IEEE Access

Multidisciplinary * Rapid Review * Open Access Joumal

Date of publication xxxx 00, 0000, date of current version xxxx 00, 0000.

Digital Object Identifier 10.1109/ACCESS.2017.DOI

A Survey on Urban Traffic Anomalies

Detection Algorithms

YOUCEF DJENOURI', ASMA BELHADI?, JERRY CHUN-WEI LIN® DJAMEL DJENOURI #

AND ALBERTO CANO®’

'Dept. of Computer Science, NTNU, Trondheim, Norway (e-mail:youcef.djenouri @ntnu.no)

ZRIMA, University of Science and Technology Houari Boumediene (USTHB), Algiers, Algeria (e-mail: abelhadi @usthb.dz)
3Department of Computing, Mathematics, and Physics, Western Norway University of Applied Sciences, Bergen, Norway, (email: jerrylin@ieee.org)

4CERIST Research Center, Algiers, Algeria (email: ddjenouri @acm.org)

3Dept. of Computer Science, Virginia Commonwealth University, Richmond, VA, USA, (*corresponding author, email: acano@vcu.edu)

Corresponding author: Alberto Cano (e-mail: acano@vcu.edu).

ABSTRACT This paper reviews the use of outlier detection approaches in urban traffic analysis. We divide
existing solutions into two main categories: flow outlier detection and trajectory outlier detection. The first
category groups solutions that detect flow outliers and includes statistical, similarity, and pattern mining
approaches. The second category contains solutions where the trajectory outliers are derived, including
offline processing for trajectory outliers and online processing for sub-trajectory outliers. Solutions in each
of these categories are described, illustrated, and discussed, and open perspectives and research trends are
drawn. Compared to state-of-the-art survey papers, the contribution of this paper lies in providing a deep
analysis of all the kinds of representations in urban traffic data, including flow values, segment flow values,
trajectories, and sub-trajectories. In this context, we can better understand the intuition, limitations, and
benefits of the existing outlier urban traffic detection algorithms. As a result, practitioners can receive some
guidance for selecting the most suitable methods for their particular case.

INDEX TERMS Urban traffic analysis, outlier detection, machine learning, data mining.

l. INTRODUCTION

ECENT advances in high-precision GPS technologies
Rand infrastructure have made our cities smarter. Urban
traffic analysis is one of the most attractive applications in
a smart city [1], [2]. One of the main applications of urban
traffic analysis lies in detecting anomalies from the traffic
data. A useful way of detecting anomalies in urban traffic
data is by utilizing outlier detection techniques. An outlier is
defined as an observation (or a set of observations) which
appears to be inconsistent with the remainder of that set
of data [3]. Outlier detection has been intensively studied
in recent decades [3]-[8], and an interesting recent survey
which reviews existing outlier detection methods can be
found in [9].

This paper presents a comprehensive overview of the
existing urban traffic outlier detection algorithms. We split
existing approaches into two main categories: flow outlier
detection and trajectory outlier detection. The first one aims
at detecting flow outliers, including statistical, similarity, and
pattern mining approaches. The second category aims at
detecting trajectory outliers and includes offline processing

VOLUME 4, 2016

for trajectory outliers and online processing for sub-
trajectory outliers. Solutions in each category are described,
illustrated, and discussed, and open perspectives and research
trends in this area are depicted. Compared to previous review
papers, this paper provides a deep analysis of all kinds of
urban traffic applications, including flow values, segment
flow values, trajectories, and sub-trajectories. This allows us
to clearly understand the merits and limitations of each urban
traffic outlier detection algorithm. Consequently, mature
solutions could be derived for intelligent transportation
engineering.

A. PREVIOUS REVIEW PAPERS

This section summarizes survey papers from the literature
that are relevant to this one, clarifies the differences, and
makes a position for the contribution of this paper. This
survey paper is composed of two main topics: outlier
detection algorithms and urban traffic data mining. In the
following section, we review some existing surveys of
these topics. Schubert et al. [10] introduced the locality
notion in identifying outliers. By defining the context and

IEEE Access

Y. Djenouri et al.: IEEE Access

model functions, this notion represents locality. The context
function outputs the set of reference objects that are relevant
to judging the outliers, and the model function is the
sequence of tasks applied to the reference objects aiming
to determine whether the given object is outlier or inlier. A
special case of locality has been shown on video temporal
streams data. Zheng [11] reviewed detecting outliers,
anomalous trajectories, sub-trajectories, finding noise points
in the whole set of trajectories, and the identification
of anomalous events in trajectories including accidents,
controls, protests, sports, celebrations, disasters, and other
events. Feng et al. [12] proposed a general framework
of trajectory data mining, including preprocessing, data
management, query processing, trajectory data mining tasks,
and privacy protection. They also discussed some existing
applications such as path discovery, location/destination
prediction, movement behavior analysis, group behavior
analysis, urban service, and making sense of trajectories.
Gupta et al. [13] provided an interesting survey that discussed
techniques for the detection of temporal outliers. This
survey organized a discussion about different types of data,
presented various outlier definitions, and discussed various
applications for which temporal outlier techniques have
been successfully employed (environmental sensor networks,
trajectory, biological, astronomy, and web data). Zheng et
al. [14] presented a general urban computing framework,
which was composed of four steps: urban sensing, urban data
management, data analytics, and service providing. i) Urban
sensing aims to capture people’s mobility using GPS sensors
or their mobile phone signals. ii) Urban data management
employs powerful indexing structures to store the spatio-
temporal information obtained in the first step. iii) Data
analytics are able to identify and extract useful patterns, such
as clusters and outliers. This step benefits from the indexing
structures done in the previous step. iv) The service providing
goal is to interpret the obtained information and send it
to the transportation authority for dispersing traffic and
diagnosing anomalies. Chen et al. [15] reviewed existing flow
outlier detection approaches, including the statistics-based
approach, the distance-based approach, and the density based
local outlier approach. Moreover, a comparative study was
performed using Nanjing urban traffic data by considering
two dimensions: travel time and traffic flow data. The
results revealed that classical outlier detection algorithms
were useful in detecting urban traffic flow outliers. Kiran
et al. [16] presented existing works dealing with trajectory
outliers in urban traffic data. They classified the existing
trajectory outlier detection approaches according to the
method used in the processing step. The approaches used
for classification were distance-based, density-based, and
motifs-based outliers. Djenouri et al. [17] sketched some
existing urban traffic flow outlier detection algorithms by
analyzing locality notion proposed in [10].

Compared to the existing surveys, ours is the first one
that does so comprehensively. All the other works have
been limited to only some categories of outlier detection

2

Urban Traffic Outlier Detection
Flow Outlier Detection Trajectory Outlier Detection
|
Pattern Offline
mining Processing

Online
Processing

MonaVTT iBOAT
o Causal Congested
Distance mteraction N Patterns | Biad TROAD
TPRO PN-Outlier
I i I TPRRO TN-Outlier
iBAT DB-TOD
DPIM msac K- BLOF a-or Fgrowtn.-cP g
KSNB MB-MSQC sW SOMLRF PM-STOD: STCTree. PBOTD TF-Outlier
RADT DSTF DM-TE OTD-UTF TODCSS
ClustivAT

Figure 1. Taxonomy of urban traffic outlier detection algorithms.

(statistical, similarity, or pattern mining), or even to some
category of urban traffic outliers (flows or trajectories).
Compared to those dealing with flow outliers, ours differs
by dealing with both flow values and segment flow values.
Compared to those dealing with trajectory outliers, ours
differs by dealing with both trajectories and sub-trajectories.

B. TAXONOMY AND PAPER ORGANIZATION

Figure 1 outlines the taxonomy of the urban traffic outlier
detection algorithms presented in this paper. They are
separated into two categories. Flow outlier detection aims to
identify outliers from urban flow data, including 1) statistical,
2) similarity, and 3) pattern mining methods. The second
category is trajectory outlier detection where clustering
and similarity approaches are used to derive outliers. This
includes trajectory outliers using offline processing and sub-
trajectory outliers using online processing. Based on this
taxonomy, the rest of the paper is organized as follows:
Section 2 defines the background and concepts used in the
paper. Section 3 presents approaches related to flow outlier
detection algorithms. Section 3.1 presents the statistical
approaches, Section 3.2 presents the similarity approaches,
Section 3.3 presents the pattern mining approaches, and
Section 3.4 gives an illustration of flow outlier detection
algorithms. In Section 4, we show the trajectory outlier
detection algorithms, and offline processing is presented in
Section 4.1, online processing presented in Section 4.2, and
Section 4.3 gives an illustration of trajectory outlier detection
algorithms. Section 5 discusses the merits and limitations of
the works presented in this paper. Section 6 concludes the
paper and points out a few future directions for research.

Il. PRELIMINARY
Before reviewing the existing approaches, we first introduce
some basic definitions in urban traffic analysis.

Definition 1 (Flow Values): Consider the set of flow values
F = {F\,F,,...,Fip|}, each F; contains the number of
objects captured in the time stamps [z, ..., + 1].

VOLUME 4, 2016

Y. Djenouri et al.: IEEE Access

IEEE Access

Definition 2 (Road Network): A road network is modeled
as a directed graph G = (V, E), where V refers to the
vertex set representing crossroads and E refers to the edge
set representing road segments. Each edge e} € E denotes a
road segment from vertex v; to v;.

Definition 3 (Segment Flow Values): We consider a segment
flow value S°¢ to represent the flow values between the site
o and the site d for a given time period. We also define the set
of all segment flow values S = {54 | V(o0,d) € V?}, where
V is the set of sites defined in Def. 2.

Definition 4 (Trajectory): A raw trajectory is a list of point
locations t = {p; — p2... — pp} with time stamps,
obtained by localization techniques such as GPS. n is the
number of sampled points in the trajectory. Each point p;
is composed by < x;,y;,ts; >, where x; is the longitude
position, y; is the latitude position, and ts; is the time stamp
that the trajectory ¢ attends to point p; for all i € [1,...,n].
We also note 7' = {ti,l,...,t7} as the set of all
trajectories captured in the given time period.

Definition 5 (Sub-Trajectory): Consider a trajectory ST =
{pi1 = piz... = pim} that is defined as sub-trajectory of ¢
in Def. 4, and denoted as s < ¢, where 1 <7 < ... <n.We
also note S = {s1,52,...,5|g|} as the set of all trajectories
captured in the given time period.

Definition 6 (Outlierness): Let D = {dy,ds, ... ,d|p| } be the
dataset of a given problem: (F for flow values, S for segment
flow values, T for trajectories, and ST for sub-trajectories).

Consider a score function, defined as follows:

Score: D — R (D)
d; — Score(d;). ()

The outlier and the inlier sets are defined as follows:

O = {d; |Vd; € I, Score(d;) > Score(d;)}
I=DJO.

Consider the flow values of Figure 2. This figure shows
the flow values of the Anderupvej location at the city of
Odense in Denmark on a Monday (17/04/2017). Each flow
was determined every 15 minutes. The flows marked by small
red circles are considered outliers.

lll. FLOW OUTLIER DETECTION ALGORITHMS

Figure 3 shows the overall framework of the existing
flow outlier detection algorithms. Flow outlier detection
algorithms are generally composed of four main steps: i)
Urban sensing and data acquisition: This first step aims to
capture the data related to urban traffic flow by deploying
sensors, GPS devices, and other IT infrastructures. ii) Data
collection: The captured data is then collected and organized
according to the application used (flow values or segment
flow values). iii) Outlier detection: The data collected are
then used to find outliers. Three main approaches have
been used to find outliers: statistical, similarity, and pattern

VOLUME 4, 2016

Monday
200
W
150 | l
=z
© 100
) \ ,
R W&AI V y\mnnﬂ/ M
0
AL R LN NN NN RN RN LR R RN LR R AR LA RN R LR LN AR LA LA AL AR
0:15 1:45 315 445 6:15 7:45 9:15 11:00 13:00 15:00 17:00 19:00 21:00 23:00
#time

Figure 2. Outlierness illustration in Odense, Denmark.

'lco

Urhan Sensing and Data Acquisition

) Q
@ Statistical Single flow outliers
Similarity
I Pattern Mining
Congested roads
Data Collection
O
U Interaction between
— road outliers
L Normal Qutliers
Flow values Segment flow
values
Outlier Detection Output

Figure 3. Flow outlier detection framework.

mining. iv) Output: Three kinds of outliers could be identified
by the existing flow outlier detection algorithms: single
flow outliers, congested roads, and interaction between road
outliers. This section reviews existing flow outliers detection
algorithms.

A. STATISTICAL APPROACHES

Statistical analysis models such as the Gaussian aggregation
model [18], principle component analysis [19], stochastic
gradient descent [20], and Dirichlet Process Mixture [21], are
based on the fact that in general, inlier flows follow some
statistical process represented by an alternative hypothesis
and the outlier flows deviate from this statistical mechanism
and respect to the null hypothesis. For detecting outliers in
large-scale urban traffic data, Ngan et al. [22] proposed a
Dirichlet Process Mixture Model (DPMM). The set of all
flow values F' = {f1, fa,..., fir|} is projected into a n-
dimensional space, where the i*" dimension is defined by the
flow values {f;,..., fitw}, where w is the window length
projection such as (1 < w < |F|and n = |F| + w).
The n dimensions are then entered in a Principal Component
Analysis (PCA) kernel to reduce and transform the traffic
data space into a two-dimensional (2D) (z,y) coordinate
plane. In this step, the covariance matrix among the variables
of the n dimensions is computed, and the Eigenvalues are
then determined and sorted from the highest to the lowest.
This provides the dimensions in the order of significance. The
two highest significance dimensions are considered while the
rest are ignored. The obtained flow vector represented by

3

IEEE Access

Y. Djenouri et al.: IEEE Access

the two dimensions is injected into the Dirichlet process to
detect flow outliers. Thus, the clusters are estimated using
G ~ DP(H, «), with a being the concentration parameters,
and H is the hypothesis base distribution defined by H =
{¢.ii}, ¢, and [i are the mixture density covariance and the
mixture weights of the data, respectively. The clusters with a
high number of flow values are considered as normal, and the
other clusters are labeled as outliers. Lam et al. [23] proposed
a Kernel Smoothing Naive Bayes (KSNB) approach to
automatically determine any errors as well as abnormal traffic
in data from Hong Kong. The authors assumed that inlier flow
values followed a kernel smooth distribution. The KSNB
model automatically determines regions formed by kernel
distributions and then considers them as inliers. In contrast,
any flow value outside of those regions is considered to be an
outlier. The kernel estimator for the set of flow values F’ is
defined as (I} K(F — Fy), with K (F) = o e=055",
Kingan et al. [24] presented a Regression model for Average
Daily Traffic (RADT). A set of flows F' represented by
annual average daily traffic was constructed. The best-fit-
least-squares line through the set of flows F, and during

the time 7', was given as F = m1 + b, where m =

ZLZ;(ETT)(FFF) and b = F — mT, where I and T are
> ioi (Ti=T) .

the average of the flows (E"ﬁ;‘ Fi) and the average of the

time (ZLill e), respectively. The standard deviation was then

12

computed by sd = \/Zli‘l(ﬁ’ — F)2. The score of each

flow value F; was determined by the function Score(F;) =

\/[F — (F/F)|*T*T[F — F}]. If the score of F; is greater
than 1, then it is considered an outlier, otherwise, it is
considered a normal flow value.

Turochy et al. [25] proposed a Multivariate Statistical
Quality Control (MSQC) approach for traffic congestion
outlier detection. This approach took other traffic variables
that contributed to the congested case, such as the average
speed, and the occupancy rate, instead of using a single
variable represented by the flow values. For more details
about how to compute these variables, we refer the
readers to [26]. The historical traffic flows T are fitted
to the F-distribution |7 7|—p(), where p is the number
of variables (in this case is set to 3), and « is the
confidence significance level. When the new observation
flows & = {Z fiow; Tspeed; Toccupancy } are detected, T' with
the corresponding x are projected to the F-distribution with
the « value. If the alternative hypothesis is accepted then
x is considered as normal flow, otherwise, the score of x
is computed as: Score(z) = (z — z)TS~1(z — &) where
S is the covariance matrix defined by (z — z)(z — z).
If the score is greater than the cutoff threshold, then z is
considered to be an outlier, otherwise, it is a normal flow.
Park et al. [27] proposed a Multiple Blocks on Multivariate
Statistical Quality Control (MB-MSQC) approach to deal
with the variability problem of flow during the hours of
the day. For example, in almost all urban cities, there is

4

an increase in traffic between 6:00 to 9:00 and 16:00 to
19:00. Thus, the set of flow values is grouped into five
distinct blocks: (B7: 00:00 to 6:00, By: 6:00 to 9:00, Bs:
9:00 to 16:00, By: 16:00 to 19:00, and Bs: 19:00 to 00:00).
Afterwards, the MSQC proposed in [25] is independently
applied on each block of flows. This algorithm has been
tested on traffic data from San Antonio and Austin, USA.
According to the authors, the results revealed the superiority
of MB-MSQC compared to MSQC in terms of precision.

B. SIMILARITY APPROACHES

The approaches in this section use distance measures and
neighborhood computation methods to find outliers [3], [4].
In general, the inlier flows produce dense regions whereas the
outlier flows have less dense neighborhoods. Dang et al. [28]
proposed a kNN-based approach for flow outlier detection
named kNN-F. It adapts the kNN outlier algorithm presented
in [3]. As input, it has the set of flows, the number of
neighborhoods &, and the € threshold. It also uses an internal
data structure represented by a vector dist to store the
distance values. First, the distance between each two pairs of
flow values is determined. The distance value between each
flow f; and its k" nearest neighbor is then selected. If this
value exceeds the e threshold, then f; will be considered to be
an outlier, otherwise, it will be considered an inlier. The same
authors proposed density-based bounded LOF (BLOF) [29].
This is an adapted version of the LOF algorithm [4]. It has as
input the set of flow values and the number of neighbors k.
It also uses an internal data structure represented by a vector
kNN to store the k nearest neighbors of each flow value f;.
First, the local reachability density (Ird) of each f; (see Eq. 3)
is calculated. Second, the k nearest neighbor of f; is given
and stored in the kNN vector. Then, the sum of all /rd of all
neighbors of f; over the Ird of f; is calculated. The LOF value
is determined using Eq. 4. If this value exceeds 1, then f; is
considered an outlier, otherwise, it is considered an inlier.

> reachy(p,o)
0€kNN
Ird(p) = 1/ (S

Note that reachy(p, 0) = max{d(p,o0),dx(0)}, d(p,0) is
the distance between the flow values p and o and di (o) is the
distance between the flow value o and its k nearest neighbor.

) 3

LOFy(p) = % x Y

lr
0€kKNN (p)

lrdy (o)
di(p)

“

Munoz-Organero et al. [30] proposed a distance-based
algorithm called Center of Sliding Window (CSW) to
detect abnormal driving locations caused by a particular
traffic conditions such as traffic lights, street crossings, or
roundabouts. The aim was to filter outlier driving points
related to random traffic conditions such as traffic jams from
infrastructural road elements. The sliding windows of n flow
vectors with their speed and acceleration are created, and
the center flow vector fi in each sliding window sw; is

VOLUME 4, 2016

Y. Djenouri et al.: IEEE Access

IEEE Access

considered as reference flow. The Mahalanobis distance is
used to compute the similarity between the j flow vector f
and the center flow vector fl for the sliding window sw; as
d(f1.F) =\/(f] = T Cov1(f2,) where Cou(f],)
is the covariance matrix of the vectors fij and f;. Single
flows are captured each second for 20 seconds. Then, dense
flows with high similarity values are considered inliers and
the others are detected as outliers. Shi et al. [31] proposed
a dynamic spatio-temporal approach called Dynamic Spatial
and Temporal Flows (DSTF) to detect local anomalies
in spatio-temporal flow data. The flows are captured by
considering the direction flows of the set of segment roads
S. Each road segment s; is denoted by (v}, v2,1;), where v}
is the starting point of s;, v? is the ending point of s;, and
l; is the length of s;. The spatial neighbors of s;, denoted
as SN(s;) are deducted as SN(s;) = {s;[v; = wvj}.
The dynamic neighborhood structure is then designed by
computing the similarity between the spatio-temporal flows
of each road segment s; and each element s; on its spatial
neighbors SN; by:

lavg; — avg;| |avg; — avg;| > €
{ € Otherwise

where avg; is the average unit journey flow of vehicles

through the road segment s; and e is the similarity threshold.

The kNN outlier is then used to detect segment road outliers,

where k here represents the cardinality of each spatial

neighborhood set SN (s;).

Cheng et al. [32] presented a Self-Organizing Map for
Road Flows (SOM-RF). The flows of each road data from
Bejing City were collected and transformed to a time series.
The Self-Organizing Map (SOM) algorithm [33] is then used
to cluster road flows into groups. The weights in the input
layer of the map are initialized with regards to the input
pattern X, where each x; represents the time series of the
it" road flow. The distance between the input patterns X
and the weight w; is determined as d; = ||z — w;|| =

\/ S (2 —wi;)®. At each step of the algorithm, the
winner with the minimum distance is selected and considered
an inlier. Afterwards, the weights connecting the input layer
to the winning node and its neighborhoods are updated for
the next iteration ¢+/ according to the following learning
rule, w;;(t + 1) = w;;(t) + a(t)[z; — ws(t)]. a(t) is the
neighborhood size decreased with the iteration algorithm ¢.
This process is repeated until weights have stabilized. All
winning nodes are considered inliers, and the others are
outliers.

C. PATTERN MINING APPROACHES

The aim of pattern mining approaches such as Apriori [34]
and FP-growth [35] are to analyze the flow values. Other
useful data structures are extracted in the pre-processing step,
such as the flow segment, the segment-route matrix, traffic
volumes, jams, and incidents. The aim is to extract relevant
patterns form these different urban traffic data variables.

VOLUME 4, 2016

The process starts by transforming the urban traffic database
into a transactional database T° = {t1,t2,...,%,}, and
the possible urban traffic variables into the set of items
I ={iy,42,...,%m}. Apattern P is a subset of I and it is said
to be of size k if it contains k items. The relevance of a given
pattern is calculated using different measures: support [34],
and interestingness [36]. The support of a pattern P is the
ratio between the number of transactions containing P and
the number of all transactions | 7’| without a loss of generality.
The frequent pattern mining-based problem consists of
extracting all frequent patterns from 7', i.e, enumerating all
patterns having a support that is no less than a user-defined
mansup threshold. The discovered patterns are then used to
find anomalies such causal interaction, congested patterns,
hot spot detection, and so on. In the following, we present the
most relevant works of urban traffic outlier detection using
the pattern mining process, including two real applications:
causal interaction and congested pattern.

Liu et al. [37] introduced the problem of causal interaction
in urban traffic data, i.e., the discovery of relationships
among the detected outliers. The authors proposed a new
algorithm called Causal Interaction in Outlier Flows (CI-
OF). Flow segments are first created from the urban traffic
database. Each segment that relates the site origin o and
the site destination d edlt time Wind((i)w w; 1is represented
by < Sg’d,sl = SZi*,SQ = :Zd

7 7 A %

d
>. S represents

the flow value between the site o and the site d at
time window w;. S; is the sum of all flow values
at window w; by considering the site o as the origin.
St 4 is the sum of all flow values at window w; by
considering the site d as the destination. The distortion
function is then computed between all segment flows in
all time windows w = {wy,ws,...,w,} to find temporal
outliers for two sites o, and d as Distort(o,d, w;,w;) =

(52T =802 4 (s — 1) 4 (52 — s2)2. The score of

J J
the flow segment is determined as Score(o,d,w) =

Z:'L:l Z?,:Lj#i(Distort(o,;dr;;u;,wj) nwn)’ where min —
min{Distort(o,d, w;,w;) |t =[1,...,n],7 =[1,...,n]}
and max = maz{Distort(o,d,w;,w;) |t =[1,...,n],j =
[1,...,n]}. Segment (0,d) is considered an outlier if the
score is greater than a given threshold. Afterwards, the
outlier trees are built, where each tree contains flow segments
from top k outliers for different time windows. For a given
tree, a node = is a child of node y if and only if the
segment (z,y) belongs to the top k outliers. Association
rule mining is then applied to find frequent sub-structures
from the forest of the outlier trees. Each tree is considered
to be one transaction, where the nodes of the trees are
considered items. The association rules discovered represent
the different causal interactions between the extreme sites.
Pang et al. [38] developed the Pattern Mining for Spatio-
Temporal Outlier Detection (PM-STOD) approach. In this
method, the city is partitioned into grids and the number
of taxis is recorded for each grid cell by using the GPS
device. The Likelihood Ratio Test (LRT) [39] is used to

5

IEEE Access

Y. Djenouri et al.: IEEE Access

identify outlier regions, where each region is composed of
the adjacent grid cells. Afterwards, a pattern mining approach
is proposed to study the interaction between the outlier
regions. Regarding the patterns discovered from the outlier
regions, two kinds of outliers can be identified: emerging
outliers and persistent outliers. The flow value of each grid
cell in the emerging region outliers is greater than the flow
values of all neighborhood regions. However, the flow value
of each grid cell in the persistent region outliers is higher
than the flow values of the remaining regions. The flow
values of the persistent outlier regions are increased over
time and an upper bounding strategy for both outliers are
derived. According to the authors, using Beijing taxi data,
PM-STOD was able to detect regions with emerging and
persistent outliers. Chawla et al. [40] suggested DM-TF, a
data mining-based approach to detect anomalous behaviors
from the traffic flow. This approach focuses on analyzing
traffic between regions, rather than the entire flows. It builds
two matrices. The first one is a segment-route matrix A(m x
r) with m segment flow and r routes. Each entry A; ; is equal
to 1 if the segment flow ¢ is across the route j, otherwise,
it is 0. It then builds matrix segment flow noted L(m x n),
where each row L; represents the segment flow values of each
segment ¢ during a time window w = {w,wa,...,wy,}.
Patterns describing routes that have caused anomalies are
extracted by applying the pattern mining approach presented
in [41] on the two matrices A and L. This approach has been
tested on a real world Beijing transportation dataset. The
results revealed that this strategy reduces the computational
cost of the causal interaction model. In addition, it can
identify the most important routes that cause abnormal traffic.
To understand the traffic congestion in urban cities, Inoue
et al. [42] presented an FP-growth for Congested Patterns
(FP-growth-CP) algorithm for discovering frequent patterns.
The traffic data is considered to be a transactional database,
where each row traffic data represents one transaction, and
each variable flow, such as flow values, speed, and densities,
represents one item. The state of the congestion (true or
false) is also added to each row in the transactional database.
Afterwards, the FP-growth algorithm is adopted by extracting
only the closed frequent patterns that efficiently represent
the transactional database. The aggregation function is also
used to extract only the association patterns with only the
congestion state as a consequence part. This algorithm has
been tested on traffic data from Okiwara, Japan. The results
indicated that higher dependencies exist between speed-
density and speed-flow variables and the congested state
value. The results also revealed that by using the aggregation
function and the closed property, only relevant patterns could
be discovered with reduced computational time. Nguyen et
al. [43] proposed an STCTree algorithm inspired by frequent
pattern mining to predict frequent spatio-temporal congested
sites and causal relationships among them from traffic data
streams. In this algorithm, an efficient tree structure is
employed that is permitted to deal with a large traffic network
with respect to the data stream processing constraint. The

6

algorithm starts by building a forest of congested sites where
each tree in the forest is presented by a list of connected
congested sites. If the congestion time of s; succeeds the
congestion time of sy then the site sy is a child of the
site so. It should be noted that the given site is considered
to be congested if the flow values in this site are greater
than a user’s threshold for a specified time. Afterwards, the
sites on each tree are considered as an item sets, and the
Apriori algorithm is then applied to determine frequently
congested sites. The i transaction is represented by the i
tree, and the items of this transaction are the congested sites
that belong to the associated tree. The frequently congested
sites that are discovered of all trees are used to determine
the frequent trees of the congested site. Thus, two trees are
combined if there are frequently congested sites belonging
to both trees. This process is repeated until no possible
combinations can be made. In the end, two possible patterns
are identified: i) The set of frequently congested sites in the
urban network traffic, and ii) the set of all the frequent trees
of congested sites captured in the successive time period.

D. ILLUSTRATIVE EXAMPLE

Time |1 2 3 4 5 6 7 8 9 10
Flow |2 25 28 30 25 31 32 102 |2 33
Flow | f, f, f; f, fs fs f; fs fq 1o
kNN | {fs 5} | {fs fa} | {fy fa} | {fs T} | {fy, fa} | {fs £} [{fs fu} | {fio 7} |{fufa} | {fef}

Flow f1 fa fy fa fs |fs f; fs |fo fio
kNN Distance 23 3 2 2 3 1 2 70 |23 |2
Outliers(£=5) Yes |No [No |No |No |[No [No |Yes |Yes |No

(a) KNN-F illustration

s =2 l L a ‘3""2 E 9—3—W.‘:b 25y
N N A VAR
X Y B

L | |

a —> b a o abcd
. IN
a —>c j\ . Transactional
g form
b —> d b c ‘1’
g ‘ .
Segment Outliers Tree, Tree, Frequent segment

outliers
(b) CI-OF illustration

Figure 4. Flow outlier detection illustration.

In this section, we show how the flow outlier detection
algorithms work. Two algorithms in particular will be
illustrated. The first one is kKNN-F [28], which focuses on

VOLUME 4, 2016

Y. Djenouri et al.: IEEE Access

IEEE Access

single flow outliers. The second one is CI-OF [37], which
focuses on the interaction between road outliers. Starting
with kNN-F, shown by Figure 4(a), the k neighbors (k
is set to 2) of each flow are returned by computing the
Euclidean distance between the given flow and all the
remaining flows. The score of each flow is its distance with
the k" neighbor. Finally, the flow outliers are returned by
setting the € threshold to 5. The flows outliers are {f; =
23, fs = 70, andfg = 23}. Concerning the second algorithm
(CI-OF), as illustrated by Figure 4(b), the algorithm starts
by constructing the segment flows during different time
windows W (the window size is set to 3). The score of
each segment flow is computed and only the segment flow
outliers are returned: a— > b, a— > ¢, b— > d, and
b— > g. Two trees are built from these outliers, and the first
tree propagates the segment flow outliers initially started in
node a. The second tree propagates the segment flow outliers
initially started in the node b. From these two trees, frequent
pattern mining is performed to extract the frequent segment
outliers by considering the minimum support, set to 100%.
The resulted frequent patterns are {ab}. That means segment
a— > b causes the other segment flow outliers. Thus, if we
are to analyze the flows in the road network illustrated by
Figure 4(b), we first have to analyze the flows between nodes
a and b.

IV. TRAJECTORY OUTLIER DETECTION ALGORITHMS

Road Network Trajectories

[=i Offe '. P— Trajectory Outliers

' / Clustering, Distance, Densitiy
\ Wapping l

Function
oA Sub-trajectories Outliers

Normal Outliers e — /y
Onfine { Pracassing :

—

Mapped Trajecroties

Preprocessing Output

‘ Outlier Detection

Figure 5. Trajectory outlier detection framework.

Figure 5 presents the overall framework of the existing
trajectory outlier detection algorithms. Generally, the
trajectory outlier detection algorithms are decomposed into
three main steps: i) Preprocessing: Preprocessing is aimed at
collecting the trajectories database and information related to
the road network of the urban city. The mapping function
allows generation of the mapped trajectory database. ii)
Outlier detection: The mapped trajectory database is entered
to the outlier detection algorithms, including clustering,
density, and distance approaches, to find trajectory outliers.
iii) Output visualization: After finding outliers, visualizing
tools are needed to show the trajectory outliers to the user.

VOLUME 4, 2016

In this context, two kinds of outliers are discovered. Only
the trajectory outliers could be detected by applying offline
processing. However, by applying online processing, the sub-
trajectory that caused outlierness may be identified. In this
section, both offline and online approaches will be reviewed.

A. OFFLINE PROCESSING

Zhang et al. [44] proposed a graph-based method, called
MoNav-TT, for detecting two levels of taxi trip outliers in
a large scale urban traffic network using NAVTEQ street
map and the MoNav algorithm [45], that implements an
efficient Contraction Hierarchy based on the shortest path
computation algorithm and a spatial join algorithm to snap
pickup and drop-off locations. Given a taxi trip database T,
each row in the database represents one taxi trip that contains
the following features: pickup location, pickup time, drop-off
location, drop off time, and the recorded distance of the trip
by the taxi driver. We also arrange a street network, called S,
with N nodes and M edges. The method follows two stages:
The first stage matches both the pickup and drop-off locations
of each trip to their nearest street segments by computing the
similarity between the trip features (the pickup and drop-off
locations) and the street network S. The taxi is considered a
Level I outlier if the distance value is greater than distance
threshold D. The remaining trips are assigned to the node in
the closer pickup or drop-off node in the street network S. The
second stage computes the shortest paths using the MoNav
algorithm for each unique pickup up and drop-off node pair.
The computed shortest path distances are then compared with
the recorded distances. If the computed distances are greater
than W times longer than the recorded distances, then the trip
is marked as Level II outlier. The algorithm has been tested
on 166 million taxi trips in New York City (NYC). By setting
D=200 feet and W=2 in MoNav-TT, among the 166 million
taxi trip records, approximately 2.5 million (1.5%) pickup or
drop-off locations could not be matched to a street segment
of the NAVTEQ street map dataset and were identified as
Level I outliers. While the majority of these outliers could
be induced by GPS device errors, some of them may be
associated with the incompleteness of street networks, e.g.,
picking up and dropping off at private land parcels. Similarly,
18,000 were identified as Level II outliers.

Kong et al. [46] proposed a long-term traffic anomaly
detection (LoTAD) approach. This method consists of the
following steps: i) TS-segments Creation: The aim of this
step is to create the TS-segments database from both the
bus trajectory and the bus station line databases. Each bus
line bl is represented by a matrix M k where each element
aﬁ ; is a couple (7, j,y; ;) that denotes the average velocity
and average stop time, respectively, at road segment T'S;
during the time slot ¢; belonging to [j6, (j + 1)60], where
0 is the duration of each time slot (f is fixed to one hour

by the authors). The average velocity x; ; is calculated by
irers, (Wixtr.a) . . .
Tij = ——— g tr is all the trajectories that

belong to the same TS-segment. tr.x is the velocity of the

7

IEEE Access

Y. Djenouri et al.: IEEE Access

trajectory tr. W; is the weight coefficient assigned to the
road segment 7°S;. This weight represents the importance
of the road segment 7'S; in the set of all road segments
(for instance, it represents the number of buses that cross
the road segment T'S;). |T'S;| is the number of trajectories
that belong to the road segment 7T'S;. The average stop time

= (Zpet,,.p.ts)
y;; is calculated by y; ; = == 1l

75 . [tr| is the
number of points in the trajectory tr. p.ts is the stop time
in the point p. ii) Anomaly Index Computation: In this step,
the Anomaly Index (AI) of the road segments is derived.

The density of each road segment 7'S; is first computed by

d; 1
density; = Zl#’k# e_(%)z. It should be noted that d; j,
is the Manhattan distance [47] between the road segments
TSy and T'S). d; is the Manhattan distance between the road
segment 7'S; and all the remaining road segments. The LOF
algorithm is then applied by computing the /rd and LOF
values of each road segment based on the density values
determined above. Instead of classical LOF that fixes 1 as
the anomalies threshold, here, the threshold is fixed by the
average of the sum of all densities of all road segments. In the
end of this step, the set of anomaly road segments is obtained.
iii) Traffic Anomaly Regions: In this step, the regions are
first extracted by applying the k-means algorithm [48] on the
bus station line database, where each cluster is considered a
region. Based on the previous step, the anomaly score of each
region is determined as Score(r;) =) e, LOF(TS).
The scores obtained are sorted in descending order, and the
top n regions having high scores are considered as outliers,
where n is the user parameter.

Zhu et al. [49] proposed Time-dependent Popular Routes
based trajectory Outlier detection (TPRO). It finds time-
dependent outliers by using the popular routes for each time
interval. The popular routes are first retrieved, where each
popular route r; has a weight w;; that represents its popularity
during the given time interval 5t = [t, t + 1]. The trajectories
dataset X is then divided into groups G = {G1, Gs, ..., Gk},
where each group contains trajectories having the same
source and destination points in the given time interval
6t. Formally, we obtain that: V(¥;,%;) € X2, (P{.S; =
PfSl) N (Pisl1 = Plisly) A\ ((‘Pli Tll — Ple) S (St) AN
((PIJ] .TlJ—Plj.Tl) € 0t) = Gy, = Gy, ¥; is atime-ordered
sequence of road network locations (Pf, P3, ..., P}), such
that [; represents the number of locations of the trajectory
Sigma;, and each location P is represented by (S,7T). S
is a spatial coordinate and 7" is the sampling time. Gy,
is the group ID of the trajectory ¥;. The representative
trajectory, noted G; of the i*" group G;, is then compared
with the top [popular roads noted R = {rqy,re,...,r}
using the edit distance during the interval time Jt as
Score(G, R) = 22:1 wﬁxedif(Gi: ;). edit(@i,_rj,n) =
min{edit(G;,rj,n—1}+MC(G;,rj,n,0), MC(G;,r;,n)
is the mapping cost of the point P! in the trajectory G; to the
point P’ in the road r;. If the score of the representative
trajectory G is greater than 6 threshold, than all trajectories

8

of the cluster G; are considered outliers. An improved
version of TPRO, Time-dependent Popular Routes based
Real-time trajectory Outlier detection (TPRRO) is proposed
in [50]. The aim of the TPRRO is to detect outlier trajectories
from new trajectories set X"¢“. It employs efficient data
structures called Time-dependent Transfer Index (TTI) to
record which trajectory has passed through which location at
which time. It maps each new trajectory »7““ on the grid-
partitioned road network. It builds a B-tree like structure
called transfer B-tree in each grid. Transfer B-tree records
which trajectory has passed through this grid at which
time period. TPRRO is able to map in real time the new
trajectories on the grid of road network using TTI. Instead of
computing the similarities between the top k popular routes
as in TPRO algorithm, only the similarity between each X7***
and the top [popular grids of the road network are calculated
to determine the score of X7 using the same score function
as TPRO.

Zhang et al. [51] proposed the Isolation-Based Anomalous
Trajectory (iBAT) algorithm. It is composed of two
main steps: pre-processing and anomaly detection. i) Pre-
processing step: It first constructs the taxi trajectories
from GPS traces, divides the city map into grid-cells
of equal sizes, and groups all trajectories crossing the
same source-destination cell-pair, where each trajectory is
represented by the set of sequences of traversed cells;
Then it builds frequently traversed cells using an inverted
index mechanism [52]. ii) Anomaly detection step: Instead
of using a distance or density measure, the “few and
different” properties of anomalous trajectories are exploited.
By exploring different locations or same locations with
different orders, anomalous trajectories are few in number
and different from the majority. The idea is to attempt to
find a separate way for anomalous trajectories from the
rest of “many and similar” trajectories by applying the
adapted Isolation Forest (iForest) [53]. A random tree is
generated by dividing the trajectories until almost all of them
are isolated. This generation produces a shorter path for
anomalous trajectories which are isolated faster than normal
trajectories isolated in a longer path. The outlijstr score of each
trajectory ¢ is computed as Score(t) = 27 =™, where N is
the number of cells used for isolating ¢, and ¢(N) represents
the path length of unsuccessful searches in a binary search
tree and it is computed as C'(N) = 2H(N—-1)—2(N—-1)/N.
Note that H (7) is the harmonic number that can be estimated
as In(i) + 0.57727566 (Euler’s constant).

Zhongjian et al. [54] proposed a Prototype Based Outlier
Detection (PBOTD) approach with the aim of understanding
the historical trajectory database for identifying outlier taxi
trajectories. The set of routes R is first grouped using
the medoids algorithm [55]. Choosing medoids instead of
k-means is due to the difficulty of computing the mean
trajectories. The k initial centers are determined using the
selection function S, such as S(r;) = 2@1 %,
where d(r;,7;) is the edit distance between two routes ;

VOLUME 4, 2016

Y. Djenouri et al.: IEEE Access

IEEE Access

and r; [56]. The top k routes that minimize the function
S are considered as initial centers of the clusters. As in
medoids, the routes are assigned to the nearest center and
the sum of distances is calculated from all routes of the
same cluster to update the center of each cluster by the
route having a minimum value. This process is repeated
until the sum of distances from all routes to their centers
does not change. After the clustering step, the set of the
centers of the clusters are considered as Representative
Routes: RR = {ry,rz,...,r}. For each new trajectory ¢,
its score is computed based on routes in RR as Score(t) =
min{d(r;, t)|r; € RR}. d(r;,t) is the edit distance between
route ; and the trajectory ¢. If the score of ¢ is greater than
a similarity threshold, then the trajectory ¢ is an outlier,
otherwise, it is considered a normal trajectory.

Zhou et al. [57] proposed Outlier Trajectory Detection
approach for identifying Unmetered Taxi Frauds (OTD-
UTF). A taximeter database is collected where each record
is a tuple < id, st, et >. id is the TaxilD, st is the start time
of the metered trip, and et is the end time of the metered trip.
The trajectory database is matched to identify whether each
point in the trajectories database is a metered or unmetered
point. Thus, a point pg- of the trajectory t; is metered if there
is an entry in the taximeter database where id = 7 and
time(p}) € [st,et]. A trajectory t; is a fraud trajectory if
and only if for each point p} € ¢; is an unmetered point.
The process starts by finding the trajectory outliers using a
stochastic gradient model [58]. From the trajectory outliers,
the fraud trajectories are identified by matching each point in
the trajectory outlier with the taximeter database. OTD-UTF
has been tested on real big databases including 154 million
taxi records from a large city in China. The results revealed
that the trajectory frauds are due to huge demands of taxis
in congested areas, where taxis could be bringing more than
one passenger for the same trip.

Kumar et al. [59] developed the Clustering for Improved
Visual Assessment Tendency (ClustiVAT) approach to detect
trajectory outliers. The clustering of trajectories is performed
using the iVAT algorithm [60] by proposing a two-stage
clustering procedure. The first step uses a non-directional
similarity measure to group the trajectories according to
which trajectories follow similar paths but have opposite
starting and/or ending points, and assigned them to the
same group. The second step uses directional similarity for
each cluster generated to separate the trajectories going in
opposite directions. From the clusters of trajectories, the set
of trajectory outliers are obtained by identifying trajectories
that are too far from other trajectories in the same cluster,
or by identifying clusters that have too few a number of
trajectories.

B. ONLINE PROCESSING

Chen et al. [61] proposed Isolation-Based Online Anomalous
Trajectory (iBOAT) algorithm. This algorithm aims to find
anomalous taxi sub-trajectories in real time. It is used to
automatically detect fraud implications by rapacious taxi

VOLUME 4, 2016

drivers who take unnecessary detours during trips. When
the outlier sub-trajectory is determined, the notification of
possible fraud can be suggested, even if the taxi is still in use.
iBOAT is divided into two main steps: i) Preprocessing: The
city area is broken down by a function noted \ : R? — G,
that maps real locations (z,y) to matrix grid cells G (the
grid cells size that gives the best accuracy is chosen in the
experiment and set to “250 meter * 250 meter”). The set
of the historical trajectories T are grouped according to the
source-destination pairs and the time of the occurrences, and
then mapped to 7", where ¢, = A(t;) foralli € [1,...,|T].
ii) Processing: When the new trajectory arrives, the points
on the sub-trajectories that cause the outlierness are detected
by using theadaptive working window strategy. For each new
grid cell point g; in the new trajectory t,., the support
of the sub-trajectory < g¢o,9g1,...,9; > is computed by

HTstp 020l quch as H(T,t) = {t, € T|Vi,j €

(L, [t Tegy) > Le(9i) = T (95) > Lo (90)}- Te(gi) i
the index of the grid cell point g; in the trajectory ¢. If its value
is less than the threshold 6, then grid cell point g; is added to
the set of anomalous grid cell points O, otherwise, the set of
historical trajectories used to process t,,,, is pruned for the
next grid cell point g; 11 by T;11 = H(T;, < go, 915+ -, Gi >
). This process is repeated until all the points of .., are
processed. In the end, the outlier score of ¢,.,, is computed
by score(tnew, O) = legll Support(T;, < go, g1, .-, Gi >
) + Z[S'{l distance(g;, gi+1), where Support(T,t) =
[H(T,t)]

T -

Lee et al. [62] proposed TRAjectory Outlier Detection
(TRAOD). It deals with the angular the sub-trajectory outlier
detection problem, where the direction of anomalous sub-
trajectories differ from those of neighboring sub-trajectories.
The whole process of the algorithm exploits the partition
and detect strategy. Each trajectory t;, in the set of all
trajectories 7', is partitioned into different line segments
noted t-partitions, where P(t;) is the set of all t-partitions
of the trajectory t;. In this step, a base unit approach is
applied, where the partitions are defined as the smallest
meaningful unit of a trajectory in a given application. After
determining the partitions of each trajectory, the detection
step is performed by computing the adjusting coefficient
(notated as adj) of each t-pagtition Lt of the trajectory t;
as adj(Lt) = (Z“::::Z;;(%{)))/m where density(L}) =
| Uy, {Ly|distance(Ly, L},) < radius}|, for a radius user*s
threshold. If this value is greater than 1, the t-partition is
considered an outlier, otherwise, it is a normal t-partition.
Note that if the density of the given t-partition is equal to
0, it is considered an outlier without computing the adjusting
coefficient value. The particularity of this algorithm consists
in the distance computation between two t-partitions. The
projection and the angular dimensions are incorporated. The
starting points and the ending points are si, s2 e1, and es
of the two t-partitions L, and Lo. Consider that and y
are the projection points of the starting point s; and gi Ignto

— a

L. The distance is given as Distance(L1, L2) = “ 33~ +

9

IEEE Access

Y. Djenouri et al.: IEEE Access

min{a,b} + ¢ * Sin(0). ais ||z — s1]], bis ||y — e1]], ¢ is

between L1 and Lo.

Yu et al. [63] developed Point-Neighbor based Trajectory
Outlier (PN-Outlier). The aim is to find sub-trajectories
outliers during a time window. It is based on point-neighbors
principle, where the sub-trajectory neighbor set for each sub-
trajectory is computed using the point neighbors set of each
point in this sub-trajectory. First, the neighbor set N ;, of each
point p%, belongs to the trajectory ¢; for a given threshold
r, and is computed as N} = {p}|distance(p},p}) < r}.
Afterwards, the score of each sub-trajectory ¢; is given by
Score(t;) = [{p|INj| > k}|. k is the neighbor points count
threshold. If this score exceeds the 6 threshold, then ¢; is an
inlier, otherwise, it is an outlier.

Yu et al. [64] developed Trajectory-Neighbor based
Trajectory Outlier (TN-Outlier). The aim is to find the sub-
trajectories outliers during a time window W. It is based
on trajectory-neighbors principle, where the sub-trajectory
neighbors set for each sub-trajectory is determined. First,
the neighbor function is defined between the j** point of
t; and t; for a given threshold r as Nezghbor(p],pj) =
1 if distance(p}, pj) < r, 0, otherwise. Afterwards, the
score of each sub-trajectory ¢; is given by Score(t;) =
1{t;] S50, Neighbor(pt, pl) > k}|. k is the neighbor sub-
trajectories count threshold. If this score exceeds € threshold,
then ¢; is an inlier, otherwise, it is an outlier.

Wu et al. [65] presented the Driving Behavior-based
Trajectory Outlier Detection (DB-TOD) approach. The set
of historical trajectories is first matched to the road network
of the city according to the source and destination points.
The probabilistic learning model described by the maximum
entropy inverse reinforcement [66] is then used to transform
the mapped trajectories into historical action trajectories.
Thus, each road segment is regarded as a state, the different
road decisions such as turning left, turning right, on moving
straight forward are regarded as actions, and the drivers
are considered agents. Afterwards, the learning model is
launched to estimate the cost of historical trajectories
cost(r;) = O f.,, where f,, = > ., fa. The aim is to
learn the ©7 and f, variables. For a new sub-trajectory t,
the probability P(t) is computed based on the set of action
historical trajectories T' as P(t) = /mp ;;Z’Stgii - I
the probability value is greater than a i)f?)i;ablhty threshold
then it is an outlier, otherwise, it is a normal sub-trajectory.

Mao et al. [67] proposed the Trajectory Fragment Outlier
(TF-Outlier) method with the goal of determining the sub-
trajectory outlier in a streaming way. In this approach, the set
of trajectory fragments are derived. Each fragment ¢ f ¢ of the
trajectory ¢; =< pi, p5, ... > is composed by a line segment
of two consecutive points (p},p’ ;). The LOF algorithm
is used to determine the fragment outliers, where the local
difference density is used rather than the local reachability

; . N IN(tf)]
density as: ldd(f}) = th*eN(tmdisgame(tf;’tf;),
J,

tf; is the fragment neighbor of tf?, and distance(tf;, tf;)

where

10

is the distance between the fragment ¢ f; and tf7, computed

as in [62]. The Local Anomaly Factor is then computed rather
Ldd(tf})
th eN(tf) ldd(tf)

than the LOF value as: LAF(tf}) = |N(tf T JIf

the LAF value is greater than the local outlier threshold, then
the trajectory ¢; is an outlier in the fragment ¢ f;. This process
is repeated for all fragments in all trajectories.

Yu et al. [68] suggested Trajectory Outlier Detection based
on Common Slices Sub-sequences (TODCSS) approach for
discovering sub-trajectory outliers. For each trajectory ¢;, a
set of trajectory slices are generated where each ;" slice slj-
is obtained by connecting consecutive line segments having
the same direction. A new definition of the sub-trajectory
outlier is given based on the slice outlier. A trajectory slice
is a slice outlier if the number of its neighbors is less
than the given threshold. The neighbors refer to the other
trajectory slices within a small distance from it. In addition,
the distance between two slices sl of the trajectory ¢; and
slj of the trajectory t; is determlned by the number of
common segments of both slices. Experiments performed
on San Francisco urban traffic data revealed that TODCSS
benefits from the slices definition in identifying the sub-
trajectory outliers.

t,=(P1,P2,P2P4PsPeP10)
t,2(P1P2P3PasPerPio) &
t5=(P1P2P2sPuP 7 PaiP1o) m o
t,=(PyP2P3PasPPio) °
t5=(p1npz:psrp4:psrps:pm) —_—) -

t:=(P1P2P3P7,Ps/P10)

tF(Pl:Pz:Ps:Pan) 1 ts} -

Trajectory database

{ta} {ta}
{ty,ts} {t,}

Isolation tree

(a) iBAT illustration

t t Lt Lt
1 Lt
Ly 3

L2
t — b

L3 L’

t

k3
e

s —

Trajectory database

N ---l--

f——— -----

Densm[

—— -----

t-partitions

Sub-Trajectory outliers in red color

(b) TRAOD illustration

Density of t-partitions

Figure 6. Trajectory outlier detection illustration.

VOLUME 4, 2016

Y. Djenouri et al.: IEEE Access

IEEE Access

Table 1. Discussion of Existing Urban Outlier Traffic Data Algorithms.

Task Category

Merits

Limits

Statistical

Low time consumption

Difficult to find the appropriate distribution
of the given traffic flow data

Flow outliers Similarity

Employ neighborhood computation methods to derive outliers

Ignore correlation between the single flows

Pattern mining

Consider correlation between the flow outliers

Multiple scanning of the flow database

Trajectory outliers | Offline processing

Fast time consumption

Finds only whole trajectory outliers

Online processing

Finds sub-trajectory outliers

High time consumption

C. ILLUSTRATIVE EXAMPLE

In this section, we demonstrate how the trajectory outlier
detection algorithms work. In particular, two algorithms will
be illustrated. The first one is iBAT [51], which performs
the offline processing and detecting of the trajectory outliers.
The second one is TROAD [62], which performs online
processing and extracting sub-trajectory outliers. Starting
by illustrating iBAT, consider the set of trajectories 7' =
{t1,t2,...,t7} illustrated by Figure 6(a). Each trajectory
is represented by the set traversed points from the set of
all points P = {p1,pa,...,Pio}. The isolation tree is
built, and the point p, is divided by the trajectory database
into two subsets. The first subset {t1,%2,ts3,%4,t5}, added
in the left child for the node labeled by 4, traverses point
p4 at the time window wy, whereas the second subset
{ts,t7}, does not traverse the point p, in the time window
wy, and will be added in the right child for the same
node. The anomalous trajectories are ranked regarding the
isolation level as (tg, t7,ts3, t4,t1, t5). Next, concerning the
second algorithm, TROAD, three trajectories are assumed:
{t1,t2,t3}, as illustrated by Figure 6(b). TROAD first
partitions these trajectories into t-partitions as: i) ¢1: (L1, L3,
L3, L)), ii) to: (L2, L3, L3, L?), and iii) t3: L3, L3, L3, L.
The density of the t-partitions of all the trajectories is then
computed. For instance, the density of the t-partition L1 is
equal to 0 because it is different from L? and L3, while the
density of the t-partition L3 is equal to 2 because it is similar
to L3 and L3. The t-partitions with a density of less than 1 are
considered outliers. The anomalous sub-trajectories are then
extracted as the following: i) For t1: (L}, L}), i) For to: (L3),
and iii) For t3: (L3).

V. DISCUSSIONS
Table 1 presents the merits and limitations of the existing
urban outlier traffic data algorithms. As shown in the
previous sections, we classify the urban outlier traffic
algorithms into two groups according to the task employed.
Algorithms in the first group aim to find flow outliers, and
these include three categories: 1) Statistical approaches are
fas, but very sensitive to the outliers, and it is not easy to find
the corresponding distribution of the given traffic flow data.
ii) Similarity approaches use neighborhood computation to
find outliers. This helps to increase the accuracy of such
approaches, however, they ignore the correlations between
flow data and are only able to find single flow outliers. iii)
Pattern mining approaches consider the correlation between

VOLUME 4, 2016

the flow outliers. This helps to extract useful patterns and
deals with two exciting applications: causal interaction and
congested patterns. Nevertheless, these approaches are highly
time consuming because they require multiple scans of the
flow database.

The second task of the existing urban outlier traffic data
algorithms is finding trajectory outliers. These approaches
can be divided into two categories: i) Offline processing
aims to find trajectory outliers after constructing the entire
trajectory database. They are fast compared to those of the
second category but they are only able to find trajectory
outliers and not the part that is causing the outlierness. ii)
Online processing deals with sub-trajectory outliers, i.e., they
are able not only to find the trajectory outliers but also the
sub-trajectories that cause the anomalies. These approaches
extract outliers in online processing and require a large
amount of time to update the output for each new sub-
trajectory data.

From this literature review of existing urban outlier traffic
algorithms, many directions for future research can be
suggested:

1) Improving the run-time performance of existing pattern
mining approaches by adapting the recent pattern
mining approaches [69] in the mining process.

2) Some existing applications could be improved such hot
spot and crime detection by considering the correlation
between single flow outliers.

3) The existing algorithms find only single flow outliers
in a specific time, and it is necessary to deal with
other patterns such as constructing the distribution
of flows in a given time measurement and finding
the distribution of flows that deviate from the normal
distribution of flows in a given period time. For
example, finding all anomalous distribution of flows
from 7:00 to 9:00 every Monday day in a given year.

4) Improving the runtime performance of the online
algorithms to find sub-trajectory outliers by adapting
computational intelligence approaches and high
performance computing.

VI. CONCLUSION

Outlier detection algorithms have been largely used in
urban traffic data for a long time. Solutions to urban
outlier detection are divided into two main categories: flow
outlier detection and trajectory outlier detection. Flow outlier
detection groups solutions that detect flow outliers, and
include the following approaches: 1) Statistical approaches

11

IEEE Access

Y. Djenouri et al.: IEEE Access

which apply and combine the classical statistical model,
and reach their limits because it is not straightforward to
approximate the traffic flow values to the corresponding
distribution. 2) Similarity approaches aim to explore
neighborhood computation methods to determine dense
regions in the traffic flow space. These approaches are
efficient in terms of computational time, however, they
ignore dependencies and relations that exist between
traffic data. This issue is solved by 3) Pattern mining
approaches investigate frequent pattern mining on traffic flow
values data. Such approaches solve the correlation problem
observed in the previous approaches, however, they are
highly time consuming, especially for large traffic flow data.
The second category groups solutions where the trajectory
outliers are derived, and include the following processes: 1)
Offline processing aims to extract trajectory outliers and is
fast, but only considers whole trajectory databases. 2) Online
processing aims to find the sub-trajectory outliers, and these
approaches require a large amount of computational time for
processing to update the output for each new sub-trajectory
data. This paper ends in Section V with a summary of the
most relevant lessons we concluded from this survey and
the future direction of research trends in this arena. While
the application of outlier detection reaches high efficiency in
its traditional domains such as traffic networking, intrusion
detection, and image processing, the use of outlier detection
in urban traffic data is still in its infancy. We have seen only
the tip of the iceberg, and further investigation is required
in every direction, including computational intelligence,
optimization, and high performance computing to attend to
the sophisticated solutions that are suitable for smart city
applications.

References

[1]1 X. Ma, Z. Dai, Z. He, J. Ma, Y. Wang, and Y. Wang, “Learning traffic as
images: a deep convolutional neural network for large-scale transportation
network speed prediction,” Sensors, vol. 17, no. 4, p. 818, 2017.

[2] Z.He, L. Zheng, L. Lu, and W. Guan, “Erasing lane changes from roads:
A design of future road intersections,” IEEE Transactions on Intelligent
Vehicles, vol. 3, no. 2, pp. 173-184, 2018.

[3] S.Ramaswamy, R. Rastogi, and K. Shim, “Efficient algorithms for mining
outliers from large data sets,” in ACM Sigmod Record, vol. 29, no. 2, 2000,
pp. 427-438.

[4] M. M. Breunig, H.-P. Kriegel, R. T. Ng, and J. Sander, “LOF: identifying
density-based local outliers,” in ACM Sigmod Record, vol. 29, no. 2, 2000,
pp. 93-104.

[5] M. Emnst and G. Haesbroeck, “Comparison of local outlier detection
techniques in spatial multivariate data,” Data Mining and Knowledge
Discovery, vol. 31, no. 2, pp. 371-399, 2017.

[6] R.Domingues, M. Filippone, P. Michiardi, and J. Zouaoui, “A comparative
evaluation of outlier detection algorithms: Experiments and analyses,”
Pattern Recognition, vol. 74, pp. 406421, 2018.

[7]1 N. Nesa, T. Ghosh, and I. Banerjee, “Outlier detection in sensed data
using statistical learning models for iot,” in Wireless Communications and
Networking Conference (WCNC), 2018 IEEE. 1EEE, 2018, pp. 1-6.

[8] H. Zhao, H. Liu, Z. Ding, and Y. Fu, “Consensus regularized multi-view
outlier detection,” IEEE Transactions on Image Processing, vol. 27, no. 1,
pp. 236-248, 2018.

[9] H. Liu, X. Li, J. Li, and S. Zhang, “Efficient outlier detection for high-
dimensional data,” IEEE Transactions on Systems, Man, and Cybernetics:
Systems, vol. 48, no. 12, pp. 2451-2461, 2018.

[10] E. Schubert, A. Zimek, and H.-P. Kriegel, “Local outlier detection
reconsidered: a generalized view on locality with applications to spatial,

[14]

[15]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

(28]

[29]

[30]

(32]

[33]

[34]

[35]

video, and network outlier detection,” Data Mining and Knowledge
Discovery, vol. 28, no. 1, pp. 190-237, 2014.

Y. Zheng, “Trajectory data mining: an overview,” ACM Transactions on
Intelligent Systems and Technology, vol. 6, no. 3, p. 29, 2015.

Z. Feng and Y. Zhu, “A survey on trajectory data mining: techniques and
applications,” IEEE Access, vol. 4, pp. 2056-2067, 2016.

M. Gupta, J. Gao, C. C. Aggarwal, and J. Han, “Outlier detection for
temporal data: A survey,” IEEE Transactions on Knowledge and Data
Engineering, vol. 26, no. 9, pp. 2250-2267, 2014.

Y. Zheng, L. Capra, O. Wolfson, and H. Yang, “Urban computing:
concepts, methodologies, and applications,” ACM Transactions on
Intelligent Systems and Technology, vol. 5, no. 3, p. 38, 2014.

S. Chen, W. Wang, and H. van Zuylen, “A comparison of outlier detection
algorithms for its data,” Expert Systems with Applications, vol. 37, no. 2,
pp. 1169-1178, 2010.

K. Bhowmick and M. Narvekar, “Trajectory outlier detection for
traffic events: A survey,” in Intelligent Computing and Information and
Communication, 2018, pp. 37-46.

Y. Djenouri and A. Zimek, “Outlier detection in urban traffic data,” in
International Conference on Web Intelligence, Mining and Semantics,
2018, p. 3.

F. Bunea, A. B. Tsybakov, M. H. Wegkamp et al., “Aggregation for
gaussian regression,” The Annals of Statistics, vol. 35, no. 4, pp. 1674—
1697, 2007.

E. J. Candes, X. Li, Y. Ma, and J. Wright, “Robust principal component
analysis?” Journal of the ACM, vol. 58, no. 3, p. 11, 2011.

R. Johnson and T. Zhang, “Accelerating stochastic gradient descent
using predictive variance reduction,” in Advances in neural information
processing systems, 2013, pp. 315-323.

K. Kurihara, M. Welling, and Y. W. Teh, “Collapsed variational dirichlet
process mixture models.” in International Joint Conference on Artificial
Intelligence, vol. 7, 2007, pp. 2796-2801.

H. Y. Ngan, N. H. Yung, and A. G. Yeh, “Outlier detection in traffic data
based on the dirichlet process mixture model,” IET Intelligent Transport
Systems, vol. 9, no. 7, pp. 773-781, 2015.

P. Lam, L. Wang, H. Y. Ngan, N. H. Yung, and A. G. Yeh, “Outlier
detection in large-scale traffic data by naive bayes method and gaussian
mixture model method,” Electronic Imaging, vol. 2017, no. 9, pp. 73-78,
2017.

R. Kingan and T. Westhuis, “Robust regression methods for traffic growth
forecasting,” Journal of the Transportation Research Board, no. 1957, pp.
51-55, 2006.

R. E. Turochy and B. L. Smith, “Applying quality control to traffic
condition monitoring,” in Intelligent Transportation Systems, 2000, pp.
15-20.

D. Gazis and L. Edie, “Traffic flow theory,” Proceedings of the IEEE,
vol. 56, no. 4, pp. 458-471, 1968.

E. Park, S. Turner, and C. Spiegelman, “Empirical approaches to outlier
detection in intelligent transportation systems data,” Journal of the
Transportation Research Board, no. 1840, pp. 21-30, 2003.

T. T. Dang, H. Y. Ngan, and W. Liu, “Distance-based k-nearest neighbors
outlier detection method in large-scale traffic data,” in /EEE International
Conference on Digital Signal Processing, 2015, pp. 507-510.

J. Tang and H. Y. Ngan, “Traffic outlier detection by density-based
bounded local outlier factors,” Information Technology in Industry, vol. 4,
no. 1, pp. 6-18, 2016.

M. Munoz-Organero, R. Ruiz-Blaquez, and L. Séanchez-Ferndndez,
“Automatic detection of traffic lights, street crossings and urban
roundabouts combining outlier detection and deep learning classification
techniques based on gps traces while driving,” Computers, Environment
and Urban Systems, vol. 68, pp. 1-8, 2018.

Y. Shi, M. Deng, X. Yang, and J. Gong, “Detecting anomalies in spatio-
temporal flow data by constructing dynamic neighbourhoods,” Computers,
Environment and Urban Systems, vol. 67, pp. 80-96, 2018.

Y. Cheng, Y. Zhang, J. Hu, and L. Li, “Mining for similarities in
urban traffic flow using wavelets,” in Intelligent Transportation Systems
Conference, 2007, pp. 119-124.

T. Kohonen, “The self-organizing map,” Neurocomputing, vol. 21, no. 1,
pp. 1-6, 1998.

R. Agrawal, T. Imielifiski, and A. Swami, “Mining association rules
between sets of items in large databases,” in Acm Sigmod Record, vol. 22,
no. 2, 1993, pp. 207-216.

J. Han, J. Pei, and Y. Yin, “Mining frequent patterns without candidate
generation,” in ACM Sigmod Record, vol. 29, no. 2, 2000, pp. 1-12.

VOLUME 4, 2016

Y. Djenouri et al.: IEEE Access

IEEE Access

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

D. Martin, J. Alcald-Fdez, A. Rosete, and F. Herrera, “NICGAR: A
Niching Genetic Algorithm to mine a diverse set of interesting quantitative
association rules,” Information Sciences, vol. 355, pp. 208-228, 2016.

W. Liu, Y. Zheng, S. Chawla, J. Yuan, and X. Xing, “Discovering spatio-
temporal causal interactions in traffic data streams,” in ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining,
2011, pp. 1010-1018.

L. X. Pang, S. Chawla, W. Liu, and Y. Zheng, “On mining anomalous
patterns in road traffic streams,” in International Conference on Advanced
Data Mining and Applications, 2011, pp. 237-251.

M. Wu, X. Song, C. Jermaine, S. Ranka, and J. Gums, “A Irt framework
for fast spatial anomaly detection,” in ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, 2009, pp. 887—
896.

S. Chawla, Y. Zheng, and J. Hu, “Inferring the root cause in road traffic
anomalies,” in IEEE International Conference on Data Mining, 2012, pp.
141-150.

D. Brauckhoff, K. Salamatian, and M. May, “Applying PCA for traffic
anomaly detection: problems and solutions,” in IEEE International
Conference on Computer Communications, 2009, pp. 2866-2870.

R. Inoue, A. Miyashita, and M. Sugita, “Mining spatio-temporal patterns
of congested traffic in urban areas from traffic sensor data,” in IEEE
International Conference on Intelligent Transportation Systems, 2016, pp.
731-736.

H. Nguyen, W. Liu, and F. Chen, “Discovering congestion propagation
patterns in spatio-temporal traffic data,” IEEE Transactions on Big Data,
vol. 3, no. 2, pp. 169-180, 2017.

J. Zhang, “Smarter outlier detection and deeper understanding of large-
scale taxi trip records: a case study of NYC,” in ACM SIGKDD
International Workshop on Urban Computing, 2012, pp. 157-162.

G. V. Batz, R. Geisberger, P. Sanders, and C. Vetter, “Minimum

time-dependent travel times with contraction hierarchies,” Journal of

Experimental Algorithmics, vol. 18, pp. 1-4, 2013.

X. Kong, X. Song, F. Xia, H. Guo, J. Wang, and A. Tolba, “LoTAD: long-
term traffic anomaly detection based on crowdsourced bus trajectory data,”
World Wide Web, vol. 21, no. 3, pp. 825-847, 2018.

M. Mohibullah, M. Z. Hossain, and M. Hasan, “Comparison of euclidean
distance function and manhattan distance function using k-mediods,”
International Journal of Computer Science and Information Security,
vol. 13, no. 10, p. 61, 2015.

J. MacQueen et al., “Some methods for classification and analysis
of multivariate observations,” in Berkeley symposium on mathematical
statistics and probability, vol. 1, no. 14, 1967, pp. 281-297.

Z.Jie,J. Wei, A. Liu, G. Liu, and Z. Lei, “Time-dependent popular routes
based trajectory outlier detection,” in International Conference on Web
Information Systems Engineering, 2015, pp. 16-30.

Z. Jie, J. Wei, L. An, L. Guanfeng, and Z. Lei, “Effective and efficient
trajectory outlier detection based on time-dependent popular route,” World
Wide Web, vol. 20, no. 1, pp. 111-134, 2017.

D. Zhang, N. Li, Z.-H. Zhou, C. Chen, L. Sun, and S. Li, “iBAT: detecting
anomalous taxi trajectories from GPS traces,” in International Conference
on Ubiquitous Computing, 2011, pp. 99-108.

J. Zobel and A. Moffat, “Inverted files for text search engines,” ACM
Computing Surveys, vol. 38, no. 2, p. 6, 2006.

F. T. Liu, K. M. Ting, and Z.-H. Zhou, “Isolation forest,” in IEEE
International Conference on Data Mining, 2008, pp. 413-422.

Z. Lv, J. Xu, P. Zhao, G. Liu, L. Zhao, and X. Zhou, “Outlier trajectory
detection: A trajectory analytics based approach,” in [International
Conference on Database Systems for Advanced Applications, 2017, pp.
231-246.

H. Cardot, P. Cénac, and J.-M. Monnez, “A fast and recursive algorithm
for clustering large datasets with k-medians,” Computational Statistics &
Data Analysis, vol. 56, no. 6, pp. 1434-1449, 2012.

A. Fischer, C. Y. Suen, V. Frinken, K. Riesen, and H. Bunke,
“Approximation of graph edit distance based on hausdorff matching,”
Pattern Recognition, vol. 48, no. 2, pp. 331-343, 2015.

X. Zhou, Y. Ding, F. Peng, Q. Luo, and L. M. Ni, “Detecting unmetered
taxi rides from trajectory data,” in IEEE International Conference on Big
Data, 2017, pp. 530-535.

J. H. Friedman, “Stochastic gradient boosting,” Computational Statistics
& Data Analysis, vol. 38, no. 4, pp. 367-378, 2002.

D. Kumar, J. C. Bezdek, S. Rajasegarar, C. Leckie, and M. Palaniswami,
“A visual-numeric approach to clustering and anomaly detection for
trajectory data,” The Visual Computer, vol. 33, no. 3, pp. 265-281, 2017.

VOLUME 4, 2016

[60]

[62]

[63]

[66]

[67]

[68]

[69]

T. C. Havens and J. C. Bezdek, “An efficient formulation of the
improved visual assessment of cluster tendency (iVAT) algorithm,” IEEE
Transactions on Knowledge and Data Engineering, vol. 24, no. 5, pp. 813—
822,2012.

C. Chen, D. Zhang, P. S. Castro, N. Li, L. Sun, S. Li, and Z. Wang,
“IBOAT: Isolation-based online anomalous trajectory detection,” IEEE
Transactions on Intelligent Transportation Systems, vol. 14, no. 2, pp. 806—
818, 2013.

J.-G. Lee, J. Han, and X. Li, “Trajectory outlier detection: A partition-
and-detect framework,” in IEEE International Conference on Data
Engineering, 2008, pp. 140-149.

Y. Yu, L. Cao, E. A. Rundensteiner, and Q. Wang, “Detecting moving
object outliers in massive-scale trajectory streams,” in ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining,
2014, pp. 422-431.

Y. Yu, L. Cao, E. A. Rundensteiner, and Q. Wang, “Outlier detection
over massive-scale trajectory streams,” ACM Transactions on Database
Systems, vol. 42, no. 2, p. 10, 2017.

H. Wu, W. Sun, and B. Zheng, “A fast trajectory outlier detection approach
via driving behavior modeling,” in ACM Conference on Information and
Knowledge Management, 2017, pp. 837-846.

B. D. Ziebart, A. L. Maas, J. A. Bagnell, and A. K. Dey, “Maximum
entropy inverse reinforcement learning.” in Conference of the Association
for the Advancement of Artificial Intelligence, vol. 8, 2008, pp. 1433—1438.
J. Mao, T. Wang, C. Jin, and A. Zhou, “Feature grouping-based outlier
detection upon streaming trajectories,” IEEE Transactions on Knowledge
and Data Engineering, vol. 29, no. 12, pp. 2696-2709, 2017.

Q. Yu, Y. Luo, C. Chen, and X. Wang, “Trajectory outlier detection
approach based on common slices sub-sequence,” Applied Intelligence,
vol. 48, no. 9, pp. 2661-2680, 2018.

K.-W. Chon, S.-H. Hwang, and M.-S. Kim, “GMiner: A fast GPU-
based frequent itemset mining method for large-scale data,” Information
Sciences, vol. 439, pp. 19-38, 2018.

