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Abstract—Quantum computing has the potential to provide
solutions to many problems which are challenging or out of reach
of classical computers. There are several problems in rendering
which are amenable to being solved in quantum computers, but
these have yet to be demonstrated in practice. This work takes
a first step in applying quantum computing to one of the most
fundamental operations in rendering: ray casting. This technique
computes visibility between two points in a 3D model of the world
which is described by a collection of geometric primitives. The
algorithm returns, for a given ray, which primitive it intersects
closest to its origin. Without a spatial acceleration structure, the
classical complexity for this operation is O(N). In this paper, we
propose an implementation of Grover’s Algorithm (a quantum
search algorithm) for ray casting. This provides a quadratic speed
up allowing for visibility evaluation for unstructured primitives
in O(

√
N). However, due to technological limitations associated

with current quantum computers, in this work the geometrical
setup is limited to rectangles and parallel rays (orthographic
projection).

Index Terms—quantum computing, ray casting, Grover’s al-
gorithm, complexity

I. INTRODUCTION

The field of quantum computing has registered huge devel-
opments over the last few years, raising the perspective for
this alternative computing paradigm to become practical and
advantageous in the medium term.

Richard Feynman is believed to have been the first to
propose using quantum mechanics as a model for computation
[1]. Theoretical results soon followed, with, for example, the
proposal of the quantum Turing machine by Deutsch in 1985
[2] and algorithms that lie in the heart of most quantum
programs, including Grover’s for unstructured searching [3],
Shor’s for prime factorization [4] and the Quantum Fourier
Transform [5].

More recently, technological advances made it possible for
some companies to make quantum computers available to
the community. These machines still impose quite demanding
limitations on the size and execution time of the problems
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they can solve, due to limited coherence times, reduced
number of qubits and significant error rates at the gates
level. Nevertheless, the number of researchers, practitioners
and companies experimenting with prototype applications to
solve an ever growing variety of problems has been increasing
exponentially. This rising interest on quantum computing is
largely supported by an huge investment both from private
companies and research funding institutions [6], [7].

An n-qubits quantum computation evolves on an exponen-
tial state space, representing at each instant a linear super-
position of 2n states. Each computing step leads the system
to another superposition, acting on the 2n states simultane-
ously without any resources replication. On the other hand,
a classical n-bits system represents at each instant a single
state out of the 2n possible states and a computing step leads
to a single subsequent state. It is this exponential quantum
parallelism that holds the promise of the quantum advantage
over classical computing. For some problems quantum algo-
rithms have been found which exhibit better complexity than
classical alternatives, allowing for the efficient computation
of otherwise intractable problem sizes. Grover’s algorithm [3]
for searching on a N elements unstructured domain exhibits
O(
√
N) time complexity, as opposed to O(N) in the classical

setting: in the worst case all N elements of the domain have
to be verified.

Ray casting is a well known rendering technique, consisting
on shooting a ray from a point along a given direction to
determine whether i) that direction is occluded (i.e., the ray
intersects at least one geometric primitive), or ii) what is
the visible geometric primitive along the ray’s direction (i.e.,
among all primitives intersected by the ray which one is nearer
to the ray’s origin). If there are N geometric primitives and
if these are not ordered on any manner, then classical ray
casting requires testing intersection against all primitives, with
complexity O(N).

This paper demonstrates the application of Grover’s algo-
rithm to ray casting, addressing both the occlusion and the
visibility problems, with worst-case complexity O(

√
N). Even

though using Grover’s for this purpose has been suggested
before [8]–[10], no implementations and no real results were,
to the best of the authors’ knowledge, ever presented. We
propose concrete implementations and present results obtained



both on a simulator and on a real quantum computer. Advan-
tages and limitations of the proposed approach are discussed.
All experiments, both simulations and real quantum computer
executions, were performed using IBM’s quantum computing
framework, Qiskit1, and Tokyo, the IBM Q Network 20 qubits
machine.

Current circuit-based quantum computers provide no func-
tional units to perform even the most fundamental arithmetic
operations to mathematical data types, such as integers or
floating point numbers. In fact, the program consists essen-
tially on a list of basic transformations, referred to as gates, to
apply to the qubits. Supporting complex operations, such as
non-integer number representations or trigonometric functions,
requires implementing them at the gate level. Besides the
obvious programming overhead, these additional gates would
dramatically increase the circuit depth and the number of
required qubits, pushing the limits well beyond what is possi-
ble with today’s noisy and limited scale quantum computers.
In order to avoid such overheads this paper deals only with
integers, the view plane is contained within the Z=0 plane,
all geometric primitives are axis-aligned rectangles parallel
to the view plane and the rays are perpendicular to the
view plane and parallel to the Z-axis (thus the orthographic
projection); all coordinates ((x, y) for pixels and rays, (x, y, z)
for points in space) are integers. These restrictions facilitate
the development of the quantum program and make it possible
to use current simulators and real machines. There are, how-
ever, no theoretical reasons why floating point numbers and
trigonometric functions cannot be used. They just wouldn’t be
feasible on current hardware given the limitations imposed by
the technology state of the art.

II. QUANTUM COMPUTING: SHORT OVERVIEW

A. Fundamentals

The basic quantum unit of information is the qubit |b〉,
which allows a linear superposition of two orthogonal basis
states |0〉 and |1〉:

|b〉 = α0|0〉+ α1|1〉, α0, α1 ∈ C, |α0|2 + |α1|2 = 1

With n qubits a superposition |Ψ〉 over N = 2n basis states
can be created:

|Ψ〉 =

N−1∑
i=0

αi|i〉, αi ∈ C,
N−1∑
i=0

|αi|2 = 1

For a uniform superposition all basis states’ weights are equal,
αi = α = 1√

N
. Any operation over a superposition will

act simultaneously on the 2n states, in what is referred to
as exponential quantum parallelism. This means that applying
a function f(·) once to superposition |Ψ〉, effectively results
on a new superposition |Ψ′〉 containing all N = 2n values of
f(|Ψ〉).

Even though the quantum computation evolves on an ex-
ponentially large state space, computing all solutions simulta-
neously, this space is not accessible. Upon measurement the

1https://qiskit.org/

superposition |Ψ〉 collapses onto one basis state |i〉, among
all basis states included on |Ψ〉, with probability |αi|2. Any
posterior measurements will return the same basis state and
the probability with which it was selected (|αi|2) is also
not accessible - all the information on the superposition is
lost with the measurement and the register behaves now as
classical data. The role of quantum algorithms is to maximize
the probability of measuring the desirable states within a
superposition and to postpone measurements (i.e., reading
quantum data) until the last step of the algorithm.

The laws of Quantum Mechanics require that all operations
performed on qubits are unitary and reversible. The former
means that the norm of the vector of basis states coefficients
αi is maintained and is equal to 1 after the transforma-
tion; this is required since the vector of αi’s is in fact a
probability distribution. Reversibility is a consequence of the
unitary requirement and means that given the outputs of the
transformation its inputs can be known: the computation is
reversible. Reversibility has several consequences at the circuit
level: all quantum gates, which operate over qubits, must have
the same number of inputs and outputs; this often results in
circuits with a larger number of gates and more qubits than
would be required for their classical counterpart. Information
is never destroyed, since the computation can be reversed.
According to the Landauer’s principle [11] the erasure of a
bit of information corresponds to the dissipation of energy in
the form of heat to the environment; quantum computing does
not destroy information (up to the final measurements) and
has thus the potential to be more power efficient than classical
computing.

The quantum circuit model represents quantum programs as
a series of gates applied to qubits. Each qubit is represented
as a horizontal line and each gate is connected to the qubits
it interacts with. Whereas with classical circuits signals flow
along the circuit, with quantum circuits time flows along
the circuit, from left to right – qubits do not flow, rather
gate operations are applied onto the qubits (for example as
microwaves used in some technologies). Gates can be written
in matrix form, which are applied to the qubits. For example,
the Hadamard H and X (NOT) gates can be expressed as:

H =
1√
2

[
1 1
1 −1

]
, X =

[
0 1
1 0

]
(1)

Figure 1 illustrates one such circuit: the qubits initial state is
|0〉, converted into an uniform superposition using Hadamard
gates; then |q0〉 is negated (the coefficients of basis states |0〉
and |1〉 are swapped) and finally measurement gates are used,
reading one of the basis states present in |q0q1〉 to classical
register c, according to the respective probability (in this case
0.25, since the 4 states are equally probable).

B. Grover’s Algorithm

For n qubits, and N = 2n, let f : {0 . . . N −1} −→ {0, 1},
such that

f(x) =

{
0←x 6= x∗

1←x = x∗



Fig. 1. An example quantum circuit.

The problem being addressed is finding the value(s) x∗ ∈
{0 . . . N − 1} : f(x∗) = 1. If nothing is known about f(·)
then a classical approach must, in the worst case, evaluate the
function N − t+ 1 ∝ O(N) times (where t is the number of
different x∗ satisfying f(·)). Grover’s algorithm will find x∗

by executing the function only O(
√

N
t ) times, thus exhibiting

a quadratic advantage.
Grover’s algorithm starts by creating an uniform superposi-

tion over all basis states, |Ψ〉, by using Hadamard gates. |Ψ〉
can be expressed as a sum of two vectors: |Ψ1〉 contains the
basis states for which f(·) = 1 (referred to as the ”good”
states), and |Ψ0〉 contains the remaining. From Figure 2 left,
it can be seen that |Ψ〉 = sin θa|Ψ1〉 + cos θa|Ψ0〉, thus
the probability of measuring a state in |Ψ1〉 is sin2 θa; this
probability is also t

N , therefore sin θa =
√

t
N . The goal is

to maximize the probability of measuring a state in |Ψ1〉,
which is achieved by applying multiple iterations of Grover’s
operator, Q. The first stage in this operator is the oracle O,
which implements f(·) and negates the sign of the ”good”
states’ coefficients according to O|i〉 = (−1)f(|i〉) ∗ |i〉 (see
Figure 2 center). Marking the ”good” states does not change
their probability; this is achieved by the diffusion operator,
D, which performs a reflection over the average, depicted
in Figure 2, right, as a reflection over the uniform super-
position. After one application of Q = DO the probability
of measuring a ”good” state has increased. It can be shown
that after r iterations of Q the resulting state is |Ψ(r)〉 =
sin ((2r + 1)θa)|Ψ1〉+ cos ((2r + 1)θa)|Ψ0〉. Maximizing the
probability of measuring a basis state in |Ψ1〉 amounts to
making sin ((2r + 1)θa) ≈ 1, which for sufficiently large N
results in r ≈ π

4

√
N
t , i.e., O(

√
N
t ) Grover iterations are

required, resulting on a quadratic speed up over the classical
case. Performing more iterations than the ideal r actually
reduces the probability of measuring a good state; successful
application of Grover’s depends on the ability to compute r
and, consequently, on the previous knowledge of t.

III. RELATED WORK

In 2001 Andrew Glassner discussed quantum computing
on his notebook [8]–[10] and suggested applying Grover’s
algorithm to the Z-buffer and ray casting problems. For the
former a superposition over all the polygons and respective
depth could be created and Grover used to identify the
minimum depth. For the latter a superposition over all spheres
and respective parameters (a, b, c) could be created; equation

at2 + bt + c = 0 would then be solved simultaneously
for all spheres and Grover used to locate the minimum
positive t. For both problems a quadratic advantage could
be obtained over an unordered classical search. Sadakane et
al. [12] present a theoretical analysis of the complexity of
Grover’s, and a closely related minimum finding algorithm
[13], applied to several geometric applications, including
nearest neighbor, separation and function maximizing queries,
geometric optimization problems (minimum enclosing ball,
common intersection emptiness and convex hull computation)
and intersection detection among large dimensional geomet-
ric elements. Simona Caraiman [14] also proposes applying
Grover’s algorithm to the Z-buffer and ray tracing problems.
Additionally, she proposes addressing photon mapping, using
Grover’s for k-nearest neighbor queries, besides the photon
shooting and the ray tracing stages. Lanzagorta and Uhlmann
[15] propose using Grover’s algorithm for a number of com-
putational geometry problems, including nearest neighbour
queries, object-object intersection, Z-buffering, ray tracing,
radiosity and level of detail, among others. A detailed time
and space complexity analysis is used to argue that quantum
search is asymptotically advantageous over classical search for
large domains (large N ) and domain dimensionality d >= 3.
Classical spatially ordering the search space in such conditions
requires O(N logd−1N) space for a query time complexity
of O(logdN), but since N and d are large, such spatial
ordering in not feasible. Classical computing has thus to resort
to unsorted search, which is O(N) in both space and time;
quantum searching under such conditions is O(

√
N) in time

and O(N) in space, thus presenting a quadratic speedup.
All the above cited works maintain the discussion at the

algorithmic and complexity analysis levels. No simulation,
implementation or execution of the proposed algorithms is
performed and no real experimental results are presented. This
paper presents an actual implementation and real results for
the ray casting problem.

A different problem is addressed by Johnston [16]. The
author performs pixel level supersampling by resorting to the
quantum amplitude estimation algorithm to numerically inte-
grate sub pixel samples through a combination of a quantum
algorithm and a classical lookup table. Experimental results
show improvements, compared to those obtained with classical
Monte Carlo integration for the same number of samples.
These results are obtained using a simulator, a IBM five
qubit machine, and a photonic quantum computer. This paper
focuses on supersampling pixels based on a known underlying
signal, whereas our work computes this signal from a scene
description.

IV. RAY CASTING: SINGLE SOLUTION CASE

This section addresses the case where no more than one
primitive projects to each pixel. For each primary ray, and
thus for each quantum query, there is only zero or one solution.
The important points are: i) the number of solutions is known
(t = 1), which is fundamental for calculating the number of
Grover’s iterations (t = 0 will be handled as a failure to find a



Fig. 2. Grover’s algorithm. Left: Uniform superposition. Center: the oracle negates the sign of the ”good” states’ coefficients. Right: the diffusion operator
reflects the quantum state over the uniform superposition; the probability of measuring a basis state in |Ψ1〉 increased from sin2 θa to sin2 (3 ∗ θa).

solution) and ii) the occlusion and visibility problems are the
same, since the ray intersects only one primitive.

A. Geometric Setup

Current quantum computers do not include functional units
to perform any kind of arithmetic operation over any data
type (integers, floating point, etc.). To overcome such hand-
icap an orthographic projection is used, with all coordinates
being positive integers. The view plane is contained in plane
Z = 0, primitives are rectangles parallel to the view plane
(constant positive Z) and primary rays are parallel among
themselves and the Z axis (X,Y constant); there is a one
to one correspondence between pixels in the image plane and
primary rays. Primitives are characterized by five parameters:
(minX ,maxX ,minY ,maxY , Z); the latter is not relevant for
the non-overlapping case addressed on this section, since at
most one primitive projects onto a pixel (x, y). A ray intersects
a primitive if minX ≤ x ≤ maxX ∧ minY ≤ y ≤ maxY ,
dispensing with any numerical calculations. Figure 3 presents

Fig. 3. Geometric setup for the non-overlapping case.

the non-overlapping setup for the 2D/3D case (Z is not
relevant).

B. Quantum Algorithm

Grover’s algorithm is used to identify intersections between
a given ray (x, y) and the geometric primitives. A detailed
description is given in Algorithms 1 and 2. These algorithms
assume there are N = 2n primitives indexed from 0 . . . N −1
using a n qubit quantum register labelled as |p〉; quantum
register |c〉 is prepared with the coordinates of the primi-
tives, requiring nc qubits, nc = dlog2(max(maxX ,maxY ))e.

Transforms {m|M}{X|Y } generate the minimum (resp. max-
imum) X (resp. Y) coordinates of a primitive from its index;
these are functions of the IDs of the primitives defined for
each scene and the circuit is derived using basic Boolean
simplification techniques.

Algorithm 1 Q RayCast: quantum algorithm for ray (x, y),
N primitives and r iterations

Superposition over the primitives IDs: |p〉 = H⊗n|0〉⊗n
for r iterations do

Grover’s oracle {Algorithm 2}
Grover’s diffusion operator

end for
ID ← Measure |p〉
return ID

Algorithm 2 Oracle for ray (x, y) intersection with N prim-
itives
|Hint〉 ← |1〉; |Vint〉 ← |1〉
minX : |p〉|c〉 = mX|p〉|0〉⊗nc
Negate Hint if x ≥ c; revert |c〉
maxX : |p〉|c〉 = MX|p〉|0〉⊗nc
Negate Hint if x ≤ c; revert |c〉
minY : |p〉|c〉 = mY|p〉|0〉⊗nc
Negate Vint if y ≥ c; revert |c〉
maxY : |p〉|c〉 = MY|p〉|0〉⊗nc
Negate Vint if y ≤ c; revert |c〉
|intersect〉 = |Hint〉 ∧ |Vint〉
Flip the primitive’s coefficient sign if intersect = 1: |p〉 =
(−1)intersect ∗ |p〉
Revert |Hint〉, |Vint〉 and |intersect〉

After execution of Algorithm 1 the probability of reading
the ID of the primitive that intersects the ray, i.e., ps, the suc-
cess probability, is sin2((2r+1)θa) with θa = sin−1(1/

√
N).

For N > 4 this probability is close to, but less than, 1.
Table I presents ps for different numbers of primitives. Upon
measurement three different cases can occur:

1) the intersecting primitive is measured;
2) a non-intersecting primitive is measured, but in fact the

ray intersects one primitive;



TABLE I
r, ps AND ps,c=2 FOR GROVER’S WITH A SINGLE SOLUTION

N
4 8 16 64 256 1024

1/N 0.250 0.125 0.063 0.016 0.04 0.01
r 1 2 3 6 12 25
ps 1.000 0.945 0.961 0.997 1.000 0.999

ps,c=2 1.000 0.997 0.999 1.000 1.000 1.000

3) a non-intersecting primitive is measured and in fact
there is no intersection (all primitives have a uniform
probability = 1/N of being measured).

Algorithm 3 Hybrid algorithm for the non overlapping case
(single solution)

for all pixels (x, y) on the image plane do
intersected = False
iteration = 0
r = bπ4

√
Nc

while not intersected and (iteration < c) do
ID = Q RayCast (x,y,primitives,r) {Algorithm 1}
intersected = intersect (x,y, ID)
iteration ++

end while
end for

Algorithm 3 calls quantum Algorithm 1 and then verifies
whether the ray intersects the measured primitive – this is
an hybrid algorithm, since the classical code calls a quantum
program. If the measured primitive is not intersected the
quantum algorithm is executed again. If after c such iterations
no measured primitive intersects the ray, then that pixel is not
occluded with probability

ps,c = ps +

c−1∑
j=1

ps(1− ps)j

according to the geometric distribution. The last row of Table
I presents ps,c=2 for different numbers of primitives. Note
that within this paper’s context, verifying whether a given ray
intersects a specific primitive is O(1): the goal of the quantum
approach is to reduce the number of evaluations of the intersect
function, not the cost of each such evaluation.

C. Circuit

Figure 4 presents the quantum circuit for a setup with 4
primitives and max(x, y) = 3, which requires up to 2 qubits
to represent maxX and maxY (|b〉 on the circuit). The H
subcircuit uses Hadamard gates to prepare |p〉 onto an uniform
superposition. Only 1 Grover iteration is required (r = 1, see
Table I) together with 5 ancillary qubits logically organized
onto 2 registers: |aux〉 and |aux2〉. Finally, measurement gates
measure the quantum state and store the result on classical
register |c〉.

Figure 5 depicts the oracle. Each of the {m|M}{X|Y }
operators generates the minimum (resp. maximum) X (resp.

Fig. 4. Geometric setup for the non-overlapping case.

Y ) bounds of each primitive onto |b〉. The ge and le operators
compare the bounds with the ray’s coordinates (x, y), which
are hardwired into the circuit; comparison results for y (resp.
x) are stored onto |aux21〉 (resp. |aux22〉), referred above
as |Vint〉 (resp. |Hint〉). These are then anded together onto
|aux20〉 (|intersect〉), using a reversible Toffoli gate. The latter
will thus be |1〉 for the primitives intersected by the ray and
|0〉 for the remaining (the whole circuit is on a superposition
over all possible states of |p〉: 4 basis states in this example).
After each of the comparison operators the bounds generator
operator appears again: this is required to reverse the state
computed onto |b〉, resetting its value to |00〉 before it is
used again for the next computation. Such is the nature of
quantum reversible computing: all computations have to be
undone before the qubits can be used again by some other
operator. The detailed circuits for each of the bounds generator
and the magnitude comparison operators are not shown since
these are just basic Boolean operations implemented using
reversible quantum gates. Finally, a rotation over the Z axis is
applied to |p〉 conditioned to |aux20〉 being |1〉, thus flipping
the sign of the coefficients of those primitives which intersect
ray (x, y).

After the above described circuit the state of |aux2〉 hasn’t
been reversed to |000〉. However, all anciliary have to be
reversed into the original state, which implies repeating the
whole circuit in reversed order (or in fact in some order
guaranteed to be the inverse of the state preparation circuit).
The last Toffoli gate in Figure 5 reverses the state of |aux20〉;
this is followed by a complete repetition of the remaining of
the circuit, in order to reverse |aux21〉 and |aux22〉 – these
are not depicted here due to space constraints.

D. Results

Figure 6 presents the images obtained with the Qiskit
simulator for two geometric configurations (scenes) with 4
and 8 primitives, respectively. The dots depicted in each pixel
represent the number of iterations required to evaluate the
pixel with c = 2. For the single solution case the probability
of measuring a non intersecting primitive is not significant;
the intersecting primitive was always measured on the first



Fig. 5. Oracle for ray casting.

TABLE II
NUMBER OF GATES, TOTAL NUMBER OF QUBITS AND CIRCUIT DEPTH FOR

BOTH SCENES

Scene Gates Depth Qubits
4 primitives 83 33 9
8 primitives 195 68 15

iteration of Algorithm 3. When there is no intersection the
algorithm will run c iterations.

(a) 4x4 image and scene with 4
primitives

(b) 8x8 image and scene with 8
primitives

Fig. 6. Reference images obtained with the Qiskit simulator for the no
overlapping case. Numbers identify the primitive; the number of dots indicates
algorithm 3 iterations due to measuring a non intersecting primitive.

Table II presents the total number of gates, total number
of qubits and circuit depth (length, in gates, of the longest
path) for an exemplary pixel (x = 1, y = 2) for both scenes
(4 and 8 primitives). Even for the simpler scene the circuit
depth is 33; this is well above what can be reliably executed
on current quantum machines at the time of writing. In fact,
noise is additive over the gates and, additionally, execution
times must be kept short due to qubits dephasing and limited
coherence times. The situation is even worse in practice since
these circuits have to be mapped onto the real machine, which
has limited connectivity among physical qubits and supports
a limited set of gates; the executable circuit gate count and
depth is therefore significantly larger. The results of such a
large quantum circuit are therefore noisy to the point where

no significant conclusion can be extracted from them. Figure
7 presents an histogram of the measured primitives for pixel
(x = 1, y = 2), with a single iteration of Algorithm 3 and 256
trials, for both the simulated and the real machine. While the
former is 100% accurate, the latter is overwhelmed by noise,
resulting in an almost uniform distribution of probability over
all possible measured states.

Fig. 7. Histogram: primitive measurements for simulator and real machine.

To allow execution on a real machine a simpler circuit was
prepared for the scene depicted in Figure 8(a); each primi-
tive has coordinates equal to its ID, therefore the operators
{m|M}{X|Y } that generate the primitive bounds are not re-
quired. The ray coordinates can be compared directly with the
primitive ID and the bounds representation |b〉 is not required
(compare with Figure 5). The circuit for pixel (x = 2, y = 2)
requires 7 qubits and 48 gates for a maximum depth of 19.
Figure 8(b) presents the histogram for the execution of a single
iteration of Algorithm 3, 256 trials with the simplified circuit.
The correct primitive is measured with probability ≈ 0.5 while
the second most probable measurement is |00〉 – this is due to
qubit decoherence (the state relaxes towards |00〉) and can be
corrected (eventually not using state |00〉 as a primitive ID and
treating it as an error). These results suggest that real quantum
computers can be used in the future, as qubits coherence times
increase and gate errors decrease.

V. RAY CASTING: OCCLUSION WITH MULTIPLE
SOLUTIONS

By adding a third dimension to the primitives it becomes
possible that more than one primitive projects into the same



(a) 4x4 image and scene
with 4 primitives

(b) Histogram for 256 trials, pixel (2, 2)

Fig. 8. Simplified setup for execution on the real quantum machine.

pixel; the number of solutions to Grover’s algorithm, t, can
now range from 0 (no occlusion) to the total number of
primitives, N . As long as t is known and less than N/2 the
problem can still be solved using the algorithm proposed in the
previous section by setting the number of Grover’s iterations
r ← bπ4

√
N
t c. But in real cases the number of primitives

projecting onto a given pixel is unknown, therefore r cannot
be set a priori to the ideal number of iterations.

A. Algorithm

We use an algorithm proposed by Boyer et al. [17] based on
exponential search and demonstrated to converge in O(

√
N
t )

iterations; the case t = 0 is handled by terminating after a
constant number of iterations, c. At each iteration, Algorithm
4 exponentially increases the maximum number of possible
Grover iterations S and then randomly selects r from 1 . . . S.
At each iteration the primitives are also randomly sampled,
which will succeed with probability t

N .

B. Results

A scene with 8 primitives at 3 different depths (Figure
9) is used to empirically verify Algorithm 4. Simulation

Fig. 9. 8 primitives scene with 3 different depths.

results show 100% convergence, with an occluding primitive

Algorithm 4 QSearch: Quantum exponential search algorithm
for the overlapping case - pixel (x, y)

intersected = False; iteration = 0
l = 0 ; g = 1.3
while not intersected and (iteration < c) do

ID = Q SampleUniformDistribution (primitives)
intersected = intersect (x,y, ID)
if not intersected then
l = l + 1
S = max(gl,

√
N)

r = rand(1 . . . S)
ID = Q RayCast (x,y,primitives,r)
intersected = intersect (x,y, ID)
iteration++

end if
end while

being measured for all pixels where such a primitive exists
– see Figure 10. The probabilistic nature of the algorithm
and the importance of the random sampling step are clearly
demonstrated by the number of iterations required to find
an occluding primitive. For example, pixels (2, 1), (1, 2) and
(3, 2) results are found with 0 iterations by random sampling
and other pixels require arbitrarily 1 or 2 iterations (with an
unreported number of Grover iterations).

Fig. 10. 4x4 occlusion image with 8 primitives and multiple possible solutions
per pixel.

VI. RAY CASTING: VISIBILITY WITH MULTIPLE
SOLUTIONS

In order to compute which primitive, if any, is visible
along each pixel the minimum depth (Z coordinate) has to
be evaluated. We use an approach based on Durr et al. [13]
and given as Algorithm 5. The minimum depth is initialized
with some maximal value. The exponential search described
in Algorithm 4, augmented with the current minimum depth,
is then executed; if a primitive is found and if its depth is
less than the current minimum then the latter and associated
primitive are updated. Augmenting Algorithm 4 consists of
augmenting the oracle given in Algorithm 2 (Figure 5) with
depth data. Besides generating the primitives’ bounds and
comparing with the ray coordinates, now also the primitives
depths are generated and compared with the current minimum
depth; the oracle will only flip a primitive’s coefficient sign if
the 5 conditions (bounds and depth) are satisfied. The quantum



Algorithm 5 QMin: Quantum minimum algorithm
p = −1; pZ = maxZ; visible = False
while iteration < c do

intersected, ID = Q Search Min (x, y, pZ, primitives)
if intersected then

visible = True
if depth[ID] < pZ then
pZ = depth[ID]; p = ID

end if
end if
iteration ++

end while

circuit is now adaptive, being redesigned at each iteration of
Algorithm 5 to account for the current minimum depth.

A. Results

Simulation results (see Figure 11) show that although oc-
clusion is always correctly computed, there are a few pixels
where the primitive with correct minimum depth was not
found. The histogram in Figure 12 shows, for pixel (0,0), that
the correct primitive is found ≈ 80% of the trials, which is
also confirmed by the presented images: 8 out of 10 pixels
are correctly measured. A more thorough evaluation of the
probabilities is required to increase the effectiveness of the
proposed approach.

(a) Reference (b) Trial 1 (c) Trial 2

Fig. 11. Reference and visibility results for 2 simulation trials.

Fig. 12. Histogram: visibility for pixel (0,0) in 265 simulation trials.

VII. CONCLUSIONS

This paper has presented practical algorithms and imple-
mentations of ray casting for visibility testing and occlusion
from an orthographic camera based on quantum algorithms.
The algorithms proposed in this work have been evaluated

both via simulation of a quantum machine, indicative of future
quantum computing capabilities, and in a simplified form
on a real quantum computer. While these implementations
are not yet fully fledged and further work is required to
increase the probability of selecting intersecting primitives,
the results show the potential of quantum computation for
computer graphics through a reduction of time complexity for
core operations in a rendering pipeline. Challenges, w.r.t. ray
casting, include improvements on size and reliability at the
hardware level and handling of more general geometric setups
at the algorithmic level.

As future work, we intend to investigate quantum counting
schemes to estimate the number of iterations required for
Grover’s algorithm. We aim to support generalised geometric
setups, such as triangles and arbitrary ray directions. However,
this will likely require more qubits and deeper circuits, and,
consequently, noise tolerance in quantum algorithms for graph-
ics, which might, eventually, be achieved by using quantum
error correction schemes.
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