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Cross-entropy (CE) is a powerful simulation method for the solution of contin-
uous and combinatory optimization problems. The work presented here utilizes
the CE method for the optimal topology of distribution power systems (DPSs).
The optimal network switches are determined for the reduction of active power
loss. The adapted CE method is tested on three case studies, namely, the 33-node,
83-node, and 880-node DPSs. The results are compared with other reconfigura-
tion algorithms to demonstrate the superiority of the proposed algorithm. The
impact of the distributed generation is also investigated. The effective integra-
tion of the photovoltaic panels at midday, when their production is highest and
meets the peak demand, is showed. Finally, the real-time reconfiguration strat-
egy based on the switching effort reduction is proposed and enhanced via an
adequate selection of the initial switch states.

KEYWORDS

combinatory optimization, cross-entropy, distribution power system, loss reduction,
reconfiguration, topology

1 INTRODUCTION
Distribution power systems (DPSs) have gained increased importance in recent times due to the huge penetration of green
energies. Because these renewable sources are characterized by their intermittent and stochastic behavior, the operat-
ing points of DPS change continuously, and to meet the optimal operation, the topology needs to follow these changes.
Network reconfiguration achieved by changing the states of some maneuverable switches is widely in use by electrical
engineers. It would be more practical in real time to manipulate the candidates' switches than to opt for other costly
choices.1,2 In some segments of the DPS, switches either are open or closed.3 This option in the radial networks is used
for minimization of losses as well as voltage deviations.4

The mathematical representation of the aforementioned option includes binary variables with a nonlinear objective
function and constraint. The integer nonlinear programming (INLP) methods are well suited for such cases as these tools
can deal with large-scale problems. However, they must not have exponential complexity.

Usually, four families of methods are used for reconfiguration of DPS. The first concerns the method designed for a par-
ticular objective function structure, for example, integer programming, the cutting plane,5 or branch-and-bound.6 The
second contains metaheuristic methods, which have the ability to decrease the search space and do not need deriva-
tion of the objective function. In addition, these approaches are more appropriate for INLP problems and assure the
exploration of the search space. Furthermore, they have the ability to avoid the convergence to local optima of the fea-
sible region and go to a global solution, but they are very time consuming and their solutions are not stable. In recent
years, the DPS reconfiguration is also achieved through metaheuristics based tools such as genetic algorithms,7-12 simu-
lated annealing,13-15 artificial ant colony,16,17 tabu search,18 particle swarm optimization,19 hybrid differential evolution
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FIGURE 1 The topology of a distribution power system

(HDE),20 and the artificial immune systems.21,22 The drawback of these approaches is that they are time consuming and
their operation depends on careful selection of parameters. The third family is concerned with the heuristic based search
family such as the method proposed by Baran and Wu23 and the minimum cost maximum flow (MCMF) proposed by
Ababei and Kavasseri.24 These methods provide a fast, robust, and stable solution but do not guarantee the global optima.

The last family contains the determinist approach, which is the recent trend. For example, Taylor and Hover25 have
introduced three new formulations of the reconfiguration problem: the quadratic programming (QP), the quadratic con-
strained programming (QCP), and the second-order cone programming (SOCP). Recently, Jabr et al26 have proposed the
mixed integer convex programming (MICP) formulation and Ahmadi and Marti27 proposed the linearized power flow
with the mixed-integer quadratic constrained programming (MIQCP). Although these methods are very fast, they cannot
always guarantee global optimum and are computationally time consuming. Most recently, Rubinstein28 proposed the
cross-entropy (CE) method for solving a rare-event (RE) simulation problem, and thereafter, this method is extended for
the solution of optimization problems.29 It is reported by Sebaa et al30 and Ernst et al31 that, in several applications, the
CE method for engineering optimization problems achieves better results than other metaheuristic methods.

The CE method belongs to Monte Carlo (MC) methods. It uses the importance sampling technique (IS) in which this
propriety facilitates its ability to deal with large-scale problems with poor simulation resources. MC methods are suitable
for problems when other techniques are too difficult to solve or poses a heavy burden computationally. Another motivation
behind the choice of the CE method is that it converges to the global optima when there are many local optima.

This paper introduces the CE method to the problem of reconfiguration of the distribution networks and is organized as
follow. Section 2 describes the problem statement, and Section 3 focuses on the presentation of the CE approach, especially
when discrete variables are involved in the optimization problem. Finally, Section 4 presents case studies where the three
known distribution networks are tested.

2 LOSS REDUCTION

It is beneficial to recall some concepts of the graph theory field before proceeding to the concept of DPS reconfiguration.
The topology of DPS depends on the arrangement of its elements. In a graphic frame, this topology is determined by a
finite set Y = {y1, y2, y3, … , yN} of vertices or buses and a finite set B = {b1, b2, b3, … , bM} of links or branches.

The Y and B sets correspond to the definition of a graph that is denoted as G(Y, B).24 The orientation of each branch can
be a priori or indefinite as shown in Figure 1.

The reconfiguration problem can be seen as the selection of the branch xi from the branches
Ωi =

{
ind1, i, ind2, i, … , indmi, i

}
in fundamental path i containing mi branches that should be switched off. Initially, the

fundamentals paths have to be evaluated.
These paths are chosen in such a way that, when the initially switched-off branch is switched on with any branch of

the same path that is initially switched off, the network keeps its connectivity and the maneuver does not affect any other
path. This paper assumes that the set Ωi is a priori that is known.

Noting that ind1,i is originally the switched-off branch, then the state space is Ω = Ω1 × Ω2· · · × ΩNl and the candidate
solutions have the form X = (x1, x2, … , xNl).
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2.1 Performance function
Losses cannot be avoided and are one of the technical and economic problems, which are presented by the Joule's formula

min G (X) = min
∑
k∉X

Rk · I2
k , (1)

where Rk and Ik are the resistance and the current of the branch k, respectively.
Defining the network constraints as follows:

(i) Kirchhoff equations;
(ii) voltage limits Umin

i ≤ Ui ≤ Umax
i (i = 1,N);

(iii) current limits Ik ≤ Imax
k (k = 1,M);

(iv) connectivity and radiality.

In this paper, the back forward sweep technique that includes two steps is used to ensure that constraints (i) and (ii) are
satisfied by the load flow (LF) routine. A faster LF routine is achieved with the branch exchange approach. For such an
approach, first, the LF needs to be performed on the original network represented by the vector Xorig = (ind1,1, ind1,2, … ,
ind1,Nl). For example, the LF for the vector X = (indk1,1, indk2,2, … , indkNl, Nl) is carried out by exchanging the branches
(indk1,1 and ind1,1), (indk2,2 and ind1,2), and so on. Furthermore, the constant load model is adopted throughout this work
and as Equation (1) is composed of discrete variables, a discrete optimization solution, such as the CE method is utilized.

3 CE METHOD FOR DISCRETE OPTIMIZATION

Originally, the CE method is developed to estimate occurrence of an RE in stochastic networks, and then, its suitability
is confirmed for several optimization problems. A sequence of probability density functions (pdf) that estimate this RE
problem are generated until they converge to a degenerated pdf and the global optimum is reached.

Two steps could summarize the CE method.

– Generation of random variables, vectors, or paths according to specific probability density functions (pdfs).
– Updating the pdfs based on the previous step best samples.

3.1 CE for optimization
Let G(·) be the objective function to be minimized in the domainΩ. Suppose that the task is to find out the global minimum
of G(·) over Ω and the global optima is X * and G(X *) ≤ 𝛿*

G (X∗) = 𝛿∗ = min
X∈Ω

G (X) . (2)

As the CE method for optimization is an extension of the CE method for RE estimation, the event associated with (1) is
the probability that is represented by {G(X) ≤ 𝛿}. Considering that X belongs to some pdf f (x, u) on Ω domain, hence X
depends on u and the level 𝛿. Thereby, the randomness aspect is introduced to the original problem to provide a stochastic
model. When 𝛿 is close to 𝛿*, the probability λ = Pr(G(X) ≤ 𝛿) become very small and it is considered as an RE probability.
The IS technique is one of the methods that could estimate this probability

�̂� = 1
L

L∑
k=1

𝑓 (Xk)
g (Xk)

I{G(Xk)≤𝛿}, (3)

where Xk is an independent and identically distributed (iid) samples generated from a known pdf g. The pdf that gets a
zero variance estimator is g*(x) = f (x)I{G(x) ≤ 𝛿}/𝜆. However, it depends on the unknown probability 𝜆. The role of the CE
method is to determine an IS pdf f (·, v) that is close to g* in terms of the CE distance (or Kullback-Leibler distance)

D (g∗, 𝑓 (·, v)) = Eg∗

(
ln

g∗ (X , v)
𝑓 (X , v)

)
(4)
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The parameter v should maximize the following expectation (u is the parameter of the previous pdf):

E𝑓 (X ,u) (I {G (X) ≤ 𝛿} ln𝑓 (X , v)) . (5)

One more time, using other IS with pdf f (·, w), the next expectation should be maximized based on v

E𝑓 (X ,w) (I {G (X) ≤ 𝛿}W (X ,u,w) ln𝑓 (X , v)) ,

where W(X, u, w) = f (X, u)/f (X, w) is the likelihood ratio between the two pdfs. The parameter v can be computed based
on the called stochastic counterpart (SC) problem.

1
N
∑N

k=1
I {G (Xk) ≤ 𝛿}W (Xk,u,w) ln𝑓 (Xk, v) (6)

Here, Xk are iid samples generated from f (·, w). It is easy to solve the SC problem if the pdf f (·,v) belongs to a special
distribution family like exponential, normal, or Bernoulli lows. This will be done by the computation of gradient with
respect to v of ∑N

k=1
I {G (Xk) ≤ 𝛿}W (Xk,u,w) ∇ (ln𝑓 (Xk, v)) = 0. (7)

The typical CE algorithm for optimization is as follows.

1. Give the input data

a. the initial parameter vector v0, the pdf family f (·, v), and the domain Ω
b. the sample size L and the quantile ratio 𝜀 and the degeneration error 𝜎

Set t:=1 the iteration counter and

2. elite = 𝜀 L
3. While the ||vt−vt−1|| ≥ 𝜎

i. Generate idd random vectors Xk (k = 1:L) belonging to f (·, vt−1)
ii. Compute the objective functions G (Xk) and sort them in increasing order

iii. Set 𝛿t ≔ G(Xelite)
iv. Solve the SC problem and get vt∑N

k=1 I {G (Xk) ≤ 𝛿}W (Xk, v0, vt−1)Grad (ln𝑓 (Xk, vt)) = 0 Set t:=t + 1

4. End of the while loop

3.2 CE for the reconfiguration problem
The reconfiguration of DPS for loss reduction is a discrete optimization problem,29 where the state space is Ω ={

ind1,1, ind2,1, … , indm1,1
}
×
{

ind1,2, ind2,2, … , indm2,2
}
× · · · ×

{
ind1,Nl, ind2,Nl, … , indmNl,Nl

}
. If X1, X2,· · ·XL are iid

random vectors taking values in Ω domain with probabilities P =
(

p1,1, p2,1, … , pm1,1
)
×
(

p1,2, p2,2, … , pm2,2
)
× · · · ×(

p1,Nl, p2,Nl, … , pmNl,Nl
)

(note that). The pdf chosen for the random variable X = (x1, x2, … , xNl) is

𝑓 (X ,P) =
m1∏
̈k=1

p
I{x1=indk,1}
k,1 ×

m2∏
̈k=1

p
I{x2=indk,2}
k,2 × · · · ×

mNl∏
̈k=1

p
I{xNl=indk,Nl}
k,Nl . (8)

After solution of the SC problem (7), it is easy to prove that

d ln 𝑓 (X ,P)
d pk,𝑗

=
I{x𝑗=𝑖𝑛𝑑k,𝑗}

pk,𝑗
−

I{x𝑗=𝑖𝑛𝑑m𝑗 ,𝑗

}
pm𝑗 ,𝑗

(
k = 1,m𝑗 − 1 and 𝑗 = 1,Nl

)
.
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Considering
∑m𝑗

k=1 pk,𝑗 = 1. The updated probabilities are

pt+1
k,𝑗 =

∑L
i=1 I{G(Xi)≤𝛿}Wi

(
Xi,P0,Pt) I{x𝑖𝑗=indk,𝑗}∑L

i=1 I{G(Xi)≤𝛿}Wi (Xi,P0,Pt)
, (9)

where P0 and Pt are the vectors of initial and previous probabilities. As this optimization involves discrete random
variables, the likelihood ratio is set to W = 1. Therefore, (9) becomes

pt
k,𝑗 =

∑
Xi∈Elite

I{x𝑖𝑗=indk,𝑗}
/

NElite, (10)

where the Elite is the set of the variables Xk that verifies G (Xk) ≤ 𝛿 and NElite = #Elite. The CE algorithm for the
reconfiguration of DPS is as follows.

1. Give the input data

a. The set of branches B
b. The indices of fundamental loops indices Ωi

c. The initial parameter vector P0 =

⎛⎜⎜⎜⎜⎝
1

m1
, … ,

1
m1

⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟
m1 times

,
1

m2
, … ,

1
m2

⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟
m2 times

, … ,
1

mNl
, … ,

1
mNL

⏟⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏟
mNl times

⎞⎟⎟⎟⎟⎠
d. The pdf family f (·, Pt) (8)
e. The objective function for the original configuration G (Xorig)
f. The sample size L, the quantile ratio 𝜀 and the degeneration error 𝜎

2. Set t:=1 the iteration counter and NElite = 𝜀 L
3. While the ||Pt−Pt−1|| ≥ 𝜎

i. Generate idd random vectors Xk (k = 1:L) belonging to f (·,vt−1)
ii. Compute the objective functions G (Xk) and sort them in increasing order

iii. Set 𝛿t ≔ G
(

XNElite

)
iv. Update the probabilities pt+1

k,𝑗 =
∑

Xi∈Elite
I{x𝑖𝑗=indk,𝑗}

/
NElite

v. Set t:=t + 1

4. End of the while loop

At each iteration, the probability pt+1
k,𝑗 will be updated. At the iteration t, the solutions are sorted according to their objective

function, then only the best NElite samples are kept. The probability pt+1
k,𝑗 is simply the occurrence of the branches indk,j in

the loop j and of course among elements of Elite.

4 CASE STUDIES

4.1 33-node DPS
This test case shown in Figure 2 is known as Baran and Wu's network.23 Its nominal voltage is 12.66 kV. There are 32
nodes and 1 feeder. Originally, lines 1-32 are switched on and lines 33-37 are switched off.

There are five fundamental loops in Figure 2. These are Ω1 = {36, 32, 31, 30, 29, 15, 16, 17}; Ω2 = {37, 28, 24, 23, 22, 3,
4, 5, 25, 26, 27}; Ω3 = {33, 7, 6, 2, 18, 19, 20}; Ω4 = {35, 8, 11, 10, 9, 21}; and Ω5 = {34, 14, 12, 13}.

The original or the total circuit loss is 202.69 kW. For the application of the CE method, the program is written and run
with MATLAB® that operates under Core i5, 2.5 GHz and 8 Gb RAM.

Usually, the quantile ratio is selected between 0.01 and 0.1. It has been suggested that the size of elite set should be
sufficiently large to provide a good estimation of pdfs (9). In this paper, ε = 0.1 and L = 50 are selected for the desired
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FIGURE 2 A 33-node distribution power system with five fundamental loops (in color)

FIGURE 3 Evolution of the probabilities using the proposed
cross-entropy method
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estimation of pdfs. The initial probabilities are P0 =

⎛⎜⎜⎜⎜⎝
1
8
, … ,

1
8

⏟⏞⏞⏟⏞⏞⏟
8 times

,
1

11
, … ,

1
11

⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟
11 times

, … ,
1
4
,

1
4
,

1
4
,

1
4

⎞⎟⎟⎟⎟⎠
. From Figure 3, the CE method

converges to the global solution within 3 iterations, the optimal solution is to switch off the lines {32, 37, 7, 9, 14}, which
leads to the reduction of network losses to 139.55 kW.

For the purpose of comparison, Table 1 presents the results obtained by approaches proposed in literature and the
CE method. It shows the optimal configuration, the power loss, and the convergence time for the Baran's network. The
convergence time is achieved with 5 iterations, which can be multiplied by 3/5 as the optimal performance is reached by 3
iterations. This, in turn, reduces the proposed method's convergence time to 1.1713 seconds. All the presented approaches
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Methods: Switched-off Power loss Time Platform
In the literature and lines (kW) (s)
the proposed (CE)
Base 33 34 35 36 37 202.686
Proposeda 7 9 14 32 37 139.554 1.1713 MATLAB
Baran and Wu's method23 7 11 34 36 37 144.540 0.0004 C++
MCMF24 7 11 34 36 37 144.540 0.0004 C++
GA32 7 9 14 32 37 139.554 7.2000 MATLAB
QP25 7 9 14 32 37 139.554 0.2100 AMPL/
QCP25 7 9 14 32 37 139.554 1.4300 CPLEX
SOCP25 7 9 14 32 37 139.554 12.8000
MILPb33 7 9 14 32 37 139.554 0.1500 CPLEX

aThis result is the best one selected from 10 runs.
bMixed integer linear programming (MILP).
Abbreviations: CE, cross-entropy; DPS, distribution power system; GA, genetic algorithm;
MCMF, minimum cost maximum flow; QCP, quadratic constrained programming; QP,
quadratic programming; SOCP, second-order cone programming.

TABLE 1 Comparison study for the Baran and
Wu's (33 nodes) DPS (CE for L = 50, ε = 0.1)

FIGURE 4 A 94-node distribution power system with 13
fundamental loops (initially, lines 63-74, 23-86, 24-28, … , in color
are switched off)

have met the optimal configuration, except the heuristics approaches of Baran and Wu23 and Ababei and Kavasseri24 that
differ from the global optima by 3.57%, but their convergence time is short.

4.2 94-node DPS
It is also known as the Taiwan DPS and has been introduced in the work of Su et al.34 It contains 94 nodes, 11 feeders,
83 normally closed switches, and 13 open lines. Therefore, the number of fundamental loops is 13. Its nominal voltage is
11.4 kV as depicted in Figure 4.

The quantile ratio and the sample size are 0.1 and 180, respectively. The CE approach converges within 13.476 seconds
to the global solution, which is clearly fast than the convergence time of other methods. However, the Baran and Wu's
method is the fastest and achieves the global optima. Results obtained by approaches proposed in literature and the CE
methods are shown in Table 2.

4.3 880-node DPS
This test case is created using data from 135-node DPS and data from 201-node DPS. It contains 880 nodes, 7 feeders, 873
normally switched-off lines, and 27 tie lines.24 Figure 5 shows the simplified representation of this system.
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TABLE 2 Comparison study for the
Taiwan's (94-node) DPS (CE for L = 180,
ε = 0.1)

Methods: Switched-off Power loss Time Platform
In the literature and lines (kW) (s)
the proposed (CE)
Base 84 85 86 87 88 89 90 531.9945

91 92 93 94 95 96
Proposeda 7 13 34 39 42 55 62 469.8775 013.476 MATLAB

72 83 86 89 90 92
Baran and Wu's method23 7 13 34 39 42 55 62 469.8775 000.002 C++

72 83 86 89 90 92
MCMF24 7 13 34 39 42 55 63 470.0564 000.001 C++

72 83 86 89 90 92
HDE20 7 13 34 39 42 55 62 469.8775 036.15 MATLAB

72 83 86 89 90 92
ACSA34 7 13 34 39 42 55 62 469.8775 241.51 MATLAB

72 83 86 89 90 92
MICP26 7 13 34 39 42 63 72 470.0839 207.7 CPLEX

83 84 86 89 90 92

aThis result is the best one selected from 10 runs.
Abbreviations: ACSA, ant colony search algorithm; CE, cross-entropy; DPS, distribution power system;
HDE, hybrid differential evolution; MCMF, minimum cost maximum flow; MICP, mixed integer convex
programming.

FIGURE 5 A simplified scheme of the 880-node distribution power system with 27
fundamental loops

Table 3 summarizes the results obtained by approaches proposed in the literature and the CE method. The best result
obtained by the proposed CE algorithm in 10 runs when L = 600 and 𝜀 = 0.1 are selected. However, application of the
metaheuristic algorithms for this case, which is a large-scale system has not yet been reported. Inspection of Table 3
suggests that methods of Baran and Wu23 and Ababei and Kavasseri24 converge to a near optimal solution with a difference
of 1.19% and 1.33%, respectively, from the global solution, whereas the MILP26 method gives a solution with a difference
of around 0.19% from the optima solution with a converge time of 398 seconds.

The QP25 method with relaxation (in the relaxation the binary variables are considered as continuous by adding con-
straints, like y2−y = 0) converges to a near optimal solution with a difference of 0.003% from reaching to the global optima
with a converge time of 10 hours and 22 minutes. The proposed approach reaches the global optima in 214.269 seconds,
which, as yet, has not been achieved by other researchers.

Based on the analysis of results obtained for various networks, one could confidently state that the CE method is suitable
for network reconfiguration and it converges to the global optima within reasonable computation time. In addition, the
proposed method by nature is suitable for parallel computation techniques, which, in turn, aids the reduction of the
computation time in the case of large-scale networks.

4.4 Convergence analysis
The CE results presented in Tables 1 to 3 are not stable as the sample size is relatively small. To obtain a robust and stable
solution, the sample size should be at least equal to five times the problem size #P. In Table 4, for every problem size, the
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Methods: Switched-off lines Power loss Time Platform
In the (kW) (s)
literature and
the proposed
(CE)
Base 874 875 876 877 1496.402

878 879 880 881
882 883 884 885
886 887 888 889
890 891 892 893
894 895 896 897

898 899 900
Proposeda 084 130 141 159 457.027 214.269 MATLAB

190 282 288 306
312 409 411 452
494 596 616 630
631 637 698 815
844 885 888 889

890 896 900
Baran and Wu's 084 132 140 159 462.484 0.043 C++
method23 190 244 282 285

311 410 413 419
451 494 616 630
631 638 698 815
844 882 885 888

890 893 900
MCMF24 084 136 143 156 463.097 0.017 C++

190 242 282 285
289 410 411 452
494 574 596 616
630 631 636 815
844 882 885 888

889 894 900
QP25 n/a 457.04 37370 AMPL/CPLEX
MILP35 084 131 140 159 457.916 398 CPLEX

190 244 282 288
306 312 409 411
452 494 596 616
629 631 637 698
815 844 885 888

889 890 900

aThis result is the best one selected from 10 runs.
Abbreviations: ACSA, ant colony search algorithm; CE, cross-entropy; DPS, distribution power
system; MCMF, minimum cost maximum flow; MILP, mixed integer linear programming; QP,
quadratic programming.

TABLE 3 Comparison study for the 880-node
DPS (CE for L = 600, ε = 0.1)

algorithm has run 100 times. The probability to reach the global optima G* is equal to
∑100

i=1 I{Gi−G*}/100, where Gi is the
solution found at the ith run and the suboptimality of the problem is

∑100
i=1[(Gi−G*)/G*]/100.

Over 100 runs, the proposed method has not been able to meet the global optima twice for the Baran and Taiwan test
cases and once for the Ababei test case. The CE algorithm converges every time to the degenerated pdfs within a few
iterations. Moreover, the convergence time increases quadratically with the problem size as depicted in Figure 6. However,
as the sample size increases linearly with the problem size, the complexity of the algorithm is defined by O(n2).

The outcome of the proposed approach is similar to that of those presented in the reference papers (shown in Tables 1 to
4). In addition, the proposed method does not require enormous simulation materials, as by its nature, the CE approach
uses the elitism concept and at each step the new pdf is adjusted by the previous elite set. Hence, the reconfiguration,
based on the CE method, is relatively quicker than other methods (the reference papers).
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TABLE 4 Impact of the problem's size on the cross-entropy convergence

Case/nodes L = #P Average number Suboptimality of Probability to Average
×5 of iteration to the problem meet the global time to

converge optima degenerate
Baran and Wu's DPS/33 36 × 5 5.40 5.9358e−05 0.98 7.0276
Taiwan's DPS/94 78 × 5 8.12 6.9438e−06 0.98 29.1979
Ababei and Kavasseri's DPS/880 457 × 5 14.60 1.2953e−06 0.99 816.0101

FIGURE 6 Convergence time of the cross-entropy method
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FIGURE 7 Active power losses versus maximum number of maneuvers
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4.5 Limits on the maneuvers number
In order to include limits in the maximum number of switches, the following constraint is considered:

H (X) = nsw − nmax =
(∑Nl

i=1
I
(

xi ≠ ind1,i
))

− nmax ≤ 0, (11)

where nmax, nsw, and xi are the maximum number of switches permitted, the current number of switches, and the index
of the switch in the line of loop i, respectively.

This constraint is considered when generating samples by the acceptance-rejection method or the Gibbs sampling via
the truncation of the samples do not follow Equation (11). However, the easy way to handle this constraint is to use the
penalty function d. The new performance function becomes

G (X) = G (X) + d × max (0,H (X)) , (12)

where the penalty function is

d =
Porig

loss

Nl
, (13)

and Porig
loss is the total active power loss of the original configuration (network before reconfiguration process). Figure 7

shows the influence of the maximum number of switches on the total power loss of the 94-node DPS. This DPS contains 13
possible switches. Hence, the number of nmax takes values from 0, 1, up to 13. For nmax ≥ 9, the total active loss is constant
because the optimal solution corresponds to the switches of only nine lines. A good performance can be achieved by the
switches of only five lines, which corresponds to the reduction of 11.53% of the total power loss. Note that the optimal
solution achieves a reduction of 11.68%.
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FIGURE 8 Daily photovoltaic panel's output power ( Gen 1, 3, 4, 5, 6, 8, 9, 10, and
11; Gen 2 and 7)
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FIGURE 9 Daily load profile

4.6 Distributed generators
In this section, a 94-node network is considered to study the impact of the photovoltaic panels (PV) that are installed
at the generation node, on the network global loss. These PVs are assumed to have the same capacity as the traditional
generators connected to the same node. Figure 8 shows the profile of PVs power.

Furthermore, the loads are varying in time and are supposed to have a household's profile. Other profiles such as the
industrial profile or a mixture of these two profiles could also be investigated. Only the load profile at the 15th node is
presented in Figure 9.

The objective function must include various criterions of the classical objectives such as voltage deviation improve-
ment, load balancing, and the global active loss. In addition, attempts should be made to reduce the number of switching
maneuvers during the day. To satisfy all of the above objectives, a compound of these criterions would guarantee the aim

min

⟨
Ploss

Porig
loss

+ 1
N

N∑
i=1

Un − Ui

Un
+ 1

M

M∑
k=1

|Ik|
Imax

k
+

Nsub∑
𝑗=1, PG𝑗

−PPV𝑗 >0

(
PG𝑗

− PPV𝑗

)
+
∑Nl

m=1
I
(

xnew
m ≠ xold

m
)⟩

, (14)

where xm and xold
m respectively are the current and the previous indices of the switched-off branch in the loop m (I), which

is known as the indicator function.
The optimization problem described by (14) should be repeated every 15 minutes (96 samples every 24 hours). Based on

how the initial states of switches are selected, two cases could be analyzed. The first case considers the optimal configura-
tion of the network as discussed earlier and the second case considers the original configuration of the network. From the
results presented in Figures 10 to 12, one can clearly observe that the first choice leads to a minimum number of maneu-
vering of switches in 1 day, whereas the second case shows the importance of switching. Furthermore, Figure 13 shows
that the voltage drop for both cases is low (around 5%) and similarity exists between their voltage profiles. In addition,
Figures 14 and 15 depict similarity in power loss and current balancing profiles.
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FIGURE 10 Evolution of branches' state—loops #3, 4, 5, 12, and 13 do not change their
state (initialized by the optimal configuration for 94-node network)
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FIGURE 11 Evolution of branches' state—loops #4, 5, 6, and 13 do not change their state
(initialized by the original configuration for 94-node network)

0 2 4 6 8 10 12 14 16 18 20 22
Time (Hours)

0

5

10

B
ra

ch
es

' i
nd

ic
es

loop #1
loop #2
loop #3

loop #7
loop #8
loop #9

loop #10
loop #11
loop #12

FIGURE 12 The number of switches that change state in 1 day for 94-node network
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Figure 16 confirms that the supplied non–green power reaches its minimum value at midday, ie, when the PV produc-
tion is the highest. Moreover, the blue curves in Figures 13 to 16 represent the scenario without the green sources. These
Figures show that, at midday, the impact of the PVs is important. However, the losses are slightly lower because, in the
case “with DG,” the importance is given to the consumption of green energy than to the loss minimization.

The same analysis is conducted for an 880-node power system assuming that this network is subject to the same amount
of PVs penetration at nodes 1, 3, 4, 5 with a maximum power of 44.32 MW at 14 hours (02:00 pm). The results are presented
in Figures 17 to 23 and confirm the advantage of the green energy.
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FIGURE 13 Voltage drop variation in 1 day for 94-node network (w DG = with DG).
DG, distributed generation
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FIGURE 14 Network global loss in 1 day for 94-node network (w/o DG = without DG).
DG, distributed generation
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FIGURE 15 Current balancing over 1 day for 94-node network
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FIGURE 16 The supplied non–green power over 1 day for 94-node network
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FIGURE 17 Evolution of branches' state (initialized by the optimal configuration for 880-node
network)
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FIGURE 18 Evolution of branches' state (initialized by the original configuration for 880-node
network)
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FIGURE 19 The number of switches that change state in 1 day for 880-node network
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FIGURE 20 Voltage drop variation in 1 day for 880-node network
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FIGURE 21 Network global loss in 1 day for 880-node network
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FIGURE 22 Current balancing over 1 day for 880-node network
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FIGURE 23 The supplied non–green power over 1 day for 880-node network

The average number of switches (the maximum number of switches is 457) that change state or initialize is 11.20.
However, in general, the average number of switches without the initialization is 11.51.

5 CONCLUSION

The proposed CE algorithm is successfully applied to the problem of reconfiguration in DPSs. The results demonstrated
that the optimal state of line switches can be obtained within a few iterations with reasonable convergence time and the
computational complexity of this algorithm displays quadratic O(n2) characteristics.
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Furthermore, based on analysis of the results, the superiority of the proposed method is confirmed over its counterpart
heuristic and metaheuristic algorithms. It can even compete with direct mathematical methods, such as QP and MILP.
These findings are further reinforced when the proposed algorithm is applied to a DPS containing many distributed gen-
erators, such as PVs that provide power over a half day (daylight) or shorter period, and in addition, when the load and
the generation are varied.
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NOMENCLATURE

Y A finite set of N buses or nodes
B A finite set of M branches
G(Y, B) Axiomatic representation of a graph
Nl Number of the fundamental paths
Ωi The set of the branch indices belonging to the ith path
mi The number of branches in the ith path
indj,i The jth branch belonging to the ith path
Ω The state space
X = (x1, x2, … , xNl) ∈Ω The candidate solution
G(X) A performance/objective function
Rk and Ik Resistance and the current of the branch k
X* The global optima
𝛿* The minimum of G(·)
f (·, u), g(·, v) pdfs with a parameters u or v following a special family of pdf
I{·} The indicator function is equal to 1 if the logic expression {·} is true otherwise it is 0
D(·, ·) The Kullback-Leibler (cross-entropy) distance
Ef (·) The expectation of the function f (.)
W(·, u, w) Likelihood ratio between the two pdfs f (·, u) and f (·, w)
L The sample size
𝜀 The quantile ratio
𝜎 Degeneration error
NElite The size of the elite set Elite
t The iteration counter
pt

k,𝑗 the probability of the occurrence of the indk,j at the iteration t
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