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ABSTRACT 

  

Detached eddy simulation (DES) has been carried out to study a three-dimensional trailing-edge 

(TE) cutback turbine blade model with five rows of staggered circular pin-fin arrays inside the 

cooling passage, in order to evaluate the cooling performance in relation to coolant ejection slot 

angle. Simulations were performed by adopting a shear-stress transport k-ω turbulence model, and 

the effects of three different ejection slot angles 5°, 10° and 15° were investigated in terms of the 

characteristics of adiabatic film-cooling effectiveness, coefficient of discharge, and vortex 

shedding frequencies, respectively. The results obtained have shown that the TE cutback blade 

cooling with a 5° coolant ejection slot angle produced a better heat transfer coefficient than the 

other two ejection slot angles tested. The distributions of adiabatic film-cooling effectiveness 

along the cutback walls were found to be sensitive to the coolant ejection slot angle, e.g. the 

increase of ejection slot angle to 15o yielded near unity of cooling effectiveness along the entire 

breakout walls, whereas the decrease of ejection slot angle caused a drastic decay of cooling 

effectiveness after the maximum effectiveness has been reached. Of the three angles studied, a TE 

cutback blade model with a 15° ejection slot angle produced an optimum film-cooling 

effectiveness. In the breakout region, vortex shedding was observed along the shear layer between 

the hot gas and the coolant airflow. The shedding frequencies were evaluated to be 2.93, 2.21, and 

2.18 kHz for the ejection slot angles of 5°, 10° and 15°, respectively. The findings from this study 
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could be useful to improve existing TE cutback turbine blade design to achieve optimum film-

cooling performance. 

 

Keywords: Detached eddy simulation; Trailing-edge cutback cooling; Coolant ejection slot 

angle; Adiabatic film-cooling effectiveness. 

Highlights 

̶ film-cooling performance is dependent on the blowing ratio, lip-to-slot height ratio, 

ejection slot angle; 

̶ film-cooling effectiveness is sensitive to the change of blowing ratio; 

̶ vortex shedding along the breakout region is influenced by the change of blowing ratio; 

̶ coolant ejection slot angle influences film-cooling effectiveness and discharge coefficient; 

̶ decrease of ejection slot angle causes a drastic decay of film-cooling along the adiabatic 

walls.      

1.   Introduction 

A modern gas turbine engine often operates at a higher turbine rotor inlet temperature (RIT) of up 

to 1,700°C. For some advanced gas turbine designs, this temperature can be further increased to a 

maximum value of 2000°C in an attempt to achieve the highest possible overall engine 

performance in terms of thermal efficiency and power output. This temperature level is obviously 

much higher than the melting point of the blade material, which is often below 1,000°C. Therefore, 

the turbine blades must be cooled both internally and externally by circulating coolant airflow 

from the discharged air of the compressor at around 700°C and ejecting it through pre-designed 

multiple arrays of cooling holes around the blade [1].  

The design of an efficient cooling system for either a trailing-edge (TE) cutback or a breakout 

turbine blade remains a challenging problem because of its thin thickness, aerodynamic shape, the 

high thermal loads encountered, narrow passage geometry, combined with the need for material 

and structure integrity for safety and long-life operation [2]. Advanced cooling technology [3] and 

durable thermal barrier coatings [4][5] have played important roles for the development of 
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advanced gas turbines with high thermal performance. The turbine blades are usually cooled down 

using various internal and external cooling techniques to keep the surface temperature well below 

the melting point of the blade material. In fact, higher turbine inlet temperature and less effective 

cooling design could lead to many adverse effects such as blade deformation or partial melting, 

thermal stress and oxidation [6], creeping [7], corrosion [8], erosion [9], structural strength 

degradation, cracking [10], thermal fatigue [11][12], and buckling [13], thus increasing the risk of 

earlier failure of the turbine blade [14]. 

Commonly, a trailing-edge slot cooling is utilized as an active cooling method [15]. According to 

Chowdhury et al. [16], the performance of this kind of cooling could be evaluated based on the 

estimation of turbine wall temperature distribution considering a conjugate heat transfer problem 

that requires the simultaneous analysis of heat convection of external hot gas flow, heat conduction 

inside the solid blade, and heat convection of the internal cooling flow. The external convection 

heat transfer depends on hot gas flow along the blade, whereas the internal convection heat transfer 

depends on coolant flow rate and cooling passage geometry, often equipped with multiple rows of 

pin-fin arrays as turbulence promoters.  

Internal cooling is essential to sustain the durability of components with high thermal loads such 

as turbine blades, where pin-fin arrays are commonly used to increase surface areas, thus providing 

better heat transfer performance. The pin-fin cooling, is a typical internal cooling type, usually 

integrated with TE ejection cooling. The co-existence of the pin-fins inside the cooling passage 

plays an important role in trailing-edge cooling by maintaining a high film-cooling effectiveness 

around the cutback or breakout blade walls [17][18] with an adiabatic wall condition.   

In the past, blade trailing-edge cutback cooling models have been studied to investigate the 

characteristics of film-cooling along the cutback wall, which represents a key technology for 

improving the thermal efficiency and the power output of a gas turbine [19]. While investigating 

trailing-edge cutback cooling without pin-fins inside the coolant passage, Medic et al. [20] and 

Joo et al. [21] found that flow unsteadiness phenomenon plays an important role in turbine blade 

trailing-edge cutback cooling effectiveness. The streamwise vorticity in the mean flow causes the 

increase of heat transfer at wall surfaces. The distortion of the straight edge between the lands 

could significantly influence the adiabatic film-cooling effectiveness. The vortex shedding from 

the upper lip also has the dominant effect of flow unsteadiness, which influences the coherence of 

the turbulence structures and ultimately impacts on the surface heat transfer [21]. Using a similar 

model of TE cooling with lands, the evolutions of the turbulent flow and vortex structures with the 
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slot wall jets pertinent to a TE cooling of turbine blades was experimentally investigated and the 

results were quantified by Yang et al. [17][18]. The blowing ratios were found to have a significant 

influence on the formation of the vortex structures in the downstream region, whereas the existence 

of the lands contributes to the heat transfer by improving the coverage of the cooling stream over 

the cutback surface region. This finding was in agreement with independent research carried out 

by Benson et al. [22], who evaluated the film-cooling effectiveness due to the effect of blowing 

ratios and internal geometries of trailing-edge cutback. In other research, Jaswal and Ames [23] 

found that the effectiveness is sensitive to the change of blowing mass flow rates.  

In terms of the hot gas and coolant flow mixing process behind the lip end-wall, the enhanced 

turbulent mixing and three-dimensional mean flow structures can further induce strong mixing and 

entrainment between the film-cooling slot jets and the mainstream hot gas flow [24]. Previously, 

Medic et al. [18] found that a separation bubble behind the slot lip entrains coolant flow and 

promotes rapid turbulent mixing at the upper edge of the coolant jet. The mean flow structures 

largely contribute to this rapid mixing together with a low effectiveness in fully turbulent flows 

[26]. Add ref [25] here] Shi et al. [27] noted that the variation of coolant flow can have 

considerable impacts on the coherent flow structures and wake behaviours. Investigation of 

smoothed and/or roughened cutback surfaces with various cooling models indicated that a 

periodically enhanced heat transfer occurs due to periodically arranged ribs and/or dimples 

geometry [28]. 

Cunha et al. [7][29] implemented internal pin-fin cooling geometries in a trailing-edge cutback 

blade that resulted in better convective thermal efficiency and heat transfer coefficient (HTC). 

Later, the investigation of trailing-edge cutback blades with various internal cooling features inside 

the cooling passage was further developed by Martini et al. [30] (b), who considered a layout of 

two rows of long ribs and pin-fins. It was found that instability of turbulent wake flow from both 

the lip and/or the pedestals also influences an unstable mixing process between the mainstream 

hot gas and the coolant airflow from the cooling passage, impacting on the film-cooling 

effectiveness along the cutback walls. Yuan et al. [31] found that the film-cooling effectiveness 

behind the ribs tends to be higher than other areas. An experiment using different internal 

structures inside a slot was also evaluated by Ling et al. [32]. The results showed strong horseshoe 

vortices formed around the blockages of the slots, which resulted in non-uniform coolant flow on 

the breakout surface and in the near wake region.  
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The design of internal cooling obstacles with a circular and/or an elliptic pin-fin geometry feature 

has been experimentally evaluated by Horbach et al. [33]. From this evaluation it was found that 

the internal blockage of the cooling passage causes a strong decrease in both the discharge 

coefficient and the film-cooling effectiveness, while the heat transfer coefficient increases 

significantly along the cutback walls. In particular, an elliptical fin-pin geometry will have a strong 

effect on the discharge behaviour as well as the effectiveness of the film-cooling and heat transfer. 

Previously, Choi et al. [34] found that the design of the internal geometry of a trailing-edge and 

the flow Reynolds number can influence the heat transfer in an internal passage model with a 

perforated blockage insertion. Both long pedestals and ribs in a TE blade cooling system were also 

evaluated by Beniaiche et al. [35]. A comprehensive numerical study was performed by Gao et al. 

[36], who focused on unsteady flow characteristics and the film-cooling effectiveness in a blade 

trailing-edge cutback region, referring to those configurations investigated previously by Martini 

et al. [37][30]. 

In addition, an extra coolant airflow from an internal cavity was ejected through the cooling holes 

in the vicinity of the cutback slots in order to fulfil the required cooling effectiveness in the 

downstream region of a TE cutback blade [38][39]. Furthermore, other research has been 

undertaken to evaluate the dynamics of coherent structures on the blade pressure side (PS) film-

cooling due to the existence of cooling holes and a cutback slot. The flow behind the lip end-walls 

tends to be dominated by the counter clockwise vortex of the cooling flow side [40]. This vortex 

grows around the holes and further develops into a periodic pattern up to the cutback lip [41]. 

The need for careful design of the coolant ejection of the blade trailing-edge cutback cooling has 

been recognised by the industry, but somehow the understanding of the physical flow and precise 

quantification of cooling performance have not yet been achieved. To the authors’ knowledge, 

there are few publications in the public domain that deal with the effect of ejection slot angle on  

a TE cutback blade cooling, as most researchers merely evaluated the performance of blade TE 

cooling at a fixed ejection slot angle. For example, Yuan et al. [31] investigated experimentally 

the film-cooling of a trailing-edge within a fixed coolant ejection slot angle of 0°, while both 

Martini et al. [30][37][42] and Horbach et al. [33] considered an ejection slot angle of 10° in their 

experiments. Schneider et al. [43][44] also used the 10° ejection slot angle in their numerical 

studies. Furthermore, each researcher utilized different models and geometries in their studies, so 

there is a lack of uniformity for objective fair comparisons and assessments.     
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One experimental study has been evaluated the film-cooling effectiveness downstream of trailing 

edge slots. The study considered the effects of density ratio, slot width and lip thickness, including 

the impact of ejection slot angle change between 0 and 15° [45]. Despite the fact that other 

conditions were not in the typical operating range of a modern turbine blade, the results revealed 

that a trailing-edge breakout cooling with an 8.5° ejection slot angle was an optimum angle for 

producing the best film-cooling effectiveness. Inspired by this work, the present study considers 

realistic gas turbine operating conditions to evaluate the effect of ejection slot angle on the blade 

TE cooling performance. 

 

Figure 1: Sketch of a blade TE cutback cooling. 

In order to further advance the TE cutback cooling studies discussed above, three different ejection 

slot angles (5°, 10° and 15°) are proposed in the simulation. The study is a continuation of research 

that has been successfully accomplished and published [46], with the design impact of lip thickness 

(t). Figure 1Figure 1 illustrates a sketch of a TE cutback turbine blade cooling with five rows of 

staggered circular pin-fin arrays used in the present study. By keeping the same ratio of lip 

thickness-to-slot (t/H) at 1, a computational domain of TE cutback cooling with three coolant 

ejection slot angles (α) was carefully designed by rotating the coolant slot of the L1 region and the 

cutback/breakout wall of the L3 region with regard to the reference axis of z = 0, whilst the slot-

height (H) is kept constant at 4.8 mm (see Figure 2Figure 2(a)). The length of the slot-exit in the 

vertical direction (Hse) is slightly increased by approximately 2.7% when changing the ejection 

slot angle from 5° to 15°. This means the cross-section area of the slot-exit is slightly widened due 

to the increase of ejection slot angle. The slot-exit area reduces to 1.15% if the ejection slot angle 

decreases from 10° to 5°, whilst it increases 1.54% if the ejection slot angle increases from 10° to 
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15°, as summarised in Table 1. Therefore, the coolant airflow may vary by a few percent when 

ejecting coolant air through the slot-exit for the design with a higher ejection slot angle. This 

variation is small therefore its impact on results is considered to be negligible. 

 

Table 1: The key dimensions of the slot-exit area. 

 

α 

(degree) 

t/H t (mm) H (mm) Hse at the slot-exit Area (mm2) at the 

slot-exit 

5 1.0 4.8 4.8 4.818 57.816 

10 1.0 4.8 4.8 4.874 58.488 

15 1.0 4.8 4.8 4.949 59.388 

 

2.   Numerical Treatment 

Detached eddy simulation (DES) is a hybrid method of combining Reynolds-averaged Navier 

Stokes (RANS) and large-eddy simulation (LES), which offers an efficient and effective approach 

for predicting three-dimensional unsteady turbulent flow and heat transfer phenomena, particularly 

for separated flows. The governing equations of contemporary DES are based on an SST k-ω 

turbulence model as described by Effendy et al. [46].  

2.1 Computational domain and boundary conditions 

Figure 2Figure 2 shows a computational domain of a trailing-edge cutback turbine blade model 

with five rows of staggered circular pin-fin arrays. The arrays are fitted in various wedge-shaped 

ducts from 5 to 15 degrees as described in Table 1, replicating the typical trailing edge shape of a 

gas turbine blade. The cutback region along L3 (0 < x/H < 12) as an investigated challenging area 

is in parallel to the slope of the coolant ejection slot angle (α) formed by a wedge-shaped duct at 

the L1 region. In the coolant duct, spanwise pitch (S/D) and streamwise pitch (Sx/D) are kept the 

same ratio as the experiment. The ratio of lip thickness to coolant passage height (t/H) was 1. The 

coolant ejection area that known as the slot-exit (Aslot) is located under the lip position.  

In order to reduce computational cost, the domain in this simulation considered a distance of two 

pitchwise (2S) in the spanwise z-direction, and only half a corresponding wind tunnel height (i.e. 

Hhg = 52.5 mm) in the vertical y-direction, corresponding to the parameters used in the previous 

computational studies (see, e.g. [46]). This computational domain was chosen after some precursor 
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validation exercises between results from one pitch wise (S) and two pitch wise (2S) in terms of 

discharge coefficient and adiabatic film-cooling effectiveness. The physical property change along 

the upper surface was also checked during the validation stage. 

 

(a). 3D view of computational domain with boundary condition 

 

 

(b). Top view of computational domain with geometry 

Figure 2: Computational configurations. (a) side-view; (b) 3D-view. 

The inflow and boundary conditions are the same as those used in previous experimental studies 

suggested by Martini et al. [30] to evaluate the heat transfer coefficient on the pin-fin wall surfaces 

inside the cooling passage, the discharge coefficient across the cooling passage, the blade TE film-

cooling effectiveness at the cutback wall surfaces, the vortex shedding frequency and dynamic 

mixing between the mainstream hot gas and the coolant airflow, respectively. The mainstream 

flow conditions were set at a fixed velocity (uhg) of 56 m/s and temperature (Thg ) of 500 K. The 
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coolant inflow condition was set at a temperature (Tc) of 293 K, while the coolant velocity (uc) 

was varied from 4 to 15 m/s, corresponding to a blowing ratio (M) from 0.5 to 1.1. Table Table 2 

provides a summary of the numerical test conditions used in the study. 

 

Table 2: The numerical test conditions. 

 

 Mainstream flow (hot gas) Coolant flow 

Velocity [m/s]  uhg = 56  uc = 4 - 15 

Temperature [K] Thg = 500 Tc = 293 

Turbulence Intensity [%] Tuhg = 7 Tuc = 5 

Length Scale [mm] 10 1.5 

2.2 Mesh generation 

Figure 3Figure 3 illustrates the 3D multi-block structured meshes of the computational domain 

and the front views of the structured meshes around the lip region for three different ejection slot 

angles. The local mesh generation at the lip and ejection slot area in the x-y plane can be seen from 

Figure 3Figure 3(b) - Figure 3Figure 3(d). The difference of ejection slot angle is evident by the 

slope change of the lower wall. The lip and slot-height ratio (t/H) is designed to maintain the same 

value to facilitate objective comparisons. The detailed 3D view of the meshes can be seen in [46]. 

The multi-block structured grids were created using the Gambit meshing tool, with finer meshes 

clustered around the wall surfaces and mesh sizes growing away from the wall with the growth of 

mesh spacing away from the walls in all three directions, as suggested by Joo et al. [21]. The 

boundary layer meshes were applied to all wall surfaces to ensure sufficient spatial resolution of 

Δy+ < 1 was achieved. In order to guarantee the quality of meshes, all models were constructed by 

keeping the same topology and the block number as the baseline model with an ejection slot angle 

of 10o. The consistency of local grid spacing in the 3D domain was refined in all three x, y and z 

directions in order to have a sufficiently fine spatial resolution to capture unsteady flow 

phenomenon in the mixing region. Error! Reference source not found.Table 3 gives a 

comparison of mesh statistics for the three cases studied. 

Table 3: Mesh statistics. 

 

Ejection slot angles (α) 5° 10° (baseline) 15° 

Inside the cooling passage region    

pin-fin wall a y1
+   0.784 0.907 1.010 

end-wall y1
+   0.555 0.749 0.984 

Mainstream region    
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pressure side wall y1
+   0.488 0.482 0.477 

lip wall y1
+   0.539 0.607 0.724 

TE cutback/breakout region     

Number of elements, nx × ny × nz 124×48×48 124×48×48 124×48×48 

cutback wall y1
+   0.183 0.257 0.320 

average    

y1
+   0.613 0.740 0.876 

a an average of y1
+ in the radial direction of pin-fins, b elements at the block of breakout-slot region 

     

(a) The 3D structured meshes, inserted by the local 2D structured meshes around the pin-fin  

   
 

(b) α = 5° (c) α = 10° (d) α = 15° 

Figure 3: The 3D multi-block structured meshes of computational domain and 2D meshes snapshots at three 

different ejection slot angles. 

2.3 Solution algorithm and time-step for transient flow 

A finite-volume method was utilised to solve the governing equations of low-speed incompressible 

flows. The Semi-Implicit Method for Pressure-Linked Equations Consistent (SIMPLEC) 

algorithm was chosen by applying a second-order numerical scheme for all flow equations (i.e. 

pressure, momentum, and energy). Furthermore, for DES calculations, not only the grid size, but 

also the time-step must be small enough to satisfy the stability criteria and to ensure a sufficiently 

fine temporal resolution in an attempt to account for the unsteady flow effects. Considering all 
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these requirements, a small time-step of 1.25 × 10-5 seconds, as used in previous studies, was 

adopted to realise unsteady vortex shedding phenomena for frequency analysis [46]. 

Figure 4Figure 4 provides the iteration history of the simulations for the three different case 

studies. The collected data is based upon the centre point (Tc’2) temperature at the slot-exit under 

the lip, where the same temperature will be used to calculate the adiabatic film-cooling 

effectiveness. It can be seen that all three cases have been simulated for sufficiently long enough 

to reach a statistically converged status in order to gain time averaged results. After that, the 

computations were continued for a further 2000 time steps to collect statistics.  

For the case with a 10° ejection slot angle, after approximately 11,000 iterations the simulation 

exhibited some oscillations; whereas, after approximately 8,000 iterations the other two 

simulations tended to be a near constant ‘flat’ level. The observed oscillation could be partly 

attributed to the growth of turbulence levels when ejecting coolant airflow from the slot exit. This 

iteration history also shows that the level of temperature for the ejection slot angle of 5° is lower 

than that of the other two cases.  

 

Figure 4: Simulation History. 

2.4 Validation  

Figure 5Figure 5 shows the DES predicted discharge coefficient (CD) and the adiabatic film-

cooling effectiveness ( aw ) along the TE cutback wall surfaces, respectively, in comparison with 

the experimental data for various blowing ratios (M). The validation data was obtained by using 

the block-structured finer meshes as shown in Figure 3Figure 3. More details about the grid 

refinement studies can be found in reference [46].  
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Blowing ratio. The non-dimensional blowing ratio (M) is defined as a factor of slot-averaged 

mean density and velocity product over the density and velocity product at the main hot gas inlet 

plane. The equation can be further transformed using the mass flow rate at the slot exit, which is 

equal to that of the cooling inlet (i.e. mass conservation).    
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Discharge Coefficients. The discharge coefficient, CD, is a representation of the global pressure 

losses inside the cooling passage, which is defined by the measured coolant mass flow over the 

ideal mass flow as formulated below    
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where p1,t and T1,t are the total pressure and temperature at the coolant inlet, respectively, p2 is the 

static pressure at the slot exit, Aslot is the area of the slot exit, κ is the specific heat capacity and R 

is the gas constant. 

From Figure 5Figure 5(a), it can be seen that the predicted discharge coefficients for blowing ratios 

(M) of 0.5, 0.8 and 1.1 are in good agreement with the available measurement data. The change of 

blowing ratio is proportional to the change of the coolant mass flow rate. The discharge coefficient 

is found to increase slightly by increasing the blowing ratio. This finding is in agreement with the 

works of Martini et al. [30][37] and Horbach et al. [33], who confirmed that the coefficient of 

discharge is increased by raising the Reynolds number of the coolant flow. 

Film-cooling effectiveness. The performance of trailing-edge cutback cooling is commonly 

expressed by film-cooling effectiveness along the breakout wall from the slot-exit and downstream 

region. If the surface of TE cutback is with the adiabatic wall condition, the film-cooling 

effectiveness can be derived from the ratio of temperature difference between the hot gas and the 

wall surface to the temperature difference between the hot gas and the coolant gas as given in 

equation (4); 
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where Taw is the temperature at the adiabatic wall surfaces, Thg is the hot gas temperature at the 

mainstream flow at the inflow region and Tc’ is the coolant gas temperature measured at the centre 

of the slot-exit between two neighbouring pin-fins 

Figure 5Figures 5(b)-5(d) clearly demonstrate that the present DES modelling is capable of 

predicting this key performance parameter, with the noticeable and important cooling effectiveness 

decay phenomena around x/H = 3 being captured accurately. The adiabatic film-cooling 

effectiveness data along the breakout/cutback walls (L3) are presented, in comparison with both 

previous experimental measurements for the baseline model with a fixed t/H ratio of 1.0. Similarly, 

simulations using the baseline specimen are in good agreement for all three various blowing ratios, 

compared to both the experimental data  obtained  by previous researchers [30][33]. From Figure 

5Figure 5(c), a slight increase of film-cooling effectiveness is clearly seen in the downstream 

region of x/H > 3 for the experiment data at M = 0.95. It is likely that this is due to an anomalous 

phenomenon at a blowing ratio of 0.95, as noted in a previous experiment by Horbach et al. [33]. 

The adiabatic film-cooling effectiveness tends to grow up to a higher level, compared to the case 

of a higher blowing ratio of 1.1. The adiabatic film-cooling effectiveness tends to drop by 

increasing the blowing ratio from M = 0.8 to 1.25. In the meantime, the decrease of CFD predicted 

film-cooling effectiveness is likely caused by intensified vortex shedding from the ejection lip. 

This occurs within a certain operating range with the slot ejection, leading to an intensified mixing 

process between the coolant flow and mainstream hot gas. Comparing the validation data of the 

film-cooling effectiveness from Figure 5Figure 5(b) – Figure 5Figure 5(d), the vortex flow 

structure at a higher blowing ratio seems to have more effect on the mixing process than counter-

rotating vortex pairs found predominantly at a lower blowing ratio, as addressed in [44].  

Based on the validation of both key performance parameters as illustrated in Figure 5Figure 5, it 

could be concluded that they are acceptable for further detailed investigations by focusing on three 

different ejection slot angles (5°, 10° and 15°) of TE cutback blade cooling configurations.            
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(a) Discharge coefficient (b) Adiabatic film-cooling effectiveness at M = 0.5 

  

(c) Adiabatic film-cooling effectiveness at M = 0.8 (d) Adiabatic film-cooling effectiveness at M = 1.1 

Figure 5: Validation studies. 

3.   Results and Discussion  

The computations of blade TE cutback cooling were performed for three different coolant ejection 

slot angles. The results and discussion are presented below by starting with the coolant flow 

behaviour inside the cooling passage, and then followed by the performance of the blade TE 

cutback cooling. The dynamic interactions between the mainstream hot gas and the coolant flow, 

including the frequency spectrum, will be discussed thereafter. 

3.1 Discharge coefficient 

Figure 6Figure 6 shows the predicted data of discharge coefficient (CD) from three different 

ejection slot angles, compared to the experimental measurements by Martini et al. [30] and 
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Horbach et al. [33], respectively. The CFD predicted data are plotted against the blowing ratio. 

The results show that the increase of ejection slot angle (α) from 5° to 15° causes the increase of 

discharge coefficient at a given blowing ratio. The deviation is more pronounced between the two 

ejection slot angles of 5° and 10°, compared to those of 10° and 15°. The discharge coefficient can 

be reduced by up to 21.31% when the coolant ejection slot angle is changed from 10° to 5°, 

whereas it can be increased by about 9.63% when the angle is changed from 10° to 15°. 

The lowest discharge coefficient is found for a configuration with 5° coolant ejection slot angle 

which is most likely caused by a larger pressure drop inside the cooling passage. As the pin-fin 

height reduces with the decrease of the coolant ejection slot angle, this implies the reduction of the 

pin-fins surface area and the cross section area inside the cooling passage close to the inflow 

region. Moreover, both the inlet and the slot exit sections have almost the same section area when 

a blade trailing-edge cutback is designed with a coolant ejection slot angle of 0°. As previously 

mentioned, the rise of coolant ejection slot angle will cause a slight increase in the slot-exit area 

(see Table 1). This illustrates that the change of coolant ejection slot angle influences geometry 

changes for the inlet region in terms of, the pin-fin height, the slot-exit height, and the inclination 

of the cutback wall surfaces. The change of these geometries will collectively influence the overall 

pressure loss inside the cooling passage and therefore impact on the discharge coefficient.  

 

Figure 6: Discharge coefficient. 

As previously stated, the CFD data for the baseline model agrees well with the available 

experimental data for the same design with a coolant ejection slot angle of 10°. This means both 

CFD and experimental methods yield the same trend data at three different blowing ratios. Based 

on this coefficient, it can be concluded that the increase of ejection slot angle causes the increase 
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of discharge coefficient, thus the power need of a coolant flow could be less due to the reduction 

of the pressure loss in the cooling passage. 

3.2 Coolant properties inside the cooling passage 

Figure 7Figure 7(a) shows the quantitative coolant properties at the surface of the pin-fin arrays 

for the three cases studied. This is the averaged data at the pin-fin surfaces of each row of arrays. 

The row position of the pin-fin arrays from P1 to P5 refers to the inserted picture in Figure 7Figure 

7(a). It is found that the HTC at the pin-fin surfaces inside the internal cooling passage has 

moderate increments row-by-row. The peak HTC occurs in the fifth row, then it tends to further 

decrease (for an ejection slot angle of 5°) or increase (for ejection slot angles of 10° and 15°). 

Hwang et al. [47]  have found a similar trend in their study using a trapezoidal-duct, where the 

highest HTC occurs at the third pin-fin row, then reduces afterwards. In addition, the increase of 

HTC is likely caused by an acceleration effect due to the wedge-shaped duct of the cooling passage 

[48]. A stronger flow interaction in both streamwise and spanwise directions also contributes to 

the HTC change. The intensity of turbulent wake shedding illustrates a good correlation of the heat 

transfer coefficient in the wakes of the pin-fins.  

  

       (a) Heat transfer coefficient (b) Velocity 

Figure 7: Coolant properties inside the cooling passage. 

 

An experimental study by Tarchi et al. [49] found that the pin-fin HTC in a wedge-shaped duct 

tends to reduce after the fourth row of the pin-fin arrays. Using a parallel duct, Goldstein and Chen 

[50] recognised that the pin-fin HTC increases from the first row to the second row and then 

remains near constant after the third row. The results from the present numerical study are in 

agreement qualitatively with those investigations. A study by Metzger et al. [51] of the heat 
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transfer coefficient through ten rows of staggered arrays within a parallel duct has found that the 

HTC discrepancy can be up to 12% between the highest and the lowest values. 

As listed in Table 4, the HTC on the pin-fin surface (hPIN) is always greater than on the end-walls 

(hEW), with a discrepancy about 53 – 58%. This finding is consistent with the work of Tarchi et al. 

[49]. Both hPIN and hEW values increase up to 12.7% when the ejection slot angle is decreased to 

5°, and after that the ratio of hPIN/hEW remains in a range between 1.53 and 1.58. By contrast, HTC 

drops by about 13.36% when the ejection slot angle is increased from 10° to 15°. According to 

Liao et al. [52], the junctions of the pin–fins and the end-walls cause complicated vortex structures 

which consequently influence the end-wall heat transfer rates. This means that the change of 

ejection slot angle influences the flow characteristics at its junction, which is correlated to vortex 

structures formed around the pin-fins. Further detail about vortex structures around the pin-fin in 

a rectangular cooling channel was discussed by Moon and Kim [53]. 

The increase of HTC is likely caused by the combined effect of flow acceleration and intensifying 

flow interactions along the wedged-duct passage. The turbulence flow intensity becomes stronger 

due to the existence of pin-fin arrays, which influence the heat transfer process. The wake flow 

shedding downstream of the stagnation point causes the increase of heat transfer near the trailing-

edge of the pin-fin as addressed by Ames et al. [54]. A gradual increase in heat transfer is obvious 

for the second row, while a sharp increase is more pronounced between the second and the fourth 

rows. This trend of development is similar to that observed by Ames et al. [55] who used eight 

rows of staggered arrays in their studies. 

Table 4: The comparison of predicted HTC. 

Ejection slot angle (α) hPIN (W/m2K) hEW (W/m2K) hPIN/hEW 

5° 369.0322 240.1240 1.5368 

10° 331.2857 209.2242 1.5834 

15° 283.5324 184.7391 1.5348 

 

Figure 7Figure 7(b) illustrates some discrepancies of the coolant flow velocity before approaching 

the ejecting slot as indicated at the cross-section area number A6. The discrepancy is likely due to 

the geometry change of a wedge-shaped duct at the L1 region at different ejection slot angles. This 

change to the geometry causes different turbulence levels which will influence the characteristics 

of the coolant flow velocity along the wedge-shaped duct. The decrease of ejection slot angle 

causes the reduction of a wedge-shaped duct, mainly at the inlet region. This affects the 
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construction of the fitted pin-fin arrays and coolant flow velocity, which then increases the 

turbulence level as seen in Figure 8. In addition, a staggered array of pin-fins can influence the 

interactions between the horseshoe vortices and wake flows in such a complex three-dimensional 

flow problem [50]. 

3.4 Turbulence characteristics 

Figure 8Figure 8 gives the characteristics of turbulence levels (Tu = u’/U∞) inside the cooling 

passage and along the blade TE cutback cooling for three coolant ejection slot angles. The u’ 

velocity is based on a root-mean-square (RMS) streamwise flow fluctuation velocity. It was found 

that for all three cases the Tu gradually increased inside the cooling passage of a wedge-shaped 

duct. Both the averaged-turbulence levels at the cross-section areas (An) and at the pin-fin surfaces 

(Pn) recognise its increase (‘n’ is the number of row or cross-section). The increase becomes more 

obvious in the fluid region, as the Tu at the cross-section areas is greater than at the pin-fin surfaces. 

It is also more profound near the slot exit (A7), particularly for the design with a 5° ejection slot 

angle. 

This development of turbulence levels is similar to the trend observed by Ames et al. [55] who 

studied the eight row staggered arrays of pin-fins in a flat duct with various inlet flow rates. They 

reported finding the Tu value to be in a range of 0.014 – 0.203 for Re = 3,000 flow. The present 

research has also found that the Tu value is less than 0.2 along the wedge-shaped duct. The change 

of ejection slot angle from 15° to 5° would decrease the overall Tu. values inside the coolant 

passage.  

Further observations for three different data positions at the z/H = 0, 0.625 and 1.25 have shown 

that the Tu fluctuates inside the cooling passage, due to the effect of the pin-fin arrays. It becomes 

more noticeable at the stagnation point and in the wake of the pin-fins. The construction of the 

pin-fins promotes the vortex formations and reverse flow phenomenon which causes the 

turbulence intensity behind the pin-fins to be greater than in the front of the pin-fins. The horseshoe 

vortices and wakes interact with each other, producing a complex three-dimensional flow problem. 

This higher turbulence intensity level is also related to the vortex recirculation (i.e. lateral vortex) 

behind the pin-fin arrays. These wakes causes the cooling fluids to become ‘trapped’ inside each 

pin–fin backflow region and thus forms lower heat transfer regions there. In addition, the wake 

flow shedding influences the heat transfer process in the pin-fin arrays.  
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(a) z/H = 0 

 

 (b) z/H = 0.625 

 

 (c) z/H = 1.25 

Figure 8: Turbulence levels. 
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According to Axtmann et al. [56], flow across the internal cooling passage can be characterized 

by pin-fin wake and horseshoe vortices. Additionally, the typical topology of flow around the pin-

fins array could be corner vortex, the secondary vortex, tertiary vortex and von Karman Vortex 

Street. All types of vortex will contribute towards a complexity of flow around the pin-fins which 

influences flow unsteadiness along the coolant passage (-14 < x/H < 0). The fluctuation of the Tu 

indicates an accumulation of vortices being formed which implicate the existence of flow 

unsteadiness up to the downstream region.   

As seen in Figure 8Figure 8, the turbulence level increases rapidly with the increase of an ejecting 

coolant at the slot exit (A7), and then decreases after approaching the peak value behind the lip 

region. It is more obvious for the design with a 5° ejection slot angle. In addition, the turbulence 

level grows bigger along the mixing region where a dynamic interaction between the mainstream 

hot gas and the coolant air flow ejection occurs. This may be attributed to the turbulent flow 

structures along the mixing region (0 < x/H < 12), and finally influences the adiabatic film-cooling 

effectiveness on the TE cutback cooling blade.   

3.5 Laterally averaged film cooling effectiveness  

Figure 9Figure 9(a) shows a quantitative comparison of the adiabatic film-cooling effectiveness at 

three ejection slot angles, in comparison with two previous experiments by Martini et al. [30] and 

Horbach et al. [33], respectively. The CFD predicted data of the baseline model at a blowing ratio 

of 1.1 agrees well with both experiments, while the design with a 15° ejection slot angle yields the 

highest performance as indicated by the adiabatic film-cooling effectiveness reaching near unity 

along the cutback wall surfaces (0 < x/H < 12). A slight decay is observed after approaching a peak 

level at x/H = 8.  

Conversely, the design with 5° ejection slot angle generates a fast decay of the adiabatic film-

cooling effectiveness after attaining a position of x/H > 3. The deviation is clearly seen near the 

slot-exit region of 0 < x/H < 4, with a discrepancy up to 2.12% compared to the other two angles. 

This decay is likely to be caused by a rapid increase of temperature at the cutback wall surfaces, 

which will have a direct influence on the calculation of the adiabatic film-cooling effectiveness. 

This implies that the effectiveness follows the temperature change at the cutback wall surfaces.  

Figure 9Figure 9(a) shows that the increase of ejection slot angle improves the performance of TE 

cutback cooling as indicated by the highest level of effectiveness up to the downstream region. 
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This confirms that the coolant ejection slot angle is one of the key parameters in determining the 

quality of the cooling film at the cutback wall in the TE cutback cooling design.   

Figure 9Figure 9(b) presents temperature at the cutback wall surface which has a direct link with 

the adiabatic film-cooling effectiveness shown in Figure 9Figure 9(a). Both figures display 

opposite trends and this temperature discrepancy is likely influenced by the different mixing 

process between the mainstream hot gas and coolant airflow, which seems to affect the 

‘penetration’ of the mainstream hot gas into the near wall region of the cutback TE blade. It also 

relates to the turbulence flow structures at the breakout region due to the effect of the diverse 

generation of unsteady vortex shedding behind the blunt lip, as previously addressed by Schneider 

et al. [44]. The unsteadiness of flow mixing has also been discussed in the previous section by 

illustrating the intensity of turbulence level (see, e.g. Figure 8Figure 8). It is clearly seen that the 

turbulence level for the design with a 15° ejection slot angle remains ‘steady’ at the lowest level, 

compared to the other two angles, which tend to fluctuate more along the mixing region (0 < x/H 

< 12). This causes the adiabatic film-cooling effectiveness at the cutback wall to reach near unity.  

 
 

         (a) Adiabatic film-cooling effectiveness (b) End-wall temperature 

Figure 9: Laterally averaged data at the cutback wall at a selected blowing ratio of 1.1. 

3.6 Turbulent flow structures and normalized time-averaged velocity  

As discussed above, the cooling performance of a trailing-edge cutback blade is likely related to 

the coherent structures in the mixing region. Figure 10Figure 10 (the left-hand-side) shows the 

side view of the turbulent flow structures in the mixing region for three ejection slot angles, 

superimposed by contours of the adiabatic film-cooling effectiveness at the cutback walls (η) and 

(the right-hand-side) the streamline of normalized flow velocity (U/Uhg) from the mainstream and 
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the coolant flows in the x-y plane for a fixed position of z/H = -1.25. The turbulent flow structures 

are presented by iso-surfaces of the vortex identification criterion Q = 0.5(Ω2 - S2) as used by Terzi 

et al. [57] and Schneider et al. [17] [43], respectively. The iso-surfaces are coloured by the average 

temperature of thermal mixing, from a low value of 293 K (in blue colour) to a high value of 500 

K (in red colour), whereas the flow velocity is scaled from a low value of 0 (in blue colour) to a 

high value of 1 (in red colour). 

Figure 10Figure 10 (the left-hand-side) shows that the change of the coolant ejection slot angle 

has a significant impact on the formation of turbulent flow structures in the mixing region. The TE 

cutback cooling design with a 15° ejection slot angle significantly affects the film-cooling at the 

cutback wall surface, as seen in a region 0 < x/H < 12. The shielded film-cooling almost dominates 

the whole cutback surfaces, as indicated by blue colour in Figure 10Figure 10(c) (the left-hand-

side figure).  

The domination is diminished by reducing the ejection slot angle from 15° to 10°. By comparing 

Figure 10Figure 10(b) and Figure 10Figure 10(c), it can be see that the blue colour narrows 

moderately for the design with a 10° ejection slot angle. This is due to the wakes formed at this 

angle being larger than the design with the 15° ejection slot angle, which enhances the penetration 

of mainstream hot gas flow into the cutback wall, mainly near the downstream region (see region 

6 < x/H < 12). Therefore, a decay of the adiabatic film-cooling effectiveness is noticeable as shown 

in Figure 9Figure 9. 

Figure 10Figure 10 (the right-hand-side figures) gives the normalized time-averaged velocity 

(U/Uhg) in the mixing region at the x-y plane for a fixed position z/H = 0. This is presented by the 

shade of colour applicable to the velocity vector, from a low value of 0 (in blue colour) to a high 

value of 1 (in red colour). It is found that the generation of unsteady vortex-shedding is most likely 

influenced by the periodic wake flow from the coolant slot, which depends on the coolant ejection 

slot angle. It seems to become more ‘flat’ in the downstream region for the design with a higher 

ejection slot angle. In contrast, the velocity fluctuation is more obvious for the design with the 

lower ejection slot angle. 

As previously discussed (see Figure 9Figure 9), the computation for the design with a 15° ejection 

slot angle yields the adiabatic film-cooling effectiveness of near unity along the cutback wall 

surface. The increase of ejection slot angle is seen to disrupt the penetration of the mainstream hot 

gas into the cutback wall surface due to flow interactions between the mainstream hot gas and 
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coolant airflow occurring at a point closer to the lip. An interaction between both flows near the 

lip could cause an inclined flow concentration, where the hot gas flow over the lip wall forms a 

vortex behind the lip and the hot gas flow away from the lip tends to keep the coolant thin-layer 

film near the cutback wall in the downstream region. Continuous cooling supply from the exit slot 

forms a thin-layer of film-cooling that can be maintained near the end-wall surfaces. 

 

 

 

  

Ω2 - S2 at the mixing region   U/Uhg at the x-y plane of z/H = 0 

  

(a) α = 5° 

  

(b) α = 10° 

  

(c) α = 15° 
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Figure 10: Turbulent flow structures (Ω2 - S2) and normalized time-averaged velocity (U/Uhg).  

 

It is noted that there is difference from the design with a 5° ejection slot angle which allows an 

interaction of the mainstream hot gas and the coolant airflow to occur at a range further 

downstream from the lip. Certainly, the difference in the mixing process causes the different 

growth of vortex shedding along the mixing region. Finally, it causes a strong penetration of the 

mainstream hot gas to influence the heat transfer process in the downstream region. The shielded 

film cooling at the cutback surface appears to be shorter than for the other two ejection slot angles, 

due to a stronger influence of the mainstream hot gas flow. 

According to Schneider et al. [19], a distinct large coherent structure promotes the generation of 

strong turbulent heat flux, which causes a significant enhancement of the thermal mixing process 

in the near-wall region that is concomitant with the excessive decay of the film cooling 

effectiveness. Similarly, Effendy et al. [46] also found the growth of vortices with longer wave 

lengths induces a strong mixing between the mainstream hot gas and the coolant airflow, which 

degrades the cooling film effectiveness.    

3.7 Shedding frequency 

Figure 11Figure 11 shows the shedding frequencies of a mixing flow over the TE cutback cooling 

which illustrates the dynamic characteristics of the mixing between mainstream hot gas and 

coolant airflow for three ejection slot angles. These frequencies were analysed by fast Fourier 

transformation (FFT) based on a sampled dataset of mixing flow velocities at two different 

monitoring points, as defined in Figure 2Figure 2(b) at S1 location (x/H = 4, y/H = 1.5, z/H = 1.25) 

and S2 location (x/H = 4, y/H = 1.5, z/H = 0), respectively The resultant velocities were recorded 

from each case of simulation after a statistically converged status, in a selected time range of 0.019 

- 0.025 s. 
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(a) S1 monitoring point (b) S2 monitoring point 

Figure 11: Shedding frequencies. 

It was found that the dominant spectrum frequencies are fs = 2.93, 2.21, and 2.18 kHz for the TE 

cutback cooling at the ejection slot angles α = 5°, 10° and 15°, respectively. There is no major 

discrepancy of dominant frequency at both monitoring points. However, each point has a slight 

difference in terms of the magnitude. The magnitude of the dominant frequency resulting from the 

design with a 15° ejection slot angle is lower than that for the other two angles. The magnitude of 

monitoring points S1 is overall less than at S2. (see Figure 2Figure 2) This discrepancy is most 

likely due to the effect of the pin-fin arrays inside the cooling passage which influence the growth 

of vortex shedding along the cutback region. The TE cutback cooling with an ejection slot angle 

of 10° is found to be in good agreement with the available data obtained by Martini et al. [30], 

who reported dominant frequencies at 2.36 kHz and 2.4 kHz with a computational approach and 

an analytical calculation, respectively.  

From Figure 11, it can be seen that the beating phenomenon occurs with harmonic and sub-

harmonic waves being formed in normal patterns. It has the appearance of harmonic motion inside 

an envelope within a certain period. The forcing frequency of both turbulent flow motion from the 

mainstream hot gas and the coolant airflow may have a natural frequency close to the unsteady 

mixing flow along the cutback region. As found by Medic et al. [20], sub-harmonic response 

appears in all cases they have studied. In the present study, the sub-harmonics are found to be very 

pronounced for the design with the coolant ejection slot angle of 10°. 

4.   Conclusion 

The blade TE cutback cooling at three coolant ejection slot angles has been investigated 

numerically by DES with SST k-ω models. Turbulent flow structures have been captured together 
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with vortex shedding that provides underlying evidence regarding the cooling performance. The 

findings can be summarized as follows:  

 The increase of coolant ejection slot angle causes the increase of discharge coefficients, 

indicating decreased pressure loss along the cooling passage;  

 The blade TE cutback cooling with a small coolant ejection slot angle of 5° generates a higher 

level of the heat transfer coefficient for the pin-fin cooling. In contrast, the decay of the 

adiabatic film-cooling effectiveness is more pronounced due to the effect of the intensified 

mixing process between the mainstream hot gas and the coolant airflow. 

 The distribution of the adiabatic film-cooling effectiveness at the cutback wall is found to be 

sensitive to the coolant ejection slot angle. The increase of ejection slot angle yields the cooling 

effectiveness near to unity almost along the breakout wall, whereas the decrease of ejection 

slot angle causes a drastic decay of cooling effectiveness after approaching the peak level. 

 The shedding frequencies are predicted as 2.93, 2.21, and 2.18 kHz for the blade TE cutback 

cooling at three ejection slot angles of 5°, 10° and 15°, respectively, which is in good 

agreement with published work. 
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6.   Nomenclature 

Aslot = Area at slot exit [m2] 

An   = Position of cross-section areas  

CD  = Discharge coefficient (
idealc

realc

D
m

m
C

,

,




 ) 

D  = Pin-fin diameter [mm] 

fs  = Shedding frequency [kHz] 

H  = Slot-height [mm]   

Hse  = Slot-height at the slot-exit [mm]   

h  = Heat transfer coefficient [W/m2K] 
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L1,2.3,4 = Streamwise lengths of the domain [mm] 

M  = Blowing ratio (  

hghgslot

c

hghg

slotcc

uA

m

u

u
M



 
 ) 

cm   = Mass flow rate of coolant air [kg/s] 

nx; ny; nz = Element number in the x, y, and z directions, respectively 

Phg  = Pressure of hot gas [kPa] 

Pn   = Position of pin-fins row  

P1,t  = Total pressure at the coolant inlet [kPa] 

P2   = Static pressure at the slot-exit [kPa] 

Q  = Vortex identification criterion  

R   = Ideal gas constant (R = 287.22 J/kg.K for air) 

S  = Pitch-wise distance of the ribs array [mm] 

Sx  = Streamwise distance of the ribs array [mm]  

S1  = First monitoring point location  

S2  = Second monitoring point location  

Taw  = Temperature at the adiabatic wall surfaces [K] 

Tc  = Coolant air temperature [K] 

Tc’  = Coolant air temperature measured at the centre of the slot-exit [K] 

Thg  = Hot gas temperature [K] 

Tu  = Turbulence level 

Tw  = Isothermal wall temperature [K] 

T1,t  = Total temperature at the coolant inlet [K] 

t  = Lip thickness of blade trailing-edge cutback [mm] 

u   = Velocity [m/s] 

u’   = A root-mean-square streamwise fluctuation flow velocity [m/s] 

U∞  = Mainstream hot gas velocity [m/s] 

uc  = Coolant air velocity [m/s] 

uhg  = Hot gas velocity [m/s] 

x, y, z = Cartesian coordinates 

 

Greek Symbols 

α  = Inclined angle of suction-side [degree] or an ejection slot angle [°] 

ρ  = Density of airflow [kg/m3] 
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κ  = Specific heat capacity 

ρc  = Coolant air density [kg/m3] 

ρhg  = Hot gas density [kg/m3]  

ηaw  = Adiabatic film cooling effectiveness (
'chg

awhg

aw
TT

TT




 ) 

aw  = Averaged adiabatic film cooling effectiveness  

 

Subscripts 

aw  = Adiabatic wall 

cg  = Coolant gas (air) 

c’  = Coolant gas (air) at the slot exit 

hg  = Hot gas 

n  = Number 

s  = Shedding-vortex 

se  = Slot-exit 

 

Abbreviations 

DES = Detached eddy simulation  

EW = End-wall 

FFT = Fast Fourier transformation 

HTC = Heat transfer coefficient 

LES  = Large-eddy simulation 

PIN = Pin-fins   

PS  = Pressure-side 

RANS = Reynolds-averaged Navier-Stokes 

RIT = Rotor inlet temperature 

RMS = root-mean-square 

SS  = Suction-side 

SST = Shear-Stress Transport 

TE  = Trailing-edge  
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