
1

Data-Mining-Based Decomposition for Solving
MAXSAT Problem: Towards a New Approach

Youcef Djenouri1, Zineb Habbas2, Djamel Djenouri3
1 LRDSI Lab, Computer Science Department, Saad Dahleb University, Blida, Algeria

2 Lorraine University, Metz, France
3 CERIST Research Center, Algiers, Algeria

y.djenouri@gmail.com, zineb.habbas@lorraine.fr, ddjenouri@acm.org

Abstract—This paper explores advances in the data mining
arena to solve the fundamental MAXSAT problem. In the
proposed approach, the MAXSAT instance is first decomposed
and clustered by using data mining decomposition techniques,
then every cluster resulting from the decomposition is separately
solved to construct a partial solution. All partial solutions are
merged into a global one, while managing possible conflicting
variables due to separate resolutions. Two decomposition methods
are investigated. The first one is direct decomposition that uses K-
means algorithm, while the second is indirect decomposition that
translates the MAXSAT instance into a transactional database
before decomposing the database by Apriori algorithm. For
solving the sub-problems, DPLL algorithm is used. The proposed
approach has been numerical evaluated on DIMACS instances
and some hard Uniform-Random-3-SAT instances, and it has
been compared to some state-of-the-art decomposition based
algorithms. The results show that the proposed approach consid-
erably improves the success rate, with a competitive computation
time that is very close to that of the compared solutions.

Keywords MAXSAT Problem, Knowledge Discovery,
Problem Decomposition.

I. INTRODUCTION

The SATisfiability problem (SAT) is a fundamental one in
computation theory. It is used for modeling many academic
and real world problems, e.g., coloring problem, decision
support, and automated reasoning. Formally, for a given a
set of n boolean variables, V = {v1, v2, · · · , vn}, SAT calls
for a Conjunctive Normal Form (CNF), which is defined as a
conjunction of clauses. Every clause is a disjunction of literals,
while a literal is simply a variable, vi, from, V, or its negation,
denoted by ¬vi. A clause is satisfied when at least one of its
literals is set to true. A CNF is satisfied if an assignment of
some variables in V satisfies all the clauses. The SAT problem
asks for an assignment of some variables in, V , that satisfies a
CNF, F . The problem is said to be satisfied (SAT) if such an
assignment exists, and unsatisfied (UNSAT) otherwise. SAT
problem has been attracting different scientific communities
for long time.

This paper addresses MAXSAT problem, a general form
of SAT. The objective of MAXSAT is to find a complete
instantiation of variables in the set, V , that satisfies the
maximum number of clauses. MAXSAT is an NP-Complete
optimization problem [1], for which the existing exact
solvers are inefficient when dealing with large size of
instances. Modern approaches are recently developed for

this problem, such as decomposition techniques . On this
direction, some researchers have been investigating in the
improvement of DPLL (DavisPutnamLogemannLoveland)
algorithm [2], which is the most largely used algorithm. It
uses decomposition techniques to divide hard SAT instances
into many independent but solvable sub-instances. All
these methods start by considering a SAT instance as a
hypergraph and use the graph theory techniques to transform
the hypergraph into many independent sub-graphs.

The main contribution of this paper is to comprehensively
explore data-mining techniques for solving the MAXSAT
problem. While some recent solutions (that will be presented
in the next section) projected some data-mining techniques
into the MAXSAT problem, they are limited to the clustering
step. To the best of our knowledge, no solution in the current
literature provide a solver that takes advantage of the data-
mining decomposition. The solution proposed herein considers
all the steps and provides a DPLL solver that is based on
the outcome of the clustering step. For this step, two ap-
proaches have been used, which are different from those used
in the literature. The first one–called direct decomposition–
decomposes a SAT instance by using Kmeans algorithm. The
second one–called indirect decomposition– translates the SAT
instance into a transactional database before decomposing the
database by using Apriori algorithm. For the solving step, the
sub-problems that represents the outcomes of the decomposi-
tion step (direct or indirect) can be solved independently by us-
ing any solving algorithm, before merging the partial solutions
into a global one. This paper focuses on the use of DPLL al-
gorithm for solving the sub-problems. The proposed approach
is evaluated by an analytical study carried out on DIMACS
(Center for Discrete Mathematics Theoretical Computer Sci-
ence), with large and very large sat instances. The results
demonstrate clear improvement over state-of-the-art solutions.
The remaining of this paper is organized as follows. Section II
relates on some existing MAXSAT algorithms. Section III
describes the general framework of the proposed solution.
In section IV, two data mining decomposition techniques are
presented, i) direct decomposition with Kmeans algorithm, and
ii) and indirect decomposition that applies Apriori algorithm
on a constructed transactional database. Section V presents
the solving algorithm. The experimental results are reported
in Section VI. Finally, Section VII concludes the paper by

2

some remarks and perspectives.

II. RELATED WORK

SAT and its variant MAXSAT have been attracting the
research community for a long time and many algorithms have
been proposed. The first canonical and the most used algorithm
for the SAT problem is DPLL [2]. It uses decomposition
techniques to divide hard SAT instances into many indepen-
dent but solvable sub-instances. DPLL starts by constructing
tree’s solver, where in each level one variable is instantiated
by true or false. This process is repeated until all branches
are explored or all clauses are satisfied. Many DPLL-based
approaches have been proposed later on, which mainly differ
by the heuristics used for the branching rule [3] and [4]. In
most cases, it is impossible to satisfy all clauses of a SAT
instance, the problem is transformed to find a solution that
satisfy the maximum number of clauses, i.e., MAXSAT. Exact
solvers are inefficient when dealing with large size instances
of the MAXSAT. Therefore, many heuristic algorithms have
been proposed in the literature. In [5], the authors proposed
a new branch and bound approach for solving MAXSAT
problem by developing a new method to estimate the lower
bound of the search tree. In [6], another branch and bound
algorithm is proposed by exploiting all the inconsistent subsets
with the max-resolution inference rule. This allows to reduce
the number of generated branches that are needed to solve
such a problem. In [7], a recursively restriction algorithm is
proposed to reduce MAXSAT instance. The algorithm restricts
one variable at a time. Another version of this algorithm is pre-
sented in [1], which uses uniform random distribution among
variables to reduce MAXSAT instances. In [8], an approach
based on Linear Programming (LP) model has been proposed.
It solves a linear programming with CPLEX to determine the
order of variables to be instantiated, then complete solver is
then applied to calculate the value of each variable. Some
other DPLL-based algorithms consider a SAT instance as a
hypergraph and use the graph theory techniques to transform
the hypergraph into many independent sub-graphs. In [3], the
authors divide the whole formula of SAT instance, F , into two
sub-formulas, F1 and F2, which share few variables and have
the same size of clauses. The partitioning is based on the cut
of hypergraph, where the aim is to minimize the cut variables.
In [4], the authors propose the use of community detection
techniques to identify the different communities among the
SAT instances, and they propose a new strategy to manage
conflict between communities. The proposed strategy gives a
high priority to the variables that cause conflicts.

We are interested in this paper in another category of
decomposition, which is based on data-mining-based concept.
In [9], a new genetic algorithm is proposed by exploring a
problem’s structure in the variable linkage information. Once a
linkage model between variables is done, the genetic operators
is launched using the extracted knowledge. In [10], a new
Stochastic Local Search (SLS) algorithm is proposed. Instead
of exploring the search space by 1 − flip neighborhood
structure (which is done in the ordinary SLS), this approach
constructs K − neighbors by flipping K clusters of the

Fig. 1. General framework

variables at the same time. At each step, the clusters of
variables are constructed based on the unsatisfied clauses.
Thereafter, the cluster of variables are flipped by true or false,
i.e., all variables of the same cluster take the same value.
Recently, two works for clustering SAT clauses have been
proposed in [14], and [15]. In [14], the proposed clustering
algorithm puts the first clause in the first cluster, then for every
remaining clause, the number of common variables that are
shared with the first clause is determined. Consequently, every
clause is put in the nearest cluster iff this one shares variables
with existing clusters. Otherwise, a new cluster labeled by this
clause is created. The main drawback of the decomposition-
based approaches is the quality of the derived clusters, as the
size of the cut between the obtained clusters is very large.In
[15], association rules mining is used to discover clusters
of SAT. However, the main drawback of this algorithm is
the quality of rules returned by the mining process, which
degrades in the results of the clustering step. All these data-
mining based solutions are limited to the clustering step, and,
to our knowledge, no existing solver that takes advantage
of the data-mining decomposition is available in the current
literature. The present paper comprehensively explores the use
of data-mining techniques to solve the MAXSAT problem
and considers all its steps. First, different approach have been
proposed for clustering, then an intelligent DPLL approach is
proposed for the solving step. This approach takes advantage
of the resulted clustering and the useful knowledge that is
extracted by the data mining process. In the next section, we
present the improved DPLL algorithm for solving MAXSAT
problem.

III. SOLUTION OVERVIEW

The proposed approach can be summarized by the frame-
work presented in Figure 1, which includes three steps:

1) Decomposition: It step splits a MAXSAT instance into a
collection of sub-problems (clusters) using data mining
techniques, where a cluster can be viewed as a subset of
clauses of the MAXSAT instance. The aim is to exploit
the power of data mining techniques for extracting
relevant knowledge, which will be used by the MAXSAT
solving algorithm.
The set of variables shared by two clusters is called a
separator set. An interesting decomposition approach

3

is to minimize the size of separator sets, while putting
into the same cluster clauses that are connected, i.e,
clauses that share the maximum number of variables.
In this paper, we focus on data mining decomposition
techniques,and investigate two methods: i) the direct
decomposition and ii) indirect decomposition. The two
methods will be presented in section IV.

2) Solving step: The sub-problems corresponding to
clusters that result from step 1 are solved independently
to obtain partial solutions, which are merged into a
global solution, s. Any MAXSAT solving algorithm
can be used for solving the sub-problems. The obtained
global solution may be improved, and several techniques
may be investigated for this purpose. However, this is
out of the scope of this work. A simple local research
method, which is DPLL.

IV. DATA MINING DECOMPOSITION METHODS

A. Motivations

Data mining techniques are sometimes used as pre-treatment
phase to improve the performance of solvers dealing with
difficult optimization problems. Clustering and Association
Rules Mining (ARM) are the most studied fundamental tech-
niques in data mining. Clustering is the process that organizes
objects into groups with members sharing similar features.
A cluster is thus a collection of objects that are similar to
one another and dissimilar to the objects belonging to other
clusters. The notion of similarity and the quality of clustering
are concepts that depend on the nature of the problem, its
objective, the definition of distance, etc. ARM aims to extract
association rules that satisfy the predefined minimum support
and confidence from a given database [17]. It allows to extract
more relevant knowledge to guide solvers to accelerate the
search of the right solution.

In this paper, the goal is to use a clustering algorithm and
an ARM algorithm to decompose a given MAXSAT instance,
to experimentally analyze the impact of the quality of such de-
composition methods on the cost of the resulting solution. The
latter corresponds to the maximum rate of satisfied clauses.
Without loss of generality, we chose Kmeans as the clustering
algorithm and Apriori algorithm for association rules mining.
The decomposition associated with Kmeans is called direct as
it consists in directly splitting the SAT instance. Conversely,
the decomposition associated with Apriori is called indirect
because it first transforms the given SAT instance into a trans-
actional database, before decomposing the resulted database
using Apriori.

B. Direct Decomposition of MAXSAT

K-means is one of the simplest unsupervised learning al-
gorithms for the clustering problems. It defines a simple and
easy procedure to divide a given data set into a certain number
of clusters, say k clusters, fixed a priori. The main idea is
to define k centroids, one for every cluster. The centroids
should be placed in a cunning way, since the clustering result

depends on their location in the clusters. In order to optimize
the outcomes, it is judicious to place them as far as possible
from each other. The next step is to take each point belonging
to a given data set and associate it to the nearest centroid.
When no point is pending, the first step is completed and an
early grouping is performed. At this stage, k new centroid are
needed to be re-calculated for the new clusters that result from
the previous step, and the process should be iterated. The latter
stops when no more changes of the clusters are observed, i.e.,
when it is observed that no centroid moves any more. To adapt
the K-means procedure on clustering clauses, we propose to
use a new similarity and center of gravity computation for
clauses that are described in the fellowing.

1) Similarity Between Clauses: The similarity (reps. dis-
similarity) between two clauses represents the degree of con-
sistency (reps. inconsistency) between them. Intuitively, they
are similar when they share variables and dissimilar otherwise.
We define Dist clauses(c1, c2) as the similarity measure
between two clauses, c1 and c2, with Eq.IV-B1

equation Dist clauses(c1, c2) = max(|Set(c1)|, |Set(c2|)−
ncv(c1, c2), (0)Where ncv(c1, c2) is the number of common
variables between c1 and c2, and Set(ci) return the set of
variables of the clause ci. This distance meets the mathemat-
ical properties of a metric distance function, which are:

• ∀(c1, c2) ∈ C2, Dist clauses(c1, c2) ∈ R.
• ∀c ∈ C,Dist clauses(c, c) = 0.
• ∀(c1, c2) ∈ C2 Dist clauses(c1, c2) =

Dist clauses(c2, c1).
• ∀(c1, c2, c3) ∈ C3 Dist clauses(c1, c2) ≤

Dist clauses(c1, c3) +Dist clauses(c2, c3)

Example 1: Consider a SAT instance defined as the set of
variables, V = {v1, v2, v3, v4}, and the two clauses, c1 and
c2, where c1 includes variables v1, v2, v3, and c2 includes
variables v2, v3, v4.

First, the set of variables of each clause is calculated. For
the current example, Set(c1)={v1, v2, v3} and Set(c2)={v2,
v3, v4}. The set of common variables between c1 and c2
is then determined, which is {v2, v3}, i.e., ncv(c1, c2) = 2.
Finally, the distance between c1 and c2 is calculated using
IV-B1, which is 1.

2) Centroid Computation: Consider the set of clauses C =
{c1, c2, ..., cr}. To find the centroid clause, the frequency of
every variable is calculated for all the clauses of the same
cluster. The length of the clause center, denoted l, corresponds
to the average number of items of all the r clauses. It is

determined using the following equation: l =
∑r

i=1
|ci|

m , where
m is the number all clauses. Afterwards, the variables of the r
clauses are sorted according to their concurrency, and only the
l frequent variables are kept in a vector, say fq, as follows:

center[fq[i1]] = 1 ∨ ∀ i2 ̸= fq[i1] center[i2] = 0

Example 2: Consider the following MAX-SAT problem:
F = (¬v1) ∧ (¬v2 ∨ v1) ∧ (¬v1 ∨ ¬v2 ∨ ¬v3) ∧ (v1 ∨ v2) ∧
(¬v4 ∨ v3) ∧ (¬v5 ∨ v3)
Note that this problem is UNSAT, since there is no possible
value for v1 or v2 that satisfies the clause v1∨v2. The success

4

ratio of this instance is 83% as only 5 clauses out of 6 can
be satisfied. In this example, the frequencies of every variable
are as follows: v1 : 4, v2 : 3, v3 : 3, v4 : 1, v5 : 1 To compute
the center of the six clauses c1,..., c6, the centroid l is first
computed. Here l = 1+2+3+2+2+2

6 = 2. Then, the l frequent
variables are selected. The set of the l frequent variables in
the example is {v1, v2} , which represents center.

C. Indirect Decomposition of MAXSAT

The indirect decomposition consists in three steps: 1) the
transformation of a MAXSAT instance into a transactional
database. 2) The extraction of pertinent rules that represent
the different relations between data by using Apriori algorithm.
3) The interpretation of the obtained rules for generating the
clusters of clauses ?

1) From a MAXSAT Instance to a Transactional
Database: Let us consider the set of m clauses, C={c1, c2,
..., cm}, and the set of n variables, V={v1, v2,vn}. Let
score(c) denotes the set of variables belonging to clause c.
The associated transactional database, say T={t1, t2, ..., tm},
is defined on the set of the following n different items, I={I1,
I2,In}, as follows:

• ∀(ti ∈ T), ci ∈ C ⇒ ti = ci
∀(Ii ∈ I), vi ∈ score(cj)⇒ (Ii = 1) ∈ tj
∀(Ii ∈ I), (vi ∈ V) and vi ̸∈ score(cj)⇒ (Ii = 0) ∈ tj

In other words, every clause of the SAT instance is seen as
a transaction, and every variable corresponds to an item. If a
variable, vi, belongs to the score of the clause Cj , then the
item Ii takes the value 1 in the transaction tj . Otherwise, it
takes the value 0 in the transaction tj .

2) Apriori Algorithm for Rule Extraction: Once the SAT
instance is translated into a transactional database T , the
ARM algorithm is applied to T . This is to extract relevant
rules that will be used in the generation of clusters. In the
literature, many ARM algorithms have been designed, such
as the Apriori algorithm that we use hereafter [17]. Apriori
consists of the following two steps.

1) The first step is performed in k iterations. Its aim is
to find the itemsets of length k, denoted Ck, that are
generated by joining the frequent itemsets of length
k − 1, Lk−1. At each iteration, the support of every
candidate itemsets is computed. If it satisfies the min-
imum support constraint, it is then added to the set of
frequent itemsets. This process should be repeated until
the candidate itemsets of length k becomes empty.

2) The second step of the algorithm is to generate the
association rules from the set of frequent itemsets.
For each frequent itemsets, all the corresponding
rules are generated. The confidence of each rule is
then computed. If the confidence of a rule fulfils
the minimum confidence constraint, then the rule
is accepted. Otherwise, it is rejected. Algorithm 1
describes the framework of the Apriori algorithm.

Algorithm 1 Apriori Algorithm
Begin
Input: T = {t1, t2, ...tm}: Transactional Database ,
Min Sup: Minimum Support, Min Conf : Minimum Con-
fidence.

1: L1 ← {Frequent1− itemsets}
2: k ← 2
3: while Lk−1 ̸= ∅ do
4: Ck ← Lk−1 × Lk−1

5: Lk ← ∅
6: for each ci in Ck do
7: |ci| ← |{t/ci ∈ t}|
8: Support(ci)← |ci|

m
9: if |ci| ≥ Min Sup then

10: Lk ← Lk ∪ {ci}
11: end if
12: end for
13: k ← k + 1
14: end while
15: L←

∪
k Lk

16: R← ∅
17: for li ∈ L do
18: ri = {Xi ⇒ Yi Xi ∪ Yi = li ∧Xi ∩ Yi = ∅}
19: for each ri : Xi ⇒ Yi do
20: Confidence(ri)← Support(ri)

Support(Xi)

21: if Confidence(ri) ≥ Min Conf then
22: R← R ∪ {ri}
23: end if
24: end for
25: end for
26: return R

End

3) Clusters Generation: The application of Apriori
algorithm results in transactional database T that keeps
only the rules with a confidence higher than Min Conf .
In the following, the process of the clustering that results
from the interpretation of the rules is described. Assume
R = {r1, r2, ..., rp} is the set of the returned rules, where
each rule ri is defined as,

ri : Xi ⇒ Yi

, with Xi ⊂ V , and Yi ⊂ V .

Given a temporary list, List-temp, that includes all the
clauses of the given instance, the set, R, is sorted in the
descending order according to the support of the rules. For
this purpose, the following algorithm is used.

• Initially, the first rule r1 : X1 ⇒ Y1 is removed from
R, and a cluster is created for the set of clauses that are
defined simultaneously on X1 and Y1. The representative
variables of the first cluster, denoted Repres Variables,
is the set X1 ∪ Y1.

• For each rule ri ∈ R, the sets Xi and Yi are compared
with each representative variable of the clusters that are
already created. If such variables do not belong to any

5

existing cluster, then a new cluster is built for Xi and Yi.
Xi∪Yi is obviously considered as the set of representative
variables of this new cluster.

• This process is repeated for the p rules of R, or until
List-temp becomes empty.

4) Illustration: Consider the previous example, where
List temp includes all clauses {c1, c2, c3, c4}. First the set
of clauses is transformed into transactional form, as follows:

• t1 = 1, 1, 1, 0, 0, as the first two variables belong to c1
and the two latest variables do not belong to c1.

• t2 = 0, 0, 0, 1, 1.
• t3 = 0, 1, 1, 1, 0.
• t4 = 0, 1, 0, 1, 1.

Apriori algorithm is then applied to the set of transactions
from t1 to t4, and just the rules with high confidence are
considered.
Suppose that the rules obtained are sorted according to their
supports:
r1 : v5 ⇒ v4 (Conf = 100%, Supp = 50%).
r2 : v3 ⇒ v2 (Conf = 100%, Supp = 50%).
r3 : v1 ⇒ v2 (Conf = 100%, Supp = 25%).

Starting by the first rule, the first cluster with the clauses
c2 and c4 is created, as both v5 and v4 belong to c2 and
c4. Repres var(C1) = {v4andv2} is considered as the rep-
resentative variables for the first cluster, and the clauses c2
and c4 are removed from List-temp. That is, C1 = {c2,
c4}, Repres var(C1) ={v4, v5}, List-temp={c1, c3}. For the
second rule, the same process is repeatedto obtain, C2 ={c1,
c3}, Repres var(C2) ={v3, v2}, List-temp=∅.

The process stops without handling the third rule as
List temp is empty. The final state of the clusters is:
C1 ={c2, c4}, C2 ={c1, c3}, Repres var(C2 ={v4, v5},
represent(2)={v3, v2}

D. Quality of decomposition methods

The two decomposition methods: direct decomposition
(illustrated by Kmeans) and indirect decomposition (illustrated
by Apriori), just like any other decomposition method that
can be investigates in the future, aim to split a MAXSAT
instance into a collection of k clusters C1, C2, . . . , Ck where
two clusters Ci and Cj are connected if they share some
variables. The set of such variables is called separator set and
is noted sepi,j .
All decomposition methods do not present the same properties.
To compare the decomposition methods, we measure their
quality by the distance between clauses belonging to a same
cluster and the distance between the clusters. Informally, a
”good” decomposition is a decomposition whose clusters
are clauses covering the maximum of variables, and whose
separators are minimum size.

More formally, the quality of a decomposition methods is
defined by MADP formula (Mean Absolute Deviation Percent)
described in the equation 1. The distance between two clauses

is the total number of variables minus the number of shared
variables between these two clauses. The aim is to minimize
this distance.

MADPmin =

k∑
l=1

|Clusterl|∑
i=1

|Clusterl|∑
j=1

D(Cl
i , C

l
j). (1)

Where
Cl

i : represents the clause Ci in the lth cluster.
D(Ci, Cj)=n-vci,j .
vci,j= number of shared variables between Ci and Cj .
k: is the number of clusters.
n: is the number of all variables.

V. DECOMPOSITION BASED MAXSAT RESOLUTION

Once the problem is decomposed into a collection of clus-
ters that are connected by separators, it can be solved following
different approaches. Examples of existing approaches include
the bottom-up approach, and the top-down approach. The
latter first solves the sub-problems induced by the separators,
before solving subproblems induced by the clusters. This is
by considering the variables of separators that have already
been instantiated. In this paper we explore the bottom-up
approach, which solves first the subproblems associated with
the clusters, C1, C2, . . .Ck. This step yields a collection of
k partial solutions, s1, s2, . . . , sk, where k is the number of
clusters. Then, all the solutions are combined into a global
solution, s, via to the procedure merge . The global solution
returned by the latter is improved by using a local search
procedure, called ImproveS. In each step of the algorithm,
the rate of satisfied clauses is returned in the variable cost.
Algorithm 2 explains the solving step procedure.

Algorithm 2 Solving Procedure
Input a set of clusters {C1, C2, ..., Ck}
Output s: a solution of the problem, cost: the rate of
satisfied clauses.

1: Solving sub-problems ({C1, C2, ..., Ck} ,
{s1, s2, ..., sk})

2: merge (s1, s2, . . . , sk, s, cost)
3: ImproveS(s, cost)

Algorithm 2 is mainly composed of the following three
steps:

• Solving sub-problems: Let {C1, C2, ..., Ck} be the
collection of clusters that result from step1. Those are
previously sorted following a decreasing order on the
sizes of clusters, where the size of a cluster Ci is
represented by its cardinality. Each sub-problem induced
by a cluster is solved by using DPLL algorithm. This
procedure is described in algorithm 3. Each solution, si,
is an instantiation of a subset of variables.

• Merging step: This step is crucial and directly impact
the quality of the returned solution. In this paper, a
very simple merging technic is proposed for the sake
demonstrating the feasibility of the proposed approach

6

Algorithm 3 Solving sub-problems) ({C1, C2, ..., Ck} ,
{s1, s2, ..., sk})

1: for each cluster Ci do
2: si = DPLL(Ci)
3: end for
4: Return {s1, s2, ..., sk}

in a simplified and easy to follow way. There is though
ample room for improvement of this step in perspective to
the current work. The merge procedure developed in this
paper is a special concatenation of the k partial solutions,
which takes into account the fact that two solutions, say si
and sj , are not fully independent. For variables belonging
to sj , and not to, si, they are copied without any update
in the concatenation result. However, if a variable x
belongs simultaneously to si and sj , the merge procedure
maintains in the concatenation result the value of, x, in,
si. These shared variables will generate some unsatisfied
clauses in the global solution s.

Algorithm 4 merge (s1, s2, . . . , sk, s, cost)
1: s← s1
2: for each cluster si, i > 1 do
3:
4: for each variable x ∈ sj do
5: if x /∈ s then
6: s← s⊙ x = v where v is the assigned value to x

in sj
7: end if
8: end for
9: cost rate of constraints satisfied by s

10: end for

• Improvement step: The procedure DPLL returns optimal
solutions for all subproblems. But the global solution
obtained by the merge function cannot be optimal since
the problems are not fully independent. Some shared
variables may be the source of conflicts. The conflict
variables are variables shared at least by two different
clusters that are instantiated by different values. To im-
prove the quality of the global solution found by the
merge function, a local search procedure is used. In
the global solution, s, the partial solution, si, is exact.
First, the initial solution of the local search procedure is
initialized to the global solution s. Then, the neighbors of
s are computed by changing the value of each conflicted
variable of the first cluster. Afterwards, starting from the
best neighbor, the neighbors are determined by changing
the value of each conflict variable of the second cluster.
This process is repeated until all clusters are handled.
Algorithm 5 explains the reparation step procedure.

VI. EXPERIMENTATION

To validate the proposed approaches, several experiments
have been carried out. We implemented the proposed

Algorithm 5 Improvement Step ({C1, C2, . . . , Ck}, s, cost)
1: for each cluster Ci do
2: s=best neighbors(s, Conflict− V ar(Ci))
3: end for

approaches using C++ environment and tested it with 21
DIMACS instances, 10 instances of Uniform Random-3-
SAT, and large MAXSAT instances of SAT2013 industrial
competition. We used a single machine (Pentium-I3), with
4Go RAM. All these instances are available at SATLIB site 1.

The DIMACS instances used in the tests can been divided
into three classes, aim-50, aim-100, and par8. The first class
contains 8 different instances of aim-50 class. The number of
its variables is 50 and the number of clauses varies between
80 and 100. The second class includes 8 instances of aim-
100 class, its variable’s size is 100, and the number of clauses
varies between 160 and 200. The last class contains 5 instances
of Parity8, with 350 variables, and clauses from 1149 to 1171.
For the Uniform Random-3-SAT used instances, the number of
variables has been varied from 20 to 250, and the number of
clauses from 91 to 1065.

First, the two decomposition methods (Kmeans and Apriori)
have been investigated using DIMACS SAT instances. Then,
the solvers (Kmeans-DPLL and Apriori-DPLL) are compared
to DPLL. Finally, the approach showing the best performances
in the experiments (Apriori-DPLL) is compared to the state of
the art decomposition-based MAXSAT algorithms using large
instances.

A. Parameters Setting of Decomposition-based Algorithms

The decomposition-based algorithms used in the proposed
approach depend on user’s parameters. In fact, the number of
clusters of Kmeans algorithm (K), as well as the constraints
of Apriori, i.e., the minimum support (minsup) and the
minimum confidence (minconf), influence the quality of the
final obtained clusters. Choosing a high value of K and low
values of minsup and minconf allows to augment the quality
of the final obtained clusters. However, the computational cost
of the decomposition process can also be augmented. Finding
an acceptable trade-off between the computational cost and
the cluster’s quality is a challenging task. Intensive tests have
been carried out to empirically tune parameters of Kmeans and
Apriori algorithms in Parity-8-2 Dimacs instance as follows:

1) For Kmeans algorithm: By varying the number of
clusters K from 1 to 100, the results indicates that the
computational time is enhanced. However the quality
of clusters augments and stabilize at 20 clusters. The
number of clusters, K, is thus set to 20 in the following
experiments.

2) For Apriori algorithm: By reducing in both minimum
support minsup and minconf from 100% to 20%, the
results indicate that the computational time is enhanced
by generating high number of association rules. How-
ever, the quality of clusters augments and stabilizes at

1http://www.cs.ubc.ca/h̃oos/SATLIB/benchm.html

7

Class Instances (n,m) Intuitive Clustering Kmeans Apriori
1-6yes1-1 (50,80) 612 121 98

aim50 1-6yes1-2 (50,80) 685 134 102
1-6yes1-3 (50,80) 702 189 134
1-6yes1-4 (50,80) 714 202 175
2-0yes1-1 (100, 160) 1025 412 392

aim100 2-0yes1-2 (100, 160) 1136 487 402
2-0yes1-3 (100,160) 1214 580 492
2-0yes1-4 (100,160) 1421 670 532
1 (350,1149) 1181 700 620

Parity8 2 (350,1157) 1562 825 712
3 (350,1171) 1751 928 826

TABLE I
THE QUALITY OF CLUSTERS OF INTUITIVE CLUSTERING AND THE

PROPOSED APPROACHES WITH DIMACS INSTANCES

Class Instances (n,m) DPLL Kmeans DPLL Apriori DPLL
1-6yes1-1 (50,80) 100 90 96

aim50 1-6yes1-2 (50,80) 100 90 96
1-6yes1-3 (50,80) 100 89 93
1-6yes1-4 (50,80) 100 88 93
2-0yes1-1 (100, 160) 100 88 92

aim100 2-0yes1-2 (100, 160) 100 87 92
2-0yes1-3 (100,160) 100 85 92
2-0yes1-4 (100,160) 100 88 91
1 (350,1149) 81 70 74

Parity8 2 (350,1157) 81 70 74
3 (350,1171) 78 52 61

TABLE II
RESULTS OF KMEANS-DPLL AND APRIORI-DPLL COMPARED TO DPLL

WITH DIMACS INSTANCES

minsup = 73% and minconf = 82% clusters. The
minimum support and confidence are then set to 73%
and 82%, respectively, in the following experiments.

B. Decomposition Approaches Performance

In this step, the decomposition based approaches (Apriori
and Kmeans) are analyzed using Dimacs instances.

Table I presents the quality of the clusters obtained by our
two approaches (Kmeans, Apriori), and the intuitive clustering
algorithm [14] using Dimacs instances. The quality of clusters
is calculated using Equation 1 (we refer to Sec. IV-D for
more details). The results show a large difference between
the quality of the clusters of the proposed approaches and the
intuitive clustering algorithm. In fact, the clusters obtained by
the former are correlated and reflect a strong dependencies
between the clauses of the same cluster. A little difference is
observed between Kmeans and Apriori in terms of the quality
of clusters. Apriori outperforms the Kmeans in all cases, and
the average value for Apriori was 407.73, while the one for
Kmeans was 477.09. These results confirm that association
rules clearly improve the quality of clustering SAT clauses.

C. The Proposed Approaches vs. DPLL

Tables II and III present the success rate of Kmeans-
DPLL and Apriori-DPLL without improvement, vs. DPLL
with Dimacs and Uniform Random-3-SAT instances. The
results reveal that our approaches are close to the optimal
solution found by DPLL algorithm. In fact, the success rate of
the proposed approaches is higher than 90% for all Uniform

Instances DPLL-Kmeans DPLL-Apriori DPLL
uf20-91 90 97 100
uf50-218 91 88 100
uf75-325 92 88 100
uf100-430 88 93 100
uf125-538 92 96 100
uf150-645 89 92 100
uf175-763 90 90 100
uf200-860 90 90 100
uf225-960 92 93 100
uf250-1065 89 92 100

TABLE III
RESULTS OF KMEANS-DPLL AND APRIORI-DPLL COMPARED TO DPLL

WITH UNIFORM RANDOM-3-SAT INSTANCES

Random-3-SAT instances. the results also reveal that Apriori-
DPLL outperforms Kmeans-DPLL in all cases. This is due
to the relevant rules provided by applying association rules
mining process.

Class Instances (n,m) DPLL Kmeans DPLL Apriori DPLL
1-6yes1-1 (50,80) 0,98 0,08 0,05
1-6yes1-2 (50,80) 2,35 0,12 0,08
1-6yes1-3 (50,80) 2,95 0,15 0,07

aim50 1-6yes1-4 (50,80) 1,69 0,13 0,06
2-0yes1-1 (100, 160) 3,53 0,65 0,17
2-0yes1-2 (100, 160) 3,45 0,87 0,19

aim100 1-6yes1-4 (100,160) 3,87 0,95 0,21
2-0yes1-1 (100,160) 3,53 0,65 0,17
2-0yes1-2 (100,160) 3,45 0,87 0,19
2-0yes1-3 (100,160) 3,87 0,95 0,21
2-0yes1-4 (100,160) 3,92 0,62 0,28

Parity8 1 (350,1149) 21,54 8,36 5,21
2 (350,1157) 31,99 10,65 8,12
3 (350,1171) 50,31 18,54 11,36

TABLE IV
RUNTIME (SEC) OF KMEANS-DPLL AND APRIORI-DPLL COMPARED TO

DPLL WITH DIMACS INSTANCES

Instances DPLL-Kmeans DPLL-Apriori DPLL
uf20-91 0,05 0,01 16,42
uf50-218 0,1 0,03 37,15
uf75-325 0,4 0,04 54,65
uf100-430 0,8 0,1 80,72
uf125-538 4,5 0,1 100,42
uf150-645 12,5 1,5 225,32
uf175-763 18,69 2,8 400,98
uf200-860 22,65 8,9 498,63
uf225-960 26,63 15,36 556,64
uf250-1065 45,65 28,35 606,87

TABLE V
RUNTIME (SEC) OF KMEANS-DPLL AND APRIORI-DPLL COMPARED TO

DPLL WITH UNIFORM RANDOM-3-SAT INSTANCES

Tables IV and V present the runtime (in sec) of the
Kmeans-DPLL and Apriori-DPLL without improvement, com-
pared to DPLL with Dimacs and Uniform Random-3-SAT
instances. The computational time of decomposition step is
included. These tables reveal that the proposed approaches
largely outperforms the DPLL algorithm in terms of execution
time. The runtime in the proposed approaches does not exceed
50sec in all instances. However, with DPLL, the runtime
exceeds 600sec in the last instance containing 250 variables

8

 84

 86

 88

 90

 92

 94

 96

 98

 100

50K 200K 500K 1000K

Su
cc

es
s R

ate

Instances of DIMACS

AprioriDPLL
VNSWS

MLVWSAT

Fig. 2. Success Rate of the proposed approach and the state of the art
decomposition-based MAXSAT algorithms with different number of clauses
of DIMACS Instances

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

 50000

 55000

50K 200K 500K 1000K

Ru
nti

me
(S

ec
)

Instances of DIMACS

AprioriDPLL
VNSWS

MLVWSAT

Fig. 3. Execution time (Sec) of the proposed approach and the state of the art
decomposition-based MAXSAT algorithms with different number of clauses
of DIMACS Instances

and 1065 clauses. These results confirm the necessity to use
the decomposition methods for solving SAT instances.

From these experimentations we conclude that Apriori-
DPLL outperforms Kmeans-DPLL both in terms of success
rate and execution time. Therefore, Apriori-DPLL is used in
the last experimentation to compare the proposed approach
with the state-of-the-art MAXSAT algorithms.

D. Apriori-DPLL Vs the State-of-the-art Decomposition-
based Approaches

Fig. 2 plots the success rate of the proposed approach
in comparison with MLV-WSAT, VNS-WS, two approaches
that are recently proposed in the literature and that uses
decomposition methods in the solving process. The tests are
performed using the large DIMACS instances of SAT2013
industrial benchmarks. The results demonstrate that the pro-
posed approach clearly outperforms both approaches, and
that it reaches the optimum (100%) in DIMACS50K. The
success rate of all the approaches normally drops as the size
of the instances goes up, but it is worthy to mention the
increasing gap between the proposed approach and the other
ones. The former’ success rate remains beyond 97% for the
largest instance (1000K), vs. 90% for MLVWSAT and 85%
for VNSWS. This superiority is due to the clustering step
that explores the knowledge extracted by Apriori algorithm
and provides clusters with a higher quality than the other
algorithms. This clustering influences the quality of the final
results in the solving step.

Figure 3 presents the runtime in (sec). It shows the cost of
the improvement in the success rate. The proposed approach

inviably needs a higher runtime to reach the high performance,
but the figure clearly shows that the runtime of the latter is
close to that of the other approaches, and that its increase
with the instance size is smooth, and in the same shape as the
other approaches. This confirms the salability of the proposed
approach.

VII. CONCLUSION

Two decomposition techniques for solving MAXSAT prob-
lem have been proposed in this paper. The first one is direct
decomposition, where the clusters are obtained directly with
Kmeans algorithm. Its main feature is the use of distance be-
tween clauses, and the way to determine the centroid for the set
of clauses. The second approach is indirect decomposition that
is based on Apriori. In this approach, the set of clauses is first
transformed into transactional database, then Apriori is applied
to the database to search for relevant rules that represent the
SAT clauses. These rules are used to generate the clusters
of clauses. These two decomposition techniques (Direct and
Indirect) allow to divide a hard MAXSAT instance into several
sub-instances that are easily solvable. For each cluster of
clauses, the DPLL algorithm is applied to find its partial. The
global solution is finally obtained in the last step by merging
partial solutions. The two decomposition techniques allow
to minimize the dependency between the clusters. However,
the optimal solution may suffer from conflicts between the
clusters, which is caused by the separators variables. To deal
with this issue, we proposed two strategies. The first one is to
start with clusters that have the maximum number of clauses
in the solving step. Whereas, the second one is performed after
finding the global solution and consists in applying a simple
local search on it.

To demonstrate the performance of the two suggested ap-
proaches, several experiments have been carried out using the
hard DIMACS and Uniform-Random-3-SAT instances. The
results revealed that the second approach benefits from the
relevant knowledge extracted in the decomposition step and
improves the results obtained by the direct approach. Still, both
approaches outperforms the ordinary DPLL in terms of com-
putational time, while finding solutions that are close to the
optimal one. The proposed approach has also been compared
with state-of-the-art decomposition based algorithms (MLV-
WSAT and VNS-WS) using very large DIMACS instances
(where ordinary DPLL does not apply). The results indicate
that the Apriori-DPLL outperforms the other algorithms in
terms of success rate and has very competitive run time. As
a perspective, we plan to investigate other heuristics to deal
with the conflict problem caused by the separator variables.
We are also planning to apply the two suggested approach
to other optimization problems such as weighted MAXSAT,
Coloring Problem, and CSP Problem. Finally, proposing a
parallel version that explores HPC to solve very big MAXSAT
instances is also in our agenda.

REFERENCES

[1] Sakai, T., Seto, K., & Tamaki, S. (2014). Solving Sparse Instances
of Max SAT via Width Reduction and Greedy Restriction. In Theory
and Applications of Satisfiability TestingSAT 2014 (pp. 32-47). Springer
International Publishing.

9

[2] Davis, M., & Putnam, H. (1960). A computing procedure for quantifica-
tion theory. Journal of the ACM (JACM), 7(3), 201-215.

[3] Park, T. J., & Van Gelder, A. (1996). Partitioning methods for satisfiability
testing on large formulas. In Automated Deduction Vol-13 (pp. 748-762).
Springer Berlin Heidelberg.

[4] Ansategui, C., Giraldez-Cru, J., & Levy, J. (2012). The community
structure of SAT formulas. In Theory and Applications of Satisfiability
Testing SAT 2012 (pp. 410-423). Springer Berlin Heidelberg.

[5] Abram, A., & Habet, D. (2014, August). On the Extension of Learning
for Max-SAT. In STAIRS 2014: Proceedings of the 7th European Starting
AI Researcher Symposium (Vol. 264, p. 1). IOS Press.

[6] Abrame, A., & Habet, D. (2014, November). Local Max-Resolution
in Branch and Bound Solvers for Max-SAT. In Tools with Artificial
Intelligence (ICTAI), 2014 IEEE 26th International Conference on (pp.
336-343). IEEE.

[7] Chen, R., & Santhanam, R. (2015). Improved algorithms for sparse
MAX-SAT and MAX-k-CSP. In Theory and Applications of Satisfiability
Testing–SAT 2015 (pp. 33-45). Springer International Publishing.

[8] Kolokolov, A., Adelshin, A., & Yagofarova, D. (2013). Analysis and
Solving SAT and MAX-SAT Problems Using an L-partition Approach.
Journal of Mathematical Modelling and Algorithms in Operations Re-
search, 12(2), 201-212.

[9] Sadowski, K. L., Bosman, P. A., & Thierens, D. (2013, July). On the
usefulness of linkage processing for solving MAX-SAT. In Proceedings
of the 15th annual conference on Genetic and evolutionary computation
(pp. 853-860). ACM.

[10] Bouhmala, N. (2014). A Variable Neighborhood Walksat-Based Algo-
rithm for MAX-SAT Problems. The Scientific World Journal, 2014.

[11] Jabbour, S., Sais, L., & Salhi, Y. (2013, October). Boolean satisfiability
for sequence mining. In Proceedings of the 22nd ACM international
conference on Conference on information knowledge management (pp.
649-658). ACM.

[12] Jabbour, S., Sais, L., & Salhi, Y. (2015). Decomposition Based SAT
Encodings for Itemset Mining Problems. In Advances in Knowledge Dis-
covery and Data Mining (pp. 662-674). Springer International Publishing.

[13] Park, T. J., & Van Gelder, A. (1996). Partitioning methods for satisfi-
ability testing on large formulas. In Automated Deduction Vol-13 (pp.
748-762). Springer Berlin Heidelberg.

[14] Drias, H., Hireche, C., & Douib, A. (2013, August). Datamining
techniques and swarm intelligence for problem solving: Application to
SAT. In Nature and Biologically Inspired Computing (NaBIC), 2013
World Congress on (pp. 200-206). IEEE.

[15] Drias, H., & Djenouri, Y. (2014). Association Rules Mining: Application
to Large-Scale Satisfiability.

[16] MacQueen, J. (1967, June). Some methods for classification and anal-
ysis of multivariate observations. In Proceedings of the fifth Berkeley
symposium on mathematical statistics and probability (Vol. 1, No. 14,
pp. 281-297).

[17] Agrawal, R., Imieliniski, T., & Swami, A. (1993, June). Mining associ-
ation rules between sets of items in large databases. In ACM SIGMOD
Record (Vol. 22, No. 2, pp. 207-216). ACM.

