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Abstract. The Android ecosystem is dynamic and diverse. Controls
have been set in place to allow mobile device users to regulate exchanged
data and restrict apps from accessing sensitive personal information and
system resources. Modern versions of the operating system implement
the run-time permission model which prompts users to allow access to
protected resources the moment an app attempts to utilize them. It is
assumed that, in general, the run-time permission model, compared to
its predecessor, enhances users’ security awareness. In this paper we show
that installed apps on Android devices are able to employ the systems’
public assets and extract users’ permission settings. Then we utilize per-
mission data from 71 Android devices to create privacy profiles based on
users’ interaction with permission dialogues initiated by the system dur-
ing run-time. Therefore, we demonstrate that any installed app that runs
on the foreground can perform an endemic live digital forensic analysis
on the device and derive similar privacy profiles of the user. Moreover,
focusing on the human factors of security, we show that although in the-
ory users can control the resources they make accessible to apps, they
eventually fail to successfully recall these settings, even for the apps that
they regularly use. Finally, we briefly discuss our findings derived from
a pen-and-paper exercise showcasing that users are more likely to al-
low apps to access their location data on contemporary mobile devices
(running version Android 10).
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1 Introduction

We live in an ever-changing digital world and we constantly benefit from tech-
nological advancements. Mobile computing is an unambiguous example of the
merits we enjoy. Mobile devices are integral parts of our routines and, as a con-
sequence, they hold and transmit voluminous amounts of our personal data. Un-
surprisingly, since the earliest years of the mobile computing era we encountered
malicious entities attempting to circumvent security and privacy controls that



2 Andriotis et al.

were set to protect users’ information. The lessons learned from recent years,
regarding users’ inability to effectively protect themselves from intrusive and
malevolent actors, led system developers to the implementation of privacy con-
trols that would allow users to easily monitor and regulate the apps’ accessibility
to sensitive data, sensors and system resources.

Four years after the introduction of the current access control system on
Android, which uses request dialogues during run-time (ask-on-first-use, a.k.a
AOFU [22]), and a few months after the advent of the anticipated finer-grained
model for managing location accessibility while the app is in the foreground
(version 10), there still existed approximately 25.2% users that access the An-
droid Play Store on devices running legacy versions of the OS (5.1 and below),
as reported on [4]. However, three quarters of Android users (who visit the Play
Store) are now familiar with the AOFU model.

This paper reports the results of a study we conducted recruiting 71 partic-
ipants to voluntarily provide access to the permission settings on their Android
devices. For this cause we developed an app that is able to instantly gather ap-
propriate information while it is active, i.e. while it runs on the foreground. Given
that any benign app in the Android ecosystem is capable of performing similar
data collection, we consider our prototype as a potential tool, able to perform an
endemic live digital forensic analysis and extract the current state of the permis-
sion settings on the device. This information might be useful for the analyst as it
will provide the capability to perform user profiling and acquire some fundamen-
tal information about the user’s security awareness. Furthermore, we conducted
a survey (using the app we deleveloped) asking our volunteers to answer two
basic questions, aiming to investigate the following research questions.

– RQ1: Which sensitive resources on their devices users aim to protect more
frequently?

– RQ2: Do they change their privacy-related perceptions when they are deal-
ing with their favorite apps?

– RQ3: Are users aware of the permission settings on their devices?
– RQ4: Can we categorize users according to their privacy/permission set-

tings?

Therefore, the main contributions of this paper are as follows:

a) We gather system related information from the actual devices used daily by
our participants, resulting in the acquisition of high quality permission data
which are further used to create representative privacy profiles.

b) We demonstrate that Android users are sceptical about providing access to
sensitive resources such as their SMS, microphones and contact lists. How-
ever, they become more permissive with their favorite apps; this action is
related to the anticipation to gain benefits from the advanced functionality
and is based on the foundations of trust.

c) We show that users who are now familiar with the AOFU model are still not
fully aware of the resources their favorite apps are accessing on their devices.
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d) Finally, we demonstrate that the finer grain location settings introduced in
Android 10 will probably positively affect users’ intention to allow apps to
access their location data.

The rest of this paper is structured as follows. Section 2 discusses recent
related work on users’ acceptance of the AOFU model. In section 3 we present
the methodology we used to collect permission settings from live devices and we
also discuss elements of our survey design and implementation. Section 4 reviews
the collected information and section 5 analyzes the results. Finally, we discuss
our findings in section 6 and draw our conclusions in section 7.

2 Related Work

Prior work that investigates mobile phone permission controls and dialogues has
shown that not only users do not pay attention to them, but they also cannot
comprehend them [9]. The ask-on-install (AOI) permission model (used on legacy
Android OS versions) might also cause frustration to users who feel they do
not have control on the personal data they share [8]. Additionally, the AOI
system presents the inherit disadvantage that users are not given any contextual
information about how and when apps access their sensitive resources [20].

These drawbacks undermine users’ secure interaction with the system and
therefore novel approaches have been adopted to address them. The AOFU
model was long-anticipated and it was initially well-received by Android users [1,
3]. However, users’ engagement in decision making when they are dealing with
the access control management of their mobile devices might lead to the prob-
lem of habituation [23]. In addition, although the AOFU model provides some
context in the foreground and allows users to make informed decisions, espe-
cially at the beginning of the apps’ lifespan, it can also be error prone [11, 22].
However, users appreciate the fact that they have dynamically been made part
of the security chain in the AOFU model and they take into account the “when”
and “why” an app requests permissions [11, 21].

We have seen numerous papers investigating users’ adoption and acceptance
of this model [2, 6, 7, 10, 16, 18, 19, 21, 23]. Andriotis et al. [1, 3] recently intro-
duced a method to acquire snapshots of permission settings from Android de-
vices and showed that, in general, users make consistent choices when it comes
to allowing access to specific sensitive resources. Although malicious actors can
employ side-channel attacks to gain unauthorized access to sensitive resources
bypassing the Android system’s controls [17], users have a more positive attitude
towards the run-time permission model [18]. In order to simplify and enhance
its effectiveness, various researchers suggest the accumulation of users’ privacy
profiles [13, 14].

To this end, we use an updated approach of the aforementioned methodol-
ogy [1–3] to acquire permission snapshots via an app that has to be installed on
the users’ device. Our scenario/threat model accounts for the fact that any in-
stalled app can periodically acquire similar snapshots (while in use) to effectively
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create representative users’ privacy profiles. Therefore, the app can conduct a
live forensic analysis to perform a comprehensive user profiling.

3 Methodology

We follow the data collection approach discussed in [3] to collect users’ permis-
sion settings. First, we develop an Android app that will be used as a survey
instrument and at the same time it will collect the current permission settings
of the running device. We distribute our application on Google Play and request
participants to download the app on their devices. We target users with devices
that run Android 6.0 and above, i.e. they implement the run-time permission
model. The participants were recruited after viewing our call on various online
platforms such as popular social media and university email lists. We did not
compensate the respondents for their engagement but we gave them the chance
to be included in a prize draw, if they were willing to provide their email address
to communicate with them in case they won a prize. We finally got responses
from 71 individual Android users from around the world. The project was carried
out after ethical approval was acquired by the our RBI (FET Faculty Research
Ethics Committee of the University of the West of England (FET.17.03.027)).

3.1 Permission Settings Collection

Our redesigned app utilizes the PackageManager and employs the GET META DATA

flag to query the participant’s device and acquire a list of application infor-
mation. Then we use the method getPackageInfo with the GET PERMISSIONS and
FLAG SYSTEM flags to retrieve non-system applications, i.e. apps that were installed
by the users from online app stores. This distinction on the acquired data pro-
vides a more accurate representation of users’ permission settings because we
target only apps that were installed by them. Therefore there is a better prob-
ability for creating more representative profiles because we are primarily based
on apps that have been used at least once (details in Section 5). This is a fun-
damental improvement compared to the previous work [1–3].

To ensure that this hypothesis stands true, we employ the UsageStatsManager

to collect app usage information provided by the Android system itself. Fur-
thermore, we store locally on the phone for each app the requestedPermissions

and requestedPermissionFlags, along with additional information such as the:
versionCode, firstInstallTime, LastUpdateTime, and targetSdkVersion.

The PackageManager returns the integer 3 if the permission has been granted
and the integer 1 if not. Following this methodology we are able to acquire a
snapshot of the user’s permission settings. Note that –using this methodology–
if the integer that was returned is 1, we do not know if a dangerous permission
has been requested by the app in the past. We can only infer that the specific
app does not have permission to access the given resource currently. Therefore,
following this approach we are able to reconstruct current permission settings
on the device for each installed app. In other words we are able to reconstruct
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(a) Usage Stats (b) Demographics (c) Question 1 (d) Question 2 (e) Groups

Fig. 1. Screenshots Showcasing “Permissions Snapshots V2” Application and System’s
Functionality.

information given by the system when the user engages the Settings app and
requests to see the “App permissions” from the “App info” utility, as seen in
Figure 1e.

3.2 Questionnaire Design

The data collection process and the users’ engagement lifecycle is described
in detail below. First, participants download the app on their devices. After
launching the app, consent is given to the app by the user to collect permission
settings information. Then the participant is asked to allow the app to collect
usage statistics from the device (Figure 1a). This functionality must be explicitly
given by the user on our targeted devices. However we provide the users the
capability to skip this step, if they do not feel comfortable providing this amount
of data to a third party (i.e. to our app).

Afterwards the participants are asked to provide basic demographics (Sex,
Age, and Residency as seen in Figure 1b) and answer 2 questions (Figures 1c,
1d). The first question asked the following: “Assume that an app requests access
to the following resources of your device (smartphone or tablet). How likely is it
to allow access to these resources? Use the bars to indicate your preferences for
all (9) resources in the following list. There are 5 choices for each category: Very
unlikely, Unlikely, Neutral, Likely, Very likely”. A five-point Likert scale [12] was
implemented as a slider to store participants’ preferences for each dangerous
permission ranging from “Very unlikely” to “Very likely”.

Next our survey app asked the participants to provide the name of an app
they regularly use: “The second (and last) question is related to your favourite
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app. Please tap on the following text field and provide the name of an app that
you regularly use on this device. Then hit the NEXT button to see the second
question”. After providing the name of their preferred app, they read the second
question: “Assume that “your favourite app” requests access to the following
(9) resources. Which of these resources you would probably allow to access?
Turn ON the switch if you would allow the app to access the specific resource.”
The activity contained a sequence of switches representing the state of access
privileges the specific user would be willing to provide to the specific app, as
seen in Figure 1d.

Finally, respondents were instructed how to participate in the prize draw
and turn off this app’s Usage Access privilege after submitting their answers.
The rationale behind the design of our short questionnaire is to identify if there
exist deviations between the users’ ideal privacy preferences (Question 1) and
the amendments they are willing to do when they need to enjoy certain func-
tionalities of their favorite apps (Question 2).

4 Data Analysis

The majority of the respondents of our call provided complete survey answers.
Additionally the majority provided their app usage data to our app allowing
access to the UsageStatsManager. However, there was a small proportion of users
that did not allow this action. Additionally, we identified responses from 3 par-
ticipants that seemed ambiguous. For example, these respondents sent more than
one responses while our app was available on Google Play. Therefore, their data
were completely removed from the dataset. More details are given in Section 5
below.

Data analysis has been performed in two stages. First we accumulated valid
survey responses from participants as explained in Section 5. We refer to this
group of participants as Gs in this paper. Then, we compiled another set of
data depending only on the permission settings that were sent from the devices
to us. These data do not depend on the survey responses as they are actual
representations of the permission settings on the participants’ devices the given
time (Permissions Snapshots); we call Gd this group in this paper.

In order to translate permission data from each device and reconstruct the
permission group settings for each app as shown to any user from the Android
system (e.g. Figure 1e), we are using the same methodology presented in [3].
We focus on dangerous permissions groups and simulate the way Android han-
dles run-time permission requests to allow or deny access to sensitive resources.
Hence, permission settings for each app are represented as a sequence of nine
“Allow” or “Deny” decisions. The number nine represents the number of danger-
ous groups, according to the official classification. This classification depends on
the Android API level. While collecting our data, the highest available API level
was 27 (i.e. devices running up to version O, codenamed as Oreo). The given
time, there existed nine dangerous groups. From API level 28 (Android Pie) an-
other group was added (namely CALL LOG) which practically included some of the
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Fig. 2. Responses to Question 1: (0: Very unlikely - 4: Very likely).

older permissions from the PHONE group. Since our app was running on devices
with OS versions up to Android Pie, we present results based on the nine group
classification.

5 Results

We received responses from 71 individuals. Among them, 60 allowed access to the
UsageStatsManager, 8 did not turn on the Usage access switch when requested by
our app, and 3 provided ambiguous responses, therefore their data were removed
from our study. Additionally, data from one participant were rejected because
she claimed she was below 18 years old. Based on the ethical approval terms,
respondents had to be 18 years old and above to participate.

5.1 RQ1: Which sensitive resources on their devices users aim to
protect more frequently?

For the first part of this study (regarding the questionnaire responses) we an-
alyzed survey data provided by 61 participants (group Gs). We rejected the
answers from individuals who either they did not provide the name of an app for
question 2 or they provided a name that could not be found in the corresponding
packages provided by their devices’ PackageManager. Additionally, some of these
participants provided responses baring the default answers only, which made us
consider they did not sincerely answer the questions; hence their responses were
also removed.

As shown in Figure 2 respondents in general are reluctant to allow access to
their devices’ resources. However, they are more positive to allow access to apps
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requesting to use their devices’ “Storage” and “Sensors”. This finding aligns with
recently presented work [2]. The figure also demonstrates that Android users are
hesitant to allow apps accessing their: a) SMS messages (75% negative answers),
b) their contact lists (72% negative answers), and, c) their devices’ microphones
(62% negative answers). Another noteworthy finding is that responses related
to the camera access were almost equally divided (39% negative, 34% positive).
On the other hand, participants are disinclined to allow access to their location
data (57% negative answers).

Another point related to location data access is that the answers for the
certain permission group presented strong polarity between negative and positive
views (13% neutral answers). The decreased percentage of neutral views for this
group showcases that mobile device users are aware of the importance of their
location data, therefore they have clear views when it comes to sharing them with
third parties. Compared to similar previous studies [2, 3] we identify analogous
behavior considering users’ acceptance of possible requests from the system. In
these studies most of the users do not intend to allow access to their SMS,
microphones, contact lists, phone logs and location. Our results showcase that
these trends haven’t changed a lot since the arrival of the run-time permission
model three years ago. Additionally, compared to the previous studies we can see
that users nowadays have a stronger perception about which protected resources
are willing to allow external apps to access.

5.2 RQ2: Are users changing their privacy-related perceptions
when they are dealing with their favorite apps?

Next we investigate if users change their behavior when their favorite apps re-
quest to access protected resources. For this case we focus on the Gs group and
gather the answers of the second survey question to compare them with the
answers from the first question. We consider as positive the “Likely” and “Very
likely” answers and as negative the “Unlikely” and “Very unlikely” answers from
the first survey question. Then we count the positive answers representing the
resources (i.e. the dangerous groups) they are more positive to allow an app
to access. This information is derived from their answers to the first question.
Similarly, we count the resources they would allow their favorite app to access,
according to their answers to the second question.

Figure 3 shows how participants answered. The blue line shows the number
of resources they feel more comfortable to allow an app to access in general,
and the orange line shows their responses for their favorite app. We can see that
in most cases users would allow more resources to be accessed by their favorite
apps compared to their generic response provided to the first question. 18% of
the participants provided the same number of positive answers and number of
accessible sensitive resources.

In general, from Figure 3 we can infer that users are inclined to allow access
to a larger number of sensitive resources when prompted by their favorite apps.
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Fig. 3. Deviations among users’ survey answers (comparing Q1 vs Q2)

5.3 RQ3: Are users aware of the permission settings on their
devices?

The next part of our survey data analysis reflects on the differences between the
users’ answers on the second question and the actual settings we found on their
devices. Therefore, we now evaluate users’ answers by comparing them with the
users’ actual interaction with their favorite apps. This comparison is temporal
and adheres to the time we acquired the permission snapshot. Therefore, this
is a snapshot that depicts the users’ interaction with the system dialogues until
that moment.

We are still studying the responses from group Gs in this section. However,
due to inconsistencies in some of the users’ responses we had to consider only
those which did not cause any confusions. For example, one user suggested her
favorite app was “messaging” and, at the same time, we found permission set-
tings for more than one messaging applications on her device. Hence, it was not
feasible to know the application she was referring to. These ambiguous answers
were removed for this part of the study and therefore we report data derived
from 47 responses from group Gs.

We use the Jaccard distance (ranges from 0.0 to 1.0) to measure the similar-
ity of two binary vectors for each participant’s answer. In general, the Jaccard
distance of two vectors equals to 0.0 if the vectors are identical.

The first vector resembles the answers given for question 2 and the second re-
sembles the actual privacy preferences/controls found in the participant’s device
for the specific app. For example, if the respondent answered that Twitter is her
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Fig. 4. Jaccard similarity of users’ answers to Q2 and their actual permission settings.

most used/favorite app, we represent as v1 = (0, 1, 0, 1, 0, 0, 1, 0, 1) her answers
to the second question, where 0 is “I would not allow access” and 1 is “I would
allow access” to the following permission groups: (Calendar, Camera, Contacts,
Location, Microphone, Phone, Sensors, SMS, Storage).

The second vector v2 = (N, 1, 0, 1, 0, 0, N, 0, 1) resembles the actual access
settings found on her device for the specific app. Note that some apps do not
declare permissions for specific groups; here for example, the Calendar is not
used by the app, therefore this group is flagged as N in v2.

In order to calculate the Jaccard distance we neglect users’ choices made
for the permission groups flagged as N. Hence, the vectors to be compared are
now the following: v1 = (1, 0, 1, 0, 0, 0, 1) and v2 = (1, 0, 1, 0, 0, 0, 1). We do that
because we do not want to compare users’ answers (v1) with actual settings
(v2) when the particular dangerous permission group is not declared by the app.
Hence, we do not impute any missing values. Therefore, the Jaccard distance
of v1 and v2 is 0.0 in this instance, which means that the user’s answer and
her actual settings on her device are exactly the same. This can be seen as an
indication that the respondent was totally aware of the permission settings on
her device related to the specific app.

Figure 4 shows the Jaccard distance between v1 and v2 for each participant’s
entry. In 10 cases the Jaccard distance between v1 and v2 was 0.0. This means
that only 21.3% of the respondents appeared to have a clear view of the resources
they allowed their favorite apps to access. This number is indeed lower if we
consider that half of these participants appeared to be 100% permissive when
their favorite app requests access to their devices’ resources. The average Jaccard
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distance derived from the 47 participants is approximately 0.71. The last metric
shows that there exist misconceptions about the actual state of the permission
settings in our participants’ devices despite the fact that there were asked to
provide their privacy preferences/settings for their favorite (hence most used)
apps.

5.4 RQ4: Can we categorize users according to their
privacy/permission settings?

As of October 2019, there existed N = 55 distinct sub-categories on the Google
Play App store (e.g. Art & Design, Auto & Vehicles, Beauty, etc.). Our aim here
is to create users’ privacy profiles based on their acquired snapshots depicting
the permission settings for each category.

Modeling User’s Settings We accumulate permission settings on each device
as follows:

App permission settings for each device are reconstructed from the permis-
sion snapshots and resembled by vectors a = (p1, p2, . . . , p9), for i ∈ [1, 9] (9
permission groups), where:

a) pi = 1, i.e. the permission was allowed to this app,
b) pi = −1, i.e. the permission was not allowed (or never requested by the app)
c) pi = 0, i.e. the app did not declare this permission.

When there are cases where more than one apps from one category exist on
a device, we perform the following basic calculations. For each permission group
we count the “Allow” (i.e. “1”) and the “Deny (i.e. “0”) decisions and find the
more prominent value between them. We transform this value to a float number
(percentage) representing the probability of this user to allow or deny access to
the resource protected by the permission from this specific dangerous permission
group. When the prominent number refers to “Allow” decisions the float number
is positive, and it is negative in the opposite case. If there exist apps that do
not declare a specific permission from a group (e.g. Sensors), we fill this place
with a zero. If there are equal “Allow” and “Deny” decisions for a permission
group in a category, we assume that the user is positively inclined to allow access
(according to our finding from RQ2).

Therefore, for each device we create a sequence (or a feature set in other
words) of N = 55 vectors representing the tendency of the user to allow or deny
an app from a given category.

In this sub-section we report results gathered from a larger group from our
pool of participants (i.e. Gd). Gd consists of data derived from 67 devices. As
explained earlier in this Section, we removed data derived from 4 devices. Ad-
ditionally, we also noted that 7 participants did not provide app usage data.
However, we included their permission snapshots in this part of the study be-
cause these data are not ambiguous, meaning that they could not be falsified
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Fig. 5. Dendrogram derived from hierarchical clustering.

or somehow manipulated, given that they are provided by the Android system
itself.

However, there is always a small probability that some permission settings
in these devices (we refer here to the 7 participants) will describe apps that
have never been used before. This is a reasonable concern which might lead to
misinterpretations of a user’s intention to allow or deny access to an app from
a certain category. Indeed this was also a basic limitation of similar previous
work [2].

In order to overcome this limitation we examined the data we derived from
devices that provided app usage data. We measured the percentage of installed
apps in each of these devices and identified from the app usage data if these apps
were invoked at least once. We found that on average 94.22% of the installed
apps were run at least once. Therefore, it is safe to generalize and assume that
the majority of the data provided from the aforementioned 7 devices contain
permission settings from apps that were used at least once.

Clustering Profiles We perform Agglomerative hierarchical clustering using
scikit-learn [15] to identify clusters in our data (linkage method: ward). The
same methodology was used by Liu et al. [14] recently to create similar privacy
profiles. However, Liu et al. [14] did not consider users’ permission settings for
all known categories in the Play Store in their work.

We draw a dendrogram to visualize how clusters are formed from our data.
After performing a visual inspection, we empirically decide to deviate the users
in five big clusters (see the red line in Figure 5). Liu et al. [14] identified 7
clusters in their analysis. However, they admit that the majority of the users in
their study is gathered in one big cluster.
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(a) Profile 1 (b) Profile 2

(c) Profile 3 (d) Profile 4

(e) Profile 5

Fig. 6. Users’ privacy preferences profiles derived from their permission settings.
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Figure 6 showcases representative samples of the privacy profiles we created.
On the vertical axes we place the different app categories and on the horizontal
axes we show the nine groups of dangerous permissions. The color of each cell
resembles the user’s tendency to allow (green) or deny (red) an app from that
category to access a resource from this permission group. White spaces denote
the lack of knowledge of the user’s reaction to access requests from apps from
the given categories.

6 Discussion

As expected from the results presented so far, most of the users tend to protect
a number of sensitive resources on their devices. Therefore, the majority of the
profiles appear to be more restrictive. Profile 2 and Profile 5 are generally per-
missive. Profile 2 includes users who tend to allow apps access their Location and
Storage. Profile 5 appears to be stricter with particular app categories compared
to Profile 2. Profile 1 is restrictive in general, but allows access to Location and
Sensors. Profile 3 would not usually allow access to the Calendar, Storage and
the Microphone. Finally, Profile 4 appears to be generally restrictive.

Looking at the distribution of the population, we can report the following
numbers. Profile 1 includes 18 users (26.9% of our sample), Profile 2 includes 8
users (11,9%), Profile 3 is the most populated with 29 users (43.3%), Profile 4
has 9 users (13.4%) and, finally, Profile 5 is the smallest comprising only 3 users
(4.5%).

Compared to the work of Lin et al. [13] and Liu et al. [14] we identify sim-
ilarities between our generally permissive users (Profile 2) and the “Profile 3
users” of [14] and the “unconcerned” users of [13]. Additionally, Profile 4 in our
study is similar to the restrictive “Profile 4” that Liu et al. [14] identified as
their protective users, and Lin et al. [13] as their “conservative” users. Finally,
the derived clusters from our methodology seem to be more equally distributed
compared to those presented in [14].

6.1 Android 10 Location Settings

The permission data collection methodology utilized in this study can be applied
on the revamped finer-grained permission model for protection of location data
in the most contemporary Android version (i.e. Android 10). The current version
was released during Autumn 2019 and it features a new approach to location
permission management, featuring two levels of protection. The user according
to this updated model has the ability to choose between two location accessibility
levels: a) Allow an app to access location data all the time (i.e. even when it is
on the background), or b) allow access only when the app is in use (i.e. when it
is in the foreground).

Compared to the previous models, the only difference in this occasion is
the addition of an extra permission; the ACCESS BACKGROUND LOCATION. Thus, in
order to update users’ profiles in the near future to incorporate those users
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who updated to the most recent OS version (Android 10), we probably need to
introduce a 4th choice in the location permission group: “Always Allow”, “Allow
when in Use”, “Deny”, “Not requested”. Additionally, we need to account for the
fact that more consumers will start using devices running versions 9 and above
(i.e. API level 28+). This means that we need to implement different profiles for
these users which consist of 10 dangerous permission groups. For the moment
these remarks form our plans for future work.

6.2 Pilot Study on Android 10 Location Settings

We attempted to measure users’ acceptance of the modernized, tristate loca-
tion permission system on Android 10, conducting a pen-and-paper exercise as
follows. We gathered a random group of 25 undergraduate and postgraduate
students (studying Cyber Security and Digital Forensics at the University of
the West of England) and asked them to participate in a short experiment. We
distributed a short questionnaire and asked them to anonymously answer three
questions in 5 minutes.

The questionnaire comprised a screenshot of an app requesting location per-
mission, adhering to the new tristate location permission system introduced in
Android 10 [5], followed by 3 short questions. The depicted dialogue message
stated: “Allow App 1 to access this device’s location?”. The message featured
the following options: “Allow all the time”, “Allow only while the app is in use”,
“Deny”. The participants asked to answer the following questions:

– To comment on the functionality/outcome of each option.

– If the message was clear.

– Which option they would choose.

22 students answered anonymously the questionnaire. We briefly discuss the
outcome in this section. 16 participants (i.e. 72.7%) said that the message shown
by the system is clear. 3 students (i.e. 13.6%) claimed the opposite, and 3 other
students said that “it is misleading”, “not very clear”, or “a little clear”. There-
fore, 72.7% thought the message is clear and 27.3% had a different opinion. The
most interesting finding however derives from the answers to the last question. 16
students said they would choose the “Allow only while the app is in use” if they
were using the app, and only 1 said they would “Allow all the time”. Finally, 2
students said they would choose “Deny” and 3 students replied that “it depends
on the app”. Among these 3 participants, 2 of them said “it depends”, but they
would probably choose to “Allow only while the app is in use” or “Deny”.

Hence, this preliminary study shows that if the users have the choice to allow
an app to access the device’s location only while the app is in the foreground,
they are eventually positively inclined to provide the permission. Also, we saw
that almost three quarters of the participants thought the message provided by
the system about the tristate location permission was clear enough.
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7 Conclusion

We utilized publicly available system information derived from the use of the
PackageManager, accessible by any installed app on the device3. We showed that
any app installed on an Android device is able to extract similar information and
perform user profiling tasks related to the user’s privacy awareness. In this study
we gathered permission settings from 71 devices and identified 5 distinct user
profiles, related to their inclination to allow or deny access to specific sensitive
resources on their devices. We found that 13.4% of users in our sample belong
to the most restrictive profile, 16.4% belong to generally permissive profiles and
the rest of them are protective, allowing access to certain permission groups
(Location, Sensors and Storage).

Moreover, our survey responses, and their comparison with participants’ ac-
tual privacy controls, demonstrated that users do not feel comfortable with allow-
ing apps to read their SMS, contact lists, and using their microphones. However,
the results of this study demonstrated that, as users, we are keener to allow our
favorite apps to access restricted resources.

Finally, following a cross-examination of the users’ responses with their actual
permission settings, we concluded that although users are supposed to have a
better overview of the protected resources they allowed their favorite apps to
access on their devices, they eventually fail to accurately report which groups
are accessible and which are not. Also we identified the inclination of users to
allow location access to an app only while the app is in the foreground (feature
available on devices running Android 10).

As future work we intend to use our profile categorization methodology to
investigate the feasibility of embedding these profiles in recommendation sys-
tems to efficiently suggest apps that match users’ privacy settings. We believe
that online app stores (such as the Google Play app store) have the capability
to create more accurate privacy profiles using numerous permission snapshots
via longitudinal measurements, because they have constant access to app usage
statistics.
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6. Bonné, B., Peddinti, S.T., Bilogrevic, I., Taft, N.: Exploring decision making with
android’s runtime permission dialogs using in-context surveys. In: Thirteenth Sym-
posium on Usable Privacy and Security ({SOUPS} 2017). pp. 195–210 (2017)

7. Diamantaris, M., Papadopoulos, E.P., Markatos, E.P., Ioannidis, S., Polakis, J.:
Reaper: Real-time app analysis for augmenting the android permission system. In:
Proceedings of the Ninth ACM Conference on Data and Application Security and
Privacy. pp. 37–48. ACM (2019). https://doi.org/10.1145/3292006.3300027

8. Felt, A.P., Egelman, S., Wagner, D.: I’ve got 99 problems, but vibration ain’t
one: a survey of smartphone users’ concerns. In: Proceedings of the second ACM
workshop on Security and privacy in smartphones and mobile devices. pp. 33–44.
ACM (2012). https://doi.org/10.1145/2381934.2381943

9. Felt, A.P., Ha, E., Egelman, S., Haney, A., Chin, E., Wagner, D.: Android permis-
sions: User attention, comprehension, and behavior. In: Proceedings of the Eighth
Symposium on Usable Privacy and Security. pp. 3:1–3:14. SOUPS ’12, ACM, New
York, NY, USA (2012). https://doi.org/10.1145/2335356.2335360

10. Hossen, M.Z., Mannan, M.: On understanding permission usage contextuality in
android apps. In: IFIP Annual Conference on Data and Applications Security and
Privacy. pp. 232–242. Springer (2018). https://doi.org/10.1007/978-3-319-95729-
6 15

11. Iqbal, M.S., Zulkernine, M.: Droid mood swing (dms): Automatic security modes
based on contexts. In: International Conference on Information Security. pp. 329–
347. Springer (2017). https://doi.org/10.1007/978-3-319-69659-1 18

12. Likert, R.: A technique for the measurement of attitudes. Archives of psychology
(1932)

13. Lin, J., Liu, B., Sadeh, N., Hong, J.I.: Modeling users mobile app privacy prefer-
ences: Restoring usability in a sea of permission settings. In: 10th Symposium On
Usable Privacy and Security ({SOUPS} 2014). pp. 199–212 (2014)

14. Liu, B., Andersen, M.S., Schaub, F., Almuhimedi, H., Zhang, S.A., Sadeh, N.,
Agarwal, Y., Acquisti, A.: Follow my recommendations: A personalized privacy
assistant for mobile app permissions. In: Symposium on Usable Privacy and Secu-
rity (2016)

15. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O.,
Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A.,
Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine
learning in Python. Journal of Machine Learning Research 12, 2825–2830 (2011)

16. Raval, N., Razeen, A., Machanavajjhala, A., Cox, L.P., Warfield, A.: Permissions
plugins as android apps. In: Proceedings of the 17th Annual International Con-
ference on Mobile Systems, Applications, and Services. pp. 180–192. ACM (2019).
https://doi.org/10.1145/3307334.3326095



18 Andriotis et al.

17. Reardon, J., Feal, Á., Wijesekera, P., Elazari Bar On, A., Vallina-Rodriguez, N.,
Egelman, S.: 50 ways to leak your data: An exploration of apps’ circumvention of
the android permissions systems. In: 28th USENIX Security Symposium (2019)

18. Reinfelder, L., Schankin, A., Russ, S., Benenson, Z.: An inquiry into per-
ception and usage of smartphone permission models. In: International Con-
ference on Trust and Privacy in Digital Business. pp. 9–22. Springer (2018).
https://doi.org/10.1007/978-3-319-98385-1 2

19. Scoccia, G.L., Ruberto, S., Malavolta, I., Autili, M., Inverardi, P.: An investigation
into android run-time permissions from the end users’ perspective. In: Proceedings
of the 5th International Conference on Mobile Software Engineering and Systems.
pp. 45–55. ACM (2018). https://doi.org/10.1145/3197231.3197236

20. Thompson, C., Johnson, M., Egelman, S., Wagner, D., King, J.: When it’s better
to ask forgiveness than get permission: attribution mechanisms for smartphone
resources. In: Proceedings of the Ninth Symposium on Usable Privacy and Security.
p. 1. ACM (2013). https://doi.org/10.1145/2501604.2501605

21. Votipka, D., Rabin, S.M., Micinski, K., Gilray, T., Mazurek, M.L., Foster, J.S.:
User comfort with android background resource accesses in different contexts. In:
Fourteenth Symposium on Usable Privacy and Security ({SOUPS} 2018). pp. 235–
250 (2018)

22. Wijesekera, P., Baokar, A., Tsai, L., Reardon, J., Egelman, S., Wagner, D.,
Beznosov, K.: The feasibility of dynamically granted permissions: Aligning mobile
privacy with user preferences. In: 2017 IEEE Symposium on Security and Privacy
(SP). pp. 1077–1093 (May 2017). https://doi.org/10.1109/SP.2017.51

23. Wijesekera, P., Reardon, J., Reyes, I., Tsai, L., Chen, J.W., Good, N., Wag-
ner, D., Beznosov, K., Egelman, S.: Contextualizing privacy decisions for
better prediction (and protection). In: Proceedings of the 2018 CHI Con-
ference on Human Factors in Computing Systems. p. 268. ACM (2018).
https://doi.org/10.1145/3173574.3173842


