its role in the prevention of dental caries through a mechanism of 

remineralisation has become indisputable (Brambilla, 2001). Moreover, other compounds 

such as metal ions (Zn2+), cetylpyridinium chloride, triclosan, chlorhexidine (CHX), amine 

fluorides, and stannous fluoride can be added to toothpastes and have shown antibacterial 

activity in vivo (Addy, 1986; Arweiler et al., 2001; Paraskevas et al., 2004) and in 

vitro (Scheie, 2003). It is well accepted that CHX remains a benchmark in dental plaque 

control and in oral malodour (Addy, 1986; Jones, 1997; Scheie, 2003) and it is 

often used as a positive control in many studies. However, a long-term side effect of 

CHX is staining of the teeth (Flötra et al., 1971; Bosy et al., 1994; Quirynen, 

2003), so alternative compounds have been used including amine fluoride/

stannous fluoride (AM/SnF) combination. It is believed that fluoride 

antibacterial action can be enhanced when used in association with cations such as 

Sn2+ or amine (Loveren, 1990). Amine fluoride was shown to reinforce enamel 

remineralisation and to have an antimicrobial effect (Wiegand et al., 2007). 

Stannous fluoride is known for its anti-caries effects but is not stable when used 

alone in mouth rinse preparations or toothpastes (White, 1995). Therefore, it 

has been used in association with amine fluoride not only to address the 

instability problem but also to enhance caries protection. 
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1.4 Modelling the Oral Biofilm 

Physical modelling of the oral biofilm can be split into two different systems, batch 

culture closed systems and open or continuous flow systems. Batch culture closed systems 

were the first method used historically to model biofilms, consisting of the culture of selected 

microbial species in a liquid medium with or without a solid substratum of known surface 

area present. This method has been effective at identifying a wide variety of volatiles from 

a wide variety of species/samples (Tonzetich, 1971; Tonzetich and McBride, 1981). 

However, the method is limited by the fact that it does not model the dynamic 

nature of the in vivo biofilm. In vivo, the whole physicochemical 

environment (number of cells, concentrations of substrates, nutrients, products, 

pH and oxygen tension) is in dynamic equilibrium, whilst these parameters are 

always shifting as an inevitable consequence of growth in a closed system. 

Cell populations will expand and products of their metabolism will 

accumulate leading to unavoidable deviation from initial conditions which is not 

reflective of the processes occurring in the oral cavity. Research has tended 

therefore to shift towards continuous flow systems. 

1.4.1 Chemostat based systems 

The chemostat has been used widely in oral microbiology research and is an 

ideal device for generating steady-state homogenous culture (Marsh et al., 1983; McKee 

et al., 1985; Greenman,  1999). However, as the cells remain in the planktonic mode its 

use for studying biofilms is very limited (Greenman, 1999). 
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1.4.2 Flow cell systems 

Initial flow cell systems consisted of a modified flow cell reactor incorporating 

recirculation of media across biofilms formed on impermeable substratum (Pilch et al. 2005). 

At various time points, gas samples were withdrawn by small syringe from the head-space of 

the reactor for gas analysis by GC. These models were used to grow both pure and mixed 

culture salivary flora. However, these systems are not true continuous flow and can more 

accurately be described as circulatory batch culture with occasional replenishment. Some 

VOCs are derived from biofilm cells, but most are produced by the planktonic cells in the 

circulation loop. 

 The constant-depth film fermenter (CDFF) has been widely used in studying biofilms, 

and is a superior example of a continuous flow open system (ten Cate, 2006). Biofilms form 

within small recesses which are swept periodically to retain a constant depth of material. All 

other physicochemical parameters (medium, flow rate, atmosphere, temperature and pH) 

are carefully controlled in the system as a whole. Variability between biofilms is thus 

minimised (Hope et al., 2012) and many groups have achieved good data regarding the oral 

microbial ecosystem (McKee et al., 1985; Bradshaw et al., 1989; Kinniment et al., 

1996). However, the model is compromised by the fact that all the biofilms share the 

same bulk planktonic culture, and cell populations on the biofilm can increase by 

two different phenomena, growth from within or further accretion from without, making 

growth rates for individual biofilms poorly defined. 
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1.4.3 Perfusion systems with permeable matrix substratum 

A significant development in the in vitro modelling of biofilms was the move towards 

utilisation of a loose matrix substratum-based perfusion system. As outlined in section 

1.1.3,  perfusion biofilms behave differently to the conventional model in that the 

substratum and the channels and voids are well integrated over the mm-cm scale. The 

"biofilm matrix" thus includes the substratum as well as the biomass itself. The first such 

model was the perfused biofilm fermenter (Gilbert et al., 1989), which used Swinnex filters 

as the permeable membrane. The working volume of the biofilm in this system is however 

quite small, and the perfusion model based on the sorbarod system devised by Hodgson et 

al., (1995) is favoured since this model has a biofilm surface many times greater and can 

be retained in a steady state for periods of several days. 

The sorbarod system was the first to be used to study the effects of pH on the 

development of biofilms and the generation of VSCs from tongue inocula (Taylor and 

Greenman, 2010). Further work incorporated a carbon veil electrode into the matrix to 

assess the effects of antimicrobial compounds (Saad, Hewett and Greenman, 2012). Other 

groups have also used the model to screen anti-malodour agents (Burnett et al., 2011).

1.4.4 Flat-bed perfusion matrix 

The flat bed perfusion matrix was originally devised by Thorn and Greenman (2009) to 

study active surfaces in wound dressings, but with minor modifications has successfully been 

used to study oral biofilms and their production of volatiles (Saad et al., 2013). The model as 

originally described is illustrated in figure 1.7. 
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An inclined slope supports a cellulose matrix comprising of loosely packed strands. 

Media was fed drip-wise onto the middle of the top surface of the matrix and waste flowed 

through and over the matrix and exited the enclosure via a drain hole. The only 

modification required to enable this apparatus to be used to model the oral biofilm was a 

port to enable the enclosure to be flooded with anaerobic gas and kept under positive 

pressure.  

Figure 1.7: Original biofilm slope and enclosure as used by to study the effects of wound dressings 
(Thorn and Greenman, 2009)
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After it was proved that reproducible steady state conditions similar to within the oral 

cavity could be produced with this method, further modifications were introduced to 

increased reproducibility between enclosures and runs. Initially, the replacement of the 

complex arrangement of glued glass, rubber and plastic with milled plastic mounting slopes 

(figure 2.1) enabled the model to be more resilient to multiple autoclave cycles without 

distortion or disassembly. This further led to rapid prototyping of the slopes in nanocure 

autoclavable material and this led to optimisation of the slope shape by computer aided 

design. A later modification of this design utilised curved slope sides, which allowed for 

waste to be more efficently channelled into the drain hole preventing build up of media 

containing planktonic cells inside the enclosure. The temperature of the enclosures has also 

been more carefully controlled by placing a single box in a dedicated, small volume 

incubator. Addition of a sampling port to the box allowed sampling of the gases above 

the biofilm using the instrument based method described in section 1.5. In culmination, 

these modifications have allowed real time monitoring of volatile organic compounds 

produced by biofilms by SIFT-MS and are described in more detail in section 2.1. 

1.5 Quantifying volatile organic compounds (VOCs) 

Historically, detection of volatile compounds produced by biofilms follows the pattern 

set in breath clinics. The original method was by assessment by a suitably trained human 

breath judge. Due to the subjectivity of this method, which will be discussed later, instrument 

based methods were developed. Initially the Halimeter (Interscan) was used, which 

produced a sensor derived value corresponding to overall levels of VSC (Rosenberg and 

McCulloch, 1992). After the turn of the millennium, the OralChroma (Abilit), a 

simplified sensor-based GC system, was developed. This could detect levels of H2S, CH3SH 
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and (CH3)2S in ppb to ppm concentrations (Hanada et al., 2003). More recently, the 

Selected Ion Flow Mass Spectroscopy (SIFT-MS) has been successfully utilised to 

provide real time detection and quantification of a wide range of volatiles in oral 

gas samples. These methods will be discussed in more details in the following sections. 

1.5.1 Organoleptic assessment 

It has been famously repeated that the study of the sense of smell has had a long 

past but a short history (Boring, 1942). Although our sense of smell has been 

discussed by philosophers for centuries, objective scientific study of olfaction only really 

commenced in the last hundred years. Zwaardemaker wrote about the psychology of 

smell in 1895 and this began the era of interest in this most academically 

neglected of senses. Early work by Backman (1917) and later Jones (1958a, 

1958b) and Jones and Marcus, (1961) attempted to assess detection sensitivities of the 

human nose to various odorants. It soon became apparent that sensitivity varied 

hugely to different compounds, and that combinations of compounds had 

unpredictable consequences. Jones and Woskowt (1963) were the first to use 

logarithmic scales and mutltivarient regression to examine olfactory response to 

mixtures of odorants. They concluded that subjective magnitude was neither additive 

or averaged and suggested that olfaction be described as an "analytical" sense. 

Berglund et al., (1973) proposed a vector model to describe interaction between 

pairs of odorants and demonstrated good agreement using selected compounds. 

This model predicted that the perceived odour intensity of a mixture of 

compounds A and B, is given by equation   1.4.
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 𝜓𝜓𝐴𝐴,𝐵𝐵 = (𝜓𝜓𝐴𝐴 + 𝜓𝜓𝐵𝐵 + 𝜓𝜓𝐴𝐴𝜓𝜓𝐵𝐵 cos 𝛼𝛼) 

Equation 1.4: Perceived odour intensity of a mixture of two compounds 

1
2

In the specific case where the perceived strengths of the odours are equivalent, ie 

𝜓𝜓𝐴𝐴 = 𝜓𝜓𝐵𝐵 , this equation reduces to; 

 𝜓𝜓𝐴𝐴,𝐵𝐵 = ( 𝜓𝜓𝐴𝐴 + 𝜓𝜓𝐵𝐵 ) cos 𝛼𝛼 

Equation 1.5: Special case of Eq.1 where intensities are equal 

This can be used to experimentally deduce values of α for different compounds. This 

vector model has been successfully applied to qualitatively similar (Berglund et al., 1973) 

and dissimilar (Cain and Drexler, 1974) compounds and to mixtures of up to 

four substances (Berglund, 1974; Laing et al., 1993). 

 The inherent problem with all methods of malodour detection or diagnosis stem 

from the fact that categorisation by human judge is of course subjective, and some odours 

are considered more objectionable than others. This has led to the use of the so called 

“hedonic” scale (ASTM 1968) which scores odours based on how pleasant or unpleasant the 

odour is. From a clinical point of view this is useful on the one hand as a subjective 

assessment of the problem, but does not give information about actual compounds present 

and by inference the biological processes involved in their production. The organoleptic 

scale (Allison and Katz, 1919; Rosenberg, Kulkarni, et al., 1991; Rosenberg, Septon, et 

al., 1991) is therefore considered more relevent and an extensive evaluation of its use 
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is given by Greenman et al., (2004). Because of the attempt to standardise 

through training the subjective nature of the measure, it is still considered the gold 

standard assessment for most clinical trials. However, instrument based 

measurements are by nature more objective and are therefore more useful when it 

comes to understanding the biological and chemical processes involved in VOC 

production.  

1.5.2 Halimeter 

The halimeter was developed by Interscan in the late eighties as a relatively low cost 

alternative to the standard GC-MS methods of gas analysis. It enabled dental and medical 

surgeries as well as researchers the ability to assess malodour in a standardised 

reproducible way (Rosenberg and McCulloch, 1992).  A gas pump draws air through an inlet 

tube and across a sensor at a continuous flow rate. This sensor is comprised of a metal film 

sensing electrode coupled to a reference counter-electrode. A bias voltage is applied to 

favour oxidation of hydrogen sulphide at the sensing electrode, although other 

sulphides such as methyl mercaptan and dimethyl sulphide will also be oxidised. The 

instrument can therefore give a VSC level in parts per billion without discrimination 

between different sulphur compounds. It can also suffer from false positive response to 

other compounds that may be present in the sample such as ethanol, giving a fairly crude 

evaluation of oral malodour. It has however been widely and extensively used in clinical 

and microbiological studies. 

1.5.3 OralChroma 

First decribed by Hanada et al., (2003), the OralChroma is a simplified gas 

chromatograph that uses a gold doped indium oxide sensor and a specifically constructed 

column to create a relatively portable instrument for detecting VSCs. It detects  H2S, CH3SH 

and (CH3)2S in breath to around 100ppb levels and has been well reviewed in the 
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literature, for example by Tangerman and Winkel (2008). The instruments suffers from two 

issues, one is due to the interference of acetone, ethanol, isoprene and acetylaldehyde if 

present in high amounts on the breath of the subject. This problem can be minimised by 

strict conditions on food and drink ingested prior to testing. The second issue is due to 

software related issues leading to incorrect identifying of peaks and their measurement. 

This can be minimised by analysing the raw data produced from the sensor rather than the 

software’s interpretation. If standard gases are available, calibration curves can be 

generated from the area under the peaks produced from known dilutions, giving far 

superior sensitivity and reproducibility.    

1.5.4 SIFT-MS 

The technique was first developed by Adams & Smith (1976) to study gas phase ion–

neutral reactions in the laboratory. These reactions between charged ions and uncharged 

molecules occur in a number of terrestrial (Thomas, 1974), extra-terrestrial 

(Huntress 1974;Wayne, 2009)  and extra-solar (Smith, 1992;Anicich, 2003) 

environments. The SIFT method was a development of the flowing afterglow (FA) 

method in use at the time which was itself was an improvement on stationary 

afterglow analysis. In order to study the reactions between ions and neutral atoms 

in these remote environments, a method was required to model the reactions in the 

laboratory. In the afterglow methods, ions are created by electrical discharge in a carrier 

gas such as helium and these ions are then reacted with neutral species in an introduced 

sample. A mass spectrometer can then be used to measure loss of the primary He+ 

ions and a corresponding increase in product ions. In the FA method, the carrier gas is 

relatively fast flowing enabling samples to be introduced downstream of the ionisation 

event and other reactant gases to be introduced downstream of the ionisation but 

upstream of the sample. These gases react with the He+ plasma to produce different
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primary reactant ions (figure 1.8). The ability to sequentially add several reactant gases and 

thus produce many reactant ions, both positive and negative, proved to be both an 

advantage and a disadvantage to this method. It was extraordinarily flexible, but 

secondary reactions between reactant ions and parent gases caused huge complications 

in identification of ion products and precise quantification of their reaction coefficients.  

Figure 1.8: Flowing afterglow mass spectroscopy 

The SIFT technique incorporated a significant and novel modification in that reactant 

ions were generated by an ionisation method within a seperate chamber (known as the SIFT 

chamber) and then selected using a quadropole mass filter. As the pressure in the 

downstream sample chamber, or flow tube, can be kept relatively high, there is little 

contamination of this chamber by any stray products of the ionisation process. This means 

that the reaction paths are much more well defined and therefore reaction coefficients can 

be measured with greatly increased precision and accuracy. This lead to an explosion in 

modelling of diverse plasmas such as those produced inside gas lasers and during plasma 



37 

deposition and etching. However, work with the technique also revealed its power as a 

analytical and diagnostic device. 

The D region of Earth's troposphere contains a few postive ion complexes that prove 

to be stable and relatively unreactive with the major molecular components of the 

atmosphere. These include most notably the hydronium (H3O+), nitrosium (NO+) and 

dioxygenyl (O2+) ions. The unreactive nature of these ions means that they are perfect for 

analysing trace gases in sample of moist air. By generating and selecting for these ions in the 

SIFT chamber, samples from many sources can be analysed. Where reaction coefficients are 

unknown, they can be determined with simple techniques. By controlling and knowing 

precisely the nature and concentrations of sample gases introduced into the instrument, 

reaction coefficients for numerous molecules and compounds can be deduced. Smith and 

Španěl performed a number of experiments of this kind before the turn of the millennium 

(Španěl et al., 1995; Španěl et al., 1997; Smith and Španěl, 2011a, 2011b), leading to even 

more potential applications. 

Figure 1.9: Profile3 SIFT-MS schematic (Smith and Španěl, 2011a) (Reproduced with permission from
the Royal Society of Chemistry)
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Smith and  Španěl had direct involvement in the evolution of the SIFT-MS instrument 

up to and including the production of the Profile3 device by Instrument Science. This utilised 

a microwave resonator to generate the three positive reactant ions from humid air. After 

selection by the mass filter and reaction in the flow tube, products are sorted by mass 

spectrometer and enumerated by multiplier/pulse counter.  Rate coefficients are 

calculated by the decay rate of precursor and increase of product counts, and from these 

gas levels in the sample are determined (Španěl et al., 1997; Smith and Španěl, 2005). Their 

own diagram of the Profile3 instrument can be seen in figure 1.9. 

Like other modern direct-injection mass spectrometric (DIMS) methods 

volatile compounds can be measured quantitatively in real time. Of the DIMS techniques, 

SIFT-MS is most often compared to proton-transfer-reaction mass spectrometry (PTR-

MS). SIFT-MS tends to lose out in sensitivity to PTR-MS as with the latter technique a high 

intensity high purity H3O+ beam is injected without selection or dilution in a carrier gas. 

This leads to a sensitivity two orders of magnitude greater than by SIFT-MS (Blake et 

al., 2009). SIFT-MS however, by allowing pre-selection of reagent ions, avoids the 

pitfall of not being able to ionize compounds whose proton affinity is smaller than 

that of H2O (Jordan et al., 2009). Also, SIFT-MS allows fine control of experimental 

conditions and thus determination of rate coefficients that can be routinely used 

for quantitative analysis (Biasioli et al., 2011). Literature data on rate coefficients at 

approximately room temperature can be used for SIFT-MS, but is of questionable value for 

PTR-MS (Cappellin et al., 2010). Also, rotation of reagent ions gives more selectivity 

and resolution between compounds using SIFT-MS. 

Since Smith and Španěl ceased direct involvement, the technology has been further 

refined and improved to give the Voice200 instrument constructed by Syft Technologies of 

New Zealand. The significant i mprovements brought have been stable flow tube 
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temperatures and the ability to generate negative ions in the SIFT chamber. As with the 

positive ions, the ions that have been selected are those that are relatively stable and 

unreactive in moist air. This recent development has the potential to produce a wealth of 

new data and applications for the SIFT-MS technique. So far it has mostly been used 

in industry due to the ability to quantify inorganic compounds such as 

hydrofluoric, hydrochloric and other acids.   Table 1.3 shows the mechanisms by 

which positive and negative ions react in modern SIFT-MS techniques. 

Table 1.3: Mechanisms of positive and negative reagent ions reactions in modern SIFT-MS 

Mechanism H3O+ NO+ O2+ OH- O- O2- NO2- NO3- 

Proton transfer (PT) yes no no 
Electron transfer (ET) no yes yes 
Dissociative ET no yes yes 
Hydride abstraction no yes no 
Association yes yes no yes yes yes no no 
Proton Abstraction yes yes yes yes yes 
Electron attachment no no yes no no 
Associative Detachment yes yes yes no no 
Displacement/Elimination yes yes no no no 

1.6 pH and the biofilm 

The pH of the tongue biofilm is likely to influence both the microbial composition and 

activity of some transformations (e.g. sulphur compounds into VSC) over others. McKenzie 

(2007) first used the Sorbarod perfusion model to study the interdependence between pH 

and glycolysis in Streptococcus mutans biofilms, showing reductions in pH occurring to 

varying degrees with various sugars. No effect was seen, however, with substances which 

tended to raise pH such as urea as this organism does not possess urease.  Taylor and 

Greenman (2010) used the same model to study the effects of pH on both a mixed species 

biofilm community and the production of hydrogen sulphide. Six replicate biofilms 

(inoculated from a single suspension of tongue scrape sample) were perfused with basal 



medium at 6 different pH values and the ensuing mixed community biofilms were analysed 

using conventional microbial viable count techniques, but also community level physiological 

profiling (CLPP) using Biolog AN plates. Highest levels of H2S were produced at pH 7.5 which 

were significantly higher (p < 0.05) than biofilms at pH 7.0 and 8.0. Biofilms at pH’s 6.5, 6.0 

and 5.5 produced decreasing concentrations of H2S with lower pH. It was concluded that the 

optimum pH required for highest transformation of sulphur-containing substrates to H2S 

occurs between pH 7.0 and 8.0, which correlates with the known pH optimum characteristics 

of cysteine desulfhydrase systems that change thiols into H2S with optima between 7.6 

to 8.5 (Greenman 1999; Mhlenhoff et al., 2004; Tchong et al., 2005; Wu et al., 2008). 

The authors conclude “The effects of pH on tongue-derived biofilm are therefore 

likely to have a multi-factoral effect on the ecological diversity of H2S-producing 

organisms and their physiology".

1.7 Confocal Laser Scanning Microscopy 

The origins of CLSM  can be traced to improvements in microscopy developed 

by Marvin Minsky (Minsky, 1955) at Harvard.  The problem with 

traditional wide-field fluorescence microscopy is that the subject is illuminated all at 

once, and each image point, however viewed, is partially obscured by aberrant scattered 

light from other image points not being viewed. Minsky realised that the way to avoid 

this would be to image each point separately and individually in turn, and this 

would lead to greatly increased resolution and contrast. A second microscope could 

be used instead of a condenser lens to focus a pinhole aperture at the imaged point 

thus eliminating all rays not focussed on this point. Focal brightness is thus retained 

but with a huge reduction in errant light in the specimen. A second pinhole beyond the 

usual objective lens further eliminates errant light that was originally focussed on the 
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image point but became scattered by out of focus points in the specimen. This gives 

an elegant symmetry with pinholes and objective lenses either side of the specimen. It 

is obvious how these single point illumination techniques give can achieve far greater 

resolution and contrast but the problem is that each point must be imaged or 

‘scanned’ in turn. In order for this to occur quickly enough to be practical, the 

illumination must be much brighter than standard light sources supply. Minsky first 

used carbon or zirconium arcs, and output was passed through a photomultiplier 

circuit before being visualised on a long-persistence phosphorescent screen. This 

arrangement was patented by Minsky with the help of his brother-in-law Morton Amster 

in 1957 (Minsky, 1988).  

From these beginnings, confocal microscopy took perhaps three decades before the 

potential began to be fully realised. One of the reasons for this was, as admitted by Minsky 

himself (Minsky, 1988), due to the poor imaging system. Much of the resolution and clarity 

that Minsky obtained was lost on the crude phosphorescent screen, and there was no way of 

obtaining a permanent copy.  Since then, there have been both huge advances in digital 

imaging with charge-coupled devices (CCD)  and exponentially faster computer processing 

power to analyse these images (Inoué, 2006). However, the primary advance for the 

technique was the development of the laser (Gould, 1959). The production of intense beams 

of coherent light enabled faster scanning and subsequent improvements in imaging. 

Commercially successful microscopes began to appear and were used to image immuno-

fluorescently labelled specimens (White et al., 1987). The ability of the device to scan in 

optical sections was invaluable and montages of the Z-series of scans could be examined. As 

computing power increased, the Z-series of stacks could be reconstructed into 3D 

representations of the specimen. Still later time-lapse sequences could be animated and 

rotated in real time giving true four dimensional imaging (Stephens and Allan, 2003). For a 

comprehensive review of methods of CLSM of biofilms the reader is directed to Neu and 

Lawrence (2014). 
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1.8 Aims and Objectives 

The main technical aim of this thesis was to improve and further develop the in vitro 

flat-bed perfusion matrix biofilm model. This was to enable the model to be used to study a 

wider range of biofilm conditions and states, and to facilitate the testing of a wider range of 

interventions and biologically active compounds (See chapter 3). The specific objectives were 

as follows; 

1. To measure biofilm pH in real time.

2. To extend VOC analysis by SIFT-MS from one unit at a time to six.

3. To enable biofilm interventions based on photodynamic therapies.

4. To enable biofilms incorporating bioluminescent organisms to be monitored

in real time using optical recording.

The main scientific aims of this thesis was to study the behaviour of different 

antimicrobial compounds on biofilm growth, physiology and metabolism, and compare with 

in vivo work. These studies also included compounds with biological activity but not direct 

antimicrobial effects. A further aim was to show the utility of the model as a test-bed for 

comparative assessment of other instruments or devices. The specific scientific objectives 

were as follows; 

1. Validation of the model by comparison of in vivo and in vitro case studies.

2. Characterisation of in vivo biofilm ecology and further comparison with the

microbial ecology in vitro.

3. Comparison of currently available over-the-counter antimalodour

preparations in vivo and in vitro.

4. Use of the model to assist and assess the development of a novel handheld

surface plasmon resonance based device for measuring oral volatile

compounds.

5. To investigate the effects of non-antimicrobial biofilm disrupting agents such

as D-amino acids.
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2. Methods

2.1 The Flat Bed Perfusion Matrix Model 

2.1.1 The biofilm enclosure 

The methodology followed is a further modification of that described in detail 

by Saad, Hewett & Greenman (2013). The biofilm enclosure consists of a 

modified polypropylene freezer box (Lock and Lock, Amazon, UK) within which a 

previously inoculated loose fibred 1cm2 cellulose matrix is held in place on a specially 

constructed slope. The development of this slope in particular is detailed below. Media 

is fed drip-wise by peristaltic pump (Watson-Marlow, Falmouth, UK) via a 23G 

hypodermic syringe (Terumo, Japan). The feed line for this syringe is connected to the 

pump via a grow-back inhibitor constructed as shown in 2.1. The standard media used 

was one seventh strength brain heart infusion (Becton-Dickinson, New Jersey, USA) 

supplemented with haemin (0.0001 g/100ml), dithiothreitol (0.005 g/100ml) and 

cysteine (0.1 g/100ml w/v) all supplied by Sigma-Aldrich, UK. pH was adjusted to 7.4 

prior to autoclaving. Waste flowed out of the box via silicone tubing attached to a PTFE 

elbow connector under the box. The box was filled with anaerobic gas (90% 

nitrogen, 10% carbon dioxide) from a cylinder of compressed gas (BOC) and kept under 

positive pressure by peristaltic pump. Gas sampling takes place through Poly-Ether 

Ether Ketone (PEEK) tubing of 1/16in external diameter and 0.055in internal 

diameter (Supelco, Penns., USA). This is introduced through the front of the 

enclosure and protected from contamination by a 1ml pipette tip (figure 2.2). 
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Figure 2.1: Growback inhibitor and injection port 

Figure 2.2: PEEK tubing protected by pipette tip 

2.1.2 The matrix mounting slope 

The initial design of the matrix mounting slope was the same as that used by Thorn 

and Greenman (2009). This consisted of a glass microscope slide cut to shape using a 

diamond cutter. This was glued to polypropylene supports that were then attached to the 

base of the enclosure by M1 countersunk machine screws. To retain the matrix in place, 

supports were cut from rubber sheeting and attached with extreme temperature glue 

(Bostik, UK). This slope is shown in figure 1.7. Unfortunately repeated autoclaving of this 

design caused the glued bond to break down and come apart.  
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The glass slope was then replaced with polypropylene to allow an adhesive 

specifically suited to low surface energy plastics to be used (3M, UK). This led to increased 

resilience to repeated autoclave samples, but bond failure still occurred. Next, solid plastic 

supports were milled by Philips UK using an in house CNC process. These slopes are shown 

in Figure 2.3. These proved far more reusable, but due to the planar surface of the 

mounting area, drips of media could run sideways across the slope and fail to exit the 

enclosure via the waste tubing. This led to a build-up of contaminated waste fluid in the 

enclosure which in tur led to artefactual VOC production from planktonic cells in 

suspension. To prevent this from happening the slopes were redesigned using CAD 

(Solidworks, Dassault Systems, Massachusetts, USA) and 3D printed in Nanocure 

(envisionTEC, Michigan, USA) as shown in figure 2.4. The U-shaped channel pictured 

prevents overspill and ensures that waste exits the enclosure via the waste tube. 

Figure 2.3: CNC milled polypropylene slope. 

Figure 2.4: CAD slope proptotyped in NanoCure 
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2.1.3 Inoculation of the matrix 

The inoculation of the matrix is performed as follows; a sample was typically 

taken from one individual volunteer by dorsal tongue scrape using a sterile toothbrush 

with soft nylon bristles of size 1cm2. Volunteers for this process were selected after 

assessment by trained organoleptic judge. The sample was inoculated directly into 

degassed brain heart infusion and vortexed. The cellulose matrix was placed on the 

surface of a fastidious anaerobic agar plate and a 300µl aliquot of the tongue scrape 

suspension applied to the surface. The inoculated matrix was pre-incubated 

anaerobically for 24 hours and then transferred to the support slope within the airtight 

autoclavable growth chambers. 

2.1.4 Incubation of the enclosure 

The biofilm enclosures were mounted into a modified shelf and placed inside a 

mini incubator (VWR International Ltd., Lutterworth, UK). The front panel of these 

incubators was replaced with a laser-cut polycarbonate panel allowing inlet ports for gas 

and media, and outlet ports for waste and VOC analysis. Additional ports allowed power 

to be supplied to LED illumination units and for access by pHOptica fibres. (See section 

3.2). The top port of the incubator was reserved for temperature measurement by 

either standard glass thermometer or pHOptica thermocouple.  

2.1.5 Introduction of fluid intervention pulses 

At a distance of 15cm from the enclosure the media feed line was split to allow 

the incorporation of both a growback inhibitor and a port for the introduction of 

fluid interventions. This arrangement is seen in figure 2.2. Both branches were 

constructed from syringe bodies. The top of the grow-back inhibitor consisted of a drilled 

bung through which the media line was inserted. The top of the injection port consisted of 

a self-amalgamating bung from a blood vacutainer (Becton-Dickenson, New Jersey, USA). 
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To introduce fluid pulses, the media line was closed by tube clamp, and the media line 

below this point flushed through using a syringe of anaerobic gas. Fluid was then 

introduced by second sterile syringe. The time taken for the fluid injected to flow over the 

biofilm was measured by laboratory timer.  

2.1.6 Sampling the biofilm enclosures 

Gases produced by the biofilms were monitored in real time with the use of either 

a Profile 3 SIFT-MS (Instrument Science, UK) or, later, a Voice200 SIFT-MS (Syft 

Technologies, Canterbury, New Zealand). Gas sampling was through a protected port 

in the biofilm enclosure described above. To ensure more sensitive detection of indole 

and methyl-indole by the Profile3 instrument, the primary stainless steel inlet tube was 

removed and replaced with Polyether ether ketone (PEEK) tubing to reduce adsorption of 

these compounds to the surface. An inner and outer jacket was constructed from metal 

foil with the inlet heater placed inside. This allowed heating of the inlet tube and 

vaporisation of any water vapour. These modifications were similar to those performed 

(Ross and Esarik 2013) for indole detection. To enable experiments to be performed 

with several biofilms at one time, a sequential sampling system was constructed. Details 

of this are provided in chapter 3. 

2.2 Microbiological methods 

2.2.1 Tongue scrape sampling for in vivo studies 

Tongue scrape sampling was based on the method originally described by Hartley et 

al., (1996b). A standard, soft- bristled toothrush was trimmed to give 1cm2 contact area and 

autoclaved. This was then pressed and brushed gently over a 4cm2 area of the tongue 

dorsum of a donor individual. The tongue biofilm material was then transferred to 10ml of 
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degassed brain heart infusion (BHI, Becton-Dickenson, UK) first by manual agitation on the 

inner surface of a glass universal followed by vortex mixing at full speed for 30 seconds.   

2.2.2 Destructive sampling of biofilm matrices 

Biofilm matrices were removed from their enclosures by sterile forceps, placed into 

10ml of BHI and vortexed for 30 seconds at full speed. Serial dilutions were performed in BHI 

and plated as above. 

2.2.3 Anaerobic plate counts 

Anaerobic plates counts were performed on tongue scrapes, biofilm eluates and 

biofilm matrices as required.  Two media types were used, fastitidious anaerobe agar (FAA, 

LabM, Bury) at a concentration of 46g per litre, enriched with 50ml defibrinated horse blood 

and the same agar with Vancomycin at a concentration of 0.00025% w/v (Oxoid, UK). In this 

way strict anaerobes can be distinguished by growth on both plates. Serial dilutions were 

performed in BHI and plated by spiral plater (WASP, Don Whitley Scientific, Shipley, UK.) 

2.2.4 Basic identification of organisms 

Organisms were first categorised by colony type. Further identification was 

performed by Gram's stain. Catalase reaction was performed to presumptively identify 

streptococci when required. 
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2.3 HOMIN and HOMINGS analysis of the oral microbiome 

DNA extraction and pyrosequencing was carried out fully at Molecular Research (MR 

DNA), Shallowater, Texas, and sequencing was performed at the Forsyth Institute, 

Cambridge, USA. In summary; 50ng of DNA was extracted by Nextra DNA sample 

Preparation Kit (IIlimina).  The 16S rRNA V4 variable gene region PCR primers 515 /806 

(Caporaso et al., 2011) were used in a single-step 30 cycle PCR using the HotStarTaq Plus 

Master Mix Kit (Qiagen, USA) (94°C; 3 minutes, followed by 28 cycles of  30 seconds, 53°C; 

40 seconds, 72°C; 1 minute then 5 minute elongation step).  Sequencing was performed 

on an Ion Torrent Personal Genome Machine (PGM) and data were processed using a 

proprietary analysis pipeline. OTUs were defined by clustering at 3% divergence (97% 

similarity) and taxonomically classified using BLASTn against a database 

derived from GreenGenes (http://greengenes.lbl.gov/cgi-bin/nph-index.cgi), RDPII 

(http://rdp.cme.msu.edu) and NCBI (www.ncbi.nim.nih.gov). 

The resultant percentage frequencies of target taxa to be determined were 

visualised using Circos software (Krzywinski, 2009). Taxa were plotted radially around the 

circos plot and the samples were ordered from low to high malodour starting at the centre 

of the plot. Each point was coloured by heatmap ranging from pale to dark red based on 

the percentage frequency. This meant that darker red at the outside of the circular plot 

corresponded to association with those organisms with malodour. Both Pearson’s 

Coefficient of Skewness and Kelly’s Coefficient of Skewness were calculated for each 

organism and plots created showing organisms showing positive or negative association 

with malodour.  

To investigate potential interactions between species in the oral 

microbiome, probabilistic co-occurrence tables were generated using a probabilistic 

model (Veech, 2013) implemented in Rstudio (Boston, USA) (Griffith et al., 2016).  

http://www.ncbi.nim.nih.gov/


2.4 Analysis of the biofilm EPS 

Microbial EPS is notoriously problematic to analyse due to its complexity. The 

constituents of the EPS must be separated from the cells and dissolved into solution without 

damaging the cells and releasing their contents. After study and experimentation the 

following procedure was used. 

The biofilm matrix was suspended in EPS extraction buffer (2 mM Na3PO4, 4 mM 

NaH2PO4, 9 mM NaCl and 1 mM KCl at pH 7) and vortexed for one minute. A 1ml aliquot of 

this suspension was taken for microbial culture and 1ml for dry weight determination. The 

remaining 8ml was treated with, 0.06ml of 36.5% formaldehyde (Fisher Scientific, UK) and 

shaken at 4°C for 1 hour. This was followed by 4ml of 1M NaOH, again at 4°C with shaking, 

for 4 hours. This was then centrifuged at 20,000 G for twenty minutes and filtered through a 

0.2µm membrane. The final purification stage was to dialyse the solution through a 3500 

Dalton membrane at 4°C for 24 hours.   

Following extraction, EPS solutions were assayed for polysaccharides and proteins by 

Dubois (1960) and modified Lowry methods. The extraction method was performed on 

sterile distilled water samples to provide a baseline for calibration. 

2.4.1 Dubois assay for polysaccharides 

For the Dubois assay, 0.05ml of 80% phenol solution was added to 2ml of EPS 

solution in 20mm boiling tubes. To this was rapidly pipetted 5ml of concentrated sulphuric 

acid. The acid was pipetted by modified 5ml pipette to enable fast dispense, and directed 

directly at the fluid surface to ensure fast efficient mixing and uniform heating.  The tubes 

were allowed to stand for 10 minutes then shaken and place in a waterbath at 30°C for 20 

minutes. Absorbance was measured at 480nm and compared to distilled water blanks. 

A calibration curve was generated using known dilutions of a standard glucose 
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solution. The amount of polysaccharide is therefore given in glucose equivalents to 

compare EPS extractions rather than absolute quantitative measurement of individual 

sugars. 

2.4.2 Modified Lowry assay for protein 

For the modified Lowry assay, 2.2ml of Biuret Reagent (Sigma-Aldrich, UK) was 

added to 0.2ml of EPS extract in a clean sterile test tube, mixed and let to stand for 10 

minutes. 0.1ml of Ciocalteau's Phenol Reagent (Sigma-Aldrich, UK) was added, mixed and 

allowed to stand for 30 minutes. Contents were then transferred to cuvettes and 

absorbance read at 720nm using a Jenway 6305 spectrophotometer (Cole-Palmer, UK). 

Blank samples were aliquotted from 0.85% sodium chloride. A calibration curve was 

plotted using standards prepared with bovine serum albumin (Sigma-Aldrich, UK) and 

used to calculate protein levels in the EPS samples. 

2.5 Confocal microscopy of the biofilm 

To enable visualisation of the oral biofilm by confocal laser scanning microscopy 

(CLSM), it was necessary to mount and stain samples in a reproducible way. As cellulose 

fibres auto-fluoresce when excited by most wavelengths of laser light, portions of biofilm 

had to be separated from the main bulk of the material to be examined. To achieve 

this, 10mm diameter round glass coverslips (Fisher Scientific, UK) were first sterilised by 

autoclave and then placed underneath mature biofilms. They were incubated along with 

the biofilm in the normal way and removed after varying time periods. The coverslips were 

then inverted and placed onto glass slides. Various fluorescent stains at varying 

concentrations were added by pipette to the edge of the coverslip and allowed to migrate by 

capillary action. 
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Stain Supplier Target Concentration Incubation time 
Excitation 

wavelength 
Emission 

wavelength 

Hoesch 33258 Sigma Aldrich, UK Intracellular DNA 1µg/ml 1 hr 350nm 461nm 

Congo Red Sigma Aldrich, UK Polysaccharides  15mg/ml 30 min 497nm 614nm 
Amyloids 

Calcofluor White Sigma Aldrich, UK Polysaccharides 3.5 mg/ml 30 min 300-440nm 355nm 
Amyloids 

Sypro Orange Sigma Aldrich, UK Proteins 1µg/ml 30 min 470nm 570nm 

Thioflavin T Sigma Aldrich, UK Extracellular 7.5µM 30 min 385nm 450nm 
Amyloid 

Fluor-conjegated lectins Vector Labs, Uk Various 100µg/ml 30 min 495nm 519nm 
(ConA, WGA, AAL) 

Table 2.1: Fluorescent stains used in CLSM of the biofilm matrix 
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The slides were then incubated under anaerobic conditions for up to 1 hour, before 

examination using an Ultraview FRET H confocal microscope (Perkin Elmer, UK).  Table 2.1 

shows the various fluorescent stains used along with concentrations and incubation times. 

2.6 Sampling the oral cavity 

2.6.1 Trained Organoleptic Judge 

Organoleptic scoring by trained judge was used to assess malodour. The mouth was 

kept closed for two minutes to allow formation of headspace equilibrium in the oral cavity, 

then the head was inclined backwards and the mouth opened to allow assessment by judge. 

Malodour was categorised from 0-5 where 0 = no odour, 1 = barely noticeable, 2 = slight 

odour, 3 = moderate odour, 4 = strong odour and 5 = very strong odour 

(Rosenberg and McCulloch 1992; Greenman et al., 2004) 

2.6.2 The OralChroma 

Samples were collected from the human volunteers as recommended by 

Abilit Corporation, Japan. A  2ml volume of air from the oral cavity was collected by gas 

syringe (B. Braun Medical Ltd, Sheffield, UK) and injected into the injection port 

of the gas chromatograph (OralChromaTM Abilit Corporation, Japan). The area under 

the peaks was used to calculate levels of hydrogen sulphide and VSC concentrations 

from a calibration curve. This curve was created by diluting hydrogen sulphide from a 

standard cylinder at 3ppm (BOC gases, UK) using a precision gas diluter (Custom Sensor 

Solutions, Arizona, USA).  A calibration curve is shown in figure 2.5. 
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Figure 2.5: OralChroma calibration curve. n=3, bars represent standard error.

2.6.3 SIFT-MS 

The Profile3 instrument was used with a source pressure between 0.26 and 0.30. 

Quadrapole currents were between 5 and 7nA and 20 to 30pA. Full scans with the selected 

reagent ion (H3O+) were performed at the start of each run, and counts at 19, 37 and 55 and 

73 m/z positions compared with expected values. Sample inlet capillary was regularly 

checked and replaced when helium off pressure dropped below 0.07 Torr. 

The Voice200 instrument had capped and uncapped pressures checked each time 

before use, along with calibration gas pressure. These values were recorded. Validation with 

standard gases as recommended by the manufacturers was performed before all testing. Full 

scans were checked regularly for optimum performance of the instrument. Time and count 
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limits were 100ms and 10,000 counts. All settings for both instruments can be seen in 

appendix 3.   

It was necessary to modify the sampling inlet of the SIFT-MS to measure VOC levels 

in the oral cavity. The rear port of the sampling head was connected to a mini diaphragm 

pump. The front inlet was adapted to hold a disposable straw that could be introduced into 

the oral cavity. Air was thus drawn from the oral cavity and this stream was then subsampled 

by the SIFT-MS. A diagram is shown in figure 2.6. This method reduces disturbance 

introduced by breathing and minimises unwanted sampling of systemic gases. Dynamic 

calibration by flow rate adjustment was performed during sampling to give 6% water content 

in breath (Profile3). This was not necessary with the Voice200 due to the validation 

procedure with standard gas being performed for each run. 

Figure 2.6: Modifications to the Profile3 SIFT-MS sampling head 
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The subject was instructed to close their mouth and breathe through their nose for a period 

of two minutes, then to insert the straw into their mouth so that the instrument sampled 

from above the dorsal area of their tongue. They were then instructed to rest their lips 

loosely against the straw and breathe gently through their nose for the sampling period 

of one minute.  A 40 second sampling period was recorded which would typically 

include six data points for each compound. 

2.7 Selection of individuals for in vivo trials 

The effect of novel anti-malodour compounds on the biofilm was compared with 

the effect of these compounds on human volunteers. In these cases the general protocol 

was used with modifications for specific product trials. The clinical trials director 

responsible for volunteer selection and screening was Dr. Saliha Saad (UWE, Bristol).

Volunteers were selected from a larger group who have been previously 

screened for inclusion in malodour trials. In the laboratory, organoleptic, 

OralChroma and SIFT-MS assessments were made of their malodour status. On the 

basis of this screening, a health questionnaire was completed to determine any 

exclusion criteria (Table 2.2). In order to maintain anonymity, each subject was 

assigned a code number which was recorded on the questionnaire. All relevent 

documentation regarding the ethics and permissions for samples used can be examined 

in Appendix VI.
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Table 2.2: In vivo study exclusion criteria 

Eligibility criteria Exclusion criteria 

Voluntary participation  confirmed by consent form Recent medical history of infectious disease 

Availability during specified times to comply with 

sampling intervals 

Organoleptic score above 2 and greater 

than 100 ppb H2S by SIFT-MS 

Antibiotic medication within 1 month of the 

trial start date including medicated sweets 

Any change in oral hygiene practice during 

the trial prior to sampling 

Substantial false dentition 

Use of highly perfumed cosmetics at time 

of sampling 

Advanced uncontrolled caries, gingivitis, 

peridontitis or oral candidosis 

Trails were performed by crossover design with eligible volunteers assigned a 

randomised treatment schedule. Each subject was randomly assigned a numeric label and 

each treatment was allocated a code letter.  

Microbiological analysis was performed on tongue scrape samples before treatment 

and after treatment according to the specific schedule of the trial. Relevant dilutions were 

plated on fastidious anaerobe agar (LabM, Bury, UK) with and without vancomycin 

(2.5mgl-1 Sigma-Aldrich, UK) and incubated anaerobically for seven days. Plate 

counts were performed for strict and facultative anaerobes as well as total viable 

organisms. 

All statistical analysis used Prism software (Prism 5.0, GraphPad, San Diego, 

US) which was also used to calculate P-values for nonlinear regression coefficients, 

and confidence levels. 
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3 Technical developments 

3.1 Introduction 

The in vitro oral biofilm model as described has been successfully used to investigate 

the efficacy of anti-malodour compounds on volatile production (Saad, Hewett, & 

Greenman, 2013). During this process, some shortcomings of the model were identified. 

Moreover, technical adaptations were devised that would enable the model to be both more 

flexible and efficient. These elements will be discussed individually. 

3.1.1 Physiological conditions of multiple biofilms 

It was hitherto discovered that if several biofilm enclosure units are incubated 

together in one incubator, reproducibility is adversely affected (figure 3.1). Fan based air 

circulation in a relatively large internal area leads to temperature variation between the 

enclosures causing significant differences in both volatile production and uniformity of the  

Figure 3.1: Several biofilms incubated in a single large incubator with fan circulation 
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biofilms. This issue was exacerbated by opening the door to facilitate any kind of sampling. 

Not only could only one biofilm be sampled at a time, but due to the time required for the 

conditions within the chamber to stabilise, interventions of any sort could only be performed 

after a significant time delay between each sample. The increased time and variability caused 

by these factors was found to severely limit the amount of reliable data that could be 

generated from the model. Techniques to overcome these sampling issues were required. 

3.1.2 pH monitoring of the biofilm 

 As described in section 1.6, pH of the biofilm affects both microbial composition and 

chemical transformations that occur. A way of monitoring the pH within the biofilm could 

provide interesting data above what can be gleaned from mere pH measurement of media 

flowing into and out of the system. MacKenzie (2007) had experimented with pH 

microprobes but it was thought that a less invasive method may be superior. 

3.1.3 Bioluminescent organisms as reporters of metabolic activity 

Bioluminescent indicator organisms are strains of bacteria into which have been 

cloned lucifierases from other light-producing organisms. They are powerful tools for 

studying both microbial metabolism and the action of antimicrobial substances as their 

production of light reflects the actual metabolic rate of microbial cells (Beard et al., 2002; 

Koga, Harada et al., 2005; Vesterlund et al., 2004). Plasmids pGLITE and pMCS5-LITE 

containing the luxCDABE operon of Photorhabdus luminescens under constitutive control of 

the lac promoter have been used previously in perfusion based models (Lewis et al., 2006; 

Parveen et al., 2001). Modification of this flat plate system to allow the use of bioluminescent 
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organisms paves the way for interesting work examining the effects of novel antimicrobials 

in real time.  

3.1.4 Photodynamic therapy 

The effect now known as Photodynamic Therapy (PDT) was first noticed, and famously 

described by Paul Ehrlich, at the turn of the century when certain combinations of dyes and 

illumination was shown to kill bacteria. The treatment depends upon a combination of dye 

with a corresponding frequency of light which leads to the production of cytotoxic free 

radicals and found success and acceptance in the treatment of carcinomas (Robertson, 

Evans, & Abrahamse, 2009). However, Photodynamic Antimicrobial Chemotherapy (PACT) 

has found limited applications other than its use in the sterilization of blood products (Ben-

Hur & Horowitz, 1995). This may change since research has shown that this type of therapy 

can be very effective against biofilms (Hamblin & Newman, 1994; O’Neill, Hope, & Wilson, 

2002). Phenothiziniums such as methylene blue (MB), and toluidine blue O (TBP), azure A-C 

and thionin have all been used as photosensitisers effective in the wavelength range of 600-

660nm (Wainwright, 2007; Wilson, 2004). MB absorbs most effectively at 656nm and has 

been shown to be non-toxic to mammalian cells up to 1% w/v (Creagh et al., 1995). These 

factors and recent reductions in costs of high intensity LED light make this an important area 

of study with potential applications in oral healthcare. 
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3.2 Materials and methods 

3.2.1 Stabilisation of conditions and serial biofilm sampling 

Biofilms enclosures were incubated in INCU-line Digital Mini incubators (VWR 

International, UK).  Sequential sampling of several biofilms incubated at the same time in 

one experimental run was implemented by constructing a software controlled, solenoid-

operated multivalve.  A PEEK bodied valve (Cole-Palmer, Bedfordshire, UK) was selected to 

minimise contamination by volatiles, and this could be connected by PEEK tubing to both the 

biofilm enclosures and to the SIFT-MS instrument. Actuation of the solenoid valves was by 

relay board (Circad Design Ltd., Suffolk, UK). Communication with this board was by USB, and 

both board and cable were powered by the same 24VDc power supply.  

The relay board was controlled by ASCII text sent serially over USB by an application 

written in Python (PSF, Delaware, USA). The GUI front end was designed using Glade3/GTK+ 

(GNU/GPL public license).  A screen shot of the application can be seen in Figure 3.2. 

Figure 3.2: Multivalve solenoid valve control application 
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 Ports could be selected individually or cycled in sequence, with each port remaining 

on for a chosen time period. All switching was logged in a comma separated text file with 

timestamp, allowing port state at any given time to be known. A schematic diagram of the 

multiport valve is shown in figure 3.3. 

Figure 3.3: Multiport valve schematic diagram and photo. 

3.2.2 pH measurement of the biofilm 

In order to measure the pH of the biofilm in real time, a pHOptica optical 

measurement system was employed (see chapter 2, General Methods). This system relies on 

a paper optrode containing two embedded fluorophores, one whose fluorescence depends 

on pH and the other a reference to compensate for any drift. The exact nature of these 

fluorophores is proprietary information protected by the manufacturers. Excitation and 

measurement is performed by glass and fibreoptic waveguides. In order to incorporate this 
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system into the flat-plate biofilm system, it was necessary to redesign the slope by CAD and 

re-prototype in NanocureTM. A close fitting channel was made into the slope with a channel 

for sealing around the hole necessary in the base of the biofilm enclosure. At the top of the 

channel under the biofilm was a recess to accept a 10mm glass microscope coverslip with a 

further recess to allow sealing with autoclavable sealant. This arrangement is illustrated in 

Figure 3.4 and figure 2.4 in the previous chapter. Biofilms were incubated for two days after 

innoculation before the optrode disc was carefully place aseptically underneath the cellulose 

matrix over the glass window. The waveguide and attached fibreoptic cable was then 

inserted under the channel and attached to the pHOptica device. Calibration information 

was supplied by VWR for each batch of optrode discs used. The reference temperature probe 

from the instrument was inserted into the incubator by the top port. A laptop running 

pHoptica software was attached and readings taken at 1 second intervals.   

Figure 3.4: Diagram of biofilm enclosure showing port for fibre optic cable 
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3.2.3 Modifications to allow study of bioluminescent biofilmss 

To enable the flat plate perfusion system to utilise the reporter organisms described 

in section 3.1.3, one biofilm incubator was further modified to allow an overhead camera to 

record and measure light intensity. A window was cut in the inner and outer top covers of 

the incubator and a Perspex panel glued, sealed and bolted into place (figure 3.5). 

Preliminary experiments with bioluminescent E. coli strain DH5α showed that 

bioluminescence could be monitored in real time by CCD device.  

Figure 3.5: Modifications to allow the use of bioluminescence reporter organisms in the flat 

plate biofilm model 
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3.2.4 Time lapse recordings 

An additional advantage of the windowed incubator is that time lapse recordings of 

biofilm maturation and development could be made. This was achieved using a Galaxy S4 

smartphone equipped with the Android based Framelapse Pro software. 

3.2.5 Modifications to allow in vitro photodynamic treatment 

A glass window was installed in the top of the enclosure to enable a high power LED 

to illuminate the biofilm. This could be accompanied by injections of photodynamic agents. 

Power could be supplied to each LED at a time on up to six enclosures. Voltage was controlled 

by variable laboratory supply (EL301R, Thurby Thandar Instruments Ltd., Cambridgeshire, 

U.K.). The LED housings could be used with a number of different fixed wavelength LED units

(Mouser, USA).  The LED installation can be seen in figure 3.7 

. 

Figure 3.6: LED apparatus installed in biofilm enclosure window, shown from above (left) and 

below (right) 
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Figure 3.7: Biofilm enclosure with LED device installed 

3.3 Results 

3.3.1 Multisampling 

Six incubators can be seen in figure 3.8, showing PEEK tubing entering through each 

front panel. A spike in signal was often seen when switching from one biofilm to another, 

and this was trimmed out at the data analysis stage. These spikes can be seen in Figure 3.9: 

Example trace by SIFT-MS during sampling of four biofilms. 

An example of the trace obtained by SIFT-MS during a sampling period can be seen in 

Figure 3.9. These traces were separated into data from each biofilm, with all spikes or 

interference removed using iterative functions written in MATLAB code. 
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Figure 3.8: Six incubators showing equal length PEEK tubing entering each through the front 

panel. 

Figure 3.9: Example trace by SIFT-MS during sampling of four biofilms. 

3.3.2 Real time pH measurement 

It was shown that the pHOptica sensor could be used to measure the pH of an in vitro 

biofilm in real time whilst simultaneously measuring volatiles produced using SIFT-MS. Figure 
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3.10 shows example traces of volatile production accompanied by pH readings by the fibre 

optic sensor. There were however reproducibility problems with this method and this will be 

discussed later.   

Figure 3.10 Production of sulphides (left) and acids (right) from an in vitro oral biofilm 

immediately following a pulse of 2ml 200mM glucose 

3.3.3 The bioluminescent biofilm 

A graph of preliminary results can be seen in figure 3.11. In this example, methyl 

mercaptan levels from a DH5α strain of E. coli are monitored along with light intensity, and 

the production of both appear to be related in this instance. This was intended as a proof of 

principle experiment, and potential uses for this are discussed in chapter 8. 
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Figure 3.11: Methyl mercaptan and light intensity in bioluminescent E. coli DH5α 

3.3.4 Time lapse recordings 

Figure 3.12 shows the development of dark metal sulphide compounds (e.g. ferrous 

sulphide) whilst using SIFT-MS to monitor the levels of hydrogen sulphide and methyl 

mercaptan, to demonstrate a potential relationship between pigmentation and sulphides. 

The pigmentation is not visible at the introduction of the inoculated cellulose matrix (figure 

3.12A).  
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Figure 3.12: Graph showing sulphides produced by a maturing biofilm with accompanying 

timelapse images from timespoints A, B, C and D. 

A 

C 

B 

D 

. hydrogen sulphide . methyl mercaptan 
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Pigment is clearly visible at 4 hours of constant medium flow (figure 3.12B) and 

become most marked by 8 hours (figure 3.12C). The pigmentation remains high (figure 

3.12D) until the end of the experimental run (at 21 hours). This method can be used to 

identify possible causes of variations in VOC production during maturation of biofilms as 

complex structures and pigmentation changes occur. A similar approach of time-lapse can 

be used to describe other processes such as in situ “viable” staining methods, effects of 

fluorescent dyes and other colour absorption/desorption processes, which can be monitored 

over minutes, hours or days of operation. 

3.3.5 Photodynamic therapy 

Preliminary work showed a dose response with the photosensitizer methylene blue, 

but at concentrations and staining intensities too high for therapeutic use. The dose-

response curve for methylene blue on sulphide production is shown in figure 3.13. If 

compared to the effects on biofilm volatile production seen with proprietary mouthwash 

formulations, such as seen in figure 4.9 in section 4, it can be noticed that reductions are 

relatively inconsequential. !ƭǎƻΣ ǘƘŜ Ŏoncentration of methylene blue used was high 

enough that staining of the oral cavity was likely. It is for this reason that this particular 

avenue was not followed further. 
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Figure 3.13: Dose response for methylene blue and 660nm light at an intensity of 64 mWcm-2. 

3.4 Discussion 

Through these developments and experiments it has been shown that the flat plate 

perfusion model is a stable and versatile test bed for in depth analysis and examination of 

microbial biofilms in vitro. The ability to inoculate and mature several biofilms in parallel 

from an identical tongue scrape sample and monitor them sequentially by SIFT-MS provides 

a versatile test bed for the examination of the effects of many types of interventions. It has 

further been shown that the model itself can be used to study bioluminescent organisms 

thus making available the insights into biofilm physiology that this provides.  

Whilst the particular photodynamic therapy investigated here showed issues that 

suggests the development of a therapeutic regime unlikely, the model itself can certainly be 
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used to investigate the many promising combinations of light and photosensitiser that have 

been suggested elsewhere.  

In respect of the real time pH measurement that has been demonstrated, it is obvious 

that such a method would be an extremely useful way to investigate the complex interplay 

between pH, VOC production, and other aspects of biofilm physiology. However, much more 

work is needed in this area to validate and standardise the optrode based method to achieve 

reproducible results with multiple biofilms. Incorporating the optrode into the biofilm matrix 

in a standardised way that would still enable interrogation by fibre optic cable would need 

to developed and validated and this proved to be beyond the scope of this project. 

In conclusion, whilst not all avenues outlined in this chapter have been explored fully, 

there is ample potential for further study of both biofilm physiology and the effect of 

treatments or interventions thereon. The next chapter will outline further validation of the 

model and examination of the nature of the oral biofilm, and further chapters will describe 

the use of the model to evaluate both some specific treatments and a novel biosensor 

system.  
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4 The oral microbiome and volatilome 

Introduction 

By around the time of puberty the community of human oral bacteria has reached 

microbial homeostasis (Marsh, 1989) . This is a dynamic equilibrium involving the 

interaction of a large number or organisms and the human host. This microbiota is 

remarkable stable once established and has been shown to vary little over many years 

(David et al., 2015; Rasiah et al., 2005), and is probably the most stable of all sites of 

microbial colonisation on the human body (Zhou et al., 2014). However, whilst this core 

body of species remains stable over long timescales, a degree of variation over shorter 

timescales is common (David et al., 2015). This is reflected in the profile of volatile gases 

that the oral biofilm produces, as it is affected by not only microbial composition of the 

biofilm, but the particular metabolic activity it has at a given time point. The amount of 

dissolved hydrogen sulphide and methyl mercaptan in solution is highly pH dependant, 

whereas dimethyl disulphide is less so. This explains the dominance of these first two 

sulphides since acids are typically produced from food or saliva through microbial 

metabolism. The aetiology of caries is also inextricably linked to the pH of the oral cavity. 

Since experiments involving gastric tube-feeding of both animals (Haldi et al., 1953; Bowen 

et al., 1980) and humans (Littleton et al., 1967; Cooke et al., 1982; Ellison et al., 1982) it has 

been known that oral ingestion of carbohydrate components leads to carious lesions, and 

that this is dependent on the presence of oral microorganisms on the dental surfaces. It is 

now well understood that sucrose has the greatest effect, and that the major glycolytic, 
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acid tolerant organisms in the oral cavity are streptococci such as S. mutans 

(Lemos, Abranches and Burne, 2005). Imfeld and Lutz (1980) first used pH 

telemetry with electrodes implanted in dental appliances to demonstrate reductions 

in pH following ingestion of carbohydrates. Following ingestion of sucrose solutions, 

intra-oral pH is seen to fall from 7 to under 5. The association between pH and oral 

malodour has been less well studied, and there is still disagreement about how salivary 

pH may be an important factor in malodour. Saad (2007) showed no strong 

relationship between salivary pH and malodour, but it has to be accepted that the 

site of highest VSC production is the tongue biofilm interface; not the reactions in saliva. 

The biofilm matrix contains fluid, which is a completely different compartment with a 

different composition from saliva. The following compartments have been described on 

the tongue: (1) Bulk salivary volume (2) Rapidly exchanging thin salivary coating layer 

(3) the biofilm and biofilm matrix fluid (4) tongue epithelium substratum. By blotting the

surface of the tongue, the bulk saliva and thin layers are removed. A sterile toothbrush is 

then used to take two or three tongue dorsum impression samples, which are 

pooled in a small volume (2 ml) distilled water. It is the resultant pH of this suspension 

that was used by Saad (2007) to show that there is indeed a fairly strong relationship 

between the pH of the tongue biofilm matrix and malodour (figure 4.1) but that this is 

not seen from salivary samples. Thus the oral microbiome, whilst more conserved and 

stable than other sites in and on the human body, varies significantly between 

individuals. Each individual microbiome will respond differently to stimulus, 

nutrients and pH and thus will contribute in a different way to the volatilome that is 

produced. This chapter describes experiments that were performed to investigate the 

nature and differences of the oral biofilm both in vivo and in vitro. 
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Figure 4.1: Relationship between organoleptic score and pH of tongue biofilm (Saad and 

Greenman, unpublished) 

4.1.1 Periodontal malodour 

Periodontal disease is a chronic bacterial infection causing persistent gingival 

inflammation, and in some cases connective tissue destruction and bone resorption around 

the teeth. It is also characterised by pocket formation and recession. Although oral 

malodour is not caused by periodontal disease, there is ample evidence to suggest that 

periodontal disease increases the severity of malodour and also contributes to an increased 

tongue coating and higher production of VSC (Bolepalli et al., 2015). Previous research has 

shown that chronic periodontitis patients exhibited about four-time higher amount of 

tongue coating compared to healthy control subjects (Yaegaki and Sanada, 1992). 

Moreover, oral malodor is more strongly associated with tongue coating rather than the 

severity of periodontitis (Morita and Wang, 2001a, 2001b). In addition, there are significant 
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correlations reported in the literature, where periodontal malodour has been associated 

with (1) increased number and depth of periodontal pockets (Yaegaki and Sanada, 1992), 

as well as (2) increased gingival crevicular fluid (GCF) flow rate(Morita and Wang, 2001a), 

(3) increased radiographic bone loss, (Morita and Wang, 2001b) and (4) presence of

periodontal pathogens (Loesche and Kazor, 2002). In a study by Yaegaki (1997) an 

association between pocket depth of gingival pockets, amount of VSC and the CH3SH/H2S 

ratio was established. 

The collective  evidence  from  numerous in vitro and in vivo studies suggests that 

the persistence and diversity of the resident oral flora is dependent upon the range and 

rate of supply of nutrients provided by the host. For example, the salivary mucins 

(glycoproteins) act as the main source of carbohydrates for plaque and tongue biofilm 

bacteria. The degradation of the oligosaccharide side chains depends upon the concerted 

action of consortia of different species, each with complementary profiles of glycosidase 

activity (Beighton, Smith and Hayday, 1986; Ter Steeg et al., 1988; Van der Hoeven and 

Camp, 1991; Bradshaw and Marsh, 1998). Furthermore, the growth of some species can be 

dependent on the provision of nutrients by other species, such as the supply of short-chain 

fatty acids by Fusobacterium sp. to Viellonella sp. 

The specific theory of oral malodour suggests that specific microbial species are 

responsible (i.e. aetiological) whilst the non-specific theory suggests that the tongue biofilm 

“as a whole” is important, without the need for a specific agent (i.e. amount is more 

important than specific composition). In a diverse biofilm there may be many species that 

can transform substrates to VSC and many species can “substitute for others” in different 

cases.  From a modelling perspective, the tongue surface biofilm may be classed as a 

continuously perfused matrix biofilm system. However, in periodontal disease there are 
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clear differences to tongue biofilms, both in the ecological composition and likely source of 

nutrition. The location of the periodontal microflora is at the interface of hard tissue tooth 

surfaces and the non-keratinised sulcular epithelial cells. This forms the sulcus or gingival 

crevice. Most importantly, the microbes gain nutrition mainly from gingival crevicular fluid 

sources rather than from saliva. In health, the subgingival flora may be supplied with 

nutrients from a mixed domain of saliva and crevicular fluid, since the diffusion rate of 

crevicular fluid is slow. This is because flow across intact junctional epithelial cells is 

dependant on the surface area of non-keratinised epithelia, and its ratio with the volume 

or mass of microbial cells that the fluid supplies within the crevice. As periodontal disease 

progresses, the gingival crevice volume extends deeper towards the roots of the teeth and 

increases in size, to develop into what is described as a periodontal “pocket”. The microbial 

populations increase, and in addition, the microbes respond to the changing conditions (i.e. 

change their physiological state) producing more tissue-destroying hydrolytic enzymes as 

well as cytotoxic and inflammatory agents. The joint effect is to exacerbate tissue damage 

and continue to enlarge the pocket. 

4.1.2 Characterisation of the oral microbiome by nucleic acid sequencing 

There has been much work in characterising and grouping the oral microbiome with 

specific reference to periodontal disease, but less with reference to oral malodour. In their 

seminal paper, Socransky et al., (1998) used whole DNA probes and checkerboard DNA-

DNA hybridisation to generate a large dataset of microbial prevalence in 185 subjects. Using 

hierarchical clustering and correspondence analysis they split the taxa detected into five 

groups which they distinguished arbitrarily by colour. This grouping schema can be shown 
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in figure 4.2. Whilst limited in scope this grouping has remained the most common scheme 

for categorising periodontal pathogens. It is of interest to apply similar and enhanced 

techniques to nucleic based analysis, and to relate this to oral malodour. 

Human Oral Microbe Identification Microarray (HOMIM), and Human Oral Microbe 

Identification using Next Generation Sequencing (HOMINGS) techniques are 16s rRNA gene 

sequencing methods for species identification of oral organisms. HOMIM analysis was 

introduced in 2008 and used an in vitro  hybridization technique similar to DNA microarray 

technology to identify 293 predominant oral bacterial species (Paster and Dewhirst, 2009). 

The improved HOMINGS method was introduced in 2014 and relies on in silico hybridization 

to identify 597 species (Belstrøm et al., 2016).  The datasets produced by these methods 

allow powerful statistical techniques to be performed to analyse microbial ecology in the 

oral habitat. Some techniques similar to those used by Socransky, plus some novel 

techniques, will be discussed in this chapter.

Figure 4.2 Subgingival microbial complex as described by Socransky et al., 1998 (Reproduced with 
permission from John Wiley and Sons Inc.)
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Materials and Methods 

4.2.1 The volatilome in vivo 

The volatilome of the human oral cavity was sampled by SIFT-MS as described in 

section 2.6.3. Short term changes were monitored in one subject over the course of the day 

and in another during a period of voluntary fasting. These were case studies of individuals 

and are presented as illustrations of the types of changes seen in the oral cavity, rather than 

exhaustive studies. Additionally, a number of volatile profiles of human volunteers 

examined by SIFT-MS were compared to the corresponding profiles obtained from in vitro 

biofilms as described below. All microbiological analysis was performed as described in 

section 2.2. Finally, the volatile profile of 39 subjects was compared with HOMIN analysis 

of the frequency of species seen in a tongue scrape sample. These methods are outlined in 

section 2.3. This volatile profile was compared with microbial composition before and after 

treatment. 

4.2.2 The volatilome in vitro 

In vitro biofilms were inoculated from samples as described in section 2.1. Gas 

sampling of the biofilm enclosure was performed as described in section 2.1.6 and in the 

previous chapter. With these techniques, the volatile profile of healthy individuals was 

compared with the profile obtained from biofilms inoculated from their tongue scrape 
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samples. Comparison of these profiles was performed by χ2 analysis. pH of the biofilms was 

monitored in some cases, using the pHOptica optical device as described in section 3.2. 

The effect of commercially available mouthwashes on the in vitro model was 

investigated using the methods described in section 2.1. Formulations tested were off the 

shelf samples of Listerine (Johnson & Johnson, New Jersey), Meridol (GABA, Germany), 

CB12 (Meda Pharmaceuticals Ltd., UK) and BreathRX (Phillips, UK). The active formulations 

were compared with sterile distilled water as a control. Pulses of 2ml of each treatment or 

control were applied to mature biofilms over a period of one minute and the effects on 

volatile production measured by SIFT-MS. 

4.2.3 Species frequency analysis 

Species frequency analysis was performed on tongue scrape samples from 40 

individuals as described in section 2.3. The HOMIM data was analysed by a variety of 

statistical visualisation methods beginning with rank abundance plots and calculation of 

diversity indices. A novel technique, first presented here, is to plot heatmaps of organisms 

to better visualise the association between their frequency and malodour. Circos is a 

computer scripting language originally devised to visualise genomic data (Krzywinski, 2009), 

but it can be usefully employed to generate these type of heatmaps. The method is as 

follows; taxa are plotted radially around the a circular Circos plot and samples are ordered 

from low to high malodour score (by whatever measurement method has been used), 

starting at the centre of the plot. Points are coloured by heatmap ranging from pale to dark 

red based on the percentage frequency. This means that darker red at the outside of the 
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circular plot corresponds to the association of those organisms with malodour. Further 

analysis can be performed by analysing the skew coefficient for each organism ‘spoke’ of 

the circle. Positively skewed organisms are likely to be associated with malodour whereas 

negatively skewed organisms are likely to be more prevalent in low malodour individuals. 

Another powerful statistical method that can be applied to these kinds of datasets 

is co-occurrence analysis. Assessing cooperation and competition in species has a long 

history, and the use of binary matrices has its roots in the “checkerboard” theory of 

Diamond (1975). The development of the ideas is well covered by Connor et al., (2017). 

Nowadays probabilistic species co-occurrence modelling is best accomplished by computer 

algorithms (Veech, 2013) such as that implemented by Daniel Griffith in R-studio (Griffith, 

Veech and Marsh, 2016). These models are much more rapid than original techniques and 

avoid most Type I and II errors by avoiding data randomisation based comparative 

techniques. The matrix allocates ‘positive’, ‘negative’ or ‘random’ to each species pair 

combination based on whether the probability of the species pair occurring is greater than 

each species appearing with all the other species.  

Multidimensional scaling (MDS) was also used to gain insight from the large dataset 

by analysing clustering before and after treatment.  Not only can clustering in such plots 

indicate ecological associations between organisms, but the change in clustering before and 

after treatment can reveal the demographic action of a treatment.  
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The subject drank coffee at t=10 minutes (A), ate a small snack at t=25 
minutes (B) and lunch at 140 minutes (C) 

A B C 

Results 

4.3.1 The oral volatilome 

Figure 4.3 shows the progression in the profile of volatiles for a single subject over 

the course of a morning. 

Figure 4.3: Progression of the volatile profile in the oral cavity of a single subject. 

The effect of variations in food intake by the human host is illustrated in another case 

study which involved monitoring of oral volatiles in a human subject during a period of 

voluntary fasting. As can been seen in figures 4.4 to 4.6 fasting had a dramatic effect on 

volatiles detected by SIFT-MS and the composition of the tongue biofilm.  Anaerobic plate 
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Fasting Post-fasting 

counts were almost two orders of magnitude lower during the fasting period and the 

proportion of gram negative organisms twice as high. Production of sulphides was highest 

at the end of the fasting period with hydrogen sulphide production particularly 

pronounced. A further five days after recommencement of a normal diet, the profile of 

VOCs and composition of the biofilm had almost returned to the original state. 

Figure 4.4: Changes in volatile profile before, during and after a period of fasting 
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Figure 4.5: Microbiological changes before, during and after a period of fasting 

(Gram positive and negative organisms) 

Figure 4.6: Microbiological changes before, during and after 

fasting (strict and facultative anaerobes) 



86 

4.3.2 Comparison of in vivo and in vitro biofilms by SIFT-MS 

Figure 4.7 shows Profile3 SIFT-MS VOC profiles taken from the oral cavity of six 

volunteers, and their corresponding profiles from biofilms inoculated from their tongue 

scrape samples. In all cases where at least five compounds are seen in both samples, χ2 

analysis of the data shows the profiles to be indistinguishable (P = 0.9). In addition to 

validating the model, this data supports the hypothesis that bad breath, specifically in 

respect of volatile sulphide production, is a feature of the microcosm and the properties of 

the model reflect the different microcosms. Oral malodour is thus transplantable to the 

model. Whilst proportions of strict and facultative anaerobes and gram positive and 

negative organisms are similar in vivo and in vitro a far superior method for comparing the 

microbiological composition would be nucleic acid based techniques as discussed next. 
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Figure 4.7: Comparison of VOC profiles from in vivo and in vitro biofilms from the same 

subjects 
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4.3.3 The effect of commercial mouthwashes on the in vitro biofilm 

Figure 4.8 shows the effect on volatile profile by the application of commercial 

mothwashes to mature in vitro biofilms. Figure 4.9 shows the proportion of initial hydrogen 

sulphide production after treatment. 

Figure 4.8: The effect of various commercial mouthwashes on the hydrogen sulphide 

production of six biofilms. Treatment occurred at t=0.  

A useful comparison technique here, used again later, is to measure the total area 

under the response curve for each treatment. This is a useful measure as it takes into 

account both the initial reduction in volatile levels and the duration of that an effect. A bar 

chart showing the respective areas for each treatment is shown in 4.10. 
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Figure 4.9: The effect of various commercial mouthwashes on the hydrogen sulphide 

production of six biofilms, shown as a proportion of the original level 

Figure 4.10: Area under the hydrogen sulphide curve for various commercial mouthwashes. 

Overall order of effectiveness is therefore BreathRX>>CB12>>Meridol>>Listerine>>Control. 
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4.3.4 Species frequency analysis 

The dataset obtained from HOMIM analysis performed on 40 individuals before and 

after a treatment intervention consists of two 40 by 259 numerical arrays of non-integer 

values between 0 and 50. To represent this visually in ways that confer useful information 

is challenging. A common useful technique is to plot rank abundance charts. Because of the 

large number of organisms with low incidence, these charts have very long, flat tails, and it 

is more useful to plot only the most abundant organisms. The charts for the first forty 

organisms can be seen in figure 4.11. The shape of each of these charts would be reflected 

in the diversity indices calculated for each group. The Chao1 (Chao, 2016) index of overall 

species richness is not significantly different, but the Shannon diversity index (Shannon, 

1948) is 3.07 for the first group and 2.90 for the second. This is a significant difference at 

the 95% level (P=0.0008). If the change in relative abundance of organisms before and after 

treatment is plotted for those with the highest change, it appears as in figure 4.12.  
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Figure 4.11: Rank abundance chart of organism frequency by 16s rRNA analysis of tongue 

scrapes from 40 individuals. Pprevalence is shown before (top) and after (bottom) treatment 

for the 40 most abundant organisms 
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Figure 4.12: Change in relative abundance of fifty organism frequency by 16s rRNA analysis of 

tongue scrapes from 40 individuals. The species included showed the greatest positive or 

negative change after treatment with an antimalodour formulation. 
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A circus heatmap of the data, plotted as explained earlier, is shown in figure 4.13. 

Both Pearson’s and Kelly’s coefficient of skewness were calculated for each ‘spoke’ of the 

circle and the organisms showing the greatest skew are seen in figures 4.14 and 4.15.  

Figure 4.13: Heatmap of oral malodour and organism frequency by 16s rDNA analysis. Radial 

tracks represent individuals and spokes represent organisms. Higher relative frequency of 

each organism is represented by a darker red colour, and individuals are plotted radially 

outwards in order of measured malodour by SIFT-MS. 
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Figure 4.14: A select group of organisms showing positive skew by Pearson’s coefficient 

previously identified by 16s rDNA analysis of 40 individuals. Radial tracks represent individuals 

and spokes represent organisms. Higher relative frequency of each organism is represented 

by a darker red colour, and individuals are plotted radially outwards in order of measured 

malodour by SIFT-MS.  
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Figure 4.15: Positive skewed organisms (above) and negatively skewed (below) by Kelly’s 

coefficient.These are a subset of organisms analyses by 16s rRNA analysis of tongue scrapes 

from 40 individuals.  Radial tracks represent individuals and spokes represent organisms. 

Higher relative frequency of each organism is represented by a darker red colour, and 

individuals are plotted radially outwards in order of measured malodour by SIFT-MS. 
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A co-occurrence matrix of ‘positive’, ‘negative’ and ‘random’ associations between 

a subset of organisms can be seen in figure 4.16. 

Figure 4.16: Co-occurrence matrix for a subset of the organisms identified in 40 samples by 

16s rRNA analysis. Colour of the block at the intersection of the two organisms indicates if 

they are more (positive) or less (negative) likely to occur together 
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A number of MDS plots could be plotted from this data but an interesting one is 

presented here. The plot in figure 4.17 shows the distance distribution of the organisms 

before treatment and after treatment. Points are coloured according to Gram reaction. 

MDS plot a scaled transform of the Euclidean distances between points, thus a wider spread 

indicates more diversity. 

Figure 4.17: MDS analysis of species frequencies obtained by 16s RNA analysis of 40 

subjects, with grouping based on Gram stain pre and post treatment.  

K-means cluster analysis can also be performed on the Euclidean distance matrix

in a similar way to that performed by Socransky with peridodontal organisms (1998). This 

leads to a grouping schema shown in figure 4.18 and the accompanying table 4.1. The 

number of clusters was chosen using within groups sum of squares method. 
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Figure 4.18 K-means cluster analysis of species frequencies obtained by 16s rRNA 

analysis of 40 subjects. The identity of the organisms in each cluster is given in Table 4.1 
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Table 4.1 Organisms grouped as in figure 4.18 (qv.) 

Group 
1 Acetivibrio spp. Mycoplasma hyosynoviae 

Anaerobacterium chartisolvens Neisseria elongata 
Anaerophaga spp. Neisseria sp. 
Bacteroides spp. Neisseria spp. 
Bergeyella sp. Neisseria subflava 
Capnocytophaga infantium Oribacterium parvum 
Catonella spp. Peptococcus sp. 
Clostridium intestinale Peptostreptococcus stomatis 
Eubacterium sp. Porphyromonas spp. 
Fusobacterium nucleatum Prevotella aurantiaca 
Fusobacterium periodonticum Prevotella nanceiensis 
Fusobacterium spp. Prevotella shahii 
Haemophilus parainfluenzae Rothia spp. 
Haemophilus sp. Streptococcus peroris 
Kingella sp. Treponema socranskii 
Lactobacillus helveticus Veillonella parvula 
Megasphaera spp. 

Group 
2 Actinobacillus succinogenes Eikenella corrodens 

Actinomyces spp. Enhydrobacter aerosaccus 
Aggregatibacter sp. Enterobacter hormaechei 
Alloprevotella prevotella tannerae Enterococcus gallinarum 
Alloprevotella rava Enterococcus sulfureus 
Alloscardovia omnicolens Eubacterium saphenum 
Anaerosinus selenomonadaceae sb90 Faucicola moraxellaceae bacterium 
Atopobium rimae Fretibacterium fastidiosum 
Atopobium sp. Fusobacterium necrophorum 
Bergeyella spp. Gemella sanguinis 
Bifidobacterium longum Haemophilus haemolyticus 
Blautia sp. Halothiobacillus neapolitanus 
Butyrivibrio sp. Halothiobacillus sp. 
Campylobacter gracilis Johnsonella spp. 
Campylobacter showae Kingella oralis 
Campylobacter spp. Kingella spp. 
Capnocytophaga gingivalis Lachnoanaerobaculum sp. 

Capnocytophaga granulosa 
Lachnoclostridium clostridium 
symbiosum 

Capnocytophaga haemolytica Lactobacillus fermentum 
Capnocytophaga leadbetteri Lactobacillus johnsonii 
Capnocytophaga sp. Lactobacillus kalixensis 
Capnocytophaga spp. Lactobacillus reuteri 
Capnocytophaga sputigena Lactobacillus salivarius 
Cardiobacterium valvarum Lactobacillus suebicus 
Catonella sp. Lactococcus lactis 
Centipeda sp. Lautropia sp. 
Chryseobacterium moechotypicola Lautropia spp. 
Cloacibacterium spp. Leptotrichia goodfellowii 
Compostimonas spp. Leptotrichia hofstadii 
Cryptobacterium curtum Leptotrichia sp. 
Dialister invisus Leptotrichia spp. 
Dialister sp. Leptotrichia trevisanii 
Edaphobacter spp. Megasphaera sp. 
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Table 4.1 continued 

Group 
2 Meiothermus spp. Selenomonas infelix 

(cont.) Mitsuokella sp. Selenomonas sputigena 
Mobiluncus mulieris Sharpea spp. 
Neisseria canis Simonsiella muelleri 
Neisseria perflava Sneathia spp. 
Neisseria sicca Solitalea spp. 
Parvimonas micra Staphylococcus epidermidis 
Pasteurella sp. Stenoxybacter spp. 
Phocaeicola spp. Streptobacillus spp. 
Phyllobacterium trifolii Streptococcus australis 
Porphyromonas endodontalis Streptococcus constellatus 
Porphyromonas genomsp. p3 Streptococcus dysgalactiae 
Porphyromonas gingivalis Streptococcus intermedius 
Porphyromonas sp. Synergistes spp. 
Prevotella baroniae Syntrophococcus sucromutans 
Prevotella dentalis Tannerella forsythia 
Prevotella enoeca Tannerella sp. 
Prevotella intermedia Tannerella spp. 
Prevotella marshii Treponema amylovorum 
Prevotella oralis Treponema denticola 
Prevotella oulorum Treponema lecithinolyticum 
Pseudoramibacter alactolyticus Treponema sp. 
Ralstonia solanacearum Treponema spp. 
Rikenella spp. Trichococcus flocculiformis 
Roseivirga sp. Turicibacter spp. 
Rothia aeria Veillonella sp. 
Ruminiclostridium clostridium cellobioparum Veillonella spp. 
Salmonella spp. Weissella spp. 
Schwartzia sp. 

Group 
3 Actinomyces howellii Mogibacterium pumilum 

Actinomyces johnsonii Oribacterium sp. 
Actinomyces massiliensis Prevotella denticola 
Actinomyces viscosus Prevotella nigrescens 
Aggregatibacter actinomycetemcomitans Prevotella oris 
Aggregatibacter segnis Prevotella pallens 
Anaeroglobus sp. Prevotella sp. 
Atopobium parvulum Prevotella veroralis 
Atopobium spp. Rothia dentocariosa 
Campylobacter concisus Saccharibacter spp. 
Candidatus saccharimonas aalborgensis Scardovia inopinata 
Cardiobacterium hominis Selenomonas sp. 
Corynebacterium durum Selenomonas spp. 
Corynebacterium matruchotii Shuttleworthia satelles 
Dialister pneumosintes Slackia exigua 
Eubacterium brachy Solobacterium moorei 
Eubacterium spp. Stomatobaculum longum 
Lachnoanaerobaculum saburreum Streptococcus sinensis 
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Table 4.1 continued 

Group 
4 Actinomyces cardiffensis Prevotella melaninogenica 

Actinomyces graevenitzii Prevotella salivae 
Actinomyces lingnae Prevotella spp. 
Actinomyces odontolyticus Rothia mucilaginosa 
Actinomyces sp. Streptococcus gordonii 
Enterococcus sp. Streptococcus salivarius 
Granulicatella paradiacens Streptococcus sp. 
Granulicatella spp. Streptococcus spp. 
Megasphaera micronuciformis Streptococcus thermophilus 
Oribacterium sinus Streptococcus uberis 
Prevotella histicola Veillonella dispar 

Group 
5 Abiotrophia defectiva Haemophilus parahaemolyticus 

Actinobaculum spp. Haemophilus spp. 
Bacillus spp. Neisseria bacilliformis 
Citrobacter spp. Prevotella micans 
Dysgonomonas gadei Streptococcus dentirousetti 
Enterococcus faecalis Streptococcus infantis 
Enterococcus spp. Streptococcus mitis 
Filifactor alocis Streptococcus mutans 
Gemella morbillorum Streptococcus oralis 
Gemella spp. Streptococcus parasanguinis 
Granulicatella adiacens Streptococcus pseudopneumoniae 
Granulicatella elegans Streptococcus sanguinis 
Granulicatella sp. Streptococcus suis 
Haemophilus influenzae Vagococcus sp. 
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 Discussion 

4.4.1 The volatilome in vitro and in vivo. 

The case studies of volatile profile with food intake give an indication of the link 

between short-term changes and the metabolism of the microbiome. Figure 4.2 shows the 

progression in the profile of volatiles for a single subject over the course of a morning. As 

can be seen, the first calorific intake of the day, in the form of a cup of coffee, causes a rapid 

increase in volatiles. Subsequent food intake causes an initial reduction in volatiles followed 

by an increase. The amount of dissolved hydrogen sulphide and methyl mercaptan in 

solution is highly pH dependant, whereas dimethyl disulphide is less so. This explains the 

dominance of these first two sulphides since acids are typically produced from food or 

saliva through microbial metabolism.  

The effect of variations in food intake by the human host is illustrated in the second 

case study which involved monitoring of oral volatiles in a human subject during a period 

of voluntary fasting. As can been seen in figures 4.3 to 4.5 fasting had a dramatic effect on 

volatiles detected by SIFT-MS and the composition of the tongue biofilm.  Anaerobic plate 

counts were almost two orders of magnitude lower during the fasting period and the 

proportion of Gram negative organisms twice as high. Production of sulphides was highest 

at the end of the fasting period with hydrogen sulphide production particularly 

pronounced. A further five days after recommencement of a normal diet, the profile of 

VOCs and composition of the biofilm had almost returned to the original state. 

Unfortunately oral pH was not monitored in this period although it is expected that it 

increased during the fasting period. Figure 4.6 shows that in the biofilm model, decrease in 
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pH was associated with decreased production of H2S and CH3SH and that this could be 

induced by a pulse of glucose. 

Turning to the comparison of SIFT-MS profiles in vivo and in vitro (figure 4.7), the top 

row are low malodour individuals as scored by organoleptic judge, the second row medium 

malodour and the bottom row high malodour. It can be readily be seen that the VOC 

profiles are “transplantable” by using high, medium and low tongue scrape inoculum to 

generate the corresponding in vitro biofilm in the plate model. Absolute levels are 

significantly higher in the biofilm model, and in some cases this means that some 

compounds are seen only in the in vitro samples. 

The commercial mouthwash experiment demonstrates that the biofilm model can 

be used to test the effects of antimicrobial interventions on the biofilm and the 

corresponding effect on volatile profile. Similar results are seen as in in vivo studies and the 

medium term effects of the treatments is visualised well by the area under the curve charts. 

This in vitro method is useful in this regard and is likely to become moreso as studies 

involving human participants become more difficult. 

4.4.2 Species frequency analysis 

Species frequency analysis in the study of the tongue biofilm and oral malodour has 

lagged behind similar studies in periodontal disease. Co-occurrence of Bacteroides 

forsythus and gingivalis were first noted (Gmür, Strub and Guggenheim, 1989)  followed by 

Treponema denticola and Porphyromonas gingivalis (Simonson et al., 1992) and 

Fusobacterium nucleatum and Prevotella intermedia (Ali et al., 1994). In 1998, Socransky 
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was the first to place sub-gingival organisms into groups referred to as ‘complexes’ 

(Socransky et al., 1998) and this convention has been used widely since. These associations 

were mainly made by fairly simplistic methods such as contingency table analysis, and 

associations were not linked to other independently measureable variables such as volatile 

profile.   

The visualisation techniques outlined here when taken as a whole demonstrate 

powerful methods for characterising microbial communities and their macroscopic effects. 

The Circos plots with accompanying skew analysis (figures 4.13 to 4.15) highlight organisms 

that may not have previously been associated with malodour. These organisms, such as 

Edaphobacter sp., Oribacterium sp. or Anaerophagia sp. may not directly produce volatiles 

themselves but their role in the microbial ecosystem may lead to their association with 

malodour. Whilst further work would obviously be required to evaluate cause and effect, 

there is obviously ample direction for further study. Similar techniques could be used in the 

field of periodontal disease, not only linking volatile profiles with microbial ones, but other 

contiguous clinical measures such as pocket depth. 

Co-occurrence matrices can also reveal important interactions between organisms. 

Whilst the older contingency table methods were valid, modelling of complex 

chequerboard tables of numerous species is only possible now due to the ready availability 

increased computer processing power.   Examination of figure 4.16 shows a number of well-

known associations between groups of organisms, such as Fusobacterium sp., Prevotella 

sp., Actinomyces sp. and Tannerella sp. It is interesting, however, that Lactobacillus 

fermentum, salivarius and kalixensis are frequently seen together but are negatively 

associated with many known malodour producing organisms. It is tempting to suggest that 

such organisms may have the potential to have positive probiotic effect if administered 
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orally in combination with an antimicrobial mouthwash. This would be another area for 

further study. 

Turning to effects seen before and after treatment, the rank abundance charts 

(figure 4.11) show different profiles, and the change in Shannon index but not Chao1 

indicates that whilst overall richness is similar there is a loss of diversity which affects a 

smaller subpopulation. This is visually apparent in the difference in shapes of the primary 

rank abundance charts, the second chart appearing to have a sharper ‘peak’.  The 

subpopulation is likely to be of more common organisms rather than rare outliers. The 

change in abundance plot (figure 4.12) suggests that these organisms might be 

Fusobacteria, Neisseria and Prevotallae, whilst the frequency of Veillonella dispar and 

Streptococcus parasanguinis appears to have increased.   

Multidimensional scaling relies on mapping the scaled Euclidian distance between 

points in variable space to gain insight into clustering and relational information. In this 

instance, the change in this two dimensional metric after treatment in of interest. 

Examining figure 4.17 shows that the shape of the overall species cluster has changed 

significantly after treatment with a narrowing in the y-direction that affects Gram positive 

organisms. This is likely to be a reflection of the relative selection towards organisms such 

as S. parasanguinis previously noted. 

Comparison of k-means clustering of the organisms (figure 4.18) is 

interesting as parallels can be seen with groups proposed by Socransky for 

periodontal organisms. The so called ‘Red Group’ organisms are all seen in group 

2, whilst the ‘Orange Group’ are split between this group and group 1. The ‘Yellow 

Group’ organisms are mainly seen in group 5. If the average skew score for 

malodour as previously described is taken into account, groups 1 and 2 are most 

associated with malodour. 
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Conclusions 

The interplay between microbial ecology and physiology and the volatile profile that 

the community produces is complex and has many factors and influences. The flat plate 

perfusion system is an effective in vitro model for studying the behaviour of tongue-derived 

biofilms and how they respond to treatments. Further work is required to investigate more 

deeply the complex interplay between variables that occur in the tongue community. 

Additionally, these techniques could be applied to the human microbiome at other sites, 

both within the oral cavity and elsewhere. In the next chapter, the flat plate model will be 

applied to the study of both potential antimicrobial interventions and another device for 

analysing volatile profiles. 
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5. Comparison of a novel antimicrobial compound both in vitro and in

vivo

5.1 Introduction 

Most antimicrobial treatments commonly in use for the treatment of oral malodour 

rely on a combination of agents that target both the production of VSCs by microorganisms 

and their propensity to enter the gaseous phase once produced. Considering antimicrobial 

substances, attention quickly focussed on  membrane-active cationic compounds such as 

chlorhexidine, alexidine, cetyl pyridinium chloride and hexetidin (Roberts and Addy, 1981). 

Of these, chlorhexidine (CHX) has become the most commonly used by the dental 

profession for treating caries, gingivitis and periodontal disease as well as oral malodour 

(Jones, 1997). The second method of reducing VSC in breath has focussed on the use of 

metal salts. Ions of transition metals such as Hg2+, Cd2+, Cu2+, Zn2+ and Sn2+ all have a high 

affinity for sulphides, and their binding to VSC precursors prevents the malodourous 

compounds from being released (Young et al., 2001). Whilst many salts of these metal ions 

have been tested in vitro  only salts of copper, tin or zinc are considered safe enough for 

use clinically. Of these, zinc (II) salts show the best balance of efficiency and safety. When 

combined with chlorhexidine, zinc salts have an effective synergistic effect on oral 

malodour and this combination is very successfully used in leading commercial 

mouthwashes (Thrane et al., 2007).  

CMD is the codename given to a novel compound which had previously shown a 

positive synergistic effect with chlorhexidine against Staphylococcus aureus. The purpose 

of this study was to test the effects of this compound in concert with both chlorhexidine 
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and zinc acetate against oral biofilms both in vitro and in vivo. The three compounds were 

combined in three formulations containing between 0.1 and 0.3% of the active ingredients 

and compared with two positive and a negative controls as described below. 

5.2 Materials and Methods 

Five active treatments and a negative control consisting of distilled water 

were selected. Three of these treatments contained a combination of CMD, chlorhexidine 

acetate and zinc acetate in varying proportions as outlined in Table 5.1: Products used in 

the in vitro and in vivo Investigation of a novel antimicrobial.. Treatment 4 was a commercial 

mouthwash that also incorporated zinc acetate and chlorhexidine diacetate plus 

sodium fluoride (proportions shown in table 5.1). Treatment 5 contained only 

chlorhexidine digluconate as an active ingredient at a concentration of 0.2%.  

Selection of volunteers for the study was performed by Dr. Saliha Saad of UWE (CRIB, 

Oral Malodour group). The sample group was a subset of a larger group of 120 volunteers 

used in previous studies. The majority demographic was those working or studying at the 

University, but were of varied gender, age and ethnic background.  Preliminary organoleptic 

investigations were undertaken by judge and instrument. Eligibility and exclusion criteria 

used to select the final 39 participants are given in figure 2.2. In order to maintain anonymity 

all volunteer data was coded and randomised before being allocated a treatment. These 

procedures were scrutinised and approved by the University’s Ethics Committee and are 

covered by UWE NRES Ref: North-West Haydock 15/NW/0316. 

Trials were performed by crossover design. Before and between each treatment a 

one week washout period was performed using a proprietary toothpaste and a 

standard brush (see Table 5.1). Microbiological analysis was performed on tongue scrape 

samples before and after treatment as described 
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in section 2.2. These were taken using a standardised sterile toothbrush from a 1cm2 area 

of the tongue dorsum.  Samples were inoculated directly into degassed brain heart infusion 

and vortexed.  Relevant dilutions were plated on fastidious anaerobe agar (LabM, Bury, 

UK) with and without vancomycin (2.5 mgl-1; Sigma-Aldrich, UK) and incubated 

anaerobically for seven days. Plate counts were performed for strict and facultative 

anaerobes as well as total viable organisms. A random anonymous portion of one of 

these tongue scrape samples was used to inoculate the biofilms for the in vitro arm of 

the study.  The six biofilms were monitored sequentially by Profile3 SIFT-MS using the 

PEEK multivalve system set to a switching time of 50 seconds. Monitoring took place over 

a 48hr period and three repeat pulses of each product were introduced, giving four in 

total. Please refer to general methods chapter for more detail if required. 

5.2.1. In vivo sampling of the oral cavity 

VOC sampling occurred before treatment, 1 hour afterwards and again at 3 and 6 hrs 

afterward. Sampling was by trained organoleptic judge, OralChroma and Profile3 SIFT-MS as 

described in section 2.5. Tongue scrape samples were taken before treatment and at 3 and 

6 hrs. Plate counts were performed as for the in vitro study. 

5.2.2. Trained Organoleptic Judge 

Organoleptic scoring by a trained judge was used to assess malodour. The mouth 

was kept closed for two minutes to allow formation of headspace equilibrium in the oral 

cavity, then the head was inclined backwards and the mouth opened to allow assessment by 

judge. Malodour was categorised from 0-5 where 0 = no odour, 1 = barely noticeable, 2 = 

slight odour, 3 = moderate odour, 4 = strong odour and 5 = very strong odour. 
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5.2.3.  The OralChroma 

Samples were collected from the human volunteers as recommended by Abilit 

corporation. A 2 ml volume of air from the oral cavity was collected by gas syringe (B. Braun 

Medical Ltd, Sheffield, UK) and injected into the injection port of the gas chromatograph 

(OralChromaTM AbilitCorporation, Japan). The area under the peaks was used to calculate 

levels of hydrogen sulphide and combined volatile sulphur compounds (VSC) concentrations 

from a previously generated calibration curve. 

5.2.4. SIFT-MS 

The Profile3 instrument was used for sampling set up as described in section 2.6.3. 

It was necessary to modify the sampling inlet of the SIFT-MS to measure VOC levels in the 

oral cavity. The rear port of the sampling head was connected to a mini diaphragm pump. 

The front inlet was adapted to hold a disposable straw that could be introduced into the 

oral cavity. Air was thus drawn from the oral cavity and this stream was then subsampled 

by the SIFT-MS. Dynamic calibration was performed by flow rate as recommended. 
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Table 5.1: Products used in the in vitro and in vivo Investigation of a novel antimicrobial. 

Test Product 1: 

Reference label CMD01 

Active compounds 

Chlorhexidine diacetate 0.01% 

CMD 0.01% 

Zinc acetate 0.07% 

Test Product 2: 

Reference label CMD02 

Active compounds 

Chlorhexidine diacetate 0.03% 

CMD 0.03% 

Zinc acetate 0.07% 

Test Product 3: 

Reference label CMD03 

Active compounds 

Chlorhexidine diacetate 0.03% 

CMD 0.03% 

Zinc acetate 0.30% 

Test Product 4: 

Name of product 

Reference label 

Name of manufacturer 

Active compounds 

Chlorhexidine diacetate 

Zinc acetate 

Sodium flouride 

Positive control A 

CB12 

MEDA OTC AB, Solna, Sweden 

0.025% 

0.30% 

0.05% 
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Table 5.1 continued 

Test Product 5: 

Name of product Positive control B Chlorhexidine digluconate 

Reference label CHX 

Name of manufacturer GSK 

Active compounds 

Chlorhexidine digluconate 0.20% 

Test Product 6 

Name of product Negative control  sterile distilled water 

Reference label Control 

Name of manufacturer N/A 

Active compounds 

None 

Toothpaste (for wash-in and wash-out phase) 

Name of product 

Name of manufacturer 

Active compounds 

Sodium Monofluorophosphate,  

Sodium fluoride  

Other ingredients (qualitative) 

Colgate Cavity protection 

Colgate-Palmolive 

(1400 ppm F-) 

(450 ppm F-) 

Dicalcium Phosphate Dihydrate, Aqua, Glycerin, Sodium 

Lauryl Sulphate, Cellulose Gum, Aroma, Sodium 

monofluorophosphate, Tetrasodium Pyrophosphate, Sodium 

Saccharin, Sodium Fluoride, Calcium Glycerophosphate, 

Limonene.   
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5.3 Results 

5.3.1. In vitro study 

Treatments occurred at 1hr, 8hrs, 24hrs and 32hrs. The levels of hydrogen sulphide 

produced during this period can be seen in Figure 5.1 

Figure 5.1: Hydrogen sulphide levels produced by biofilms during repeated challenge with various 

test formulations and negative water control as described in Table 5.1. Arrows indicate the time 

points at which treatments occurred.

CMD01 
CMD02 
CMD03 
CB12 
CHX 
Control 

ke2-hewett
Stamp
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Figure 5.2: Reduction in H2S levels for each product at each time point. Mean concentration drop of 

n=4 timepoints is shown by grey bar. 

The difference in hydrogen sulphide levels before and after each treatment (i.e. the 

reduction in concentration due to the inhibitory activity of the treatments) was plotted as 

a bar chart in figure 5.2. Also, each curve was normalised to a common baseline and the 

area under the curve for each product calculated. This is a useful metric, as described in 

section 3, as it gives a result in which the initial drop and the length of effect are both 

taken into account. This is shown in figure 5.3, with smaller bars thus indicating smaller 

area under the curve and therefore greater effect. Similar bar charts were produced for 

total VSC (hydrogen sulphide, methyl mercaptan and dimethyl-disulphide) and total VOC 

(total VSC plus indole, skatole, propanoic acid, butyric acid, trimethylamine, putresceine 

and cadaverine).  

Order of effectiveness is CMD03>>CB12>>CMD02>>CMD01>>CHX>>Control. 
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. 

Figure 5.3: Bar charts showing the effect of the six formulations on (A) hydrogen sulphide 

(B) VSCs and (C) VOCs, as measured by area under the SIFT-MS trace over 48hrs

Plate counts were performed on 1ml of eluate from the biofilm before and after each 

treatment. The area under the curve method for can be used here also, and this is shown in 

figure 5.4. Again, smaller bars show a greater effect on numbers of organisms (both 

facultative and strict anaerobes). The order of effectiveness is 

CHX>>CMD03>>CB12>>CMD01>>CMD02>>Control for facultative anaerobes and 

CHX>>CMD02>>CB12>>Control>>CMD01>>CMD03 for strict anaerobes.  

A B

C
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5.3.2. In vivo study 

All of the treatments showed a greater effect than the distilled water control, with 

an initial reduction in malodour levels followed by a recovery rate following the treatment 

period. The results for organoleptic score can be seen in figure 5.5. As with the in vitro 

study, this data can be better represented using bar charts of the area under each 

curve. More effective treatments therefore show smaller bars. This can be seen for the 

organoleptic data shown, and the other measurements by instruments, in figures 

5.6-5.11. Direct comparison of the effects of the treatment between the in vivo and in vitro 

arms can be seen in figures 5.1 and 5.4. The area under the curve graphs further allow 

comaprison of the full cumalitive effect of the treatments in each arm of the trial.

Figure 5.4: Microbiology results showing effect of the six formulations on 
facultative and strict anaerobes on eluate from the biofilms 
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Figure 5.5: Effect on organoleptic score over time for the six formulations. 

Figure 5.6: Effect of six formulations on organoleptic
 score. Area under the curve is shown as a histogram with 
smaller bars representing larger effect.

Figure 5.7: Effect of six formulations on OralChroma 
H2S. Area under the curve is shown as a histogram 
with smaller bars representing larger effect.

Figure 5.8: Effect of six formulations on OralChroma VSC.
 Area under the curve is shown as a histogram with 
smaller bars representing larger effect.

Figure 5.9: Effect of six formulations on H2S by SIFT-
MS. Area under the curve is shown as a histogram 
with smaller bars representing larger effect. 

CMD01 
CMD02 
CMD03 
CB12 
CHX 
Control 
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Figure 5.10:  Effect of six formulations on VSCs by 
SIFT-MS. Area under the curve is shown as a 
histogram with smaller bars representing larger 
effect. 

Figure 5.11: Effect of six formulations on VOCs by 
SIFT-MS. Area under the curve is shown as a 
histogram with smaller bars representing larger 
effect.  

As with the in vitro trial, microbiology for total viable count and strict and 

facultative anaerobes were performed. Area under the curve bar charts can be seen below. 

In this case order of effectiveness is 

CHX>>CMD02>>CMD01>>CB12>>CMD03>>Control for both categories of anaerobes. 

Figure 5.12: Microbiology of in vivo data. Smaller bars indicate greater effect on microbiological counts. 
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Statistical comparison of the data shows that all treatments show significantly more 

effect than the control at the P < 0.05 level for organoleptic score and levels of volatiles 

measured by OralChroma and SIFT-MS. CMD01 showed less effect than the other active 

treatments by SIFT-MS. All of the compounds also showed significantly more effect on all 

microbial counts than the control (P < 0.05). Chlorhexidine alone was the only compound 

that outperformed the others in reducing microbial load at the same significance level. Very 

similar results were seen in the study of biofilm hydrogen sulphide production, with all 

products showing significantly more effect that water. However in the in vitro study, CMD03 

showed significantly more reduction of VOC than the other active compounds (P<0.05). 

Table 5.2: Results summary and comparison (all data is area under curve) 

in 

vitro 

in 

vivo 

H2S TVC Facultative Strict H2S TVC Facultative Strict 

CMD01 4.0 424.4 417.5 378.0 10.3 45.0 44.1 41.5 

CMD02 3.6 426.4 423.1 371.0 8.5 44.7 43.8 41.1 

CMD03 1.8 424.9 408.7 388.1 7.1 45.6 44.7 42.1 

CB12 3.1 418.1 412.6 372.7 8.5 45.2 44.4 41.4 

CHX 3.9 405.5 400.9 354.7 8.7 42.5 41.5 39.1 

Control 11.9 428.2 423.9 377.1 11.7 48.2 47.2 44.9 



120 

5.4 Discussion 

Chlorhexidine ((1,6-di(4-chlorophenyl-diguanido)hexane) is a membrane-

active cationic bisbiguanide antimicrobial agent. It has a wide spectrum of 

activity which is efficacious against Gram-positive and Gram-negative bacteria as 

well as some yeasts, dermatophytes and lipophilic viruses (Denton, 1991). 

Structurally it contains ten nitrogen atoms separated by a hexamethylene bridge 

and it is the positive charge distributed over these atoms which gives it affinity for 

negatively charged surfaces. This bicationic nature gives it the ability to bind to 

bacterial cell walls (Davies, 1973) and surfaces in the oral cavity (Rølla et al., 1971), 

potentially simultaneously. It has a bacteriostatic effect in low 

concentrations but becomes bacteriocidal as concentrations rise. It affects 

non-multiplying cells and persists in the oral cavity for considerable time (Jenkins et 

al., 1988). These antimicrobial effects are due to binding to the 

cytoplasmic membrane leading first to increased permeability and then 

precipitation of cytoplasmic components. These effects do not show an 

increase in ATPase inhibition suggesting only a direct effect on the 

membrane (Kuyyakanond and Quesnel, 1992). It is for these reasons 

that chlorhexidine is still considered the gold standard oral antimicrobial (Jones, 

1997). 

CMD is a novel compound which has shown broad spectrum activity and 

has been effective against methicillin sensitive and resistant Staph. aureus.  It is 

also anionic lipophilic and membrane-active, appearing to act on the 

phosphatidylglycerol containing fraction of the cytoplasmic membrane. 
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When compared with chlorhexidine it shows similar but differing effects on natural 

and model membranes of Staph. aureus. Zinc salts however operate by providing 

ions that form sulphides of low solubility with precursors of VSC such as HS-, S2- 

and CH3S-. It has also been suggested that zinc may directly inhibit cysteine 

desulphydrase or other sulphur metabolising enzymes (Greenman 1999). 

Examination of the results of both the in vitro  and in vivo arms of the 

current study shows the effects of the combination of these three 

compounds in combination in three formulations. The compound most 

effective at combating malodour, as measured by the smallest area under curve 

for VSC both in vitro and in vivo was test product 3, CMD03. It outperformed the 

industry leading oral malodour formulation even though it contained similar levels 

of chlorhexidine and zinc, and no sodium fluoride. It is interesting that this novel 

compound shows activity in these circumstances since in vitro models with their 

greater bacterial loads, larger volume of EPS and higher VSC production would 

tend to be less sensitive to the effects of membrane active compounds (Hope 

and Wilson 2004). This appears to support the view suggested by Hubbard et al., 

(2017) that chlorhexidine and CMD act in synergy by affecting different parts of 

the cytoplasmic membrane. However, it is interesting that CMD02, with a lower 

concentration of zinc, did not perform as well even though it contained the same 

amounts of CMD and chlorhexidine. This suggests that increased 

permeability of the membrane allows zinc ions better access to VSC 

precursors or enzymes before they can produce volatile malodour compounds. 

The finding that only the high concentration chlorhexidine formulation 
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acted with significant and lasting antimicrobial effect, as shown by the microbiology 

results, is not surprising. Concentrations in this range are known to be the most 

effective bacteriocides (Cumming and Loe, 1973). However, the side effects of 

chlorhexidine at this concentration, such as staining of dental enamel, prevent 

formulations such as this from being used on a regular basis as prophylaxis against 

malodour (Flötra et al., 1971).  

5.5 Conclusions 

 
 Comparison of in vitro and in vivo showed that for hydrogen 

sulphide levels as measured by SIFT-MS the order of effectiveness of 

the formulations was identical. This was, in order of decreasing efficacy;  

CMD03>>CB12>>CMD02>>CHX>>CMD01>>Water. CMD03 showed the 

greatest effect on volatiles by all measurement methods. In terms of antimicrobial 

effects, the results were more mixed, with the highest concentration of 

chlorhexidine showing the highest bacteriocidal effect. The difference in 

formulation of nutrients in the two systems meant that the in vitro 

model produced much higher transformation rates of VSC and VOC. Despite 

this, the effectiveness of the synergy between the inhibitory compounds against 

the oral biofilm was still readily apparent. 

CMD shows high potential as a broad spectrum antimicrobial agent 

against complex multispecies biofilms both in vitro and in vivo. There are also 

indications that it may improve the ability of zinc compounds to remove VSC 

precursors from the malodour generation pathway.  
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Further work is needed to investigate this, and to examine the effects of 

these combinations of treatments on specific groups of organisms in the 

biofilm, for example by use of 16s rRNA analysis (Dewhirst et al., 2010). If 

the proportion of all oral organisms were profiled before and after various 

combinations of treatments, it would be possible to assess the effect of 

each component on different organisms within the oral microbiome. By 

further examination of key organisms, accompanied by membrane modelling 

experiments, the mode of action of these compounds could be further 

elucidated. Parallel experiments with metal salts such as zinc acetate may 

provide further information on direct effects of clinical formulations on volatile 

production in the oral cavity. 
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6 The effect of D-amino acids on the tongue biofilm in vitro. 

6.1 D-amino acids as potential biofilm dispersal agents 

 It is now commonly agreed that the most likely reason for homochirality in nature is 

that circularly polarised infrared light in the early universe preferentially degraded one chiral 

form (Bonner 1991; Bailey et al., 1998). In the majority of the animal kingdom, therefore, 

amino acids are utilised in their left-handed or L-enantiomeric form, with a few exceptions in 

the form of opioid peptides (Broccardo et al., 1981), neurotransmitters (Santos et al., 1995) 

and neurotoxins (Jimenéz et al., 1996). The situation is different with prokaryotic organisms, 

the majority of which utilise the D, or right handed forms in their cell walls (Weidel et al., 

1960; Osborn 1969). The periplasmic space in Gram negative organisms and the extra-

cytoplasmic space in Gram positives is maintained by peptidoglycan (PG) layers in which the 

glycan strands are separated by short peptides that incorporate D-amino acids (Vollmer et 

al., 2008). These non-canonical d-amino acids (NCDAA) are generally produced by the action 

of racemases. Whilst D-Ala and D-Glu are the most common, D-methionine (Met), D-valine 

(Val), D-tyrosine (Tyr), D-threonine (Thr), D-tryptophan (Trp), D-phenylalanine (Phe), D-

leucine (Leu) and D-Isoleucine (Ile) have all been found in bacterial structures (Lam et al., 

2009). In 2010, Kolodkin-Gal et al., published a high profile paper describing disassembly of 

Bacillus subtilis biofilms exposed to a combination of D-Leu, D-Met, D-Tyr, and D-Trp. They 

further showed prevention of biofilm formation in Staph. aureus and Ps. aeruginosa by D-

amino acids. Hochbaum et al., (2011) went on to show the enantiomers did not prevent initial 

binding, but seemed to block the development of larger assemblies of cells by interfering 
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with the protein component of the matrix. It has been further shown that D-amino acids 

incorporated into polyurethane scaffolds can reduce biofilm formation in vitro in 

contaminated femoral defects (Sanchez et al., 2013). Work with wastewater biofilms found 

that D-tyrosine in particular interfered with biofilm formation and that D-Tyr impregnated 

membranes resisted biofilm formation. This was also shown to be due to inhibition of 

cellular communication and EPS production (Xu and Liu 2011a, 2011b).   

Many foodstuffs we consume contain D forms of amino acids that are created by alkali 

and heat treatments in food processing (Friedman 1999). This racemisation can reduce the 

nutritional value by impairing digestion, but actual toxicity appears low. Only D-serine, D-

cysteine and D-proline have shown renal toxicity in mice, and this was when relatively high 

concentrations were administered  (Kaltenbach et al., 1979; Carone et al., 1985; Friedman 

and Gumbmann 1988; Kampel et al., 1990). Furthermore, human saliva has been seen to 

contain relatively high concentrations of D-amino acids naturally (Nagata et al., 2006) 

suggesting their potential safe use in a mouthwash formulation. 

The aims of this chapter were to investigate the effects of D-amino acids on 

multispecies oral biofilms but comparing the development of biofilms exposed to them 

during maturation with control biofilms exposed to the L-forms or standard media. 

6.2 Materials and methods 

 Tongue scrape samples were obtained from a single subject with ethical approval as 

previously described (section 2.4). After anaerobic pre-incubation these were transferred to 

biofilm enclosures. Biofilms were fed either standard media or media containing amino acids 
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in either the D or L form at a concentration of 10mM (Sigma-Aldrich, UK).  All media was 

equalised to pH 7.4. 

 Analysis of the VOC profile of the biofilms was by Profile3 SIFT-MS (section 2.3). A 

value of total VOCs created from the measured levels of hydrogen sulphide, methyl 

mercaptan, dimethyl disulphide, indole, skatole, cadaverine, putrecine, trimethylamine, 

propanoic acid, butyric acid and hexanoic acid. 

EPS extraction was based on the preferred method of Liu and Fang (2002) following 

their comparative work on extraction from sludges and is outlined in section 2.4.   

Following extraction, EPS solutions were assayed for polysaccharides and proteins by 

the DuBois (DuBois et al., 1956) and modified Lowry (Redmile-Gordon et al., 2013) methods. 

To gauge further differences in EPS polysaccharide composition the extracts were assayed 

with Congo Red and absorbance was measured at 540/620nm (Fluostar spectrophotometer). 

β-glucan from barley was used to generate a calibration curve.  

Total viable counts along with counts for strict and facultative anaerobes were 

performed as described in section 2.1. Colonies were distinguished by morphology and 

Gram strain to gauge shifts in population. Dry weights were calculated by filtering 

portions of suspension onto accurately pre-dried and weighed filter paper. These were 

then dried again in an oven for 2hrs at 110°C and reweighed.  

Confocal Laser Scanning Microscopy was performed on portions of biofilm by the 

method outlined in section 2.5. A number of stains were used with varying degrees of 

success. The best images were obtained using Horsch 33258 stain for intracellular DNA, 

SYPROTM Orange for proteins and Congo Red for polysaccharides and amyloids fibres.  See 

section 6.7 and 6.8 for further details. 
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6.3 Results 

 In a preliminary experiment undertaken as a part of this thesis, biofilms were grown 

in the presence of five D-amino acids (D-Glu, D-Asp, D-Met, D-Cys, and D-Trp) compared to 

those grown in standard media. Stark differences were observed (Figure 6.1).  

Figure 6.1: Oral biofilms grown (A) in the presence of D-amino acids and (B) with 
standard media. Microbiological cell counts were not significantly different in each case. 

The next experiments with single D-amino acids showed no visible effect compared to 

controls. The simplest combination of D-amino acids seen to have an effect was a 

combination of D-Glu and D-Asp, and all further experiments tested the effects of this 

combination. 

Figure 6.2: Volatile profile of combined VOCs produced by n=18 biofilms 
exposed to D-Asp and D-Glu, L-Asp and L-Glu and standard media. Error bars 
represent standard error. 
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Figure 6.3: Proportion of proteins and polysaccharides in EPS extract from n=18 
biofilms exposed to D and L forms of Glu and Asp amino acids, plus standard media. 
Error bars represent standard error. 

Figure 6.4: Congo red assay for β-glucan polysaccharides in EPS of amino acids exposed 
biofilms. (n=12). Error bars represent standard error. 
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Figure 6.5: Proportion of facultative and strict anaerobes in D and L amino acid exposed 
biofilms compared with controls fed standard media. (n=14). Error bars represent standard 
error. 

Figure 6.6: Proportion of Gram negative organisms in D and L amino acid exposed biofilms 
compared with controls. (n=14). Error bars represent standard error. 

One way ANOVA with Bonferroni's Multiple Comparison Test shows that the D-amino 

acid exposed biofilms show significant differences (p < 0.01) from L-amino acid exposed 

biofilms for VOC, EPS polysaccharides, and strict anaerobes, and significant differences from 

control biofilms for VOC, EPS polysaccharides, EPS proteins and strict anaerobes.   
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CLSM images of biofilms treated with D-amino acids and control are shown in figure 6.7 and 

6.8. 

Figure 6.7: CLSM images of a D-amino acid exposed biofilm 

showing diffuse distribution of proteins and polysaccharides 

Figure 6.8: CLSM image of a control biofilm showing 
structured area that appears to be made up of proteins 
and polysaccharides 

Green excitation - protein 

Red excitation - polysaccharides 

Red excitation - polysaccharides 

Blue excitation – nucleic acids 

Blue excitation – nucleic acids 

Green excitation - protein 
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6.4 Discussion 

 For as long as it has been known that D-amino acids exist in the PG layer of the 

bacterial cell wall, it has also been known that prokaryotes also incorporate them into 

antimicrobial substances that they produce (Bodanszky and Perlman 1969). In some cases 

the D-amino acid moiety itself appears to be directly involved in binding to cell wall PG and 

subsequent lysis (Lark et al., 1963; Tsuruoka et al.,1985). More recent work has indicated 

that some bacteria may release D-amino acids in the stationary phase, and this causes 

morphological changes in the cell wall via the PG layer (Lam et al., 2009). It has been shown 

that in several organisms D-amino acids can be incorporated into the PG layer with both 

positive and negative consequences. This incorporation is independent of whether the amino 

acids are exogeneously or endogeneously produced (Cava, et al., 2011). It is the studies 

specifically on biofilm formation that are of interest here, of which there are unfortunately 

few. Kolodkin-Gal et al., (2010) used radioactive labelling to show that D-tyrosine was 

incorporated into the cell wall, and that the presence of D-alanine prevented this. They 

proposed that incorporation of NCDAAs into the cell wall interferes with the anchoring of 

TasA amyloid fibres thus disrupting the extracellular matrix.  An earlier study by Tsuruoka et 

al., (1984) suggested that the binding of D-Met and D-Cys inhibited lipoprotein binding to PG 

in E. coli. Cava and Lam (2011) have gone on to suggest that in mixed biofilms NDAAs my act 

as a paracrine signal which controls the architecture of the community. Nevertheless, this is 

merely conjecture since there have been no studies performed on mixed species biofilms. 

 This work shows significant differences in mixed oral biofilms grown in a flat plate 

perfusion model when exposed to D-amino acids as opposed to the L forms or standard 

media.  The effects affect Gram negative organisms more than positives, and strict anaerobes 



more than facultatives. L-amino acid exposed biofilms produce higher levels of volatile 

compounds compared to controls, and this might be expected due to them having an extra 

source of carbon energy. The D-amino acid exposed biofilms however show much lower 

production of VOCs compared to controls. It is known that many gram negative strict 

anaerobes are associated with malodour (see section 1.2) and the VOC results combined with 

the microbiology results would seem to indicate that gram negative strict anaerobes are 

affected more by the D-amino acids and that this in turn leads to lower production of VOCs. 

CLSM images of biofilms treated with D-amino acids and control are shown in 6.7 and 6.8. 

The staining procedure shows the distribution of red-orange staining polysaccharide, which 

were commonly observed in control biofilms, but much less so in biofilms treated exposed 

to D-amino acids. The distribution of stained protein (shown as green colour) is also different; 

the control does not take up as much green stain, suggesting that proteins are cryptic by 

being covered or fully bound to EPS. However, in the biofilm treated by D-amino acids, the 

cell-wall proteins are much more exposed to staining. The nucleic acid (blue) staining is again 

different, showing entire bacterial cells in the control biofilm, but a “background smear” of 

stained but fuzzy material distributed more evenly across the film. The change in EPS which 

is visible both macro- and microscopically is also evident in the analysis of the extracts. The 

D-amino acid exposed biofilms have proportionally lower levels of polysaccharides but much

higher levels of proteins by mass (figure 6.3).  This may not be supportive of the hypothesis 

that it is the anchoring of lipo- and glyco-proteins to the PG membrane that is most affected 

by the D-amino acids.  Morphological changes in the cell wall seen in previous studies usually 

occur during the stationary phase (Kolodkin-Gal et al., 2010), indicating that D-amino acids 

should have an effect on mature biofilms as well as ones in the growth phase, although so far 

this has not been shown in this model. Also, whilst D-Glu is present in the PG layer, D-Asp has 

not been previously reported as interfering with membrane synthesis, and has not been 

shown to affect biofilm formation when present in extracellular supernatant (Lam et al., 

5151132 
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2009). It is interesting to hypothesise as to alternative modes by which the biofilm is being 

affected. 

 NCCDAs may be acting on multispecies biofilms either directly, through mechanisms 

such as incorporation or disruption of cellular membranes, or indirectly by affecting EPS 

production by all bacterial cells. Any effects could apply to individual species, groups of 

species or the biofilm as a whole. The complex interplay between species in such a microbial 

ecosystem means that teasing apart cause and effect is very challenging. It can be hard to 

assess whether an overall effect on EPS favours certain strains, or the absence of strains due 

to an effect on another system or structure. An alternative theory to PG involvement is that 

a combination of D-Asp and D-Glu in particular interfere with the C-di-GMP based mediation 

of the EPS matrix. Aspartic and glutamic acids are notably present in the GDDEF domains of 

diguanine cyclase, and it has been shown that it is these residues that bind to the N1 and N2 

molecules of the Watson-Crick edge of C-di-GMP (Chou and Galperin 2016). Whilst the PG 

hypothesis for NCCDA effects on biofilms is strong, this alternative is attractive as 

downregulation of C-di-GMP is known to affect biofilms in the ways observed within this 

study (see section 1.1.5). C-di-GMP levels in biofilms in response to D-amino acids, or indeed 

other interventions, have not been extensively studied, and in the case of mixed species 

biofilms not at all. 

 Quantifying intracellular levels of C-di-GMP is problematic. The gold standard 

method is HPLS-MS/MS (Spangler et al., 2010), but apart from cost and complexity of this 

method, bacterial cells must be lysed to release the compound for assay. Thiazole orange has 

been used to assay C-di-GMP fluorescently (Nakayama et al., 2011) but so far this also relies 

on lysed cells. However, given that thiazole orange is frequently used in CLSM then staining 

of viable cells may be possible. This could potentially give a powerful technique to probe the 

C-di-GMP signalling network. Another method of interest involves the use of a fluorescent
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reporter strain of Ps. aeruginosa engineered in Denmark (Rybtke et al., 2012). The advantage 

of this would be real time quantification of C-di-GMP levels by fluorescence measurement. 

Unfortunately, the major limitation is that only single species biofilms of Ps. aeruginosa can 

be studied. 

6.5 Conclusions 

It has been shown by this work that complex mixed species oral biofilms are 

significantly affected by D-amino acids in the growth phase. The mechanisms are unclear 

but affect both the microbiology of the biofilm and the production and composition of the 

EPS. This coupled with their demonstrated low toxicity in both humans and animal models 

suggests that further work in the development of a D-amino acid containing mouthwash 

formulation may be fruitful. 
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7 Assessment of a novel SPR based biosensor for the 

quantitative detection of oral malodour 

7.1 Introduction 

Surface Plasmon Resonance (SPR) has been used to investigate the properties and 

binding of thin biological films to surfaces for nearly forty years. Surface plasmons are 

coherent oscillations of electrons at the barrier between two materials of different relative 

permittivity, first theorised by R.H. Richie in 1957. In the case of thin depositions of metals 

such as gold or silver on a glass prism, photons travelling through the prism and striking the 

inside metal layer cause resonance of the plasmons via the evanescent wave. This resonance 

condition is given by equation 1, where nc and ns are the refractive indices of the prism and 

sensing layer respectively, θ is the incident angle and εmr is the real part of the metal 

dielectric constant (Dwivedi et al., 2008).  

𝐾𝐾0𝑛𝑛𝑐𝑐 sin𝜃𝜃 = 𝐾𝐾0  �
𝜀𝜀𝑚𝑚𝑚𝑚𝑛𝑛𝑠𝑠2

𝜀𝜀𝑚𝑚𝑚𝑚 + 𝑛𝑛𝑠𝑠2
�

1
2

;𝐾𝐾0 =
2𝜋𝜋
𝜆𝜆

Equation 7.1: SPR resonance condition 

If the permittivity of the layer changes due to, for example, binding of additional 

molecules from within the fluid layer, then changes in the resonant condition cause changes 

in the reflectivity at a given angle (figure 7.1). This was first described by Beaglehole in March 
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of 1970 (Beaglehole, 1970) and further developed practically by Kretschmann, 

(1971). Liedberg and Nylander(1983) were the first to demonstrate that SPR could be 

used to investigate the binding of biological materials in a liquid medium to the metal 

surface above the prism. Their work with Pharmacia and later Pharmacia Biosensor led to 

the development of the BIAcore and BIAlite in 1990 and 1994. These devices used the 

SPR technique to facilitate real time analysis of binding interactions (Jönsson et al., 1991; 

Liedberg et al., 1995). Resulting kinetic association and disassociation curves can be 

used to calculate binding constants and other thermodynamic parameters. 

Miniaturisation of prism based SPR techniques was further accomplished by groups 

such as Foster et al. (1994) and Cahill et al. (1997). Pharmacia continued to develop the 

technique and became Biacore AB Corporation in 1996, releasing increasingly advanced 

SPR based devices into the next decade. SPR biosensors have since been used in food 

analysis, immunogenicity, proteomics and drug discovery (Karlsson 2004). 

Figure 7.1: The principle of surface plasmon resonance. 

Aryballe Technologies were founded in 2014 and are developing a SPR based 

biosensor to detect and quantify volatile compounds in gaseous phase from a variety of 

sources. Gaseous volatiles interact with both surface bound biologically active molecules and 
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the metallic surface itself. This causes a measureable change in the reflectance of incident 

LED light.  

It was the purpose of this study to evaluate the potential application of the 

instrument (the NeOse) to the assessment of oral malodour. In order to assess the ability of 

the instrument to detect and quantify oral malodour it was compared to both a trained 

organoleptic judge and gas analysis by SIFT-MS.  

7.2 Materials and Methods 

7.2.1 In vitro study 

 Tongue scrape samples were obtained from two individuals with high and low 

organoleptic score. Two biofilms were inoculated with each sample as described in section 

2.1. Sequential sampling was performed as described in section 3.2.  

7.2.2 In vivo study 

7.2.2.1 Selection of participants 

Participants in the study were selected from a group of volunteers from the University 

of the West of England. They were of good oral hygiene and dental health and possessed a 

minimum of 20 original adult teeth. Exclusion criteria were; smoking; medical history of 

infectious diseases; active severe caries, gingivitis or periodontitis; antibiotic medication 

within one month prior to attendance; consumption of sweets or other products known to 

contain antimicrobial substances; history of diabetes mellitus, bronchitis, tonsillitis, sinusitis 

or any other conditions known to affect oral malodour. Subjects were instructed to perform 

their usual oral hygiene routine until the evening before sampling, but abstain on the day of 
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attendance. They were also instructed not to consume odorous foodstuffs such as garlic, 

spices or alcohol on the day before sampling, and any food on the attendance day. Subjects 

were permitted to drink water whenever desired when not in the laboratory.  

7.2.2.2 Sampling of the oral cavity 

Subjects were assessed and scored for oral malodour by organoleptic judge and 

Voice200 SIFT-MS as described previously in sections 1.5.1 and 1.5.4 respectively. 

Additionally, they were assessed using the NeOse instrument. As with the other methods, 

the mouth was kept closed for two minutes to allow headspace equilibrium to be reached. 

The inlet of the NeOse was modified to enable a disposable straw to be inserted into the oral 

cavity of the subject (figure 7.2). The instrument was set to take 10 seconds of background 

followed by 30 seconds of static signal measurement. After the first ten seconds the subject 

placed the straw in their mouths so that the opening was held near the dorsal part of the 

tongue. Sampling was performed for ten to fifteen seconds then the straw was removed for 

the remaining seconds.  

Figure 7.2: Sampling from a human subject by NeOse 

In order to facilitate co-sampling with both instruments, a T-junction was introduced 

upstream of the disposable straw allowing both the NeOse and the SIFT-MS to draw gases 
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from the oral cavity and to subsample from the side branch.  Sampling was performed as 

above. 

7.2.3 Statistical Analysis 

 Multidimensional Scaling (MDS) were performed using R studio (Boston, USA) and 

plotted with MATLAB (MathWorks Inc., Massachusetts, USA). Correlation between SPR signal 

and SIFT-MS results was performed by the following method. Difference between plateau 

and baseline was calculated for each sample. These values were compared with the SIFT-MS 

values given for hydrogen sulphide, VSCs, total VOCs, amines, acids and indoles. The R2 

correlation values were plotted on three-dimensional surface and contour plots to reveal 

biosensor spots most accurately responding to VOC concentration. 

7.3 Results 

A typical signal obtained from a single biosensor following exposure to biofilm 

headspace is shown in figure 7.3. MDS analysis of the low and high VOC producing biofilms 

showed good separation of the two groups. Figure 7.4 shows the distance plot, with 

hydrogen sulphide concentration by SIFT-MS shown on the Z axis. Figures 7.5 and 7.6 show 

correlation plots generated as described previously. Higher bars in the Z direction correspond 

to regions of the biosensor matrix that have responded in a more accurate way with respect 

of the concentration of the corresponding group of compounds. A relatively lower response 

was observed with the in vitro experiments and this is thought to be due to high 

concentrations of sulphides blocking the surface of the biosensor. It can be seen, however, 

that the general pattern of response is the same in each group. 
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Figure 7.3: Typical response to signal by a single biosensor spot. 

Figure 7.4: MDS analysis of in vitro biosensor data showing high and low VOC producing biofilms. X 

and Y-axes show Euclidean multidimensional spacing of biosensor data and the Z-axis shows hydrogen 

sulphide concentration as measured by SIFT-MS. 

Injection Desorption 
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Figure 7.5: Biosensor correlation plot (in vitro). High bars indicate better response to that group of 

compounds. Grouping is described in Table 7.1. 

Figure 7.6: Biosensor correlation plot (in vivo). High bars indicate better response to that group of 

compounds. Grouping is described in Table 7.1. 
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Following these experiments with high VOC producing biofilms, the response 

observed by the prism was reduced. A fresh prism was installed for the in vivo experiments 

and a significant increase in response was seen. This response can be seen in figure 7.6. 

The biosensor that responded in the most appropriate way to sulphides in the oral 

cavity was number 42.  The correlation between this spot and the SIFT-MS data can be seen 

figure 7.7. MDS analysis of in vivo NeOse data, are shown in figure 7.8, with hydrogen 

sulphide concentrations as measured by SIFT-MS shown on the Z-axis. Table 7.1 shows a 

summary of the human volunteer data for all subjects.  

Figure 7.7: NeOse biosensor 42 response to hydrogen sulphide 
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Figure 7.8: MDS analysis of in vivo data. X and Y-axes show Euclidean multidimensional spacing of 

biosensor data and the Z-axis shows hydrogen sulphide concentration as measured by SIFT-MS. 

Table 7.1:  Human volunteer data obtained from SIFT-MS analysis and NeOse breath measurements. 

VSC = H2S + CH3SH + (CH3)2S; VOC = sum of all detectable VOC compounds; Acids = acetic + propionic 

+ butyric + valeric and isovaleric acids; Amines = putrescine + cadaverine + trimethylamine; Indoles =

indole + skatole; NeOse signal = response (Biosensor 42) 

SIFT-MS NeOSe Organoleptic
H2S VSC VOC Acids Amines Indoles Water Signal Judge

P01 3.99 25.49 799.63 7.16 3.72 0.31 1277.57 2.43 2
P02 4.62 15.29 403.37 10.78 7.53 0.28 1361.44 1.67 3.25
P03 6.61 17.47 721.50 9.64 4.37 0.34 1341.62 2.36 1.5
P04 8.15 36.80 698.01 9.41 6.30 0.42 1287.78 2.24 2.5
P05 190.57 313.43 1437.39 14.62 8.09 1.28 1515.56 3.35 4
P06 70.52 102.61 898.13 8.43 4.98 0.70 1349.54 3.87 2
P07 20.41 75.29 1191.66 8.97 4.39 0.66 1454.83 2.26 N/A
P08 3.18 18.97 841.34 8.64 4.02 0.27 1687.80 2.41 2.5
P09 272.99 486.55 1151.38 12.83 7.23 1.27 1324.22 4.15 3.5
P10 20.82 55.40 730.30 10.47 4.55 0.25 1378.73 2.91 3.5
P11 151.25 241.77 1369.40 7.03 4.40 1.79 1354.64 3.50 4
P12 13.73 41.28 1412.18 12.34 3.19 0.54 1525.83 2.62 5
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7.4 Discussion 

The in vitro and in vivo studies both show that the SPR based biosensor 

responds to a mixture of volatile compounds. Furthermore the biosensor spots respond 

differentially, meaning that both qualitative and quantitative discrimination can be made 

between different compounds present in breath. The surface and contour plots show that 

the biosensors in the region 0-15 and 40-55 respond most accurately to sulphides and 

possibly to a lesser extent, indoles. There is a less accurate response to indoles and amines, 

although the response is better in a prism that has previously been exposed to high levels of 

sulphides, suggesting that blocking of the prism occurs preferentially in certain sites. The 

binding of sulphides to gold surfaces is well understood and known to be difficult to reverse 

and so the blocking of the biosensor by high levels of sulphides is predicted. This cannot be 

the full picture, though, and further work is required.  

However, in the human oral cavity sulphide levels are much lower than those found 

in the in vitro biofilm model and discrimination of high and low malodour human subjects is 

reliable and reproducible.  Good clustering by high malodour individuals is seen in the MDS 

plots and it is likely that unknown samples could be well categorised. By incorporating a 

flushing and cleaning stage this behaviour should be reproducible as long as very high (ppm) 

levels of VSCs do not contaminate the prism. 
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7.5 Conclusions 

The multiple spot SPR based biosensor has demonstrated sensitivity in the detection 

of VSCs in the human oral cavity with a limit of detection below 10 ppb. It has also shown the 

ability to reliably discriminate between low and high malodour individuals in a sample group. 

Specific areas of the biosensor surface can be seen to be responding preferentially to subjects 

with a higher relative malodour. 

The approach used could also be used to assess the very many other potential 

applications for this SPR based technology. By comparing the response of the biosensor to 

results obtained by SIFT-MS, machine-learning algorithms can inform current and further 

sensor development.  
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8 General Discussion and Further Work 

8.1 General Discussion 

At the beginning of this work the flat plat perfusion biofilm model was at an early stage 

of development and only preliminary work had been done towards adapting the system to 

modelling the oral biofilm. In order to fulfil the potential of the technique, a number of 

significant technical challenges had to be overcome (Chapter 3). By installing each biofilm 

enclosure in a separate mini-incubator and routing all connections through the door, the 

stability of physiological conditions of the biofilm was much more readily maintained. It also 

facilitated the creation of  a bank of six incubators that could be set up in parallel and sampled 

sequentially. A software controlled PEEK bodied solenoid valve allowed this process to be 

automated so that volatile profiles of six biofilms could be monitored for extended periods. 

Redesign of the slope allowed contamination of the interior of the enclosure to be minimised, 

and allowed a window to be installed under the biofilm. This allowed a fibre optic pH sensor 

to be installed to allow pH to be measured in real time. A modification to the lid of the 

enclosures allowed the installation of LED illumination and the ability to test photodynamic 

interventions on the oral biofilm. An accompanying window cut in the top of one of the 

incubators allowed timelapse recording of the biofilm, and the ability to use engineered 

bioluminescent organisms to monitor metabolic processes and their relationship to volatile 

production.   The combination of all these modifications has resulted in a versatile model for 

the study of biofilms in vitro. Whilst the remainder of this work has focussed on human 

tongue dorsum derived biofilms, the model could be applied to the in vitro study of many 

other biofilms of mammalian or environmental origin.  
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Turning to the scientific aims, the primary goal of this study was to validate the flat 

plate perfusion model as a method of studying tongue-derived biofilms, to examine the 

effects of various interventions on biofilm growth, physiology and metabolism, and to 

compare this with similar interventions performed in vivo. It has been shown that biofilms 

derived from the tongue biota of individuals is transplantable to the model (chapter 4) and 

that the volatilome of the biofilm is conserved. It has further been shown that the physiology 

of the biofilm and it’s response to interventions is similar to that expected, both by theory 

and in vivo experiment. In the course of this investigation, new methods of analysing and 

visually representing the oral microbiome have been devised. 

 Whilst the effects of a number of different antimicrobials were investigated, including 

photodynamic therapy and several commercial mouthwashes, attention has focussed on two 

areas. One was a novel compound shown to act in synergy with chlorhexidine in disrupting 

cell membranes (chapter 5), and the second was a combination of D-amino acids that was 

also shown disrupt biofilms in a way that did not occur with the L-forms or with standard 

media (chapter 6). The mechanism by which this occurs is currently unconfirmed. These two 

main studies have given insight into the way multispecies biofilms develop and mature, and 

have indicated novel ways in which interventions can influence their growth and 

characteristics. These valuable techniques have the potential to investigate many types of 

chemical and physical interventions on diverse types of microbial biofilm, as well as those of 

human oral origin. As the metabolism and physiology of complex, mixed species biofilms is 

still relatively poorly understood techniques which allow this kind of study are important. 

The methods could lead to valuable new formulations to treat oral malodour or other 

conditions caused or influenced by microbial biofilms. As issues of cost, ethical approval and 

legislature continue to plague in vitro studies, in vitro modelling is likely to become more 

important as a tool. Additionally, multisampling of replicate innocula allows statistically 

significant results to now be obtained relatively rapidly. 
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The flat plate perfusion model has also been shown to be a very useful method for 

assessing the performance of other sensors for volatile compounds. The NeOse device 

described in chapter 7 is a SPR based sensor that incorporates almost one hundred different 

biosensors into one device. Whilst this gives the device enormous potential for detection of 

many volatile compounds, characterisation of each individual biosensor on the prism is 

challenging. The ability of the flat plate model to generate complex profiles of volatiles that 

are similar to those found in vivo, and the abiilty to quantify these volatiles in real time by 

SIFT-MS, gives an invaluable technique for assessing the response of the biosensors to the 

gases. By using techniques such as MDS and correlating individual biosensors with volatiles 

as measured by SIFT-MS, the performance of the device can be assessed, and prisms can 

therefore be tailored to the specific application. By learning in this way, accompanied by 

algorithmic MDS techniques, the NeOse device has the potential to become an extremely 

sensitive and discriminatory biosensor for multiple compounds and with multiple 

applications.  

8.2 Further Work 

Whilst it has been shown that the flat plate perfusion model satisfactory it would be 

extremely interesting to undertake a large rRNA based study of oral biofilms in vivo and the 

corresponding biofilms transplanted into the in vitro model. A combination of cost and 

commercial sensitivity of data has so far meant that this has been impossible. Combined with 

the techniques outlined in chapter 4, rRNA analysis of the model biofilms has the potential 

to investigate changes to the transplanted microbiome and volatilome in many important 

ways. For example, shifts in volatile production away from those gases considered 

objectionable can be linked not only to those organisms which are directly responsible, but 
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by cooccurence analysis other organisms which may not have been previously identified as 

important. This kind of study is also extremely important in the respect of the interventions 

investigated in chapters 5 and 6. Any potential intervention will influence different species in 

different ways, and knowing the exact nature of these factors allows now only tailoring of 

treatments to specific key organisms, but also scientific advancement through knowledge 

gained about mechanisms and pathways of antimicrobial resistance and sensitivity. As it 

becomes increasingly obvious that multispecies biofilms are the norm rather than the 

exception in nature, techniques which allow us to investigate the interaction and interplay 

between species within them is of paramount importance.   

Turning specifically to the effects of D-amino acids, investigation of processes within 

biofilms exposed to NCDAAs, by performing 16s rDNA analysis of biofilms exposed to the 

different enantiomers and controls, it may be possible to learn which species are affected 

most and least, and thus gain information on the mode of action. The effect of the 

enantiomers on single species biofilms grown from key species could then be investigated. 

By what method NCDAAs act, and whether or not c-di-GMP is involved, this area of study is 

still very important in it’s own right.  As knowledge of GGDEF domain expression in oral 

bacteria is incomplete, more work to investigate the presence of these domains is needed.  

If C-di-GMP is implicated, either in the effect of NCDAAs or in other biofilm disrupting 

agents, an assay of intracellular C-di-GMP would be a powerful tool given that the importance 

of this signalling network is now apparent. Various types of staining and assay techniques, 

both destructive and non-destructive have been suggested and could be investigated. 

Cloning of bioluminescent reporter genes has been achieved with Ps. aeriginosa and whilst 

single of multispecies biofilms incorporating this organism might be interesting, more 

relevant organisms might be more useful. Cloning bioluminescent report genes into 

anaerobic organisms is problematic as the technique can only be used with facultative or 



150 

microaerophilic organisms due to the involvement of oxygen. If bioluminescent clones of oral 

organisms were developed, the flat plate perfusion model as described would be extremely 

well suited to such work.  

Whatever the process by which NCDAAs act, their potential as biofilm disruptors is 

obvious, and synergistic effects between them and other antimicrobials (e.g CHX), anti-

malodour components (e.g. zinc compounds) and disrupting agents (e.g. CMD) should be 

investigated. 

Another technique that has showed promise in this work, but requires much more 

development in this specific application is CLSM. The ability to image living biofilms in three 

dimensions is extremely powerful, but there are two main hurdles to overcome. The first is 

to do with issues of sample preparation and presentation to the microscope. In this model, 

biofilms grow on a perfusable cellulose matrix, and this is one of the reasons the model is a 

good representation of in vivo  conditions. However cellulose autofluoresces and must be 

excluded from the CLSM preparation. There are two possible solutions to this problem. 

Firstly, another matrix could be used that does not fluoresce. Some other biofilm subtrates 

were tested very early on in the course of this thesis but did not adequately model the 

conditions of the oral biofilm. It is possible that other perfusable materials could be found 

that would be non-fluorescing and able to be mounted on the stage of a confocal microscope. 

Such a material would have to be thin enough and light permeable enough to allow sufficient 

illumination of the biofilm for microscopy. If such material could be found, and there are 

plenty of candidates, then it is possible that a laminated biofilm substrate could be 

constructed from layers of the material, allowing the biofilm to be pulled apart and imaged 

at varying depths.  

The second way to develop confocal techniques is development of the method 

described in chapter 2, whereby a removable glass coverslip is placed under the biofilm 
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matrix during maturation and growth. It did however prove difficult to ensure that enough 

biofilm material adhered to the glass surface, and that it was a true representation of the 

structure of the main biofilm. Chemically or biologically treating the glass surface in different 

ways may improve adhesion, and this could be explored. 

 Development of the NeOse is expected to continue apace and the biofilm model will 

continue to play a role in this. More data needs to be gathered from human subjects to 

improve the power of the device in discriminating between low, medium and high malodour 

individuals. Using data gathered from further in vitro studies it should become possible tailor 

the device to discriminate between specific classes of compounds from the oral cavity. The 

device has great potential in other areas of interest, and the ability to diagnose other types 

of microbial infections or colonisations will be investigated. As with studies of antimicrobial 

agents, the in vitro model should prove very useful in identifying which areas are most 

promising before time or money is committed to specific in vivo projects involving humans 

or animals. 
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II. SIFT-MS settings (Voice200) 
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III. Incubator door panel and shelf plans 
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IV. Multivalve port Python code 
 

import sys 

import os 

import gtk 

import pango 

import time 

from Tkinter import * 

import serial 

from serial.tools import list_ports 

import threading 

from msvcrt import getch 

 

 

class SequentialSampler2: 

 

    def __init__(self): 

        self.filename = None 

        self.about_dialog = None 

        list_ports.comports() 

        self.ser = serial.Serial( 

            port="COM4", 

            baudrate=9600, 

            parity=serial.PARITY_ODD, 

            stopbits=serial.STOPBITS_TWO, 

            bytesize=serial.SEVENBITS 

            ) 

        self.locked = False 

        self.cycling = False 

        self.PortOpen = False 

        self.OpenPort = 1 
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        self.RelayOn = "*RELAY 1%s ON<>0x0d>" 

        self.RelayOff = "*RELAY 1%s OFF<>0x0d>" 

        self.InitialisePorts = '*SET 0000010000000000\r\n' 

        self.ResetPorts = "*SET 0000000000000000\r\n" 

        spinbuttons = 
["spinbutton1","spinbutton2","spinbutton3","spinbutton4","spinbutton5","spinbutton6"] 

        GladeFile = "Sequential Sample 2.glade" 

        LoadFailMsg = "Failed to load UI XML file:" 

        self.ser.close 

        self.ser.open 

 

        # Set all relays to closed except number 1 

        self.ser.write(self.InitialisePorts)           

 

        # use GtkBuilder to build our interface from the XML file  

        try: 

            self.builder = gtk.Builder() 

            self.builder.add_from_file(GladeFile)  

        except: 

            self.error_message(LoadFailMsg) 

            sys.exit(1) 

             

        # get the widgets which will be referenced in callbacks 

        self.builder.connect_signals(self) 

        self.window = self.builder.get_object("main_window") 

        self.statusbar = self.builder.get_object("statusbar") 

        self.text_view = self.builder.get_object("text_view") 

        for spinbutton in spinbuttons: 

            self.thisbutton = self.builder.get_object(spinbutton) 

            self.thisbutton.set_value(5) 

        self.statusbar_cid = self.statusbar.get_context_id("SeqSamp") 
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        self.reset_default_status() 

         

 

    # When the window is requested to be closed, we need to check if they have  

    # unsaved work. We use this callback to prompt the user to save their work  

    # before they exit the application. From the "delete-event" signal, we can  

    # choose to effectively cancel the close based on the value we return. 

    def on_window_delete_event(self, widget, event, data=None): 

        if self.check_for_save(): self.on_gtk_save_activate(None, None) 

        return False # Propogate event 

     

    # Called when the user clicks the 'New' menu. We need to prompt for save if  

    # the file has been modified, and then delete the buffer and clear the   

    # modified flag.     

    def on_gtk_new_activate(self, menuitem, data=None): 

     

        if self.check_for_save(): self.on_gtk_save_activate(None, None) 

         

        # clear editor for a new file 

        buff = self.text_view.get_buffer() 

        buff.set_text("") 

        buff.set_modified(False) 

        self.filename = None 

        self.reset_default_status() 

     

    # Called when the user clicks the 'Open' menu. We need to prompt for save if  

    # thefile has been modified, allow the user to choose a file to open, and  

    # then call load_file() on that file.     

    def on_gtk_open_activate(self, menuitem, data=None): 

         

        if self.check_for_save(): self.on_gtk_save_activate(None, None) 
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        filename = self.get_open_filename() 

        if filename: self.load_file(filename) 

        

    # Called when the user clicks the 'Save' menu. We need to allow the user to choose  

    # a file to save if it's an untitled document, and then call write_file() on that  

    # file. 

    def on_gtk_save_activate(self, menuitem, data=None): 

         

        if self.filename == None:  

            filename = self.get_save_filename() 

            if filename: self.write_file(filename) 

        else: self.write_file(None) 

         

    # Called when the user clicks the 'Save As' menu. We need to allow the user  

    # to choose a file to save and then call write_file() on that file. 

    def on_gtk_save_as_activate(self, menuitem, data=None): 

         

        filename = self.get_save_filename() 

        if filename: self.write_file(filename) 

     

    # Called when the user clicks the 'Quit' menu. We need to prompt for save if  

    # the file has been modified and then break out of the GTK+ main loop           

    def on_gtk_quit_activate(self, menuitem, data=None): 

     

        if self.check_for_save(): self.on_gtk_save_activate(None, None) 

        gtk.main_quit() 

     

    # Called when the user clicks the 'Cut' menu. 

    def on_gtk_cut_activate(self, menuitem, data=None): 
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        buff = self.text_view.get_buffer(); 

        buff.cut_clipboard (gtk.clipboard_get(), True); 

         

    # Called when the user clicks the 'Copy' menu.     

    def on_gtk_copy_activate(self, menuitem, data=None): 

     

        buff = self.text_view.get_buffer(); 

        buff.copy_clipboard (gtk.clipboard_get()); 

     

    # Called when the user clicks the 'Paste' menu.     

    def on_gtk_paste_activate(self, menuitem, data=None): 

     

        buff = self.text_view.get_buffer(); 

        buff.paste_clipboard (gtk.clipboard_get(), None, True); 

     

    # Called when the user clicks the 'Delete' menu.     

    def on_gtk_delete_activate(self, menuitem, data=None): 

         

        buff = self.text_view.get_buffer(); 

        buff.delete_selection (False, True); 

     

    # Called when the user clicks the 'About' menu. We use gtk_show_about_dialog()  

    # which is a convenience function to show a GtkAboutDialog. This dialog will 

    # NOT be modal but will be on top of the main application window.     

    def on_gtk_about_activate(self, menuitem, data=None): 

     

        if self.about_dialog:  

            self.about_dialog.present() 

            return 

         

        authors = [ 
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        "Keith Hewett <keith2.hewett@uwe.ac.uk>" 

        ] 

 

        about_dialog = gtk.AboutDialog() 

        about_dialog.set_transient_for(self.window) 

        about_dialog.set_destroy_with_parent(True) 

        about_dialog.set_name("Sequential Sampler") 

        about_dialog.set_version("1.3") 

        about_dialog.set_copyright("Copyright \xc2\xa9 2014 Keith Hewett") 

        about_dialog.set_comments("GTK+, Glade3 and Python") 

        about_dialog.set_authors            (authors) 

        about_dialog.set_logo_icon_name     (gtk.STOCK_EDIT) 

         

        # callbacks for destroying the dialog 

        def close(dialog, response, editor): 

            editor.about_dialog = None 

            dialog.destroy() 

             

        def delete_event(dialog, event, editor): 

            editor.about_dialog = None 

            return True 

                     

        about_dialog.connect("response", close, self) 

        about_dialog.connect("delete-event", delete_event, self) 

         

        self.about_dialog = about_dialog 

        about_dialog.show() 

 

     # We call error_message() any time we want to display an error message to  

    # the user. It will both show an error dialog and log the error to the  

    # terminal window. 
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    def error_message(self, message): 

     

        # log to terminal window 

        self.print_to_box  (message) 

         

        # create an error message dialog and display modally to the user 

        dialog = gtk.MessageDialog(None, 

                                   gtk.DIALOG_MODAL | gtk.DIALOG_DESTROY_WITH_PARENT, 

                                   gtk.MESSAGE_ERROR, gtk.BUTTONS_OK, message) 

         

        dialog.run() 

        dialog.destroy() 

         

    # This function will check to see if the text buffer has been 

    # modified and prompt the user to save if it has been modified. 

    def check_for_save (self): 

     

        ret = False 

        buff = self.text_view.get_buffer() 

         

        if buff.get_modified(): 

 

            # we need to prompt for save 

            message = "Do you want to save the changes you have made?" 

            dialog = gtk.MessageDialog(self.window, 

                                       gtk.DIALOG_MODAL | gtk.DIALOG_DESTROY_WITH_PARENT, 

                                       gtk.MESSAGE_QUESTION, gtk.BUTTONS_YES_NO,  

                                       message) 

            dialog.set_title("Save?") 

             

            if dialog.run() == gtk.RESPONSE_NO: ret = False 
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            else: ret = True 

             

            dialog.destroy() 

         

        return ret     

     

    # We call get_open_filename() when we want to get a filename to open from the 

    # user. It will present the user with a file chooser dialog and return the  

    # filename or None.     

    def get_open_filename(self): 

         

        filename = None 

        chooser = gtk.FileChooserDialog("Open File...", self.window, 

                                        gtk.FILE_CHOOSER_ACTION_OPEN, 

                                        (gtk.STOCK_CANCEL, gtk.RESPONSE_CANCEL,  

                                         gtk.STOCK_OPEN, gtk.RESPONSE_OK)) 

         

        response = chooser.run() 

        if response == gtk.RESPONSE_OK: filename = chooser.get_filename() 

        chooser.destroy() 

         

        return filename 

     

    # We call get_save_filename() when we want to get a filename to save from the 

    # user. It will present the user with a file chooser dialog and return the  

    # filename or None.     

    def get_save_filename(self): 

     

        filename = None 

        chooser = gtk.FileChooserDialog("Save File...", self.window, 

                                        gtk.FILE_CHOOSER_ACTION_SAVE, 
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                                        (gtk.STOCK_CANCEL, gtk.RESPONSE_CANCEL,  

                                         gtk.STOCK_SAVE, gtk.RESPONSE_OK)) 

         

        response = chooser.run() 

        if response == gtk.RESPONSE_OK: filename = chooser.get_filename() 

        chooser.destroy() 

        filename = filename + ".mvl" 

        return filename  

         

    # We call load_file() when we have a filename and want to load it into the  

    # buffer for the GtkTextView. The previous contents are overwritten.     

    def load_file(self, filename): 

     

        # add Loading message to status bar and ensure GUI is current 

        self.statusbar.push(self.statusbar_cid, "Loading %s" % filename) 

        while gtk.events_pending(): gtk.main_iteration() 

         

        try: 

            # get the file contents 

            fin = open(filename, "r") 

            text = fin.read() 

            fin.close() 

             

            # disable the text view while loading the buffer with the text 

            self.text_view.set_sensitive(False) 

            buff = self.text_view.get_buffer() 

            buff.set_text(text) 

            buff.set_modified(False) 

            self.text_view.set_sensitive(True) 

             

            # now we can set the current filename since loading was a success 
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            self.filename = filename 

             

        except: 

            # error loading file, show message to user 

            self.error_message ("Could not open file: %s" % filename) 

             

        # clear loading status and restore default  

        self.statusbar.pop(self.statusbar_cid) 

        self.reset_default_status() 

 

    def write_file(self, filename): 

     

        # add Saving message to status bar and ensure GUI is current 

        if filename:  

            self.statusbar.push(self.statusbar_cid, "Saving %s" % filename) 

        else: 

            self.statusbar.push(self.statusbar_cid, "Saving %s" % self.filename) 

             

        while gtk.events_pending(): gtk.main_iteration() 

         

        try: 

            # disable text view while getting contents of buffer 

            buff = self.text_view.get_buffer() 

            self.text_view.set_sensitive(False) 

            text = buff.get_text(buff.get_start_iter(), buff.get_end_iter()) 

            self.text_view.set_sensitive(True) 

            buff.set_modified(False) 

             

            # set the contents of the file to the text from the buffer 

            if filename: fout = open(filename, "w") 

            else: fout = open(self.filename, "w") 
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            fout.write(text) 

            fout.close() 

             

            if filename: self.filename = filename 

 

        except: 

            # error writing file, show message to user 

            self.error_message ("Could not save file: %s" % filename) 

         

        # clear saving status and restore default      

        self.statusbar.pop(self.statusbar_cid) 

        self.reset_default_status() 

         

    def reset_default_status(self): 

         

        if self.filename: status = "File: %s" % os.path.basename(self.filename) 

        else: status = "File: (UNTITLED)" 

         

        self.statusbar.pop(self.statusbar_cid) 

        self.statusbar.push(self.statusbar_cid, status) 

          

    def LockButton_toggled(self,widget): 

        if widget.get_active(): 

            self.locked = True             

        if not widget.get_active(): self.locked = False 

 

    def CycleButton_toggled(self,widget): 

        if widget.get_active(): 

            print  ("Cycle Start") 

            self.cycling = True 

            self.StopTimer = False 
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            ##self.t2=threading.Thread(target=self.ESC_pressed()) 

            ##self.t2.start() 

            self.t=threading.Thread(target=self.main_loop()) 

            self.t.start() 

             

        else: 

            print  ("Cycle Stop") 

            self.cycling = False 

            self.StopTimer = True 

             

 

    def print_to_box (self, prstr): 

        buff = self.text_view.get_buffer() 

        buff.insert_at_cursor(prstr+"\r") 

        self.text_view.scroll_to_iter(buff.get_end_iter(),0.0, False, 0, 0) 

        print prstr 

         

    def button_toggled(self, widget): 

        self.ButtonToggled = gtk.Buildable.get_name(widget)[-1:] 

        print ( "button toggled, current port is: " + self.ButtonToggled) 

        if widget.get_active(): 

            SendText = self.RelayOn % self.ButtonToggled 

            self.OpenPort = int(self.ButtonToggled) 

            setstamp = True 

        if not widget.get_active(): 

            SendText = self.RelayOff % self.ButtonToggled 

            #if self.locked: widget.set_active(True) 

            setstamp = False 

        #if not self.locked: 

        self.ser.write(SendText + '\r\n') 

        out = '' 
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        ## device time delay 

        time.sleep(0.5) 

        while self.ser.inWaiting() > 0: 

            out += self.ser.read(1) 

        if out != '': 

            print  ("Board responds:>> " + out) 

        print  ("SWITCH: Port Number is now:" + str(self.OpenPort)) 

        if setstamp: 

            stamp = str(int(time.time()*1000)) #time.strftime("%d/%m/%Y,%X", 
time.localtime()) 

            stamp = stamp + "," + str(self.OpenPort) 

            self.print_to_box (stamp) 

 

             

    def switch_port(self, addport=1): 

        if not self.PortOpen: 

            print ("switch_port says port Number is:" + str(self.OpenPort)) 

            button = self.builder.get_object("button"+str(self.OpenPort)) 

            if button.get_active() == False: 

                button.set_active(True) 

            if self.OpenPort + addport < 7: 

                self.OpenPort = self.OpenPort + addport 

            else: 

                self.OpenPort = self.OpenPort + addport - 6 

         

    def ESC_pressed(self): 

        print "t2 start" 

        while self.cycling == True: 

            key = ord(getch()) 

            if key == 27: #ESC 

                print "ESC" 
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                self.cycling = False 

         

    def main_loop(self): 

 

        print "t1 start" 

        while self.cycling == True: 

            spinbutton = self.builder.get_object("spinbutton"+str(self.OpenPort)) 

            interval = spinbutton.get_value_as_int() 

            self.switch_port(1) 

            while gtk.events_pending(): 

                gtk.main_iteration() 

            timestart = time.time() 

            checkstop = open("checkstop.txt","r") 

            if checkstop.read(4) == "STOP": 

                self.cycling = False 

            while time.time() - timestart < interval: 

                stamp = str(int(time.time()*1000)) #time.strftime("%d/%m/%Y,%X", 
time.localtime()) 

                stamp = stamp + "," + str(self.OpenPort-1) 

                self.print_to_box(stamp) 

                time.sleep(8.41) 

             

                 

             

             

    def on_window_destroy(self,object,data=None): 

        self.ser.write(self.ResetPorts) 

        self.cycling = False 

        self.ser.close() 

        self.print_to_box  ("quit with cancel") 
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        gtk.main_quit() 

 

    def main(self): 

        self.window.show() 

        gtk.main() 

         

         

 

     

if __name__ == "__main__": 

    selector = SequentialSampler2() 

    selector.main() 
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V. Documents relating to ethics and permissions 
 

 

 

Study Number: 

Patient Identification Number for this trial: 

 

 
CONSENT FORM 

 

 

Title of Project: The effects of oral formulations on oral malodour and tongue 
microbes 

 

REC reference:  

IRAS ID:  

 

Name of Researcher:  

 

       Please initial box 

 

1. I confirm that I have read and understand the information sheet dated ............................ 

  (version ............) for the above study. I have had the opportunity to consider 
the information, ask questions and have had these answered satisfactorily. 

 

2. I understand that my participation is voluntary and that I am free to withdraw at any time, 

 without giving any reason. 

 

3.   I understand that relevant sections of my medical notes and data collected during                 

 

the study, may be looked at by individuals from Colgate-Palmolive and the University of the 
West of England, from regulatory authorities where it is relevant to my taking part in this 
research. I give permission for these individuals to have access to my records.  

 



20 

 

4. I understand that the information collected about me will be used                                 

 

to support other research in the future, and may be shared anonymously  

with other researchers. 

 

5. I agree to take part in the above study.       
 

 

________________________ ________________
 ____________________ 

Name of Patient   Date
 Signature 

 

 

_________________________ ________________
 ____________________ 

Name of Person taking consent Date  Signature 

(if different from researcher) 

 

 

_________________________ ________________
 ____________________ 

Researcher   Date 
 Signature 
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Health Questionnaire 

 

 

Name: 

Age:  

 

Before beginning this study we need you to complete this form. Please tick or mark 
the appropriate boxes. 

 

Are you presently participating in any other dental or medical study?    
  Yes/No 

Has your medical status changed in any significant way since your last UWE breath 
odour trial? Yes/No 

Do you suffer from any medical illness (heart disease, chest disease, liver disease, 
kidney disease, diabetes, intestinal disease)?     
   Yes/No 

Are you taking any medically prescribed drugs or medicines for any reason? 
  Yes/No 

Do you smoke and if so how many a day?    

Yes (number)/No 

Have you had any significant dental treatment since your last UWE breath odor 
trial? 

(e.g. Rampant caries, crowns, caps, bridges, dentures, severe gingivitis, periodontal 
disease, dental abscesses, oral thrush)? 

 Yes/No 

Are you taking any medicated sweets containing anti microbials? 

Yes/No 

 

Date of last visit to dentist       
 Date: 
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Please confirm that you agree to us retaining this information for 1 month after the 
trial has been completed. Thereafter, these forms will be destroyed. Information 
extracted from these forms will be devoid of any links to any individual (made 
anonymous). For instance we might report that 48% were male 52% were female, 
the median age was 32, none were taking medically prescribed drugs, all volunteers 
were in good health etc. but there would be no actual link to any named individual. 
Until destroyed, this form will be treated as confidential by the chief investigator 
and stored securely.  

 

I agree to the short term (1-month) retention of the above information by the chief 
investigator 

 

Signed:                                                                          . 

Date:                                        . 

 

 

Chief investigator:                                                                          . 
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Invitation Letter 

 

Participant Information Sheet 

 

Project Title: The effects of oral formulations on bad breath and tongue microbes 

 

This project has been reviewed and approved by NRES Committee North-West-Haydock 

REC reference: 13/NW/0316 

IRAS project ID: 178410 

You are being invited to take part in the study “The effects of oral formulations on bad 
breath and tongue microbes” 

 

 Before you decide it is important for you to understand why the research is being done 
and what it will involve.  Please take time to read the following information carefully and 
discuss it with others if you wish.  Ask us if there is anything that is not clear or if you would 
like more information.  Take time to decide whether or not you wish to take part. 

 

1. Aim of the study 

This three month study aims at looking at the potential changes in the numbers of 
microbes from the tongue, and in bad breath levels following the use of oral formulations; 
three test formulations plus two positive controls and one negative control. 

 

2. Who are we, who is funding this study and why we are asking for your help? 

We are the Centre of Oral malodour Research at UWE and have been working on this field 
for the last 22 years. This particular study is funded by a company in the UK Helperby 
Therapeutics Limited. Oral malodour or bad breath can affect any individual during their 
life and although not life threatening can cause a lot of distress in some. Bad breath may 
arise from microbes on the surface of the tongue. It is believed that certain types of 
microbes have the capacity to transform sulphur containing food into hydrogen sulphide 
and other malodorous gases. By measuring breath levels and sampling the tongue scrape 
for numbers associations may be seen between breath odour and quantity of microbes 
present on the surface of the tongue. The results obtained from this study could 
substantially influence the development of oral hygiene formulations (e.g. mouthwashes, 
lozenges or toothpastes) that could be used to reduce bad breath and subsequently relieve 
the stress and discomfort that this condition may cause in many humans.  

 

3. Who can participate? 
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Anyone over the age of 18 and who has given informed consent. Participants should not 
have untreated caries or gum inflammation. Participants must not have received antibiotic 
therapy within at least one month prior to the study.  

 

4. Do I have to take part? 

Your participation in this study is entirely voluntary. If you decide to take part you will be 
given this information sheet and will be asked to sign a consent form. If you decide to take 
part you are still free to withdraw at any time without giving any reason. 

 

5. What are we testing? 

We are testing three different oral formulations and comparing them to two positive 
controls (Cordosyl and CB12) and to one negative control (Water). Of the three test 
formulations, one contains chlorhexidine diacetate, one contains zinc acetate, and the third 
contains HT61.  

Some of the oral formulations you will be testing may or may not freshen the breath to the 
same extent as others.  

 

6. What are the possible benefits of taking part? 

Participation in this study may not benefit you personally.  The results of this study may 
help other individuals in the future. 

 

 

7. What are the side effects of any treatment received when taking part? 

In general, no adverse side effects are anticipated from the use of either of these test 
toothpastes.  However, you might experience tongue or gum irritation with the use of the 
test products. If either of these conditions occurs, it is expected they will be reversed upon 
cessation of the oral formulation use. If you experience any problems or any research 
related injury, you will have to contact Dr. Saliha BM Saad (117 328 2515 (day) or 
07717723968 (mobile). You understand that if any physical injury results from your use of 
the test products, the funding company will be responsible for medical costs provided you 
seek medical attention as directed by the funding company or as directed by the Study 
Investigator (Dr. Saliha BM Saad). 

 

 

8. What will happen to me if I take part? 

Screening and Selection of Subjects: Candidates who have signed an Informed Consent 
Form and a Health Questionnaire will be screened by the examiner to identify those 
subjects who meet the inclusion / exclusion characteristics.  Candidates will also be 
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examined by a qualified Dentist. The first 30 subjects that meet the inclusion/exclusion 
characteristics and sign an Informed Consent Form and a health questionnaire will be 
entered into the study.  Baseline measurement described below will be completed at 
screening visit. 

 

This crossover double-blind study will take place at the University of the West of England in 
our laboratory. A group of thirty participants will be taking part in this study which will last 
for three months. Before the start of the trial each participant will be examined by a 
qualified dentist who will assess their oral and dental status. The Dentist will advise each 
participant on the best way to use the oral rinse. Participants will be assessed and will use 
one type of treatment one day a week for six consecutive weeks. Each participant will 
receive one of the six oral formulations in a randomized manner. Neither the investigator, 
nor the participant will know which oral formulation has been allocated to you. You will be 
asked to visit the laboratory on six occasions, in the morning and afternoon for six 
consecutive weeks. 

The study will be conducted as follows: 

Prior to the study, you should continue with your normal oral hygiene routine (brushing 
your teeth and flossing using dental floss) 

First visit to the laboratory: 

The night before your first visit to the lab you must not consume any strong food (e.g. 
garlic, spices) and you must not drink alcohol. 

You can brush your teeth at night before going to bed. 

 

Morning of day1: 

- You must not take food or drinks or brush your teeth 

- You will have your breath assessed by a trained organoleptic judge 

- You will have your breath measured by two different instruments 

- You will give a tongue-scrape sample using a sterile toothbrush 

- You will receive an oral formulation and you will be asked to use it straight away in 
the laboratory 

- You will return to the lab 30 minutes, 3 hours and 6 hours after using the treatment 
to have your breath assessed by an organoleptic judge and by instruments 

- You will be given a washout toothpaste to use twice a day for the duration of the 
trial 

 

On day 7: The night before your second visit to the lab you must not consume any strong 
food (e.g. garlic, spices) and you must not drink alcohol. 
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You can brush your teeth at night before going to bed. 

 

One day per week and for six consecutive weeks you will come to the lab to use one oral 
formulation and you will have to visit the lab four times on that same day (T0, 30 min, 3 
hours and 6 hours after treatment). 

 

Your sampling days will be: Day 1, Day 8, Day 15, Day 22, Day 29 and Day 36 

 

 

9. How will anonymised samples be collected and mouth air analysed? 

Each participant will be informed by email about the day and time of the visit at their 
convenience. On the day of the study, you will be asked to fill in a health questionnaire 
prior to your samplings and assessments and sign an informed consent form. This will be 
administered by the principal investigator. 

Once you have consented to participate in the study, you will be asked to give a sample of 
your tongue scrape for microbiological analysis, and have your breath assessed by a trained 
breath judge and by instruments. Each sample taken (tongue scrape and breath) will be 
labelled with a code allocated to you. Thereafter, all samples are known by code number 
and not by name. 

All these procedures will be performed under instruction and supervision of the 
investigator. All the samples and tests together should not take more than 30 minutes in 
total, so we hope that this should not interfere too much with your normal working day. 
You will need to visit our laboratory once a week in the morning only for three consecutive 
weeks.  

 

On the sampling day you will be asked NOT to wear strongly perfumed cosmetics, nor to 
consume food associated with bad breath (for example garlic, onions, curry) on the day 
prior to and on the day of sampling. Your normal oral hygiene practice should continue 
the day before the study, but on the morning of testing you should not brush your teeth 
or use mouthwash or ingest food 2 hours prior to the tests. Drinks should be restricted to 
water during this period 

 

 

10. What will happen next to my sample? 

 

Coded microbial samples will be analysed using conventional microbiology methods and 
results (data) will be stored. Each sample will be coded. The results (data) from mouth air 
measurements will likewise be identified only by your code number, NOT your name.  
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Microbilogical samples will be disposed of, in accordance with the Human Tissue Act.” 

Any samples which are not correctly labelled with the code will be destroyed in accordance 
with the Human Tissue Act.   

 

11. What happens next? 

If having read the information (and any outstanding questions answered fully from our 
discussions) and you are happy to participate in the study, you may sign the consent form.  
This form states that you have read and understood this information sheet, that the 
participation is entirely voluntary, and that the samples are completely anonymised. You 
may also, if you prefer, take this information sheet away and think about whether you wish 
to take part.  Please do not hesitate to contact me via the details below with any further 
questions and/ or when you are happy to consent.   

Once consented you will be provided with; your protocol, your diary and appointment date 
& time for attending the laboratory, your informed consent code which needs to be written 
on any donated sample, and my contact details. 

Consent forms will be kept for the duration of the study in a locked cabinet in a secure 
office. If at any point you wish to formally withdraw consent, please contact me (details 
below) and I will ensure your consent form is immediately destroyed and samples 
withdrawn and destroyed in accordance with the Human Tissue Act.  

 

In the very unlikely event that an adverse reaction occurs in response to the procedure the 
University of the West of England will consider the possibility of no fault compensation 
without admitting liability. UWE confirms that it has in place all appropriate Professional 
Indemnity Insurance and Public Liability Insurance to cover any claims for negligence on the 
part of UWE staff and students in performing UWE’s role in the study.  

 

 

12. Who can I contact if I have any complaints? 

In case you are not happy about the way the team dealt with you on the day of your 
assessment, or about the procedure used in this study, please do not hesitate to contact an 
independent person, the Research and Innovation Associate Dean: Pr Jenny Ames, 
University of the West of England, Frenchay Campus, Coldharbour Lane, Bristol e-mail: 
jenny.ames@uwe.ac.uk. Tel: 0117 3288409. 

 

 

Oral Malodour Group would like to thank you for your time to help with the aims of our 
research. If at anytime you have further questions please do not hesitate to contact me. 

mailto:jenny.ames@uwe.ac.uk
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