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ABSTRACT This paper considers frequent itemsets mining in transactional databases. It introduces a
new accurate Single Scan approach for Frequent Itemset Mining (SSFIM), its heuristic alternative approach
(EA-SSFIM), as well as its parallel implementation on Hadoop clusters (MR-SSFIM). EA-SSFIM and MR-
SSFIM target sparse and big databases, respectively. The proposed approach (in all its variants) requires
only one scan to extract the candidate itemsets and has the advantage to generate a fixed number of
candidate itemsets independently from the value of the minimum support, which accelerates the scan process
compared to existing approaches while dealing with sparse and big databases. Numerical results show that
the SSFIM outperforms the state-of-the-art FIM approaches while dealing with medium and large databases.
Moreover, EA-SSFIM provides similar performance as SSFIM while considerably reducing the runtime for
large databases. The results also reveal the superiority of MR-SSFIM compared to the existing HPC-based
solutions for FIM using sparse and big databases.

INDEX TERMS Apriori, Frequent Itemset Mining, Heuristic, Parallel Computing, Support Computing.

I. INTRODUCTION

FREQUENT Itemset Mining (FIM) aims at discover-
ing frequent itemsets that are highly correlated in a

transactional database. Let T be a set of m transactions
{T1, T2, . . . , Tm} in a transactional database, and I be a set
of different items or attributes, such that {I1, I2, . . . , In}. An
itemset X , is a set of items or attributes, i.e., I ⊆ X . The
support of an itemset is defined as the ratio of the number of
transactions that contains X to m. An itemset, X , is frequent
if its support is no less than a user’s predefined minimum
support threshold, Υsup, [1]. The problem of FIM is to find an
efficient approach to extract frequent itemsets in a database.
FIM is used in many applications and domains such as basket
analysis, social network analysis [2], biological data analysis
[3] and decision making [4], [5]. FIM is also called with “Big
data” applications such as in frequent genes extractions from
DNA in Bio-informatics [6], frequent itemsets extraction
from twitter streams in social network analysis [7], analysis
of sensorial IoT devices data in smart city applications, etc.
This work mainly focuses on mining the information from
big transactional databases.

Accurate solutions to the FIM problem are divided into
three categories. Approaches in the first category [8]–[10] use
multiple scanning and are based on the Apriori heuristic [1]
and adopt a generate-and-test approach. They first generate
the k-sized candidate itemsets from the (k−1)-sized frequent
itemsets and then test their frequency. Approaches in the sec-
ond category [11]–[13] use two scanning steps and are based
on the FPGrowth algorithm [14] and adopted a divide-and-
conquer approach. They compress the transactional database
in the volatile memory using an efficient tree structure then
apply recursive mining process to find the frequent itemsets.
The third category [5], [15] uses a single scan to derive the
required information but they do not focus on the FIM prob-
lem. Since the approaches in the three categories discover all
the required information against to minimum threshold, they
are also referred to as accurate approaches. These approaches
normally have high computation complexity. The generate-
and-test approach requires multiple scans of the database,
which causes increasing of computation time along with the
number of transactions in the databases. The divide-and-
conquer approach requires a limited number of scans of the
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database, but it has a high memory footprint required to
hold the entire database. The last category of approaches
minimizes database scanning, however, they solely deal with
incremental processing and handle the utility-driven prob-
lem.

This paper propose an efficient Single Scan Frequent Item-
set Mining (SSFIM) for solving FIM problem. The candidate
itemsets in SSFIM are first generated from each transaction
and stored in a hash table that maintains the support infor-
mation. Only the non-existing itemsets are inserted when
they are generated in the hash table (with initial support
value set to 1), while the generation of existing itemsets from
a new transaction increases its support value. In the end,
the frequency of itemsets in the hash table are compared
to Υsup to determine the frequent itemsets and return them
as the results. SSFIM is an efficient method for handling
the non-sparse transactional databases, i.e., databases with
transactions having low or moderate number of transac-
tions. However, it bluntly blocked for sparse transactions
(databases including some transactions with high number of
items). Note that the sparseness here is not related to the
size of the databases (in terms of transaction) but the size of
transactions (in terms of number of items). Metaheuristics,
e.g, ant colony optimization [16], swarm intelligence [17]
or genetic algorithms [18], represent an alternative way to
the accurate solutions for solving the mining problem. These
approaches are relatively efficient in terms of runtime while
dealing with big databases, but they do not guarantee to
find all the required information, i.e., frequent itemsets, with
support higher than Υsup. To overcome this problem, several
FIM parallel algorithms [19] have been recently designed for
handling big data instances through HPC (High Performance
Computing) platforms, e.g., Dmine [20], and cApriori [21].
However, these algorithms still require multiple scanning of
the transactional database, and their performance is usually
highly sensitive to the value of Υsup. Limitations of existing
approaches are addressed in this paper, which is a com-
prehensive extension of our previous work [22]. The major
contributions of this paper are threefold as follows.

1) We first propose an SSFIM approach, which is a
single scan approach to address the FIM. For sparse
databases, we then propose a heuristic alternative
called EA-SSFIM, which combines the evolutionary
procedures and the SSFIM, i.e., the main process is
performed by the SSFIM, where the generation process
is established by the evolutionary procedures. More-
over, a general approach to deploy SSFIM on parallel
computing architectures is presented, which is then
instantiated for Hadoop clusters implementation using
MapReduce programming model to yields MR-SSFIM
(MapReduce for SSFIM)

2) We have first provided theoretically analysis of the
SSFIM algorithm in details, as well as the EA-SSFIM
and MR-SSFIM. We have also presented the statistical
analysis of a large sample of real world transactional

databases, and it shows that the expectation of the
average runtime tend to vary linearly with the number
of transactions for most databases.

3) We establish an intensive experiments to demonstrate
the usefulness of SSFIM and its variants. Experiments
of SSFIM showed that it outperforms other accurate
FIM algorithms and achieves better scalability com-
pared to the other algorithms. Moreover, the developed
EA-SSFIM considerably reduces the runtime com-
pared to the other approaches, while maintaining a high
accuracy that is very close to SSFIM. The designed
MR-SSFIM also outperforms existing HPC-based FIM
approaches for big and sparse databases.

The remainder of the paper is organized as follows. Sec-
tion II reviews existing FIM algorithms. Section III presents
the sequential version of SSFIM, and EA-SSFIM is presented
in SectionIV. The parallel version (MR-SSFIM) is described
in Section V. The performance evaluation is presented in
Section VI, whereas Section VII draws the conclusions.

II. RELATED WORK
In this section, accurate approaches used to solve the FIM are
first presented and discussed, followed by approaches for big
data.

A. ACCURATE APPROACHES TO FIM
Accurate approaches allow to extract the complete informa-
tion, for instance, frequent itemsets [1], sequential patterns
[23], or high-utility itemsets [24], precisely. Several accurate
approaches have been developed and studied [1], [14]. Ac-
cording to the required for number of database scan, existing
algorithms may be divided into three categories, multiple
scans, two scans, and single scan, which will be respectively
discussed as follows.

Multiple Scans
Agrawal et al. [1] proposed the Apriori algorithm, where can-
didate itemsets are generated incrementally and recursively.
To generate k-sized itemsets as candidates, the algorithm
calculates and combines the frequent (k-1)-sized itemsets.
This process is repeated until no candidate itemsets are ob-
tained in an iteration. Many FIM algorithms are based on the
Apriori strategy such as DIC [9], and Eclat [8]. The Apriori
has the limitations. The Apriori-based algorithm requires
multiple scans of a transactional database, which is used to
compute the support of candidate itemsets iteratively. Thus,
the number of database scans required is proportional to the
number of generated candidate itemsets.

Two Scans
Han et al. [14] proposed the FPGrowth algorithm, which
uses a compressed FP-tree structure for mining a complete
set of frequent itemsets without candidate generation. The
algorithm consists of two phases: (i) construct an FP-tree that
encodes the dataset by reading the database and mapping
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each transaction onto a path in the FP-tree, while simulta-
neously counting the support of each item and, (ii) extract
frequent itemsets directly from the FP-tree using a bottom-up
approach to find all possible frequent itemsets ending with
a particular item. Li et al. [25] proposed the NFPGrowth
algorithm, which improves FPGrowth by constructing an
independent head table and allows creating a frequent pattern
tree only once to increase the processing speed. In [26],
the authors proposed a new FPGrowth algorithm for mining
uncertain data. They developed an efficient tree structure
to store uncertain data, in which the occurrence count of
a node is at least the sum of occurrence counts of all its
children nodes. This allows to count rapidly the support of
each candidate itemset. Since FPGrowth-based approaches
give good results compared to the Apriori-based approaches,
they require high memory consumption for construction of
FP-tree structure.

Single Scan
Several works based on single scan have been proposed for
solving pattern mining problems. Huang et al. [27] presented
a P-tree structure to mine the set of frequent itemsets. Yun et
al. [5] proposed a single scan approach for the incremental
high utility pattern mining problem. The authors suggested
a list-based data structure to efficiently maintain and update
incremental data. Lee et al. [15] developed a new algorithm
for solving erasable pattern mining problem in a streaming
way. A new data structure and gain measure are incorporated
to manage and update erasable patterns on one scan of the
original database. However, these approaches are designed
for handling incremental databases and focusing on the high-
utility itemset mining. Although P-tree is related to single
scan method, but it maintains the huge tree structure in the
main memory, and it still requires one scan to first construct
the P-tree structure then mine the frequent itemsets with an
additional scan from the P-tree.

B. APPROACHES FOR BIG DATA
Several HPC-based approaches have been developed for
dealing with big databases and implemented using emerging
technologies, such as Hadoop, Mapreduce, MPI, and on
different GPU and Cluster architectures [28]. Some of these
approach are discussed in the following.

GPU-based Approaches
In [29], CU-Apriori is proposed, which develops two strate-
gies for parallelizing both candidate itemsets generation and
support counting on GPU. In the candidate generation, each
thread is assigned with two frequent (k-1)-sized itemsets, it
compares them to make sure that they share the common (k-
2) prefix and then generates a k-sized candidate itemset. In
the evaluation, each thread is assigned with one candidate
itemset and counts its support by scanning the transactions
simultaneously. In [30], a multilevel layer data structure is
proposed to enhance the support counting of the frequent
itemsets. It divides vertical data into several layers, where

each layer is an index table of the next layer. This strategy
can completely represent the original vertical structure. In
a vertical structure, each item corresponds to a fixed-length
binary vector. However, in this strategy, the length of each
vector varies, which depends on the number of transactions
included in the corresponding item. In [31], the Bit-Q-Apriori
algorithm simplifies the process of candidate generation and
support counting. Unlike the Apriori-based approach, the Bit-
Q-Apriori algorithm generates k-sized candidates by joining
1-sized frequent itemsets and (k-1)-sized frequent itemsets.
The bitset structure is used to store identifications of transac-
tions that corresponds to each candidate. Therefore, support
counting can be implemented using Boolean operators that
reduces multiple scanning of database. In [21], the authors
propose the cApriori algorithm, which compresses the trans-
actional database to store the whole database on the shared
memory of the given GPU-blocks. The results reveal that
cApriori mined the Wikilinks datasets (the largest dataset on
the web) in reasonable time.

Cluster-based Approaches
In [32], the BigFIM algorithm is presented, which com-
bines principles from both Apriori and Eclat. BigFIM is
implemented using the MapReduce paradigm. The mappers
are determined using Eclat algorithm, whereas, the reducers
are computed using the Apriori algorithm. In [33], a new
HPC-based algorithm that extracts frequent patterns from big
graphs is developed. The input graphs are first partitioned
among the nodes. A set of optimizations and collective com-
munication operations is then used to minimize information
exchange between the different nodes. In [20], Dmine is
developed for mining big graph instances. The similarity
measure is proposed to partition the graphs among distributed
nodes. This strategy reduces the communication between the
different computational nodes. This approach has been ap-
plied to big graph containing several million nodes and sev-
eral billion edges. In [34], a hadoop implementation based on
MapReduce programming (FiDoop) is proposed for frequent
itemsets mining problem. It incorporates the concept of FIU-
tree rather than traditional FP-tree of FPgrowth algorithm,
for the purpose of improving the storage of the candidate
itemsets. An improved version called FiDoop-DP is proposed
in [35]. It develops an efficient strategy to partition data sets
among the mappers. This allows better exploration of cluster
hardware architecture by avoiding jobs redundancy.

III. SINGLE SCAN FREQUENT ITEMSET MINING (SSFIM)
A. ALGORITHM DESCRIPTION
The principle of SSFIM is that an individual transaction
contains all the information required to generate a certain
number of candidate frequent itemsets. Transactions in a
database can then be processed one by one to obtain can-
didate frequent itemsets. While processing transactions, the
support of generated candidate itemsets can be updated, so
that at the end of a single scan of the database, it becomes
possible to assess which itemsets satisfy the Υsup constraint.
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SSFIM generates all possible itemsets for each transaction.
If an itemset that resulted from processing a transaction has
already been generated when processing a previous transac-
tion, then its support is simply incremented by one. Other-
wise, it is initiated with a support set to one. The process is
repeated until all transactions in the database are processed.
The designed SSFIM allows to find all frequent itemsets with
only one scan of the transactional database. SSFIM is also
complete, i.e., the frequent itemsets are extracted directly
from the transactional database and a given itemset is fre-
quent iff it is found Υsup times in the database. Consequently,
no information is lost in the itemset generation process. The
SSFIM is given by Algorithm 1.

Algorithm 1 SSFIM Algorithm
1: Input: T: Transactional database. Υsup: Minimum sup-

port user’s threshold.
2: Output: F: The set of frequent itemsets.
3: for each Transaction Ti do
4: S← GenerateAllItemsets(Ti).
5: for each itemset t ∈ S do
6: if t ∈ h then
7: h(t)← h(t)+1
8: else
9: init: h(t)← 1

10: end if
11: end for
12: end for
13: F← ∅
14: for each itemset t ∈ h do
15: if h(t) ≥ Υsup then
16: F← F ∪ t
17: end if
18: end for
19: return F

The inputs of the algorithm are the transactional database,
T , used for generating and computing the candidates item-
sets, and the minimum support value Υsup. A hash table, h, is
used to store all generated itemsets with their partial number
of occurrences. The algorithm returns the set of all frequent
itemsets, F . From each transaction in T , the set of all possible
itemsets, S, is first computed (line 4). For instance, if the
transaction Ti contains the items a, b, and c, then S contains
the itemsets a, b, c, ab, ac, bc, and abc. Afterwards, the hash
table h is updated with information (support) regarding each
generated itemset, t, in S (lines 6 throughout 10). If t already
exists as a key in h then the entry with key t in h (h(t)) is
incremented. Otherwise, a new entry with is created for, t,
with an support initialized to one. Finally, after completing
itemset support calculation for all transactions, the final hash
table is used to determine F (line 12 throughout 18). Only
itemsets with support no less than Υsup are added to F .

For instance, consider the transactions T = {T1 :
{a, b}, T2 : {a, b, c}, T3 : {a, c, d}, T4 : {a, d}}. SSFIM
starts by scanning the first transaction {a, b} and extracting

all possible candidates itemsets, i.e., {a, b, ab}. An entry
in h is then created for each candidate itemset. For the
second transaction {a, b, c}, SSFIM determines all possible
candidate itemsets, i.e., {a, b, c, ab, ac, bc, abc}. The itemsets
a, b, and ab already exist in h, so their supports are increased,
while entries are created for the remaining itemsets that
are not in h yet. The same process is repeated for every
transaction. In the end, the itemsets in h with support no
less than Υsup are returned as frequent. In this example, if
Υsup = 1/2 then the returned set of frequent itemsets is,
{a, b, c, ab, bc}. This is the set that would be returned by any
accurate FIM algorithm, e.g, Apriori.

B. THEORETICAL ANALYSIS
In this section, the worst case runtime complexity of SSFIM
is first analyzed and compared to that of Apriori. This will
just represent an upper bound of the computation cost, but far
from the real computation cost of most cases in practice. We
then present a statistical analysis to derive a less pessimistic,
more likely average complexity.

1) Worst Case Complexity
The runtime complexity of SSFIM is proportional to, i) the
cost required for the generation of the candidate itemsets,
added to, ii) the cost to determine frequent itemsets from the
generated itemsets. The memory complexity is propositional
to the total number of the candidate itemsets generated. For
(i), the number of candidates generated from a transaction,
Ti, is 2|Ti| − 1, where |Ti| represents the number of items of
Ti. Thus, the total number of generated candidate itemsets is,

m∑
i=1

(2|Ti| − 1), (1)

where m is the number of transactions in the database T .
This represents the number of steps for the generation of the
candidate itemsets, and an upper bound of the memory cost
as well (when all the generated itemsets at each step are not
found in the hash table and thus inserted). Let, Tmax, be the
maximum number of items per transaction, then the number
of candidate itemsets is bounded by m(2Tmax − 1), and the
generation operation in the worst case is O(m2Tmax) 1

Determining frequent itemsets from candidate ones re-
quires to scan the hash table, h, and, for each candidate
itemset, to evaluate its frequency against Υsup. The number
of steps for this is also given by Eq. 1. In the worst case, this
operation needsm(2Tmax−1) steps. Consequently, the worst
case complexity of SSFIM is,

O(m2Tmax) (2)

According to Hegland [36], the theoretical complexity of
the Apriori algorithm is,

O(m× n2), (3)

1this also represents the worst case memory complexity (a very pes-
simistic upper bound)
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where, n, is the number of items in the database.
The worst case complexity of SSFIM depends exponen-

tially with Tmax (the number of items generated per trans-
action), but linearly with m. The complexity of the Apriori
algorithm depends linearly with m, but polynomially with n.
Generally, m � n, and Tmax is dominated by n and m. In
this case, Eq. 2 is considered asymptotically better than Eq.
3. This is fulfilled in most existing transactional databases (as
it will be justified later). For instance, in the well-known case
of basket analysis, the number of products in stock at a su-
permarket can reach several thousands, whereas the average
number of products bought by an individual customer hardly
exceeds a few dozens. In the remainder of this section, we
will statistically analysis a large sample of databases to infer
expected value of Tmax and then stochastically analyze the
theoretical complexity given above.

2) Statistical Analysis
The theoretical analysis provided thus far shows that the
complexity of SSFIM depends on the transaction’s size, i.e.,
the number of items per transaction, rather than the problem’s
size (n). Theoretically, the transaction’s size, may vary from
1 to the size of the database (n). But in practice, bounding
the terms Ti with n is very pessimistic and unrealistic.
In the following, we stochastically derive more reasonable
average complexity through an estimation of the distribu-
tion of the expected number of items per transaction using
real databases. 500 different database instances have been
retrieved from renowned UCI machine learning and frequent
itemsets repositories2.

1) Runtime Analysis: Let D = {Dj} be a set of real
world database instances, where each Dj is a different
database, Oi,j the number of transactions in Dj con-
taining i items, and ρi the percentage of transactions
containing i items in D, i.e.,

ρi =

∑|D|
j=1Oi,j∑|D|
j=1 |Dj |

(4)

From a statistical standpoint, D is the set of population
population to be studied, while each data instance rep-
resents an individual in the population. Our objective is
to estimate from the identified population the random
variable, x, which represents the number of items per
transaction.
The 500 selected databases are used to determine, ρi,
for each number of items, i.
Fig. 1 shows the distribution of the number of items
per transactions in the population (red color). Using
curve fitting on the obtained results, we estimated the
number of items per transaction in the population with
a normal (Gaussian) distribution, x ∼ N (µ, σ2), with
µ = 20 and σ2 = 5.2., (which is plotted in Fig. 1
as well). We performed χ2 test with XLSTAT using a

2available at https://archive.ics.uci.edu/ml/datasets.html and http://fimi.
ua.ac.be/data/, respectively
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FIGURE 1. Normal Distribution of the number of items X → N (20, 5.2)
using 500 sample database instances

significance level α = 2%, and the results show that
the test hypothesis “the data instances follow a Normal
distribution with mean 20 and variance 5.2”, cannot be
rejected, i.e., this confirms the hypothesis with a 98%
confidence interval.
By replacing |Ti| with x in Eq. 1 for both steps
(candidate itemsets generation and determining fre-
quent itemsets from candidates), the term representing
the complexity (now average complexity) becomes
2
∑m

i=1(2x − 1).
Let us denote this function by g(x). The aim now is
to determine the expected value of g(x), i.e., E[g(x)],
given that the variable x follows a normal distribution.
We have, E[g(x)] = E[

∑m
i=1(2x − 1)] =∑m

i=1(E[2x]− 1), which leads to:

E[g(x)] = m(E[2x]− 1) (5)

Since, E[h(x)] =
∫ +∞
−∞ h(x)f(x)dx, where f(x) is

the probability density of the normal distribution. This
yields,

E[g(x)] =

∫ +∞

−∞
m(E[2x]− 1)

1√
2πσ2

e−
(x−µ)2

2σ2 dx

(6)
After integration and simplification, we obtain,

E[g(x)] = m(
e
µ2σ4+ln(2)2

4σ16
√
σ2

8
√

2
− 1) (7)

Now, by replacing µ and σ2 with the results obtained
in our statistical study, we obtain,

E[g(x)] = 7.10×m (8)

Based on this statistical test of the number of items per
transaction in real world database instances, we realize
that SSFIM complexity is more likely to depend lin-
early (on average) with m, while the Apriori heuristic
complexity is quadratic (Eq.3).
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FIGURE 2. Normal Distribution of the maximum number of items per instance
X → N (30, 6.0) using 500 sample database instances

2) Memory Cost and Applicability Analysis: The pre-
vious analysis on the average number of items gives
a clear vision on the average runtime complexity.
However, the applicability of the algorithm is directly
affected by the memory cost, which in turn is affected
by the maximum number items per transaction (and not
the average one). Let us define TDj

max as the maximum
number of items in Dj , and, Oi, as the number of
instances having maximum number of items equal to
i. Oi can be defined as follows:

O(i) = |{Dj/T
Dj
max = i}| (9)

ρi is redefined as the percentage of instances in D that
contain i items as maximum number of items, i.e.,

ρi =
O(i)

|D|
(10)

Our objective now is to estimate from the identified
population the random variable, x, which represents the
maximum number of items per instance.
The previous selected 500 databases are used to deter-
mine ρi for each number of items i.
Fig. 2 shows the distribution of the maximum number
of items per instance in the population (solid line). Us-
ing curve fitting on the obtained results, we estimated
the maximum number of items per instance in the
population with a normal distribution, x ∼ N (µ, σ2),
with µ = 30 and σ2 = 6.0.. Similarly to the previous
test, the χ2 test is performed with a significance level
α = 2%, and the results show that the test hypothesis
“the data instances follow a Normal distribution with
mean 30 and variance 6.0”, cannot be rejected, i.e.,
this confirms the hypothesis with a 98% confidence
interval.
Our experiments show that the parallel implementation
(to be presented later) allows to safely run all databases

with up to T
Dj
max = 37. Beyond this limit, the algo-

rithm starts crashing. From this statistical sample that
has confidence interval of 98% (normal distribution
in Fig. 2), we can check that the ratio of databases
having T

Dj
max ≤ 37 is 0.91. Therefore, we conclude

the coverage probability of our parallel (accurate) im-
plementation is no less than 0.91. For the uncov-
ered databases, we propose an alternative approach
(EA-SSFIM), which is presented in the Section IV.
Note that the uncovered databases are some sporadic
databases with TDj

max > 37.
To derive memory complexity, we follow the same pro-
cess as in previous step (except that g(x) =

∑m
i=1(2x−

1) instead of 2
∑m

i=1(2x − 1). We obtain,

E[g(x)] = 12.75×m (11)

This statistical test based on the maximum number of
items per instance confirms again that the memory cost
of SSFIM depends only on the number of transactions,
m, in a database and it is unrelated to n. Moreover,
SSFIM complexity is more likely to depend linearly
with, m, contrary to the Apriori-based approach.

IV. EA-SSFIM
A. PRINCIPLE
This section presents an alternative approach of SSFIM
called EA-SSFIM, which employs an evolutionary algorithm
in the generation process. The main difference between SS-
FIM and EA-SSFIM is in the generation process of the item-
sets from each transaction. An evolutionary algorithm is ap-
plied to generate potential solutions from each transaction Ti.
Afterwards, the supports of the generated solutions (itemsets)
are maintained in a hash table. This process is repeated for all
transactions. The satisfied itemsets with supports greater than
Υsup are then returned. In the following, we present the main
operation of the EA-SSFIM, which is the generation process.

B. GENERATION PROCESS
The evolutionary algorithm is first applied for each trans-

action; it starts by initializing population from each transac-
tion Ti, and then applies crossover, mutation, and selection
operators for the generated chromosomes. To efficiently gen-
erate potential solutions, the hash table is used to guide the
search process. This process is repeated until the maximum
number of iterations is reached. We denote by ωi the solution
space of the transaction Ti. The solution space of the EA
depends to the number of items per transaction. The size of
the solution space ωi is calculated as: 2|Ti| − 1.

The algorithm defines intelligent operators to explore po-
tential solutions from each ωi. Each solution s is defined
as a vector of |Ti| elements. The j − th element is set to
1, if the j − th item of the transaction Ti appears in s; 0,
otherwise. The population initialization is first performed by
randomly generating popsizei individuals from the solution
space ωi. For instance, if we have a transaction such that
T1:{a, b, c, d, e}, then ω1 contains 31 potential solutions. If
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Algorithm 2 Generation Process
1: Input: Ti: The ith transaction. PopSizei: Population

size of ωi of Ti. MAXi: The maximum number of
iterations of ωi of Ti. Υsup: Minimum support user’s
threshold.

2: Output: Si: Potential solutions in ωi.
3: Si ← ∅
4: for j=1 to MAXi do
5: Indiv ← PopulationInitialization(ωi, PopSizei)
6: Si ← Si ∪ Indiv
7: for each (indiv1, indiv2) ∈ Indiv do
8: Offs← Crossover(Indiv1, Indiv2)
9: Si ← Si ∪Offs

10: for each offs ∈ OFFS do
11: Si ← Si ∪Mutation(offs)
12: end for
13: end for
14: for each solution s ∈ Si do
15: if h(s) ≥ h(s̄) then
16: Si ← Si ∪ Intensify(s)
17: else
18: Si ← Si ∪ Intensify(s̄)
19: end if
20: end for
21: Selection(Popsizei)
22: j ← j + 1
23: end for
24: return Si

we set popsize1 as 2, the individuals indiv1 : 00111 repre-
sents the itemset {cde} and the individuals indiv2 : 01001
represents the itemset {be}. The crossover and the mutation
operators are then performed to generate other potential
solutions.

Afterwards, for a given solution s, if the current support of
s is greater than the current support of s̄, the intensification
in s is launched. Otherwise, the diversification from s̄ is
established. Note that s̄ is defined by the set of items that does
not belong to s. For instance, if s : 00111, then s̄ : 11000.
This process is repeated for maximum number of iterations
MAXi. The algorithm of the generation process is given in
Algorithm 2. The main EA operators in ωi is explained as
follows:

a: Crossover
The crossover operator is applied on a parents to generate
two offsprings. The two parents are divided in two parts by
selecting a crossover point cp. The first offspring is generated
by merging the first part of the first parent and the second
part of the second parent. The second offspring is generated
by merging the first part of the second parent and the second
part of the first parent. For instance, consider the previous
example, and the two parents p1:00111 and p2:01001, and the
crossover point cp=2. The offsprings generated from these
parents respectively are off1:00111, which represents the

itemset {cde}; and off2:0111, which represents the itemset
{bcde}.

b: Mutation:
The mutation operator is applied on each generated offspring
by flipping the value of the gene having less support value
in the hash table entry. For instance, consider the offsprings
off :1100 of the transaction T3:{a,b,c,f}, and h(a) is set to
1 and h(b) is set to 2. The mutation operator yields the
offsprings {01100} by replacing the item a with the item
c. In the case of finding two lower items with the same
support, one of these items is selected randomly to perform
the mutation operator.

c: Intensification:
It is launched when the current support of the a solution, say
s, is greater than the current support of the remaining itemsets
in the transaction of s. This allows to look for another
pertinent solutions in s. The intensification is performed by
removing one item at the same time from the solution s.
For example, considering the transaction {acde} and the
solution s:0111 that represents the itemset {cde}. With the
intensification, the following itemsets are generated, {cd},
{ce}, and {de}.

d: Diversification:
It is established when the current support of the given so-
lution s is less than the current support of the remaining
itemsets in the transaction of s. This allows to explore another
regions in the solution space of the given transaction. The
diversification is performed by removing one item at the
same time from the solution s̄. For example, considering the
transaction {abcdef} and the solution s : 000111. We first
compute s̄ : 111000 that represents the itemsets {abc}. With
the diversification, the itemsets {abc}, {ab}, {ac}, and {bc}
are generated.

The memory complexity of itemset generation in the i-
th transaction is always polynomial, i.e., it is O(IMAXi ×
PopSizei). This provides tremendous asymptotic reduction
compared to SSFIM that has exponential complexity, i.e.,
O(2|Ti|−1). The worst case total complexity for EA-SSFIM
is O(m × maxi{IMAXi} × maxi{PopSizei} × Tmax),
which is always O(m× Tmax).

V. PARALLEL IMPLEMENTATION: MR-SSFIM
To run SSFIM on any parallel architecture, the following
sequential steps have to be followed:

1) Partition the database: the transactional database is
divided into many partitions, whereby each partition
contains a set of transactions. To ensure load balanc-
ing among the different parallel nodes, the partitions
should have the same size (the same number of trans-
actions).

2) Compute and store the local results: in this step,
each parallel node generates all itemsets from the
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FIGURE 3. MR-SSFIM Framework

FIGURE 4. MR-SSFIM Illustration

transactions that are assigned to it and stores them in a
local hash table. The latter is built following the same
logic of building the hash table, h, in the sequential
implementation of SSFIM (See Section III). That is,
when a new candidate itemset is generated, a new
entry is initialized in the hash table or, if the itemset
is already indexed by the hash table, then its frequency
is incremented by one.

3) Merge local results: once the local hash tables are
calculated, a designated node should merge the local
hash tables into a global one. This can be done using a
sum reduction technique [37].

4) Send back the results to CPU: finally, the global
hash table is scanned by the designated node to retain
only the itemsets that exceed the minimum support
constraint, which are sent back to the CPU node.

The instantiation of above four steps must be carefully
designed to fit the hardware in use. In the remainder of this
section, MapReduce instantiation of this generic approach is
presented. MapReduce is a popular data processing paradigm
for efficient and fault tolerant workload distribution in large
clusters. MapReduce is a well-known data processing model
first suggested by Deanand Ghemawat [38]. A MapReduce
computation mainly operates on two phases: i) the Map
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Algorithm 3 MR-SSFIM
1: Input: T: Transactional database. Υsup: Minimum sup-

port user’s threshold.
2: Output: F: The set of frequent Itemsets.
3: {Partition}
4: P← SLS(T)
5: for each partition Pi do
6: {Map}
7: Ci ← ∅
8: for T j

i ∈ Pi do
9: Ci ← Ci ∪GenerateAllItemsets(T j

i )
10: end for
11: < Ci, |Ci| >← < key, value >
12: {Reduce}
13: LHi ← ∅
14: for c ∈ Ci do
15: LHi(c)← 1
16: for c′ ∈ Ci do
17: if c′ = c then
18: LHi(c)← LHi(c) + 1
19: end if
20: end for
21: end for
22: end for
23: {Merging}
24: GH ← ∅
25: for i = 1 ∈ k do
26: for c ∈ LHi do
27: if c ∈ GH then
28: GH(c)← GH(c) + LHi(c)
29: else
30: GH(c)← LHi(c)
31: end if
32: end for
33: end for
34: F ← ∅
35: for t ∈ GH do
36: if GH(t) ≥ Υsup then
37: F← F ∪ t
38: end if
39: end for
40: return F

phase: Splits the input database into high number of parti-
tions, and assigned to different cluster nodes. ii) the Reducer
step first receive the output of the mappers and then produce
the final results. MR-SSFIM (the instantiation of SSFIM on
Hadoop clusters, see Fig. 3) uses the MapReduce model. Step
by step explanation of MR-SSFIM is given as follows. The
transactional database, T , is first divided into the set of k
disjoint partitions P = {P1, P2...Pk}, where Pi ∩ Pj = ∅,
∀(i, j) ∈ [1..k]2 and

⋃k
i=1 Pi = T . To ensure load balancing

between mappers, the partitions are constructed by minimiz-

ing the following function as:

(

k∑
i=1

(

k∑
j=1

(

|Pi|∑
l=1

(2T
l
i − 1)−

|Pj |∑
l=1

(2T
l
j − 1)))) (12)

Solving this equation by accurate solver requires high com-
putational time. The SLS (Stochastic Local Search) algo-
rithm [39] is used to find the set of partitions P . Each parti-
tionPi is then sent to the mapperMi. The latter processes the
transactions of the partition, Pi, and generates all candidate
itemsets from each transaction T j

i .
Gradually, it creates a set of candidate itemsets Ci. When
Mi scans all transactions of the partition, Pi, it sends Ci to
the reducer Ri. The reducer Ri scans the candidate itemset
Ci, and computes the local support of each itemset that
belongs to Ci. This allows to create the local hash table, LHi.
The merging step is then performed to determine the global
support of all itemsets and extract all frequent itemsets from
the global hash table GH. The pseudo-code of MR-SSFIM
is given in Algorithm 3. From a theoretical standpoint, MR-
SSFIM improves the baseline SSFIM by exploiting Hadoop
clusters while generating and evaluating candidate itemsets.
The load balancing is respected, since the transactions are
well assigned to the mappers. Mappers can process transac-
tions independently and send the results to the reducers. The
reducers then incrementally updates the local hash table to
build the global hash table, and extract the set of all frequent
itemsets.

Fig. 4 illustrates MR-SSFIM on two cluster nodes. The
set of transactions {{a,b}, {b,c,d}, {a,b,c}, {e}, {c,d,e}} is
partitioned into two partitions P1 : {{a, b, c}, {c, d, e}}, and
P2 : {{b, c, d}, {a, b}, {e}}. The first mapperM1 generates
14 candidate itemsets from P1, whereas the second mapper
M2 generates 11 itemsets from P2. The load balancing is
respected thanks to the partitioning strategy employed in
MR-SSFIM. Afterwards, the reducers R1 and R2 create
the local hash tables LH1, and LH2, respectively from the
data output of the mappers M1, and M2. The local hash
tables are merged to determine the global hash table GH. For
instance, the support of the itemset {c} is 3 in GH, which is
obtained by merging the entry {c:2} of LH1, and the entry
{c:1} of LH2. At the end, the set of all frequent itemsets
F = {{a}, {b}, {ab}, {c}, {d}, {bc}, {cd}, {e}} is derived
using 2/5 as minimum support threshold.

VI. NUMERICAL ANALYSIS
The proposed approaches are experimentally evaluated using
different transactional database instances. Database instances
are classified according to their size, i.e., the number of
transactions, into small (with less than 3, 000 transactions),
average (between 3, 000 and 80, 000 transactions), large
(80, 000 to 520, 000 transactions), and big data instances
with more than 5 million transactions. Small, average and
large instances have been retrieved from the Frequent Mining
Dataset Repository3, which are scientific repositories com-

3http://fimi.ua.ac.be/
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TABLE 1. Database instances used in the evaluation

Data set Type Data set Name m n i

Bolts 40 8 8
Sleep 56 8 8

Small Pollution 60 16 16
Basket ball 96 5 5

IBM Quest Standard 1,000 40 20
Quake 2,178 4 4
Chess 3,196 75 37

Mushroom 8,124 119 23
Average BMS-WebView-1 59,602 497 2.5

BMS-WebView-2 77,512 3,340 5
Retail 88,162 16,469 10

Large Connect 100,000 999 10
BMP-POS 515,597 1,657 6.5

Big data instance Wikilinks 5,706,071 3,773,865 23

monly used for benchmarking in the data mining community.
The big data instance used in our evaluation is built from real
data retrieved from the Internet; the Wikilinks4. It is a collec-
tion of documents representing a subset of Wikipedia pages.
It contains 40 millions documents over 3 million entities. The
NLP techniques implemented in the NLTK Python package
are used to retrieve and transform the Wikilinks documents
into the transactional form. The database obtained contains
about 5 million transactions.

Table 1 describes the different database instances used in
the evaluation. Note that the datasets show large variability
with regard to the total number of items n. The average
number of items per transaction, i, tend to remain limited
(below 37) when compared to the database size m. That is,
the number of transactions in a database.

A. SSFIM PERFORMANCE
Fig. 5 presents the runtime performance of SSFIM, Apriori,
FPGrowth and Eclat, using small, average and large FIM
instances. For small instances, SSFIM takes more time com-
pared to other FIM algorithms. However, for average and
large instances, SSFIM outperforms all the other algorithms.
These results confirm the effectiveness and superiority of
the proposed single scan approach when dealing with non-
dense and large transactional databases. The next experiment
investigates the impact of the minimum support parameter.
Remember that the Apriori based algorithms are highly
sensible to the minimum support. Fig. 6 shows the runtime
performance of Apriori and SSFIM using the BMP-POS
instance, i.e., the largest instance in the literature not clas-
sified as Big Data. By varying the minimum support (from
100% to 10%), the execution time of the Apriori algorithm
highly increases, while the runtime of SSFIM remains stable
and further bellow Apriori. The results confirm that the
SSFIM is not sensitive to variations of the minimum support.
This is justified by the fact that SSFIM is a transaction-
based approach in which the number of generated candidates
itemsets does not depend on the chosen minimum support.

4http://www.iesl.cs.umass.edu/data/wiki-links
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Conversely, the Apriori heuristic is an item-based approach,
where the number of generated candidates inversely depends
on the minimum support.

The last experiments regarding the sequential version of
SSFIM test its scalability when dealing with big data in-
stance. The particularity of this Big Data instance (Wikilinks)
is that the average number of items per transaction and the
maximum number of items per transaction are relatively
low and do not exceed 23 and 35, respectively. Given the
theoretical and statistical analysis presented in Section III-B,
we anticipate that SSFIM is a suitable candidate to solve
this Big Data instance in relatively reasonable time. Fig. 7
presents the runtime performance of SSFIM, Apriori, FP-
Growth, Eclat for the Big Data instances by varying the
number of transactions that are considered in the mining
process from 10% to 100%. The results show that the run
time of SSFIM remains relatively stable and the increase
with the number of transaction is much smoother compared
to the other algorithms. For example, to process the entire
Wikilinks instance, SSFIM needs about 20 hours, while the
other algorithms take more than 50 hours for just 40% of
transactions. Further, all these algorithms (except SSFIM)
were not able to extract more than 40% frequent itemsets
from the Wikilinks after several days of running that ended
with system crashing. This is in line with results reported
in the literature, e.g., it has been shown in [21] that these
algorithms have been executed for more than 20 days without
returning any results while processing this big data instance .

The results clearly demonstrate the superiority of SSFIM
when treating big data instances. However, the sequential
SSFIM still needs huge time when dealing with these in-
stances. More than 10 hours of runtime is acceptable only for
analyzing delay tolerant static data, but not in delay sensitive
applications such as analysis of sensorial data in IoT appli-
cations (e.g., road traffic management, energy management
decisions in smart grids, etc.), realtime mining of financial
data, etc.
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B. EA-SSFIM PERFORMANCE
In this experiment, we compare EA-SSFIM with the SSFIM
(accurate version), and the improved version of G3PARM
[40]. Note that for small and average data instances, percent-
age of satisfaction for all algorithms is 100%. Fig. 8 presents
the percentage of frequent itemsets on large and big data
instances for the three algorithms. The results reveal that EA-
SSFIM outperforms the baseline algorithms G3PARM and
it is able to find more than 95% of frequent itemsets in all
cases. This result is explained by the fact that the designed
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EA-SSFIM has the ability to deal with large and big solu-
tion space using both SSFIM and evolutionary procedures,
where the solution space is well reduced by SSFIM (only
the itemsets of the transactions are considered), and well
explored by the evolutionary procedures. This is contrary
to the G3PARM, where the solution space is defined by all
items. Fig. 9 presents the execution time (in seconds) of EA-
SSFIM, SSFIM, and G3PARM using Wikilinks instance.

By varying the percentage of transactions from 20% to
100%, EA-SSFIM outperforms the G3PARM and SSFIM.
For mining all the transactions (100%), the runtime of SS-
FIM exceeds 60000 seconds, and the runtime of G3PARM
exceeds 30000 seconds, whereas the runtime of EA-SSFIM
below 19000 seconds. These results are justified by the com-
bination of SSFIM and evolutionary procedures to explore
big solution space. However, the runtime is still high for big
data instances such as Wikilinks. In the next section, we show
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the performance the parallel implementation (MR-SSFIM)
for dealing with big Wikilinks instance.

C. MR-SSFIM PERFORMANCE
Fig. 10 shows the speed up of MR-SSFIM compared to the
sequential version using small, medium and large instances,
by varying the number of nodes from 8 to 32, and with
different datasets. The results show that the speed up of MR-
SSFIM considerably increases with the number of nodes.
For large instances, in particular, the speed up reaches up
to 700. These results confirm the significant improvement
by the parallel approach over the sequential SSFIM. They
also demonstrate that MR-SSFIM is more efficient when
increasing the number of nodes and the database sizes. In the
last experiments on Wikilinks instance that will be presented
in the next section, we evaluate MR-SSFIM using 32 nodes.
The last experiment considers big data instances (Wikilinks)
and compares MR-SSFIM to some state-of-the-art HPC-
based FIM approaches such as cApriori [21], Dmine [20],
Bit-Q-Apriori [31] and FiDoop-DP [35]. Fig. 11 presents
the runtime by varying the percentage of items from 20%
to 100%. The Results show that MR-SSFIM outperforms
all the other HPC-based algorithms. MR-SSFIM extracts all
frequent itemsets in the Wikilinks instance in less than 20
minutes, while the sequential version of SSFIM performed
that in about 10 hours (Fig. 7), and the best performing
HPC-based FIM approach takes about 2 hours. These re-
sults confirm the efficient design of MR-SSFIM, whose
complexity does not depend on the number of items in a
database but only on the number of items per transaction.
Fig. 12 presents the runtime performance of MR-SSFIM,
and FiDoop-DP [35] for Wikilinks instance by varying the
minimum support from 10% to 0.5%. The results show that
the execution time of MR-SSFIM remains relatively stable
compared to the FiDoop-DP with the decrease of minimum
support value. These results confirm again the non sensitivity
of the designed approach vs. the minimum support constraint.

VII. CONCLUSIONS AND PERSPECTIVES
SSFIM, a new and efficient frequent itemset mining ap-
proach for big databases is proposed in this paper. It aims
at discovering frequent itemsets with only one scan of the
transactional database. Two variants EA-SSFIM and MR-
SSFIM are also developed respectively based on evolutionary
appraoch and MapReduce model. Experimental evaluation
reveals that SSFIM, and EA-SSFIM outperform the baseline
FIM algorithms for different database sizes, and that EA-
SSFIM is able to discover the required information within a
reasonable time. Moreover, the results reveal that the MR-
SSFIM reaches up to 800 speed up and outperforms the
existing HPC-based FIM solutions when dealing with big
sparse databases.

Motivated by the promising results shown in this paper, we
plan to extend SSFIM for solving domain-specific complex
problems requiring the mining of big data. This can be found,
for instance, in the context of business intelligence applica-

tions or in the context of mining financial data. Adapting and
incorporating SSFIM with the existing incremental pattern
mining approaches are also considered as our future agenda.
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