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Abstract

The problem of obtaining necessary and sufficient conditions for local existence of non-

negative solutions in Lebesgue spaces for semilinear heat equations having monotonically

increasing source term f has only recently been resolved (Laister et al. (2016)). There, for

the more difficult case of initial data in L1, a necessary and sufficient integral condition on f

emerged. Here, subject to this integral condition, we consider other fundamental properties

of solutions with L1 initial data of indefinite sign, namely: uniqueness, regularity, continuous

dependence and comparison. We also establish sufficient conditions for the global-in-time

continuation of solutions for small initial data in L1.

Keywords: heat equation, existence, uniqueness, continuous dependence, comparison,

global solution.

1. Introduction

In this paper we address fundamental questions concerning the well-posedness of semi-

linear heat equations of the form

ut = ∆u+ f(u), u(0) = φ, (1.1)

where f : R → R is locally Lipschitz continuous and non-decreasing, f(0) = 0 and the

initial condition φ is taken in the space L1(Rn). In a previous work [13] we established
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sharp results on the local existence of non-negative solutions when f : [0,∞) → [0,∞) and

φ ∈ L1
+(Rn). Here we consider issues of existence and uniqueness for initial data of indefinite

sign, thus providing a more comprehensive account of the well-posedness problem for (1.1).

Furthermore we obtain results on the regularity, continuous dependence, comparison and

global existence of solutions.

The special case of the homogeneous power law nonlinearity f(u) = |u|p−1u in (1.1),

commonly referred to as the Fujita equation, has attracted much attention. In fact, the

original spark of interest in this restricted setting [8] has inspired the bulk of subsequent

developments. The interested reader is invited to consult [19] and the extensive list of

references therein for a detailed account of the state of the art for this problem.

A particularly important avenue of research concerns local well-posedness for singular

(unbounded) initial data and power-like nonlinearities satisfying

|f(u)− f(v)| ≤ C
(
1 + |u|p−1 + |v|p−1

)
|u− v|, p > 1. (1.2)

Sufficient conditions for local existence in Lebesgue spaces for classes of nonlinearities of this

type were established via a contraction mapping argument in [22, 23] (see also [3]). There

the interplay between the power-like nonlinearity and Lebesgue norms produced a clear-cut

characterisation of local existence in Lq with respect to a particular exponent q∗ = n(p−1)
2

.

Thus when q ≥ 1 and q > q∗, or q = q∗ > 1, then for every φ ∈ Lq there exists a Tφ > 0 and

a solution in C([0, Tφ], Lq) ∩ L∞loc((0, Tφ), L∞), i.e. a classical Lq-solution. The special case

of the pure power law f(u) = |u|p−1u shows that q∗ is indeed a critical value as the problem

can exhibit non-existence of non-negative solutions whenever 1 ≤ q < q∗ [23, Theorem 5].

Lastly, the end-point case q = q∗ = 1 differs from the critical regime for q∗ > 1 in that there

are non-negative data for which no non-negative solution may be defined [3, Theorem 11]

and [4].

Uniqueness results were also established in [23], but in a restricted class of functions

where solutions satisfy a certain growth bound as t → 0 a priori. This growth restriction

was removed in [3], providing a stronger uniqueness result in the space of classical Lq-

solutions. Hitherto these were the best results available regarding local well-posedness of
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(1.1) in Lq.

For non-power-like nonlinearities this tight correspondence between the source term

growth and integrability of the initial data generally fails and two problems arise:

(A) given f , characterise the set X of initial data for which (1.1) has a solution;

(B) given the set X of initial data, characterise those sources f for which (1.1) has a solution

for every initial datum in X.

These two problems are of course subject to a variety of further ramifications, e.g.,we need

to specify the solution concept and then we may insist that X is a Banach space say, or that

f is a smooth function, etc.

One definitive result in direction (A), concerning non-negative solutions of the Fujita

equation on bounded domains with Dirichlet boundary conditions, was given in [2]. With

regards to problem (B), in [13] we gave a necessary and sufficient condition for a non-

negative, non-decreasing, continuous function f to give rise to a local solution bounded in

Lq+(Rn) for all initial data in Lq+(Rn). Specifically, for q > 1, and assuming f to be Lipschitz

continuous at zero, local existence holds for all φ ∈ Lq+(Rn) if and only if

lim sup
u→∞

f(u)

u1+2q/n
<∞.

Morally, this result means that the power-like nonlinearities of (1.2) are essentially the

whole story with regards to local existence in Lq+(Rn) when q > 1, i.e. it is precisely those

nonlinearities which are majorised by u1+2q/n which are compatible with Lebesgue spaces of

non-negative initial data. However, power-like nonlinearities certainly do not tell the whole

story in the more delicate case q = 1. For then the condition for existence

|f(u)− f(v)| ≤ C
(
1 + |u|p−1 + |v|p−1

)
|u− v|, p < 1 + 2/n (1.3)

in [3, 23] is sufficient but not necessary. In fact the optimal (‘critical’) condition obtained

in [13] for the local existence property in L1
+(Rn) reads∫ ∞

1

s−(1+2/n)`+(s) ds <∞, (1.4)
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where

`+(s) = sup
0<t≤s

f(t)

t
.

(Note that `+(s) was denoted by F (s) in [13].) Thus there are nonlinearities f which satisfy

the integral condition (1.4) but which do not satisfy (1.3). See [13, Section 4.4] for such an

example in the bounded domain case, but which also applies to the whole space Rn. We see

again that L1 differs qualitatively from higher Lebesgue spaces and concepts like ‘critical

nonlinearity’ require careful treatment.

It is worth mentioning that the contraction mapping arguments in [3, 22, 23] do not

require monotonicity of f . Whilst we obtain stronger results in terms of the growth of f

at infinity, our methods are reliant upon monotonicity. For some alternative, related results

see also the recent developments in [7].

It is natural then to ask whether the gap between the existence conditions (1.3) and (1.4)

might lead to improvements of current uniqueness results when q = 1, namely [3, Theorem

1]. Indeed, we show in Theorem 2.4 that this is the case. Whereas uniqueness of classical

L1-solutions is known to hold under (1.3), we are able to weaken this condition accordingly;

see hypothesis (I2) in Section 2.3. There we adapt some of the methods of [3] but without

recourse to the contraction mapping theorem. It should be noted however, that our choice

of working with classical solutions (for t > 0) with initial data in L1(Rn) is instrumental in

uniqueness considerations; non-uniqueness can result otherwise [15, 17]. Furthermore our

monotone methods yield additional results on continuous dependence and comparison in

this more general setting, see Theorem 2.6, which extend further those of [3].

We go on to consider some special classes of source terms and initial data. For example,

when f is convex on [0,∞) and odd then the integral condition for existence (namely (I1) of

Section 2.2, similar in spirit to that of (1.4)) is equivalent to the one for both existence and

uniqueness (namely (I2)) - see Corollary 3.2. Specialising further to the case of non-negative

ititial data then leads to a sharp (necessary and sufficient) result, Corollary 3.5, regarding

local well-posedness of (1.1) within the class of convex source terms on [0,∞) and initial

data in L1
+(Rn).
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In the context of global solutions it has long been known for convex sources f satisfying

the ODE blow-up criterion
∫∞

ds/f(s) < ∞, that blow-up in (1.1) can occur for large

initial data and that small initial data can evolve into global-in-time solutions, see [11]. In

the seminal paper [8] Fujita obtained an important result for the special case of f(u) = up

on the whole space, whereby the critical exponent pF := 1 + 2/n separated two regimes:

for 1 < p < pF every non-negative, non-trivial classical solution blows up in finite time,

whereas for p > pF it is possible to find small initial conditions evolving into global-in-time

solutions. The so-called ‘critical case’ p = pF was later shown to be in the blow-up regime

[10, 21]. Notions of smallness abound, but Fujita’s original approach involved data bounded

above by a small Gaussian. Subsequent developments defined smallness via a norm in an

appropriate Banach space. The homogeneous power nonlinearity f(u) = |u|p−1u is naturally

compatible with the Lebesgue space structure and in [24] Weissler succeeded in replacing

the small Gaussian bound with a small critical Lebesgue norm ‖ · ‖pF . In this paper too we

establish some global existence results for initial data with sufficiently small L1-norm, see

Theorems 2.7 and 2.8.

Critical and supercritical phenomena appear often in semilinear heat equations when

the averaging action of diffusion and the amplifying action of the nonlinear term exert a

comparable infulence on the behaviour of the solution. The character of this inteplay may

lead to subtle effects in the dynamics of singularity formation [6], existence of nonsmooth

solutions [18] and asymptotic behaviour of global solutions [5]. In the context of power

law source terms, a considerable body of work on these topics has been developed over the

past three decades (see [19] for an overview). In this work we have investigated the critical

balance with regards to the question of local existence of solutions for source terms in a

more general class of functions. Whether similar generalisations are possible in the blow-up

theory and threshold behaviour of global solutions remains to be seen and poses interesting

research challenges for the future.
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2. Well-Posedness in L1

2.1. Preliminaries

Throughout we use pF to denote the Fujita exponent pF = 1 + 2/n. We write ‖·‖q for the

norm in Lq(Rn) and denote by {S(t)}t≥0 the heat semigroup on Lq(Rn) (q ≥ 1) generated

by −∆ on Rn with the explicit representation formula

[S(t)φ](x) =

∫
Rn
G(x− y, t)φ(y) dy, φ ∈ Lq(Rn),

where G is the Gaussian heat kernel

G(x, t) = (4πt)−n/2e−|x|
2/4t.

It is well-known that S(t) is a C0-semigroup for all q ≥ 1 finite.

As is commonplace for semilinear problems we will study solutions of (1.1) via the vari-

ation of constants formula

u(t) = F (u;φ) := S(t)φ+

∫ t

0

S(t− s)f(u(s)) ds. (2.1)

We now make precise our solution concepts (see e.g., [19, Section 15]), setting QT = Rn ×

(0, T ).

Definition 2.1.

(i) We say that u is a classical L1-solution of (1.1) on [0, T ) if u satisfies (1.1) in the

classical sense in QT , u ∈ C ([0, T ), L1(Rn)) ∩ L∞loc ((0, T ), L∞(Rn)) and u(0) = φ.

(ii) We say that (1.1) is well-posed in L1(Rn) if for all φ ∈ L1(Rn) there exists T = T (φ) > 0

and a unique classical L1-solution of (1.1) on [0, T ).

Definition 2.2. Let T > 0. We say that a measurable, finite almost everywhere (a.e.)

function w : QT → R is an integral supersolution (respectively subsolution) of (1.1) on QT

if w satisfies F (w;φ) ≤ w (respectively F (w;φ) ≥ w) a.e. in QT , with F as in (2.1). If

w is both an integral supersolution and an integral subsolution of (1.1) on QT then we say

that w is an integral solution of (1.1) on QT .
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In what follows we will often write ‘supersolution’ instead of ‘integral supersolution’ when-

ever the context is clear, and likewise for ‘subsolution’.

We recall the following standard smoothing estimate for the heat semigroup when 1 ≤

q ≤ r ≤ ∞ and φ ∈ Lq(Rn) (see e.g., [3, Lemma 7] or [19, Proposition 48.4]):

‖S(t)φ‖r ≤ t−
n
2 ( 1

q
− 1
r )‖φ‖q, t > 0. (2.2)

The following lemma is a minor adaptation of [3, Lemma 8] for bounded domains to the

whole space. Here we make use of the fact that S(t) is a C0-semigroup to offer a slightly

different proof to the one given there.

Lemma 2.1. Let 1 ≤ q < r ≤ ∞ and α =
n

2

(
1

q
− 1

r

)
. If φ ∈ Lq(Rn) then

lim
t→0

tα ‖S(t)φ‖r = 0.

Proof. For any ε > 0,

tα ‖S(t)φ‖r ≤ tα ‖S(t)(φ− S(ε)φ)‖r + tα ‖S(ε)S(t)φ‖r

≤ ‖φ− S(ε)φ‖q + tαε−α ‖S(t)φ‖q

≤ ‖φ− S(ε)φ‖q + tαε−α ‖φ‖q

so that

lim
t→0

tα ‖S(t)φ‖r ≤ ‖φ− S(ε)φ‖q .

Letting ε→ 0 and using the strong continuity of S(·) for q ∈ [1,∞), yields the result.

Remark 2.1. The two ingredients needed in the proof of Lemma 2.1, namely the smoothing

estimate and the strong continuity of the semigroup, may be generalised to the setting

of fractional power spaces Xα, α ≥ 0, associated with a sectorial operator A, such that

A : D(A) ⊂ X0 → X0, where X0 is a Banach space. Then {S(t)}t≥0 is an analytic

semigroup generated by A which, in particular, satisfies the bounds

‖S(t)φ‖Xα ≤M‖φ‖Xα , ‖S(t)φ‖Xα ≤Mt−α‖φ‖X0 , t > 0,

for some constant M > 0. See e.g., [1] and the references therein.
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2.2. Local Existence

We introduce the following monotonicity hypothesis for f :

(M) f : R→ R is locally Lipschitz continuous, non-decreasing and f(0) = 0.

For f satisfying (M) we may define the non-decreasing function ` : [0,∞)→ [0,∞) by

`(s) = sup
0<|t|≤s

f(t)

t
(s > 0), `(0) = 0. (2.3)

Observe that by (M) and taking t = s in (2.3), we have

f(s) ≤ s`(s), s ≥ 0 (2.4)

and (taking t = −s),

f(s) ≥ s`(−s), s ≤ 0. (2.5)

We now consider the issue of existence of solutions of (1.1), for which we introduce our

second hypothesis:

(I1)

∫ ∞
1

s−pF `(s) ds <∞,

where pF = 1 + 2/n. Observe that (I1) is equivalent to∫ 1

0

`
(
τ−n/2

)
dτ <∞. (2.6)

Theorem 2.2. (Uniform Existence.) Suppose f satisfies (M) and (I1) and B is any

bounded subset of L1(Rn). Then there exists a TB > 0 such that for all φ ∈ B there exist clas-

sical L1-solutions u(t;φ) and u(t;φ) of (1.1) with u(t;φ) ≤ u(t;φ) on [0, TB). Furthermore,

for all φ ∈ B,

lim
t→0

tn/2‖u(t;φ)‖∞ = lim
t→0

tn/2‖u(t;φ)‖∞ = 0.

Proof. For non-negative φ, local existence was proved in [13, Theorem 5.1 (ii)] (see also [13,

Theorem 4.4]). We adapt that proof here to obtain solutions for initial data of indefinite sign,
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on a uniform interval of existence with respect to B. We will show that there exists a TB > 0

such that for any φ ∈ B there is an integral supersolution w(t) and an integral subsolution

v(t) with v ≤ w. From this sub-supersolution pair we will then construct iteratively the

solutions u and u.

Let

φ− = min{φ, 0} ≤ 0, φ+ = max{φ, 0} ≥ 0

and for t ≥ 0 set

v(t) = 2S(t)φ− ≤ 0, w(t) = 2S(t)φ+ ≥ 0.

Clearly v ≤ 0 ≤ w by monotonicity of S(t) and the ordering φ− ≤ 0 ≤ φ+.

As B is bounded there is a constant K > 0 such that ‖φ‖1 ≤ K for all φ ∈ B. Hence

since w ≥ 0, ` is non-decreasing and recalling (2.4),

S(t− s)f(w(s)) = S(t− s)f(2S(s)φ+) ≤ S(t− s)`
(
2S(s)φ+

)
2S(s)φ+

≤ S(t− s)`
(∥∥2S(s)φ+

∥∥
∞

)
2S(s)φ+ ≤ `

(
2‖φ+‖1s−n/2

)
2S(t)φ+

≤ `
(
2‖φ‖1s−n/2

)
w(t) ≤ `

(
2Ks−n/2

)
w(t)

and so

F (w;φ) = S(t)φ+

∫ t

0

S(t− s)f(w(s)) ds

≤ S(t)φ+ +

(∫ t

0

`
(
2Ks−n/2

)
ds

)
w(t)

=

(
1/2 + (2K)2/n

∫ t(2K)−2/n

0

`(τ−n/2) dτ

)
w(t).

Consequently F (w;φ) ≤ w whenever

w(t) (g(t)− 1/2) ≤ 0,

where g is given by

g(t) = (2K)2/n
∫ t(2K)−2/n

0

`(τ−n/2) dτ. (2.7)
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Due to (2.6) we can choose TB > 0 such that g(t) ≤ 1
2

for all t ∈ [0, TB], i.e. F (w;φ) ≤ w

on [0, TB]. Note in particular that the choice of TB depends only upon K, and hence B, but

not upon φ.

Now recall (2.5) and that v ≤ 0. Setting φ̂ = −φ− ≥ 0 we obtain

S(t− s)f(v(s)) = S(t− s)f(2S(s)φ−) ≥ S(t− s)`
(

2S(s)φ̂
)

2S(s)φ−

≥ S(t− s)`
(∥∥∥2S(s)φ̂

∥∥∥
∞

)
2S(s)φ− ≥ `

(
2‖φ̂‖1s−n/2

)
2S(t)φ−

≥ `
(
2‖φ‖1s−n/2

)
v(t) ≥ `

(
2Ks−n/2

)
v(t), (2.8)

so that

F (v;φ) = S(t)φ+

∫ t

0

S(t− s)f(v(s)) ds

≥ S(t)φ− +

(∫ t

0

`
(
2Ks−n/2

)
ds

)
v(t)

=

(
1/2 +

∫ t

0

`
(
2Ks−n/2

)
ds

)
v(t)

= (1/2 + g(t)) v(t),

recalling (2.7). Thus, F (v;φ) ≥ v provided that

v(t) (g(t)− 1/2) ≥ 0,

which evidently holds for all t ∈ [0, TB], as for w above.

For notational convenience we now set T = TB in the remainder of the proof. For any

φ ∈ B and t ∈ [0, T ], one may then use v and w to construct iteratively a decreasing sequence

wk(t;φ) and an increasing sequence vk(t;φ) via the relations

wk+1(t;φ) = F (wk;φ), w0(t;φ) = w(t) (2.9)

and

vk+1(t;φ) = F (vk;φ), v0(t;φ) = v(t). (2.10)

Using the monotonicity of F (see, for example, [20, Theorem 1] or [24, Theorem 1]) it is

easy to verify by induction that for all k

v ≤ vk ≤ vk+1 ≤ wk+1 ≤ wk ≤ w.
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Clearly therefore, the pointwise limits

lim
k→∞

vk(x, t;φ) =: u(x, t;φ), lim
k→∞

wk(x, t;φ) =: u(x, t;φ)

exist and satisfy v ≤ u ≤ u ≤ w a.e. in QT . Furthermore, v, w ∈ L1(QT ) since∫
QT

|w(x, t)| dxdt =

∫ T

0

∫
Rn

2[S(t)φ+](x) dxdt ≤ 2T‖φ‖1,∫
QT

|v(x, t)| dxdt =

∫ T

0

∫
Rn
−2[S(t)φ−](x) dxdt ≤ 2T‖φ‖1.

Clearly, both |u| and |u| are dominated by max{|v|, |w|}. Hence by the dominated conver-

gence theorem, u, u ∈ L1(QT ) and

lim
k→∞

∫ t

0

∫
Rn
G(x− y, s)vk(y, s) dyds =

∫ t

0

∫
Rn
G(x− y, s)u(y, s) dyds

and

lim
k→∞

∫ t

0

∫
Rn
G(x− y, s)wk(y, s) dyds =

∫ t

0

∫
Rn
G(x− y, s)u(y, s) dyds.

It follows that u and u are both integral solutions of (1.1), i.e. satisfy

u(t) = S(t)φ+

∫ t

0

S(t− s)f(u(s)) ds (2.11)

a.e. in QT . Furthermore, by the integral condition (I1) we have that∫ T

0

‖f(v(s))‖1 ds ≤
∫ T

0

`
(
2‖φ−‖1s−n/2

)
‖2S(s)φ−‖1 ds

≤ 2‖φ‖1
∫ T

0

`
(
2‖φ‖1s−n/2

)
ds <∞

and ∫ T

0

‖f(w(s))‖1 ds ≤
∫ T

0

`
(
2s−n/2‖φ+‖1

)
‖2S(s)φ+‖1 ds

≤ 2‖φ‖1
∫ T

0

`
(
2‖φ‖1s−n/2

)
ds <∞.

Hence f(u) ∈ L1((0, T ), L1(Rn)) since f(v) ≤ f(u) ≤ f(w). It follows that u ∈ C([0, T ], L1(Rn))

by (2.11). Furthermore, since v, w ∈ L∞loc((0, T ), L∞(Rn)) we also have u ∈ L∞loc((0, T ), L∞(Rn)).
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As f is Lipschitz continuous, standard parabolic regularity theory now implies that u ∈

C2,1(QT ) and is a classical solution of (1.1). Thus, u is a classical L1-solution of (1.1) on

[0, T ).

By exactly the same argument we also deduce that u is a classical L1-solution of (1.1)

on [0, T ), with u ≤ u.

That tn/2‖u(t;φ)‖∞ → 0 and tn/2‖u(t;φ)‖∞ → 0 as t→ 0 follows easily from the ordering

2S(t)φ− ≤ u(t;φ) ≤ u(t;φ) ≤ 2S(t)φ+

and Lemma 2.1 with q = 1 and r =∞.

Remark 2.2. For notational convenience, in all that follows we simply write Tφ for T{φ}

when B = {φ}.

2.3. Uniqueness

The proof of Theorem 2.2 provides a particular method for constructing ordered classical

L1-solutions u and u of (1.1) via a monotone iteration scheme. Under a stronger integral

condition than (I1), involving the modulus of continuity of f , we will show that u is unique

among all classical L1-solutions of (1.1).

For f satisfying (M), define the non-decreasing function L : [0,∞)→ [0,∞) by

L(s) = sup
|u|,|v|≤s,
u6=v

f(u)− f(v)

u− v
(s > 0), L(0) = 0. (2.12)

We introduce the integral condition

(I2)

∫ ∞
1

s−pFL(s) ds <∞.

Remark 2.3. Observe that L(s) ≥ `(s) and so (I2) implies (I1). We also note that (I2)

is equivalent to ∫ 1

0

L
(
τ−n/2

)
dτ <∞. (2.13)
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Proposition 2.3. Let φ, ψ ∈ L1(Rn), B = {φ, ψ} and suppose that f satisfies (M) and

(I2). Let u(t; ·) and TB be as in Theorem 2.2. Then there exists τ = τ(φ, ψ) > 0 and

a continuous, non-negative function q(t) satisfying q(t) → 0 as t → 0, such that for all

t ∈ (0, τ ]

‖u(t;φ)− u(t;ψ)‖1 + tn/2 ‖u(t;φ)− u(t;ψ)‖∞ ≤ 2 ‖φ− ψ‖1 eq(t).

Proof. To simplify notation let u(t) = u(t;φ) and v(t) = u(t;ψ). By Theorem 2.2 there

exists τ = τ(φ, ψ) ∈ (0, TB) such that

‖u(t)‖∞ ≤ t−n/2 and ‖v(t)‖∞ ≤ t−n/2 (2.14)

for all t ∈ (0, τ ]. For such t,

‖u(t)− v(t)‖1 ≤ ‖S(t)(φ− ψ)‖1 +

∫ t

0

‖S(t− s) (f(u(s))− f(v(s)))‖1 ds

≤ ‖φ− ψ‖1 +

∫ t

0

∥∥∥∥f(u(s))− f(v(s))

u(s)− v(s)

∥∥∥∥
∞
‖S(t− s) (u(s)− v(s))‖1 ds

≤ ‖φ− ψ‖1 +

∫ t

0

L
(
s−n/2

)
‖u(s)− v(s)‖1 ds (2.15)

by (2.12-2.14). Next, we have

‖u(t)− v(t)‖∞ ≤ ‖S(t)(φ− ψ)‖∞ +

∫ t

0

‖S(t− s) (f(u(s))− f(v(s)))‖∞ ds

≤ t−n/2‖φ− ψ‖1 +

∫ t

t/2

‖f(u(s))− f(v(s))‖∞ ds

+

∫ t/2

0

∥∥∥∥f(u(s))− f(v(s))

u(s)− v(s)

∥∥∥∥
∞
‖S(t− s)(u(s)− v(s))‖∞ ds

≤ t−n/2‖φ− ψ‖1 +

∫ t

t/2

L
(
s−n/2

)
‖u(s)− v(s)‖∞ ds

+

∫ t/2

0

L
(
s−n/2

)
(t− s)−n/2‖u(s)− v(s)‖1 ds

≤ t−n/2‖φ− ψ‖1 + (t/2)−n/2
∫ t

t/2

L
(
s−n/2

)
sn/2‖u(s)− v(s)‖∞ ds
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+ (t/2)−n/2
∫ t/2

0

L
(
s−n/2

)
‖u(s)− v(s)‖1 ds

≤ t−n/2‖φ− ψ‖1 + (t/2)−n/2
∫ t

0

L
(
s−n/2

)
sn/2‖u(s)− v(s)‖∞ ds

+ (t/2)−n/2
∫ t

0

L
(
s−n/2

)
‖u(s)− v(s)‖1 ds. (2.16)

Combining (2.15-2.16) we obtain, for all t ∈ (0, τ ],

‖u(t)− v(t)‖1 + tn/2‖u(t)− v(t)‖∞ ≤ 2‖φ− ψ‖1

+

∫ t

0

knL
(
s−n/2

) (
‖u(s)− v(s)‖1 + sn/2‖u(s)− v(s)‖∞

)
ds, (2.17)

where kn =
(
1 + 2n/2

)
.

Now define y(t) on [0, τ ] by y(0) = ‖φ− ψ‖1 and

y(t) = ‖u(t)− v(t)‖1 + tn/2‖u(t)− v(t)‖∞, t ∈ (0, τ ].

By assumption u, v ∈ C ([0, τ ], L1(Rn)) and are both classical solutions for t > 0. By

standard parabolic regularity results we have that u, v ∈ C ((0, τ), L∞(Rn)), so that y is

continuous on (0, τ ]. By Theorem 2.2 it follows that y is continuous on [0, τ ]. Hence by

(2.17), (I2) and the singular Gronwall inequality (see e.g., [16, Ch.XII, Theorem 4]), it

follows that

‖u(t)− v(t)‖1 + tn/2‖u(t)− v(t)‖∞ ≤ 2‖φ− ψ‖1eq(t)

for all t ∈ (0, τ ], where

q(t) = kn

∫ t

0

L
(
s−n/2

)
ds.

Clearly q is continuous with q(t) → 0 as t → 0 by (I2) (recalling (2.13)), and the proof is

complete.

We are now in a position to establish our main uniqueness result.

Theorem 2.4. (Uniqueness.) Let φ ∈ L1(Rn) and suppose that f satisfies (M) and (I2).

Let u(t;φ) and Tφ be as in Theorem 2.2. Then for any T ≤ Tφ, u(t;φ) is the unique classical

L1-solution of (1.1) on [0, T ).
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Proof. Let u(t) := u(t;φ) for t ∈ [0, Tφ) and T ≤ Tφ be arbitrary. Suppose there exists

a classical L1-solution v on [0, T ) with v(0) = φ. By classical L∞-theory, it is clear that

if there exists a τ ∈ (0, T ) such that u(t) = v(t) on (0, τ ], then u(t) = v(t) on [0, T ), i.e.

uniqueness for sufficiently small times implies uniqueness on [0, T ).

Fix τ ∈ (0, T ) and let B = v ([0, τ ]). Since v ∈ C ([0, τ ], L1(Rn)), B is a bounded subset

of L1(Rn). By Theorem 2.2 there exists a TB ∈ (0, Tφ] such that u(t;ψ) is well-defined for

all ψ ∈ B and t ∈ [0, TB). Hence for all t ∈ [0, TB) we may define UB(t) : B → L1(Rn) by

UB(t)ψ = u(t;ψ) and deduce from Proposition 2.3 that UB(t) is continuous (with respect

to the induced L1-norm). Again by classical L∞-uniqueness theory we have that v(t+ s) =

UB(t)v(s) for all t ≥ 0 sufficiently small and s > 0 sufficiently small. Letting s → 0, and

using the continuity of v : [0, τ ] → L1(Rn) and UB(t) : B → L1(Rn), we therefore obtain

v(t) = UB(t)v(0) = UB(t)φ = u(t) for all sufficiently small t > 0, as required.

By Theorem 2.4 we may now dispense with the overbar (underbar) notation and simply

write u for u (and u) whenever φ ∈ L1(Rn) and f satisfies (M) and (I2).

2.4. Continuous Dependence and Comparison

As a consequence of Theorem 2.2 and Theorem 2.4 we may now deduce the existence

of a maximally continued solution and obtain the usual blow-up alternative on its maximal

interval of existence.

Theorem 2.5. (Maximal Solution.) Let φ ∈ L1(Rn) and suppose that f satisfies (M)

and (I2). Let u(t;φ) denote the unique classical L1-solution on [0, Tφ). Then there exists

Tmax(φ) ≥ Tφ such that:

(a) u(t;φ) can be continued (in a unique way) to a classical L1-solution on [0, Tmax(φ));

(b) if Tmax(φ) <∞ then u(t;φ) cannot be continued to a classical L1-solution on [0, τ) for

any τ > Tmax(φ);

(c) if Tmax(φ) <∞ then ‖u(t;φ)‖1 →∞ as t→ Tmax(φ).
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Proof. Follows in the standard way (see [19, Proposition 16.1] for example) by the uniform

existence result of Theorem 2.2 and uniqueness of Theorem 2.4.

Part (a) of the following theorem is an immediate consequence of Proposition 2.3 and

Theorem 2.4. We choose to state it explicitly in order to summarize our results more clearly

but especially because Proposition 2.3 refers only to solutions obtained via the monotone

iteration scheme, as opposed to any classical L1-solution.

Theorem 2.6. Let φ, ψ ∈ L1(Rn) and suppose that f satisfies (M) and (I2). Let u(t;φ)

and u(t;ψ) be as in Theorem 2.5.

(a) (Continuous Dependence.) There exists τ = τ(φ, ψ) > 0 and a continuous, non-

negative function q(t) satisfying q(t)→ 0 as t→ 0, such that for all t ∈ (0, τ ],

‖u(t;φ)− u(t;ψ)‖1 + tn/2 ‖u(t;φ)− u(t;ψ)‖∞ ≤ 2 ‖φ− ψ‖1 eq(t).

(b) (Comparison.) If φ ≤ ψ then u(t;φ) ≤ u(t;ψ) on [0, T ), for all T ≤ min{Tmax(φ), Tmax(ψ)}.

In particular, if φ ≥ 0 then u(t;φ) ≥ 0 on [0, Tmax(φ)).

Proof. For part (b) we recall from Theorem 2.2 and Theorem 2.4 that there exists a Tφ ≤

Tmax(φ) such that the classical L1-solution u(t;φ) is obtained as the pointwise limit of the

iteration scheme

wk+1(t;φ) = F (wk;φ), w0(t;φ) = 2S(t)φ+

for t ∈ [0, Tφ).

Similarly we obtain the classical L1-solution u(t;ψ) on [0, Tψ) via

wk+1(t;ψ) = F (wk;ψ), w0(t;ψ) = 2S(t)ψ+.

Let T0 = min{Tφ, Tψ}. Clearly

w0(t;φ) = 2S(t)φ+ ≤ 2S(t)ψ+ = w0(t;ψ),
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and since the operator F is order-preserving in both its arguments (due to monotonicity

of f and S(t)), it follows easily by induction that wk(t;φ) ≤ wk(t;ψ) for all k. Letting

k → ∞ we therefore have u(t;φ) ≤ u(t;ψ) on [0, T0). The comparison result on [0, T ) for

any T ≤ max{Tmax(φ), Tmax(ψ)} now follows by standard L∞-comparison results for classical

solutions since f is locally Lipschitz continuous.

The final part of (b) follows by comparison and the fact that u(t; 0) = 0 for all t ≥ 0 by

uniqueness.

2.5. Global Solutions

Next we establish some sufficient conditions for the global continuation of solutions with

small intial data. The following integral condition plays the key rôle:

(I3)

∫ 1

0

s−pF `(s) ds <∞.

Theorem 2.7. Suppose φ ∈ L1(Rn)∩L∞(Rn) and (M) holds. Let uc(t;φ) denote the unique

classical L∞-solution of (1.1) with maximal (in L∞) interval of existence [0, Tmax(φ)). If

(I3) holds, then for any A > 1 there exists δ = δ(A) > 0 such that for all φ satisfying

‖φ‖1 + ‖φ‖∞ ≤ δ we have Tmax(φ) =∞ and

AS(t)φ− ≤ uc(t;φ) ≤ AS(t)φ+ (2.18)

for all t ≥ 0. Consequently ‖uc(t;φ)‖∞ ≤ At−n/2‖φ‖1 for all t > 0.

Proof. First, we will show that for fixed A > 1 and suitably small δ > 0, v := AS(t)φ− and

w := AS(t)φ+ are an integral sub-supersolution pair for (1.1) for all t ≥ 0. Similarly to

Theorem 2.2 we will then be able to deduce the existence of a pair of classical L∞-solutions

u and u satisfying

v ≤ u ≤ u ≤ w. (2.19)

By uniqueness of classical L∞-solutions (see e.g., [19, Section 51, Appendix E]) we may then

conclude that u = u = uc and hence v ≤ uc(t;φ) ≤ w, yielding (2.18). The L∞ bound for

uc then follows by L1-L∞ smoothing via Lemma 2.1. It is therefore sufficient to prove the

existence of solutions u and u satisfying (2.19).
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Let δ ≤ 1 and choose τ > 0 such that 1−A+A`(A)τ < 0. By (2.2) with q = r =∞ we

have ‖S(t)φ‖∞ ≤ ‖φ‖∞ ≤ δ ≤ 1 for all t ≥ 0. In particular, for all t ∈ [0, τ ] we have

F (w;φ)− w = S(t)φ+

∫ t

0

S(t− s)f(w(s)) ds− w

≤ S(t)φ+ +

∫ t

0

S(t− s) [`(w(s))w(s)] ds− w

= (1− A)S(t)φ+ +

∫ t

0

S(t− s)
[
`
(
AS(s)φ+

)
AS(s)φ+

]
ds

≤ (1− A)S(t)φ+ +

∫ t

0

S(t− s)
[
`
(
‖AS(s)φ+‖∞

)
AS(s)φ+

]
ds

≤ (1− A)S(t)φ+ +

∫ t

0

S(t− s)
[
`(A)AS(s)φ+

]
ds

= (1− A)S(t)φ+ + A`(A)

∫ t

0

S(t)φ+ ds

≤ (1− A+ A`(A)τ)S(t)φ+ ≤ 0.

For t > τ we proceed as above, again making use of L1-L∞ smoothing:

F (w;φ)− w = S(t)φ+

∫ τ

0

S(t− s)f(w(s)) ds+

∫ t

τ

S(t− s)f(w(s)) ds− w

≤ (1− A+ A`(A)τ)S(t)φ+ +

∫ t

τ

S(t− s) [`(w(s))w(s)] ds

≤ (1− A+ A`(A)τ)S(t)φ+ +

∫ t

τ

S(t− s)
[
`
(
‖AS(s)φ+‖∞

)
AS(s)φ+

]
ds

≤ (1− A+ A`(A)τ)S(t)φ+ +

∫ t

τ

S(t− s)
[
`(Aδs−n/2)AS(s)φ+

]
ds

= (1− A+ A`(A)τ)S(t)φ+ + AS(t)φ+

∫ t

τ

`(Aδs−n/2) ds

=

(
1− A+ A`(A)τ + (2/n)ApF δ2/n

∫ Aδτ−n/2

Aδt−n/2
z−pF `(z) dz

)
S(t)φ+

≤

(
1− A+ A`(A)τ + (2/n)ApF δ2/n

∫ Aδτ−n/2

0

z−pF `(z) dz

)
S(t)φ+

≤ 0

for δ sufficiently small (and independently of t), by (I3).

In exactly the same way (and similar to that in the proof of Theorem 2.2 - see the

calculations surrounding (2.8)) one may verify that v is an integral subsolution. We omit the
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repetitive details. Likewise one can again construct monotonic sequences vk and wk as in (2.9-

2.10), converging pointwise to limiting functions u and u respectively, with v ≤ u ≤ u ≤ w.

Via the properties shared by v and w and the dominated convergence theorem, u and u both

satisfy the variation of constants formula (2.1) almost everywhere in QT , for any T > 0.

Furthermore u and u are both essentially bounded in QT and consequently they are classical

solutions of (1.1). This completes the proof.

For initial data which are not necessarily bounded we also require f to satisfy the integral

condition (I2).

Theorem 2.8. Suppose φ ∈ L1(Rn) and (M) and (I2) hold. Let u(t;φ) denote the unique

classical L1-solution of (1.1) guaranteed by Theorem 2.5, with maximal interval of existence

[0, Tmax(φ)). If (I3) holds, then for any A > 1 there exists δ = δ(A) > 0 such that for all φ

satisfying ‖φ‖1 ≤ δ we have Tmax(φ) =∞ and

AS(t)φ− ≤ u(t;φ) ≤ AS(t)φ+

for all t ≥ 0. Consequently ‖u(t;φ)‖∞ ≤ At−n/2‖φ‖1 for all t > 0.

Proof. It is easily verified that v = AS(t)φ− and w = AS(t)φ+ are a pair of global integral

sub-supersolutions by simply taking τ = 0 in the calculations in the proof of Theorem 2.7;

for example,

F (w;φ)− w ≤
(

1− A+ (2/n)ApF δ2/n
∫ ∞
0

z−pF `(z) dz

)
S(t)φ+ ≤ 0

for δ sufficiently small by (I2) (see Remark 2.3) and (I3). Similarly for v.

The usual monotone iteration procedure then yields a pair of global classical L1-solutions

u and u satisfying v ≤ u ≤ u ≤ w for all t ≥ 0. By the uniqueness result of Theorem 2.4

it follows that u = u = u(t;φ) on [0, Tmax(φ)) and so Tmax(φ) = ∞. The L∞ bound for u

follows once more by the ordering AS(t)φ− ≤ u ≤ AS(t)φ+ and L1-L∞ smoothing of the

heat semigroup.
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Example 2.1. Let 1 < p < pF < q and f+ : [0,∞) → [0,∞) be the non-convex, locally

Lipschitz function

f+(u) = min{up, uq},

so that f+(u) = uq for 0 ≤ u ≤ 1 and f+(u) = up for u > 1. Let f : R → R be the odd

extension of f+. Then f satisfies the hypotheses of both Theorem 2.5 and Theorem 2.8,

with L(s) = psp−1 for s large and `(s) = sq−1 for s small. This provides an example of a

source term f for which (1.1) is both well-posed in L1(Rn) and possesses non-trivial global

solutions, in contrast to the homogeneous power law case f(u) = |u|p−1u, p > 1.

3. Special Cases

3.1. Convex Source Terms

We now show that the ‘gap’ between the integral condition (I1) for existence and the

one for uniqueness, (I2), vanishes when the source term f is odd and is convex on (0,∞) .

Lemma 3.1. Assume (M) and (I1) hold. If f is odd and is convex on (0,∞), then f

satisfies (I2).

Proof. Since f is locally Lipschitz it is differentiable a.e., with derivative f ′ at all such points.

The oddness of f together with its convexity on (0,∞) then imply that `(s) = f(s)/s and

L(s) = f ′(s) a.e. Hence,∫ ∞
1

s−pFL(s) ds =

∫ ∞
1

s−pF f ′(s) ds

=
[
s−pF f(s)

]∞
1

+ pF

∫ ∞
1

s−pF `(s) ds. (3.1)

The latter integral in (3.1) is finite by (I1). Also,∫ 2s

s

t−pF `(t) dt ≥ `(s)

∫ 2s

s

t−pF dt = Cns
−pF f(s)

and so by (I1) s−pF f(s)→ 0 as s→∞. Consequently the right hand side of (3.1) is finite

and (I2) holds.
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Corollary 3.2. Assume f is odd, convex on (0,∞) and satisfies (M). If
∫∞
1
s−(2+2/n)f(s) ds <

∞ then the conclusions of Theorem 2.5 and Theorem 2.6 hold.

Example 3.1. In the special case of the homogeneous power law f(u) = |u|p−1u, p > 1,

Corollary 3.2 is applicable if and only if p < pF . See for example [3, 22, 23].

One can also obtain a result like Corollary 3.2 without requiring f to be odd, provided

that one redefines (I1) and (I2) accordingly. For example, if f is concave on (−∞, 0) and

convex on (0,∞), then `(s) = max{f(s)/s,−f(−s)/s} and L(s) = max{f ′(s),−f ′(−s)}

a.e. One then replaces (I1) by the pair of integral conditions∫ ∞
1

s−(2+2/n)f(s) ds <∞ and −
∫ −1
−∞

(−s)−(2+2/n)f(s) ds <∞

and analogously for (I2).

Assuming (M) holds we have shown that (I2) is sufficient for the well-posedness of (1.1)

in L1(Rn), together with comparison and continuous dependence of solutions. It is natural

therefore to ask whether (I2) is necessary for well-posedness. We have a partial result in

this direction.

Corollary 3.3. Assume f is odd, convex on (0,∞) and satisfies (M). If f does not satisfy

(I2) then either (1.1) is not well-posed in L1(Rn) or the comparison principle fails.

Proof. By Lemma 3.1, if f does not satisfy (I2) then does not satisfy (I1). Therefore,

by [13, Theorem 5.1] there exists a non-negative initial condition φ ∈ L1(Rn) such that

(1.1) does not possess a local non-negative integral solution (and hence no non-negative

classical L1-solution). It follows that if (1.1) is well-posed in L1(Rn) then the corresponding

unique classical L1-solution u(t;φ) must be sign-changing on every small time interval (0, T ).

Comparison with u(t; 0) = 0 consequently fails.

Recalling Corollary 3.2 we may combine the results of Theorem 2.5 and Theorem 2.8 in

the following special case.
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Corollary 3.4. Suppose f is odd, convex on (0,∞) and satisfies (M). If∫ ∞
0

f(s)

s2+2/n
ds <∞,

then (1.1) is well-posed in L1(Rn) and all classical L1-solutions having sufficiently small

initial data in L1(Rn) are global in time, decaying uniformly to zero like O
(
t−n/2

)
as t→∞.

3.2. Positive Solutions

Here we outline some consequences relating specifically to non-negative solutions. The

results of previous sections are easily paralleled by replacing L1(Rn) throughout by L1
+(Rn),

the cone of non-negative functions in L1(Rn). In particular the definitions of solution and

well-posedness in Definition 2.1 are now made with respect to L1
+(Rn) rather than L1(Rn),

with φ ∈ L1
+(Rn).

First we replace (M) by

(M)+ f : [0,∞)→ [0,∞) is locally Lipschitz continuous, non-decreasing and f(0) = 0,

and (2.3) by

`+(s) = sup
0<t≤s

f(t)

t
(s > 0), `+(0) = 0.

We then replace ` by `+ in the integral condition (I1):

(I1)+

∫ ∞
1

s−pF `+(s) ds <∞.

The function u in Theorem 2.2 is then obtained by monotone iteration of the integral

subsolution v = AS(t)φ− = 0, since now φ− = 0. Likewise we replace L in (2.12) by

L+(s) = sup
0<u,v≤s,
u6=v

f(u)− f(v)

u− v
(s > 0), L+(0) = 0

and L by L+ in (I2):

(I2)+

∫ ∞
1

s−pFL+(s) ds <∞.
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One readily deduces that if f satisfies (M)+ and (I2)+ then for every φ ∈ L1
+(Rn) there

exists a Tmax(φ) > 0 and a unique, non-negative classical L1-solution u(t;φ) on [0, Tmax(φ)).

Furthermore, if Tmax(φ) < ∞ then ‖u(t;φ)‖1 → ∞ as t → Tmax(φ). Similarly one obtains

continuous dependence and comparison of non-negative solutions. This yields the analogues

of Theorem 2.5 and Theorem 2.6 in L1
+(Rn).

The counterparts of Theorems 2.7 and 2.8 regarding non-negative global solutions satis-

fying 0 ≤ u(t;φ) ≤ AS(t)φ also follow in exactly the same way, on replacing (I3) with

(I3)+

∫ 1

0

s−pF `+(s) ds <∞.

In fact the rôle of (I3)+ is known to be important in determining whether positive classical

solutions decay to zero or whether they ‘grow-up’ [12], and possibly blow-up.

Example 3.2. Let f : [0,∞)→ [0,∞) be given by f(0) = 0 and f(u) = upF g(u) for u > 0,

where

g(u) =


[ln(1/u)]−γ , 0 < u < a,

g0(u), a ≤ u ≤ b,

[ln (e + u)]−β u > b,

γ, β > 1 are fixed and a, b > 0 will be chosen below. This example combines those of [13,

Section 4.4] on local existence of L1-solutions and [12, Example 5.1] on global existence of

classical solutions, in order to illustrate some of our results.

Choosing a sufficiently small, b sufficiently large and g0 as a monotonic interpolant,

we can ensure that f satisfies (M)+ and moreover that `+(u) = f(u)/u on (0, a) and

L+(u) = f ′(u) for u > b. The choice of β > 1 and γ > 1 then ensure that (I2)+ and (I3)+

hold, respectively. Consequently (1.1) is well-posed in L1
+(Rn) with continuous dependence

upon initial conditions and the comparison principle also assured. Furthermore, solutions

with sufficiently small initial data in L1
+(Rn) exist globally in time.

We emphasise that the results available in [3, 22, 23] are not sufficiently sharp to be able

to deduce the kind of well-posedness results that we obatin here for source terms such as

this.
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Similarly to Lemma 3.1 it again follows that if f satisfies (M)+ and (I1)+ and is convex,

then f satisfies (I2)+. We therefore have the following interesting result:

Corollary 3.5. Suppose f satisfies (M)+ and is convex. Then (1.1) is well-posed in L1
+(Rn)

if and only if
∫∞
1
s−(2+2/n)f(s) ds <∞. Moreover, if

∫∞
1
s−(2+2/n)f(s) ds <∞ then contin-

uous dependence and comparison also hold in the sense of Theorem 2.6.

Proof. If
∫∞
1
s−(2+2/n)f(s) ds =∞ then by [13, Theorem 5.1] there exists a φ ∈ L1

+(Rn) such

that (1.1) does not possess a local non-negative integral solution (and hence no non-negative

classical L1-solution). Consequently (1.1) is not well-posed in L1
+(Rn).

Conversely, if
∫∞
1
s−(2+2/n)f(s) ds <∞, then by Lemma 3.1, Theorem 2.5, Theorem 2.6

and the discussion above, (1.1) is well-posed in L1
+(Rn) and enjoys the continuous dependence

and comparison properties stated.

4. Concluding remarks

We have established new results on the local well-posedness and global continuation of

classical L1-solutions of semilinear heat equations, extending those of [3, 13, 22, 23, 24]

under less restrictive growth conditions on the source term f . Furthermore, we have also

obtained continuous dependence and comparison results in this more general setting. Here

we discuss several extensions to our work which seem to us to be readily achievable. For

expositional reasons we have chosen not to present the details here; instead we outline the

necessary steps.

We have derived results only for the Cauchy problem on Rn. However, our results also

hold in L1(Ω) for bounded domains Ω with homogeneous Dirichlet or Neumann boundary

conditions. The proofs require only minor (but frequent) modifications, along the lines

of those in [13], and following the sub-supersolution methods used here with appropriate

changes to the heat semigroup to incorporate the boundary conditions. In fact, by following

the same argument as in [3, Remark 7.2] one can obtain uniqueness of classical L1-solutions

in the larger class

C
(
[0, T ], L1(Ω)

)
∩ L∞loc ((0, T ), LpF (Ω))

24



under the same hypotheses as Theorem 2.4.

Our well-posedness results in L1(Rn) also carry through with minor modification if one

replaces the Laplacian operator by the fractional Laplacian and consider instead the problem

ut = −(−∆)β/2u+ f(u), u(0) = φ ∈ L1(Rn)

for β ∈ (0, 2]. The rôle of the Fujita-type exponent pF is then replaced by pF (β) = 1 + β/n.

Local and global existence results then follow by comparison with ASβ(t)φ± (A > 1), where

Sβ(t) denotes the semigroup generated by the fractional Laplacian. An appropriate integral

sub-supersolution existence theorem is easily obtained by adapting those in [20] and suitable

monotonicity and smoothing properties are also available. Some work along these lines for

local existence/non-existence of non-negative solutions can be found in [14]. One may then

adapt our methods here to obtain the analogous uniqueness, continuous dependence and

comparison results.
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