
Guidelines for Applied Machine Learning in Construction Industry—A1

Case of Profit Margins Estimation2

Muhammad Bilal, Lukumon O. Oyedele3

Abstract4

The progress in the field of Machine Learning (ML) has enabled the automation of tasks that were considered5

impossible to program until recently. These advancements today have incited firms to seek intelligent solutions as6

part of their enterprise software stack. Even governments across the globe are motivating firms through policies7

to tape into ML arena as it promises opportunities for growth, productivity and efficiency. In reflex, many firms8

embark on ML without knowing what it entails. The outcomes so far are not as expected because the ML, as hyped9

by tech firms, is not the silver bullet. However, whatever ML offers, firms urge to capitalise it for their competitive10

advantage. Applying ML to real-life construction industry problems goes beyond just prototyping predictive models.11

It entails intensive activities which, in addition to training robust ML models, provides a comprehensive framework12

for answering questions asked by construction folks when intelligent solutions are getting deployed at their premises13

to substitute or facilitate their decision-making tasks. Existing ML guidelines used in the IT industry are vastly14

restricted to training ML models. This paper presents guidelines for Applied Machine Learning (AML) in the15

construction industry from training to operationalising models, which are drawn from our experience of working16

with construction folks to deliver Construction Simulation Tool (CST). The unique aspect of these guidelines lies17

not only in providing a novel framework for training models but also answering critical questions related to model18

confidence, trust, interpretability, bias, feature importance and model extrapolation capabilities. Generally, ML19

models are presumed black boxes; hence argued that nobody knows what a model learns and how it generates20

predictions. Even very few ML folks barely know approaches to answer questions asked by the end users. Without21

explaining the competence of ML, the broader adoption of intelligent solutions in the construction industry cannot22

be attained. This paper proposed a detailed process for AML to develop intelligent solutions in the construction23

industry. Most discussions in the study are elaborated in the context of profit margin estimation for new projects.24

Keywords: Applied Machine Learning, Profit Margin Forecasting, Construction Simulation Tool,25

Interpretable Machine Learning, Predictive Modelling26

1. Introduction27

Machine learning (ML) has been a renaissance in the IT industry. Today sectors like manufacturing are28

utilising ML algorithms from design to delivery of great consumer products (Manyika, 2017). This success29

has lured other sectors of the economy like construction industry into the adoption of intelligence algorithms30

in their enterprise software (Gomber et al., 2018). The latest progress in ML algorithms has enabled the31

automation of those non-trivial tasks which, a decade ago, were deemed impossible (Luong et al., 2015;32

Toshev & Szegedy, 2014; Bau et al., 2019). However, ML is not a silver bullet. These algorithms are far33

fetched to achieve human-level performance on many tasks (Mendelson, 2019). Merely, embarking on ML34

projects without the knowledge about the strengths and limitations of ML algorithms often lead to failures35

(Ng, 2018). Even ML on simple tasks becomes difficult without a structured roadmap; hence leads to36

unfavourable outcomes as we witnessed in predictive policing (Shapiro, 2017). Seemingly perfect ML models37

fail during the production that leads to investment loss, increased scepticism and lack of future support.38

Unless a systematic methodology is exercised for training and operationalising models, ML projects will39

tend to fail frequently. In true essence, ML has enormous potential to transform the construction industry40

by automating many perennial problems related to project planning and control (Bilal et al., 2016).41

1



Since majority of ML solutions tend to either automate or facilitate the decision-making process, it is1

imperative for application users to trust the capabilities of ML models (Doshi-Velez & Kim, 2017). It requires2

diverse knowledge of the domain, the data and ML algorithms to train models that are reliable, transparent3

and trusted. So the scope of Applied Machine Learning (AML) goes beyond merely prototyping ML models.4

Currently, ML engineers undertake most modelling decisions based on their domain knowledge expertise and5

intuitions, which are occasionally proven to be wrong and biased. AML emphasises to engaging the industry6

experts at early stages of the process where the domain is progressively learned from the data through ML7

models and corroborated by the industry experts (Rudin & Vahn, 2014; Mullainathan & Spiess, 2017). This8

early engagement of users into the AML process will provide the domain experts enough time to understand9

the strengths and weaknesses of algorithms, whereas will also enable the ML engineers to learn the domain as10

the process progresses. AML is, therefore, a more involved task where ML models are developed iteratively11

by gradually incorporating domain knowledge from industry experts. Such ML models not only have great12

predictive accuracy and generalizability but also key to understand non-trivial relationships between large13

volumes of data (Bose & Mahapatra, 2001).14

The profit margin estimation for construction projects is an important decision that business development15

teams in construction firms undertake during early design stages. However, accurately forecasting profit16

margins is difficult since many factors influence this choice (Leon et al., 2017). At the moment, project17

teams decide profit margins based on intuitions or uniform rates, which are unreliable methods (Bagies &18

Fortune, 2006). Margins often erode as projects progress. The projects started with planned margins end up19

with entirely different margins at completion (Banaitiene & Banaitis, 2012). The profitability performance20

of firms can be significantly improved if margins are rightly set based on project-specific details; thereby21

reducing the overall bankruptcy ratio of construction firms (Rui et al., 2017; Akintoye & Skitmore, 1991).22

Most firms posses data about historical projects under the compliance for the Building Information Modelling23

(BIM). This data reside in relational, CSV or XLS data sources. Most importantly, this data contains every24

detail of when and how margins change in projects. ML algorithms can be utilised to understand the25

relationship between project attributes and profit margins. Such models have the potential to improve the26

accuracy of profit margin estimation significantly.27

This paper aims to propose the AML process for guiding the development of useful ML models for the28

construction industry. The process is gleaned from leading the development of the Construction Simulation29

Tool (CST), which is project analytics software, utilising data to its fullest for facilitating the decision30

making across numerous activities involved in the construction project lifecycle. The process provides a31

roadmap for executing ML projects in the industry. Most discussions are focused for construction IT folks.32

In this article, the AML process is broken down into tasks, and the description of each task along with33

technical details, are provided. The aim is to ensure robust sanity checks are exercised before rolling out34

ML models into the production. These guidelines are general in the sense that these can be used to develop35

ML models for the majority of construction industry tasks. However, discussions are contextualised with36

a real-life example of profit margin estimation to solidify the concepts and showcase how various design37

choices are undertaken and how domain knowledge is progressively learned as the process progresses.38

This paper is organised as follows: Section 2 describes literature review on the need for profit margin39

estimation in construction projects. Section 3 and Section 4 present the process and guidelines for the AML40

with practical demonstrations from profit margin estimation. Lastly, Section 5 provides concluding remarks,41

discusses lessons learnt and future directions of the work.42

2. Literature Review43

The construction industry is a highly competitive landscape and continually fluctuating industry. Firms44

strive to deliver projects with great profitability performance. This zeal puts these firms in constant pursuit45

of maximising profits on awarded contracts, whereas lowering margins on new bids to get more work. Getting46

the profit margins right is paramount to making many decisions at various project lifecycle stages. Several47

2



Table 1: List of ML Models used in Profitability Performance Estimation

Sr.# Tool
Name Approach or Methodology Employed Total Projects Key Limitations Literature Source(s)

1

Project
Profit
Forecasting
System

This system uses a hybrid approach where fuzzy clustering and
genetic algorithm are used for classifying projects, and support vector
regressor (SVR) is employed for training the ML model for profit margin
forecasting. System outperformed other ML algorithms like generalised
regression neural networks (GRNN), radial basis function neural network
(RBFNN) and back propagation neural network (BPNN).

Twenty-five (25)
projects

Model is hard to generalise as
high-level project attributes of
fewer projects are used for training.

(Chang et al., 2013)

2
SVM
Forecasting
System

Support vector machine (SVM)-based algorithm is used to develop a
model for forecasting profit margins. R DTREG package is used for
training the model. R2 and Mean Absolute Percentage Error (MAPE)
are used for model evaluation.

Twenty-six (26)
projects

Model is specific to geographic
location and hard to generalise. (Petruseva et al., 2016)

3 InMES ANN is used to develop profit forecasting model where de-compositional
KT-1 algorithm to generate rules for the neural network. RMSE is used
to evaluate model performance.

Thirty (35)
projects

Model contains one layer which
clearly can’t capture non-linearity
between project attributes and profit
margins.

(Li & Love, 1999)
(Li et al., 1999)

4 DBID DBID uses ANN to forecast the profit margins by harnessing ANN with
GA. Monte Carlo simulation is used for sensitivity analysis to assess the
winning probability concerning variability in profit margins.

Twenty (20)
projects

Fewer data used in training and
evaluation method is not robust. (Moselhi et al., 1993a)

5 Bid
Expert Bid Expert integrates FaRM with cost estimation model for predicting

margins. Tool used past data of firm and of its competitors.

Not
available

It is hard to use this sytem as firms
can rarely access competitors’ data. (Moselhi et al., 1993b)

external, organisational and project related factors affect profit margins (Rui et al., 2017). The contractors1

generally set higher margins on courtesy bids or if a project involves more risks. The relationship between2

profitability performance and project-specific factors is not clearly understood. Estimators adjust margins3

based on their intuitions or use a uniform rate to guide their decisions, which are sometimes wrong or4

misleading. Therefore, a project started with a planned margin, eventually finishing with entirely another5

margin. The adverse implications of poorly designed projects are enormous as one such project can ruin the6

cash flow of the firm, and can lead to its bankruptcy (Kim et al., 2008). Devising a systematic approach7

to explore the variability in profit margins by project attributes is indispensable. This knowledge is crucial8

to enable estimators to understand the profitability performance across an array of projects and estimate9

margins correctly for new projects.10

The estimators are hard to convince to use ML for profitability forecasting outrightly as they have11

their reasons. While they are keen to see ML is useful for their tasks, they usually seek clarifications12

about the strengths and weaknesses of ML algorithms before they trust or let these algorithms to influence13

their decisions. ML interpretability for adoption of intelligent systems in construction industry is crucial.14

In profitability forecasting, estimators hold many assumptions about how project specific attributes drive15

profit margins. Some estimators believe that projects in specific regions or from particular clients shall16

always be estimated at higher rates (Rui et al., 2017). We need to confirm these assumption using ML. The17

estimators mostly claim their assumptions stem from their experience. However, not all assumptions are18

right or wrong unless proven otherwise. Besides, most estimators follow heuristics such as uniform rates for19

overhead costs and profit margins (Akintoye & Skitmore, 1991). One limitation of these approaches is their20

inability to reflect variations that can be induced by project-related risks or contingencies. Profit margins21

shall be derived to include the negative as well as the positive impact of project specific attributes (Kim22

et al., 2008). Such provisions call for advanced digital technologies to support estimators to testify such23

assumptions quickly. ML algorithms have a huge role to play to enable comprehension of large amounts24

of data as well as to train highly reliable predictive models. If ML is not devised with interpretability in25

mind, it will be hard to operationalise such algorithms regardless of whatever ML algorithm we employ or26

whatever accuracy we claim. The industry has a record for the moderate intake of emerging technologies.27

Several researchers have developed ML models to forecast the profitability performance of construction28

projects. A major drawback of these models is their only inclusion for high-level project attributes which29

significantly affect their predictive accuracy for new projects. These algorithms fall into two categories. The30

first category uses ML models for classifying projects into Bid/No-Bid classes (Dulaimi & Shan, 2002; Lin31

3



& Chen, 2004; Enshassi et al., 2010; Shash, 1993; Wanous et al., 2003, 2000; Christodoulou, 2010). The1

second class harnesses ML to regress profit margin for new projects (Chang et al., 2013; Petruseva et al.,2

2016; Li et al., 1999; Li & Love, 1999; Moselhi et al., 1993a; Dikmen & Birgonul, 2004; Moselhi et al.,3

1993b). Table 1 shows popular ML works used in the industry in the domain of profitability performance.4

It is obvious that these approaches use rudimentary ML approaches and used fewer data for training. This5

paper demonstrates the development of an ML model for profit margin estimation. While we presented a6

significant performance increase through better training algorithms and more data, the main focus of this7

work is set to highlight key steps for developing robust ML models. These steps are presented as a unified8

Applied Machine Learning (AML) process. A main caveat is that we do not expect ML folks to have prior9

domain knowledge as it can bias their judgment, and lead to wrong modelling decisions. They acquire10

knowledge progressively as the process advances.11

3. Applied Machine Learning Process12

The guidelines for applied machine learning (AML) are described in this section. These guidelines are13

arranged into a structured process, consisting of several tasks. Fig. 1 shows an overview of the proposed14

AML process. Various tasks in the process are gleaned from our experience of developing numerous ML15

models in the CST. We chose those tasks which are often found useful in producing highly robust ML models.16

In most cases, the final model obtained by following these steps was a better fit for production deployment17

in the CST.18

The AML process consists of six well-defined tasks (see Fig. 1). After defining the ML problem and19

establishing the performance metrics, access to the data is obtained, which are then integrated and curated20

for robust ML training. Next, several standard data pre-processing activities are recommended to get the21

data into the right format. After that, the baseline model is trained using various design strategies, which,22

in our example of profit margin estimation using the random forest, are subsampling and hyperparameter23

tuning. Once we attain a reasonable level of accuracy for the baseline model, we then move onto the24

interpretable machine learning step. This step is crucial as it enables ML engineers not only to understand25

the domain progressively but also better explore the competencies of the baseline model. Several revisions26

are made to the data and predictive models during this step. Critical insights related to Trust, Bias,27

Transparency, Confidence and Interpretability of ML are investigated. The early engagement of domain28

experts enables them to trust these models by knowing their capabilities and limitations. Finally, other29

ML algorithms are also used to train models for the given problem to see if a better alternative can be30

found. Once the best learning algorithm is decided, we train the final model using all the data and using31

the optimal hyperparameters. The resulting model is then deployed in the enterprise solution for real-life32

scoring. These AML tasks are further explained in the subsequent sections.33

3.1. ML Task Definition & Data Selection34

According to Mitchell (1997), ML programs learn from experience (E) with respect to task (T) and35

performance measure (P) if its performance (P) improves at task in (T) with experience (E). In the above36

formalism, terms (T), (P) and (E) are the first things to define in the AML process.37

4



Figure 1: An Overview of Applied Machine Learning Process

5



3.1.1. Defining Task & Evaluation Metrics1

The first step and arguably the most important aspect of ML is to clearly define the ML task and2

its intended use. The results of ML model would be worthless if the task is wrongly defined. It involves3

describing the problem and listing all assumptions. More importantly, we need to explain intended use of4

ML, including its implications for productivity and efficiency for target users. In the case of CST, we set5

the goal of ML task to predict the profit margin for new opportunity based on project attributes (see Table6

2). As discussed briefly, profit margin estimation is tricky task as many factors influence its choice. Most7

estimators determine margins based on their intuition or uniform rate which are not reliable approaches.8

The intended use is to employ this model to predict profit margin during early estimation stage. We assume9

that detailed design has been completed and we have detailed project specific information for all attributes10

to make such prediction.11

The next step in the process is to specify performance metric for evaluating ML models. A performance12

metric reveals how effectively a model captures the relationship between input and the target features in13

the given data. It provides a uniform basis for comparing different ML algorithms. The type of ML task14

influences the type of evaluation metric employed. Supervised ML tasks fall into two categories (Friedman15

et al., 2001). A regression task involves the prediction of a continuous value, whereas a classification task16

aims to predict a label. We first determine the ML task type and then specify the performance metric.17

In the CST case, our task is multivariate regression problem where ML will predict profit margins, i.e. a18

continuous value. The most common metric for regression tasks is Root Mean Squared Error (RSME), which19

computes the difference between the predicted value and actual value. In the case of CST, we used Root20

Mean Squared Log Error ((RMSLE), which is the log difference between actual and predicted profit margins.21

The reason behind this choice is the fact that we don’t want the performance metric to penalize huge22

differences in the predicted and true values when these values are huge numbers. The profit of 10, 000 from23

100, 000 worth project is same as the profit of 100, 000 from 1, 000, 000 worth project. In such scenarios like24

profit estimation, only the percentage differences matter, so instead of RMSE we selected RMSLE to observe25

percentile differences. Eq. 1 shows the formula for RMSLE.26

RMSLE =

√√√√ 1

n

n∑
i=1

(
log(ŷ + 1)− log(y + 1)

)2

(1)

We also used R2 to keep track of the accuracy of the ML model. R2 explains the ratio of the accuracy27

of the predictive model (SSR) to that of baseline model SST. Eq. 2 shows the formula for R2.28

R2 = 1−
(SSR
SST

)
(2)

One useful trick we found handy is to define a function print_score() that takes the model as input29

and prints a tuple containing Training Error, Validation Error, Training Accuracy, and Validation30

Accuracy. This function is generally invoked each time we revise our model to see its performance in31

response to a change in the data or hyperparameters. The usability of print_score() greatly depends on32

naming conventions used for the datasets. The function will not be useful if dataset names change frequently.33

3.1.2. Data Selection, Integration, Naming & Loading34

The last part of our formalism is the experience E that means data for training and evaluating ML models.35

The availability of enough quality data is crucial for training reliable ML models (Jordan & Mitchell, 2015).36

With recent advances in Big Data, firms have started to store all sorts of data. In the construction sector,37

firms store data to comply with Building Information Modelling (BIM), but these data reside in different data38

sources. One of the challenging tasks in AML is to identify reliable sources of data. Once sources are identi-39

fied, we integrated them into a Common Data Environment (CDE) where technologies like Hadoop are vastly40

6



Table 2: List of Project Attributes for Profit Margin Estimation

Sr.# Attribute Name Attribute Description
1 Opportunity ID Unique code attributed to the opportunity (8 characters long)
2 Opportunity title Unique code attributed to the opportunity (8 characters long)
3 Client The customer whom the opportunity is from
4 Market Workstream category to which the opportunity belongs to
5 Region Part of the country opportunity belongs to as defined by BB
6 kV Voltage (s) along the route of opportunity
7 km Total length of the route of the opportunity
8 Project type The type of opportunity based on BB defined categories
9 Start date Proposed construction start date of the opportunity
10 End date Proposed construction finish date of the opportunity
11 Duration (days) Proposed total duration of the opportunity
12 Outage (s) Total duration of all proposed outage (s) on the opportunity
13 Key milestones Key milestones on the project
14 Duration (days) Duration of key milestones on the project
15 Termination Points of termination at each end of the route
16 Contract type Client’s chosen contract
17 ITT date Date/Proposed date which we were invited to tender for the opportunity
18 Tender submitted Date/Proposed date that the tender is submitted to the cl
19 Contract awarded Date/proposed date that the client offers the opportunity
20 Mobilisation date Date/proposed date for initial mobilisation on to project
21 BB role The role of BB in this partnership
22 Scope & complexity Scope of the project
23 Scope Scope of the project
24 % of work % of BB work within scope
25 Ground type Ground conditions for the route area
26 Route length Length per ground type
27 HDDs in river HDDs in river
28 Total length in river (m) Total length in river (m)
29 HDDs in rail HDDs in rail
30 Total length in rail (m) Total length in rail (m)
31 HDDs in road HDDs in road
32 Total length in road (m) Total length in road (m)
33 HDDs through utilities HDDs through utilities
34 Total length in utilities (m) Total length in utilities (m)
35 HDDs in other HDDs in other
36 Total length in other (m) Total length in other (m)
37 Joint bays No of points where two cable ends are jointed
38 Material cost Material attributes that influence project profitability
39 No of circuits Number of circuits
40 No of phases Number of phases
41 Conductor The type and size of conductor within the power cable
42 Cable length (m) Total length of the power cable throughout the route
43 Duct size Power cable duct size
44 Duct length Power cable duct length
45 Fibre cable length Fibre cable length
46 Duct size Fibre cable duct size
47 Duct length Fibre cable duct length
48 Pilot cable Pilot cable length
49 Duct size Pilot cable duct size
50 Duct length Pilot cable duct length
51 Straight joints Total amount of joint accessory between the same cables
52 Transition joints Total amount of joint accessory between two different ca
53 Tiles No of tiles for the entire route of the opportunity
54 JB tiles No of JB tiles for the entire route of the opportunity
55 Tapes No of tapes for the entire route of the opportunity
56 Cable markers No of cable markers for the entire route of the opportunity
57 Link boxes No of link boxes on the entire route of the opportunity
58 Supplier The attributes below are associated with materials supply managem
59 Power cables Desired supplier (s) for power cable (please choose client if
60 Joints Desired supplier (s) for cable joints (please choose client if free
61 Terminations Desired supplier (s) for the terminations used at each end of
62 Backfill materials Desired supplier (s) for the backfill materials (please
63 Subcontractors The attributes below are associated with subcontractor work
64 Scaffold Desired subcontractor (s) for scaffold works
65 Labour Desired subcontractor (s) for agency labour
66 HDD Desired subcontractor (s) for Horizontal directional drilling
67 Testing Desired subcontractor (s) to carry out route testing
68 Access Desired subcontractor (s) for access works
69 Resource The attributes below are associated with the key resources on a project
70 Bid manager Proposed bid manager for the opportunity
71 CM Proposed commercial manager for the opportunity
72 Estimator Proposed estimator for the tender stage
73 PM Proposed project manager for the delivery stage
74 QS Proposed quantity surveyor for the delivery of the opportunity
75 Planner Proposed planner for the for the delivery of the opportunity
76 PDM Proposed design manager for the opportunity
77 PE Proposed project engineer for the delivery of the opportunity
78 SA Proposed safety advisor for the delivery of the opportunity
79 Others Other attributes of a project
80 Variations/Compensation events Any disruption to the agreed workflow which is not the contractor’s fault and has cost implication
81 Risks Potential mishaps during the delivery of the project
82 Opportunity/innovation An instance where an estimated cost is partially reduced or totally avoided

7



used. In the case of CST, several sources were identified including Oracle Financials, Business Objects,1

Google Earth, Keyhole Markup Langauge (KML), Oracle CRM, and many non-standardised Excel and CSV2

files. We used SQL for data curation and integration. The data is first stored into staging tables in Hadoop3

and then transported to the relational database. Data elements for the same project across different data4

sources were joined using unique project identifier which stayed immutable in all systems. The data con-5

tained 437, 000 construction projects, completed in the last 20 years. We used all data for training except6

for the last six months that are used to create validation set.7

Once data is available, the next step is to load it into the analytical toolbox of your choice. During the8

process, data is split into various datasets like one for training models and one or more for validation to9

see how model performs on unseen data. These datasets shall be prepared in the same way. One caveat is10

to follow resource-naming strategy and stick to it throughout the AML process. We will see that several11

copies of data are created during the process, and if we do not adhere to naming conventions, it leads to12

strange modelling errors. In this study, we used Anaconda as analytical toolbox, where Jupyter is used for13

writing code scripts for data processing and model development. We used Python programming language14

and employed read_csv() method from pandas library to load our data from Hadoop into X_raw data frame.15

We split X_raw into two data frames X and y. The data frame X holds the input features, whereas y holds16

the target attribute. These data frames are further split into training and validation sets. We used terms17

X_train, X_valid, y_train and y_valid for these data frames. Test data is generally advised to set aside18

at the beginning in X_test data frame until the final model gets ready, and use it for final evaluation. The19

files on Hadoop are named as Train.csv, Test.csv, and Valid.csv. After preprocessing is performed on20

data, it is good practice to store data into python feather format for later use.21

3.2. Data Preparation and Pre-Processing22

Data plays the most crucial role in ML projects and would rarely be in the format required by ML23

algorithms. Oftentimes, data shall be cleansed, filtered, normalised, sampled, and transformed in various24

ways before algorithms can leverage it for learning. ML engineers spend most of their time and efforts in25

data preparation (Hulten, 2018). It is always recommended to glance through the data and check for both26

its format (i.e. structure and data types) and contents (Witten et al., 2016; Friedman et al., 2001). Data27

may not be what you expect even if you have read its descriptions. Many transformations are normally28

recommended before ML models are trained. Following sections explain essential tasks that are performed29

on most datasets.30

3.2.1. Data Consistency Verification31

Several issues may arise when data is moved between the systems. It is essential to ensure that you32

are working on a consistent copy of the data. Therefore, after data is loaded into data frames, we shall33

check its consistency. It is always suggested to explore data and at least reconcile the total number of34

columns and rows. This verification shall not be confused with Exploratory Data Analysis (EDA), which35

is suggested in most of the ML textbooks (Cox, 2017). Experts in ML recently noticed that we shall avoid36

EDA before predictive modelling as it can bias our judgement. ML engineers make decisions like adding37

or discarding attributes based on EDA are sometimes found wrong & misleading. They shall progressively38

acquire domain knowledge during the AML process and make critical modelling decisions informed by their39

implication on model performance, not judgments that are build through the EDA and intuition. In the case40

of CST, we loaded data into X_raw data frame and checked it’s structure, columns, data types and number41

of rows using python commands display(X_raw), X_raw.columns(), X_raw.dtypes() and len(X_raw).42

We compared the output of these commands with statistics from actual data stored on Hadoop. There were43

no inconsistencies found in our data frame. In addition, we also checked the top and bottomed 10 rows to44

ensure character encodings of the columns have no issues.45

3.2.2. Target Attribute Transformation46

The first data transformation begins with modifying the target attribute (y) based on the chosen per-47

formance metrics. As explained in the earlier section, performance metric plays a vital role in producing48

8



reliable ML models. We can transform (y) on the fly through data augmentation that is computationally1

intensive due to repeated processing in each epoch or use data preprocessing once before we start training2

our models. A good practice is to avoid compute-intensive operations to save time and resources. Therefore,3

the y attribute shall be transformed once at the source than repeatedly inside the cost function during4

training, which is a computationally-intensive and infeasible approach.5

In our CST example, we intend to use RMSLE as the performance metric, which is the log difference6

of actual and predicted profits on projects. We performed this computation at once on the y_train and7

y_valid data frames. We used the log() function from numpy library for this transformation. This way we8

speed up various tasks of the AML process through intelligent design choices.9

3.2.3. Feature Extraction10

Feature engineering is one of the most crucial tasks in the AML process. It involves a series of transfor-11

mations to our data to enable the algorithm to quickly learn underlying insights. Our approach to feature12

engineering is slightly different. We barely perform feature engineering at this stage of the AML process13

except for the date and geospatial attributes. This section explains commonly used transformations14

for date attributes for enabling the model to understand temporal dependencies in the data. We usu-15

ally transform date attributes into several derived attributes, including day, week, month, year, quarter,16

month_first_day, month_last_day, quarter, weekday, weekend, quarter_start_day, quarter_end_day,17

week_number, and elapsed_time. Similar transformations are also desirable for geospatial attributes to de-18

rive attributes like distances, etc. Once attributes are derived and appended, original attributes are dropped19

from the data frames.20

In our CST example, we created derived attributes from several date attributes such as project_start_date21

and project_end_date. For these two attributes, 26 derived attributes are appended to X_raw data frame.22

We omitted time attributes like hour, minute and second as our problem does not require granularity23

up to that level. In addition, there were no geospatial attributes in our dataset, so no geospatial24

transformations are performed. We created several python functions such as expand_date_attr() and25

expand_gis_attr() to automatically extract derived columns for input date and geospatial attributes.26

3.2.4. Data Types Conversion27

The next step in the AML process is data types transformation. Data types describe the domain of28

attributes. In ML, there are generally two main types of data. 1) Categorical data that stores values29

corresponding to discrete categories for a columns. For example, Workstream attributes is categorical and30

holds values like Cabling, Substation, or Overhead lines. 2) Numerical attributes store numerical31

values, which can be integers or real numbers like costs, margin and net sales value (NSV). When we32

load our data, most analytical toolboxes interpret numerals properly. However, these tools often misinterpret33

categorical attributes into character data. ML engineers shall manually transform character data back to34

categorical data for the model to harness it for learning underlying patterns and insights.35

In our CST example, we noticed several attributes like Region and Workstream were stored as char-36

acter objects in X_raw data frame. We created a python function to_cats() for automatically convert-37

ing character attributes into pandas library category objects. This function uses python utility function38

as_type('category') for data types conversion. For ordinal categories, we can specify the order of val-39

ues inside the categorical attributes if it is necessary. By default, pandas maps textual descriptions with40

numerical categories in Jupyter but it treats these columns as numerals internally. Optionally, these at-41

tributes can be replaced with numerical codes outrightly. However, it will adversely affect ML engineers42

result-interpretation abilities since they would be required to remember all categories behind these codes.43

3.2.5. Fix Missing Data44

A common problem in almost every dataset is the issue of missing data. There are numerous reasons—45

ranging from a human error to incorrect sensor readings to a software bug that causes a value to be missing.46

9



In some cases, missing data is absolutely no issue since it will get populated at a later stage in the business1

process. A simple solution to deal with missing values is to delete all rows containing nulls. However, it2

will drastically shrink the dataset size if the majority of rows constitute nulls. Sometimes, the presence3

of nulls can be a pattern of interest and can provide additional insights to ML algorithms for learning the4

relationship between input and the target attributes. Therefore, missing values must be dealt with great5

caution. Some analytical libraries like pandas in python automatically create an additional category of −16

for null entries if we change an attribute data type to category. However, ML engineers need to fix missing7

values in all continuous attributes. The most vastly used approach for dealing with nulls is imputation,8

which replaces nulls with an estimate. A common imputation technique is Mean imputation where mean of9

an attribute substitutes all nulls in that column.10

In our CST example, we used mean imputation to populate nulls in all continuous attributes. In11

addition, we also included additional columns to the data frame x_raw for all columns containing nulls to12

retain insights that can be revealed from the pattern of nulls in those attributes. These new attributes13

are named by suffixing column name with text _na. For example, the nulls in route_length attribute are14

substituted with mean of route_length, and a new column route_lenght_na is appended to the data15

frame, storing the digit 1 for all rows with nulls otherwise 0. We shall also preserve these mean values as16

we will need these in future for fixing nulls in the validation as well as test sets. Otherwise, the validation17

and test sets will not be fit for evaluating the ML models.18

3.2.6. Scale Transformation of Continuous Data19

Another useful data preparation technique is scaling or normalisation of all continuous attributes in20

the dataset. Most ML engineers feel confused with scaling and normalisation as both transform our data.21

The key difference is that scaling modifies the range of data to make it fit a given scale like 0 − 10022

or 0 − 10. Normalisation, on the other hand, shifts data distribution such that it can be described as23

the normal distribution. Scaling is a good choice for techniques like support vector machines (SVM)24

or k-nearest neighbours (KNN). Normalisation works best with t-tests, ANOVA, linear regression,25

linear discriminant analysis (LDA) and Gaussian naive Bayes.26

In our CST example, we did not apply any scaling due to our choice of the algorithm, i.e. random27

forest. The tree-based ML algorithms have no requirements as such of the data to be normally distributed28

or normalised. However, we applied Box-Cox transformation for all continuous attributes when we fitted29

the deep neural network for profit margin estimation.30

3.2.7. Encoding the Categorical Attributes31

The categorical attributes contain non-numerical values, which sometimes are not suitable for most of32

the ML algorithms. We can transform categorical attributes in two ways. Firstly, integer-encoding where33

unique numbers are assigned to categories as we did during the data type conversion task. This approach34

suits scenarios where categories contain inherent order like regions. Integer-encoding does not work for35

categorical attributes with no ordinal relationship. We are likely to get unexpected results from our analysis36

if we treat nominal attributes as ordinal. Secondly, one-hot encoding is another alternative for categorical37

transformation, where one binary attribute is added to the dataset for each category in the column and a38

value of 1 is recorded for respective category in the row otherwise 0. These newly created attributes are39

sometimes called dummy attribute.40

In our CST example, we introduced the idea of a threshold max_num_cats to guide the algorithm to41

employ integer encoding if categories are above the max_num_cats otherwise use one-hot encoded for42

categorical encoding. After some experimentations, we found max_num_cats of five (5) a good threshold43

for choosing between categorical encoding options for this dataset. The value of max_num_cats shall be44

stored for future use to transform the validation and test datasets. All basic data preparation steps end45

here. We usually split our data at this stage into an input matrix X and a target vector y. All data shall46

be in the numerical format and stored in feather format using python to_feather() function. Feather is47

10



Figure 2: Underfitting and overfitting of estimator

fast on-disk format for data frames and is used by ML engineers for data exchange and interoperability of1

datasets between analytical tools.2

3.3. Training Baseline Estimator3

So far, all categories in the data are replaced with numerical codes, nulls are imputed, and our data4

is split into the input and target attributes. The next step of the AML process is to train the baseline5

estimator. This section provides guidelines for creating baseline estimators. Though it involves extensive6

experimentation to find one with reasonable accuracy. The baseline estimator sets the stage for the next7

AML task, where we use ML to guide engineers in making critical design decisions in an informed way. More8

importantly, feature engineering where baseline estimator informs ML engineers what to include or drop9

from the feature list, based on the model’s accuracy. The following sections explain these steps in much10

detail.11

3.3.1. Choose First ML Algorithm12

Our first step to developing the baseline estimator is to decide the kind of ML algorithm we would13

employ. A vast majority of ML tasks can be modelled using two main classes of algorithms. Firstly, the14

Decision Tree Ensembles (DTE), including Random Forests or Gradient Boosting Machines. DTEs are15

suitable for tasks involving structured data representing different facts like a relational table. Secondly, the16

Deep Neural Networks (DNN) trained with Stochastic Gradient Descent (SGD) which work great for tasks17

involving unstructured data like audio, vision, and natural language.18

In our CST example, we chose the random forest algorithm for training our baseline estimator. A random19

forest is a bunch of decision trees, containing a bunch of decisions to classify data into several clusters. We20

used popular python library sklearn for this purpose and imported the RandomForestRegressor class to21

start training our model. We began with all data and random forest with ten decision trees. The results22

were remarkable. The accuracy (R2) for the model was 96.72%. However, we do not know whether the23

estimator is good, or it is merely overfitting our data which is a key challenge for ML engineers. This issue24

can be elaborated using Fig. 2 where three models are depicted. The first model fits the data using a25

straight line (linear & biased case), and the third model fits through every data point, making a curved line26

(variance). These two models are not considered reliable as they are either unable to learn the relationship27

due to underfitting or instead memorised the data entirely due to overfitting. Such models perform poorly28

on the unseen real-life data and are not desirable. The second model though looks better in terms of learning29

abilities and generalisability, so we intend to get models with similar characteristics.30

11



3.3.2. Crafting Great Validation Sets1

The issue of bias and variance of a model leads us to the issue of creating great validation sets. There is2

no way to know the learning abilities of an estimator without a good validation set. We shall not confuse3

validation sets with test sets. Validation sets are generally carved out of the training set whereas test sets4

are suggested to set aside at the beginning of the AML process and shall not be used during training phase5

until we are ready to test our final estimator. This strategy is to ensure two-staged evaluation of estimators6

and has been found phenomenal to achieve several benefits. More importantly, it enables ML engineers to7

understand the capabilities of models in terms of overfitting and underfitting. The role of validation sets8

is also crucial to find out the most optimal hyperparameters of an ML algorithm for the given dataset.9

We usually merge training and validation sets before training our final estimator. So, carving out a robust10

validation set is a key stage in the AML process. A simple caveat is to choose those data that resemble11

closely to the real-life scenarios if model will be deployed in the enterprise solutions. We usually create12

several validation sets and then perform some experimentation to decide about a good validation set.13

In our CST example, we created three validation sets from our training data. The first validation set was14

a random sample of 1% projects from our training data. The second validation set entails all projects that15

were completed during the last month in our data. The last one involved projects which were completed16

in the last quarter in the data. We then trained several models and checked their performance on these17

validation sets. We choose the validation set that holds a linear relationship between the training and18

validation scores for all models. In our CST example, the validation set containing projects from the last19

month demonstrated linear relationship between training and validation scores. This validation set is chosen20

for subsequent experimentation in our study. As discussed earlier, we always stick to the naming conventions21

for data sets since they are used internally by our generic print_score() function to check the errors and22

accuracies of models during our experimentation.23

3.3.3. Devising Performance Tuning Strategy24

The next step in the AML process is to formulate a tuning strategy to improve the performance of our25

initial estimator. There is no single best strategy to tune the estimator. However, a structured approach to26

performance tuning is key to conduct an effective experimentation. Most modelling decisions at this task27

depends on our choice of ML algorithms. We chose the random forest in this study. Two areas require careful28

consideration during performance tuning of random forests. These include subsampling to quickly conduct29

experimentation and hyperparameter tuning to understand what options would enhance the estimator30

learning abilities on the given task.31

i). Subsampling: It is generally not advisable to utilise all training data for the baseline estimator at32

first. Otherwise, our experimentation will take considerable time, which is not good to carry out an33

effective exploration of different design strategies. In the case of a random forest with ten decision34

trees (estimators), it will take considerable amounts of time to train each estimator with all data. So,35

we pick different random subsets of data to construct each decision tree during our training phase.36

In addition to reducing training time, this strategy also introduces randomness by picking different37

subsets of data for estimators, which is key for random forest algorithm to learn complex domains.38

The more the trees vary in a forest, the better would be the predictive accuracy of the model. This39

strategy of using a small subset of data during training is generally called subsampling. In our CST40

example, the scikit-learn library does not provide any provision to customise its default mechanism41

which uses entire data during training the model. We wrote the following code to override the default42

behaviour in scikit-learn library to achieve subsampling:43

forest._generate_sample_indices = (lambda rs, n_samples:44

forest.check_random_state(rs).randint(0, n_samples , n))45

Where n is the number of random samples used to train each tree. We performed a bit of exper-46

imentation to obtain a good sample size for this data set. Our experimentation revealed n of size47

50, 000 a good option. Using the subsampling, the accuracy of baseline estimator (R2) went to 87.93%48

and 86.19% for training and validation scores. This model is more reliable than our first model with49

12



training and validation accuracies (R2) of 97.13% and 86.04%, respectively. There is a huge drop in1

performance of the earlier baseline estimator due to overfitting.2

ii). Hyperparameter Tuning: Hyperparameters are the knobs for ML engineer to adjust ML algorithms3

for the given task. Their values cannot be learned from data; instead, ML engineers need to decide4

these values before the training begins. Their right choice can greatly boost the learning abilities5

of ML models. The whole idea of hyperparameter tuning is to explore the search space for various6

combinations of parameters that would yield superior performance for ML models. It can be extremely7

computation-intensive operation if we check for all permutations. Approaches like Grid Search and8

Randomised Search are vastly used techniques by ML engineers. Over the period, engineers get familiar9

with these hyperparameters and mostly know when they would work. Hyperparameters vary from one10

algorithm to another. Once we find out good parameter values, we start training more ML models and11

perform extensive feature engineering until we get to our final model. In our CST example, we tuned12

the model for n_estimator, max_depth, min_samples_leaf, max_features and oob_score. These13

hyperparameters are only relevant to the random forest algorithm. The n_estimator specifies the14

number of trees in the random forest. The key idea behind random forest to combine several weak15

estimators to get one powerful estimator. So it always worth exploring different number of trees and16

see what would work. The values like 1, 5, 10, 25, 40, 80, and 100 are tried. The n_estimators = 8017

achieved model’s performance for training and validation accuracies to 95.80% and 88.37%, respectively.18

The min_samples_leaf specifies the minimum number of samples required at each node. The values19

of 1, 3 and 5 are tested, and model with min_samples_leaf = 3 gained better training and validation20

accuracies of 97.20% and 90.19%, respectively. The max_depth specifies maximum depth of the tree in21

random forest. While we tried several values, this parameter didn’t contribute much to the accuracy22

of our model. The max_feature specifies the maximum features to be included at each split for the23

best fit. Values of none, 0.5, sqrt, and log2 are tested. The training and validation performance of24

97.02% and 90.66% respectively is achieved with max_feature = 0.5.25

3.3.4. Choosing Baseline Estimator26

This is the last step in training our baseline estimator task. We carried out extensive experimentation on27

hyperparameter tuning and subsampling to learn which configurations of the random forest will yield us the28

best estimator. Once these steps are complete, we train our baseline estimator and evaluate its predictive29

performance. It is the baseline estimator obtained from best design strategies and hyperparameters is used30

for interpretable machine learning. In our CST example, we trained baseline model using random forest31

for profit margin estimation with subsampling (n = 50,000), n_estimators = 80, max_features = 0.5,32

min_samples_leaf = 3, and oob_score = True. The baseline estimator has the training and validation33

accuracies of 97.02% and 91.67%, respectively.34

3.4. Interpretable Machine Learning35

Machine learning (ML) is a great technology, but industry folks will never take it for our word. They36

ask a series of questions out of their curiosity to understand ML capabilities and weaknesses as intelligent37

solutions are getting deployed in their line of work software. They will not use ML with confidence until38

they fully trust it, which requires significant verifications. A piece of simple advice for ML folks is to let the39

model corroborate what industry folks already know. People in the industry will start trusting our models40

even if they do not know much about ML technology. For this reason, our applied machine learning (AML)41

process put special emphasis on explaining our models which go beyond just making good predictions. It is42

about enabling models to answer the critical question of the end-users of the system. Otherwise, the wider43

adoption of ML into the construction industry will not be achieved. This field of exploring the strengths44

and weaknesses of ML models by analysing their internals is called interpretable machine learning, which45

will be the focus of this section.46

A common misconception about contemporary ML is the assumption that these models are black boxes.47

Nobody knows what they learn and how they make predictions. Their predictions are great, but what logic48

13



drove that prediction. Surprisingly, most ML engineers are barely aware of the approaches for analysing1

ML models. The entire field of interpretable machine learning is to understand the competencies of our ML2

models. This field is vast. We intend to cover a few techniques to answer some key questions asked by the3

industry folks. The chosen questions are the ones asked by most of the industry folks whenever we deployed4

ML algorithms as part of the CST. These questions include (but are not limited to):5

a. How confident are you of the predictions?6

b. What attributes drive the predictions?7

c. How attributes interact with others to drive the predictions?8

d. How much attributes contribute to the predictions?9

e. How good the model can extrapolate unseen data?10

Most tasks in interpretable machine learning require ML engineers to work with domain experts actively11

during the AML process. It enables the ML engineers to progressively learn the domain and make informed12

decisions to revise data and models. Tasks in this section are vital for many ML operations ranging from13

debugging models to feature engineering to future data collection to facilitate human decision making and14

building trust. Interpretable machine learning is the cornerstone of our proposed AML process. We will see15

several interpretable machine learning techniques for answering the questions above.16

Algorithm 1: Predictions Confidence Assessment Algorithm
Data: Validation Set & Baseline Estimator
Result: Confidence Score for Categorical Attributes

1 Make Predictions for All Projects in the Validation Set ;
2 Retrieve Tree-Level Predictions for Each Project in the Validation Set ;
3 foreach Categorical Attribute in Validation Set do
4 foreach Category in Categorical Attribute do
5 Compute Actual Margin, Average Predicted Margin, & SD of Tree-Level Predictions;
6 Calculate the Confidence Score by Dividing the SD of Predictions over the Actuals ;
7 Tabulate Confidence Scores for the Category
8 end
9 Plot the Data Distribution of Categorical Attribute;

10 Correlate SD of Categories with Number of Rows in the Validation Set ;
11 end

17

3.4.1. Checking Predictions Confidence of Baseline Estimator18

A common aphorism in statistics is that all models are wrong, but some are useful. Nobody can claim19

their model is 100% accurate regardless of what data or algorithm we choose. This inability is partly because20

real-world phenomena have many perspectives which are hard to capture in one model holistically. This21

aphorism brings us to an important inquiry which we mostly received from end-users. They want to know22

the competencies of our ML models. In our CST example, we were often asked about how the confidence23

of models varies across different types of projects. To elaborate on this analysis, we will first explain the24

concept of confidence in random forests. Random forest is an ensemble of trees where trees make predictions,25

and random forest aggregates their predictions into the outcome. So, if each tree predicts a slightly different26

profit margin, it indicates higher confidence. Otherwise, huge disagreement in the predictions from trees27

is a sign that the model is less confident. The only reason predictions of trees vary in random forest is if28

projects, we are predicting for, are either non-existent in our data, or are sparse. Random forest has no29

rules to make consistent predictions; thereby, those projects end up in entirely leaf nodes in different trees.30

This variation of individual tree predictions can be analysed using standard deviation (SD). We can figure31

out the confidence for our models from that ratio of SD of predictions. The model will be confident of its32

14



Table 3: Confidence of Estimator by Project Size

Project Size Confidence Score
Large 0.034508
Small 0.029514
Medium large 0.027730
Medium 0.026984
Mini 0.026122

Figure 3: Data Distribution by Project Size

predictions if SD across all tree predictions is low otherwise less/no confidence. There is no built-in library1

to check the predictions confidence of ML models. We performed several steps, as shown by the algorithm2

1, to perform this analysis.3

In our CST example, we explored the predictions confidence of our baseline estimator for different types of4

projects. For the sake of brevity, we will only discuss this analysis for one categorical attribute, i.e. project5

size. In real-life, we analyse predictions confidence across all categorical attributes to truly understand6

the strengths and weaknesses of our models. Confidence score in the algorithm is the ratio of the standard7

deviation of tree-level predictions over the predicted profit margin. Table 3 shows the confidence score for8

all categories in the project size attribute. The higher the confidence score, the lesser the confident the9

model is on predictions for that category. In this case, large projects category has the confidence score of10

0.0345 which shows that our baseline estimator is less confident for predictions on large projects. There11

are several reasons for this lack of confidence. One major reason is the uneven distribution of projects in12

our data set.13

Fig 3 shows the distribution of projects in our data by the project size. The distribution clearly14

shows that large projects are fewer in our data which has caused a drop in the confidence of our model.15

Based on this insight, we requested additional data with a predictive theory that more data will improve16

predictions confidence of our model for large projects. Once additional data for large projects is received17

and re-trained our baseline model. We found that the confidence score of our baseline model has slightly18

improved. In this way, we were able to use insights to inform our modelling strategies, which was the future19

data collection requirements.20

3.4.2. Checking Attributes Driving Predictions21

The next question often asked of ML engineers is about the importance of attributes. Attribute im-22

portance is an excellent topic in ML, which reveals the significance of an attribute on model performance.23

15



Several algorithms are devised to perform attribute importance. The popular ones include permutation1

importance and model reliance. We used permutation importance in this study because it is fast and model2

agnostic approach. One benefit of permutation importance is that we compute it without training ML mod-3

els on every subset of our data. There is no need for training models as it is always performed after the model4

is trained. This concept of permutation importance is straightforward. The importance of an attribute can5

be determined from the increase in the model prediction error after we shuffle data in that attribute. We6

leave rest of attributes intact. The prediction error of the model shall increase if that attribute is vital to7

the model. The shuffling of data is performed to break the actual relationship between that attribute and8

the target attribute. The higher the prediction error go, the more important the attribute is to the model.9

Algorithm 2 illustrates key steps involved in the permutation importance.10

Algorithm 2: Permutation Importance
Data: Trained model f, attribute matrix X, target vector y, error measure L(y,f)
Result: Importance Score for All Attributes

1 Estimate the original model error eorig = L(y, f(X))
2 foreach attribute a in X do
3 Generate attribute matrix Xperm by permuting attribute a in the data X ;
4 Estimate error eperm = L(Y,f(Xperm)) based on the predictions of the permuted data ;
5 Calculate permutation importance Ij = eperm/eorig ;
6 end
7 Sort attributes by descending importance

11

In our CST example, we employed PermutationImportance class from python eli5.sklearn library.12

Fig. 4 show the importance of all attributes used for predicting the profit margins. Attributes with higher13

importance scores are at the bottom of the plot. The model finds these attributes important in driving its14

predictions. The attributes having lower scores are least significant to the baseline model. Since there is a15

degree of randomness to the exact performance by shuffling data, this library shuffles data several times to16

ensure that the real relationship between attributes and target is fully broken. These scores can be negative17

for some attributes, which reveals that the model attributes no significance to these attributes. Occasionally,18

it is worth removing such those attributes.19

Fig. 4 shows that project complexity in terms of risks, opportunities and the distance which construction20

route travels through the rivers, roads, rails and utilities, are amongst the most important attributes. Be-21

sides, the allocation of resources in terms of the project manager (PM), quantity surveyor (QS), commercial22

manager, design manager, suppliers and subcontractors are also meaningful in predicting profit margins.23

Materials, though, are not as significantly important to the model. At this stage, the ML engineers work in24

tandem with domain experts to discuss results and learn the required domain knowledge. When we shared25

these results with estimators, they agreed with the attribute importance chart. Our model was able to26

verify the knowledge estimators had, which helped them to gain confidence in our model. While attribute27

importance is a great tool for ML engineers to explain the importance of attributes, it is also useful to drive28

several feature engineering steps. It is worth recognising that our proposed AML process delayed feature29

engineering so far. In the beginning, we performed a minimum of necessary feature engineering but not30

based on domain relevance, which most people suggest. The chart in Fig. 4 shows that many attributes fall31

on the long tail are least important and could be deleted. With several experimentations, we found that we32

can delete almost half of attributes without significantly losing the model performance. We discussed our33

findings with end-users and deleted some of those attributes as soon as industry folks agreed. Most of these34

attributes had the importance of less than 0.05. The removal of attributes slightly changed the importance35

of other attributes. This is partly due to the correlation between various attributes. When we deleted the36

least significant attributes, the remaining correlating attributes became more visible and their importance37

scores improve. This type of deletion enables us to develop efficient models with fewer attributes.38

16



Figure 4: Attribute Importance Chart

17



3.4.3. Identifying Multicollinearity & Removing Attributes1

In the previous section, we slightly talked about the issue of multicollinearity and its effect on model when2

we delete attributes. Multicollinearity occurs when input attributes correlate with each other. In simple3

words, a subset of attributes is likely to supply overlapping information to our estimator. Multicollinearity4

not only adversely affects the performance of ML models but also obscure some important attributes by5

revealing similar information during the training process. It incapacitates the model’s abilities to under-6

stand attributes importance. The performance of models can be significantly improved by removing such7

confounding attributes from our dataset. As a result, we will achieve simpler but more robust models which8

will be based on fewer input attributes. Such models are always efficient and are hard to overfit. However,9

the choice of removing attributes shall not be entirely subjected to the intuitions of ML engineers or do-10

main experts. Instead, their judgements shall be informed with some objective evidence. To this end, there11

are several statistical approaches to find out the similarity between attributes in datasets. Unsupervised12

ML techniques like clustering can play a significant role to inform ML engineering during the decision of13

removing attributes. Feature importance, performed in the previous section, is useful to have a feel of least14

important attributes and remove them from our data. Identifying correlated attributes from the dataset are15

a key step in our proposed AML process. Supervised ML approaches like clustering are specialised for this16

type of exploration. Their accuracy exceeds other traditional ML approaches.17

Algorithm 3: Multi-Collinearity Assessment Algorithm
Data: Trained model f, Training data X, Target vector y, Clusters C
Result: Table (T) containing model accuracy as attributes are removed from data

1 foreach Cluster c in Clusters C do
2 foreach Attribute a in c do
3 Drop c from X ;
4 Train model (m) on data without c ;
5 Compute accuracy of m ;
6 Add tuple cluster (c), attribute (a) and accuracy to table T ;
7 end
8 end

18

In our CST example, we used hierarchical agglomerative clustering for finding the similarity between19

input attributes. We calculated the Spearman ranked correlation and turned it into a distance matrix.20

Distance matrix provides necessary information to construct the hierarchy between attributes based on21

their similarity. Fig. 5 shows the results of agglomerative clustering using dendrogram, where attributes22

are divided into various groups. We can quickly spot similar attributes in the dendrogram as they fall23

closer to each other under a single parent. While clustering provides an abstract grouping of attributes24

that worth investigation for multicollinearity. This information shall still be verified from domain experts.25

We shared these clusters with our industry folks who acknowledged the results of the clustering algorithm.26

The clustering algorithm suggested eleven (10) groups where one or several attributes are collinear. For27

example, the clustering algorithm revealed that attributes Total length in river (m), Total length in28

rail (m), Total length in road (m), Total length in utilities and Total length in other (m)29

in cluster 3 are correlating with Horizontal Directional Drilling (HDD) in river, HDD in rail,30

HDD in road, HDD in utilities and HDD in other, respectively. We then used algorithm 3 to find out31

the feasibility of removing attributes from these group. The overall aim is to remove those attributes where32

the accuracy of the model does not drop too much. According to experts, horizontal directional drilling33

(HDD) is a specialised activity and one of the highly risky activity on a project. It is a method of creating34

cable trenches underneath rivers, rail, bridges and public roads such that the path of the cable continues.35

The system dictates that ‘no of HDDs in…’ is not as strong as ‘total length of HDDs in…’. The is backed up36

by the industrial experts, and the argument is that the total length of HDDs in any of the above-mentioned37

scenario allows the project team to develop a fail-safe mitigation strategy to performing this task. The total38

18



length of HDDs translates to risk levels, risk pot percentages, subcontractor hire, drill and drill bit hire,1

permit orders and environmental distress. The more there is to do the more risks there are. Therefore,2

we dropped Horizontal Directional Drilling (HDD) in river, HDD in rail, HDD in road, HDD in3

utilities and HDD in other and left their counterparts.4

19



Figure 5: Agglomerative Clustering for Attributes Similarity

20



Similarly, the route length of a project was found to have several attributes correlated to it such as the1

power cable length, no of circuits, no of phases, no of joint bays, fibre cable length etc. Experts explained2

that the route length plus the no of circuits and the no of phases come together to give the total length of3

power cable needed. As you can see here, there are two correlation levels between the route length and cable4

length and between no of circuits and phases and cable length. But the ultimate parent attribute to all is5

the route length. Likewise, there is one correlation between the route length and total length of fibre and6

route length and pilot cables to be used on the project. Whereas in the first example of the HDDs and total7

length in HDDs areas where some attributes were completely removed from the system, the system shows8

that in this instance between route lengths and its correlated and sub correlated attributes, some attributes9

still demonstrate very strong contributions to the profitability such as the cable length and no of joint10

bays. Therefore, not all child-attributes were deleted in this example, only those whose contributions were11

completely mundane and those that industry experts have acknowledged their redundancy were deleted.12

After we dropped several attributes from each group, the training and validation accuracy of our model13

slightly dropped from 93.33% and 91.32% to 89.89% and 87.12% respectively.14

3.4.4. Extrapolating Estimator15

Most ML models are excellent at interpolation, which means that they can predict with higher accuracy16

what is known to them (i.e. data from training sets). However, another important feature of robust ML17

models is extrapolation, which is about making predictions for what is outside of these known, i.e. validation18

or unseen real-life data. Extrapolation reveals the generalisability of a model. Overfitting is a major cause19

of restricting the extrapolation capabilities of ML models. However, we can disclose the overfitting of a20

model by devising good validation sets. Oftentimes, ML engineers use attributes during the model training,21

which restrict models from extrapolation. This issue becomes more prominent for tree-based models as their22

predictive accuracy drastically declines during production on unseen data if such attributes are involves in23

rules in tree nodes. Temporal attributes like year is one example of attributes that can restrict a model to24

perform reliably in real-life scoring. A tree model cannot accurately predict for projects which are from a25

year that is not available in the training data. The deletion of such features is one of the key step in the26

AML process to overcome overfitting and achieving robust ML models.27

In our CST example, there were several attributes with date elements such as Start date, End date, ITT28

date, Tender submission date, Contract award date and Mobilisation dates. Besides, attributes like29

Opportunity id and Opportunity title are sort of unique identifiers and have no relevance for predicting30

the profit margin of a construction project. We performed thorough experimentation to see how the removal31

of these type of attributes affects the performance of our model. In theory, the validation score of the32

model shall improve if we remove attributes that hinder the generalisability of our model. We derived33

Project Duration from attributes like Start date and End date and then dropped those attributes from34

our training data. All unique identifiers are also removed from the data. The predictive accuracy of the35

model is checked before the deletion of all temporal or unique identifiers.36

In most cases, the model was able to achieve higher accuracy on validation data. The final model37

has fewer attributes but has a higher accuracy of 95.23% and 93.44% on training and validation data,38

respectively. Our model is intended to be used for real-life scoring on future projects. So, we removed the39

time-dependent attributes and unique identifiers from our data. In this way, we were able to increase the40

extrapolation of our ML model for future projects and tackle the issue of overfitting.41

3.4.5. Model Interpreter42

Another common end-users requirement is to show the breakdown predictions. In our CST example, how43

the model factored out project-specific nuances to build the profit margin. The end-users this explanation44

for clients to explain the output is higher or low than their expectations. There are several techniques to45

breakdown prediction for ML models. In the case of random forest, each tree node contains a value which is46

the sum of the target feature for all the rows contained in that specific node. So, when we traverse the tree47

21



Figure 6: Tree interpretability for profit margin forecasting

from top to down, this value fluctuates on every split of the node. This fluctuation can be used to calculate1

the contributions of attributes to final predictions.2

In our CST example, we used python package treeinterpreter for this purpose. This package has a3

predict() function which accepts the model and the row for which we want to predict the profit margin4

and returns predictions, bias and contributions of each attribute towards the prediction. We used a power5

transmission and distribution project as a case study. The scope of the project was to design, excavate, lay,6

joint and terminate 2500mm2 copper cables through a mildly rural and urban area between two power poles.7

The model estimated a margin of 17.86% and displayed a rare functionality of ML applications by revealing8

the process to calculate the project margin, as shown in Fig 6 using waterflow chart. The industry folks9

realised that the model has learnt that a 3.5km, 110kV cabling project with just one outage is widespread10

and the firm makes a profit from these. Whereas with attributes such as HDD in rail, and the firm rarely11

approve projects that require directional drilling through a rail track because of the complexity and social12

and economic distress associated with it. Therefore, the system is right to push the margin of this attribute13

higher than the others. Likewise, the system evaluated the possible profitable variations to be made from14

the project and understand that this is too low for this type of project; hence, it raises it’s associated margin15

higher. These experts explored each percentage against their knowledge and data to validate the process16

the system has adopted. At the end of the exploration, the experts praised the model and expressed their17

support for the further development of the tool.18

3.5. The Final Model19

So far, we have performed a lot of experimentation to achieve two major things. Firstly, we explored the20

hyperparameters space to see what values would enhance the learning abilities of the underlying algorithm for21

the given dataset. Secondly, we examined the data through Interpretable Machine Learning to understand22

22



the suitability of input attributes for the ML task. During the AML process, we realised that some attributes1

are insignificant to our modelling task, which were discarded. We also observed that some attributes correlate2

with others and need to be removed as they confuse the model. Therefore, we removed such attributes. ML3

engineers shall have a good idea at this AML process stage about what data and hyperparameters would4

work for the given task. We start training our final estimator at this stage. We slightly talked about the5

test set at the beginning that it is advised to hold it out for later evaluation. Test sets become relevant at6

this stage to know the final accuracy of our estimator before the final model is trained. To this end, we first7

merge the training and validation sets. Then use the test set to evaluate our trained model using merged8

data. However, we train the final model on all datasets, including training, validation and test sets. There9

is a substantial reason to utilise entire data for training the final model. The model will not be able to10

learn patterns of variations from the validation and test sets if we skip those datasets during the training.11

Consequently, the predictive accuracy of the model will drift significantly for unseen data due to gaps in12

historical data used for its training. We shall ensure to combine all datasets before start training the final13

estimator. The training of the final model relatively takes more time. We shall stick to the best values of14

hyperparameters that were discovered during the process.15

In our CST example, we combined two datasets X_train and X_valid into X tensor and then trained16

the random forest model. The model has attained the accuracy of 96.77% and 94.91% on the training (X)17

and test (X_test) sets. This accuracy is reasonably high. In addition, the generalisability of the model is18

significant for the unseen data from the X_test set. The test data is eventually merged and the final model19

is trained. We stored the model into .pkl file to be utilised in our opportunities analytics dashboard for20

production deployment.21

23



Scope of 
paper

Figure 7: Machine Learning (ML)-driven Opportunities Analytics Dashboard

24



3.6. Production Deployment1

The last step in our proposed AML process is the production deployment, where we put our models for2

real-life scoring. ML technology is elegant, but through enterprise solutions, we take it to the next level3

of producing actionable insights. These models often form a part of complex software. There are several4

technological challenges associated with production deployment. For prototyping our models, we tend to use5

python or R languages. However, the technologies behind enterprise applications may use entirely different6

programming languages. We need to integrate ML models into these systems to accrue the real benefits of7

automation. There are two widely used approaches to integrate ML models into enterprise solutions. The8

first is to rewrite the code for the model into the language of the system. This sounds interesting, but it9

entails enormous programming efforts. Besides, most programming languages are not suitable to efficiently10

perform heavy computation required by these models. Secondly, we can use web services for ML models to11

ensure language-agnostic deployment. This is the most popular option. Most software engineers use web12

services for invoking ML models from their enterprise applications. The first approach is more suitable for13

onboard AI systems where devices have limitations for speed, memory and connectivity, whereas the second14

approach is vastly adopted approach in most enterprise business applications.15

In our CST example, we aimed to utilised our ML model in the Construction Simulation Tool (CST).16

The model discussed in this study is used for profit margin estimation on ML-based opportunities analytics17

dashboard. Fig. 7 shows the screenshot of the opportunities analytics dashboard. This is one of the key18

analytics dashboards provided in the CST. This dashboard contains all key information for understanding19

the suitability of project opportunities. Main users of this dashboard are bid managers and estimators. This20

dashboard gets access to a large number of predictive models for various tasks. During the model invocation,21

CST passes the key details of an opportunity to predictive models which predict key commercial information22

of the project including costs, margin, cash flow, project plan and risks to name a few. Most ML models are23

designed to guide estimators about specific tasks. CST is underpinned by a comprehensive benchmarking24

system which highlights different values into red, amber and green colours. The overall aim is to highlight25

weak aspect of the given opportunity quickly. CST automatically fetches design details of the construction26

project and formulate input query for the ML model without any human intervention. We deployed the27

profit margin estimation model as a Flask-based web service. CST uses REST API based business service28

to invoke this model. The result from the web services are obtained as JavaScript Object Notations (JSON)29

files, which are then deciphered by Structured Query Language (SQL) and shown it on the dashboard. The30

final decision is in the hands of the users who can modify or entirely override predictions of the model.31

In case of revisions to models predictions, CST logs these changes and use them to refine its predictions32

through lifelong learning.33

4. Evaluation of Applied Machine Learning Process34

We evaluated the proposed AML process by creating several machine learning models for various tasks35

involved in construction project planning and delivery. Table 4 shows the list of those tasks along with36

their descriptions. We primarily employed random forest and deep neural network for training ML models37

for these tasks. The discussion of which algorithm is superior over the other is beyond the scope of this38

study. These classes of algorithms have been successfully employed in diverse applications across different39

industries. Our focus in this section is to showcase the effectiveness of our proposed AML process towards40

creating robust ML models. Overall, these algorithms were able to train models with reasonable accuracies.41

For complex tasks, like predicting the contingency pot which is the additional profit that can be made42

through effective handling of contingencies in the project, we were able to train the deep neural network43

with predictive accuracies of 73.34% and 70.09%, respectively. Whereas, some easier tasks such as Bid/No44

Bid where model informs the decisions of whether the firm shall bid the given project or not, we attained45

98.45% and 97.56% accuracies on training and test sets. In most cases, we were able to train models with46

accuracies above 80% on relatively challenging tasks. While we had access to vast amounts of relevant past47

data along with domain expertise, the most distinguished aspect of the work was the proposed AML process.48

25



Table 4: Evaluation of AML Process for Several ML Tasks

Task
No.

Machine
Learning Task

Machine Learning
Task Description

Deep Neural Network
(DNN) Random Forest

Training
Accuracy

Validation
Accuracy

Training
Accuracy

Validation
Accuracy

1 Win(%) To predict the win probability of a project opportunity. 94.73 89.42 90.44 87.23

2 Retention (%) Predicting the %age of payments that the firm
shall let retain the client until the project finishes. 86.61 83.56 94.56 91.97

3 Labour cost
Predcting the %age of labour cost with respect
to net sales value (NSV) for the project to achieve
planned margins

88.01 86.51 95.53 92.78

4 Plant cost
Predcting the %age of plants & equipment cost
with respect to net sales value (NSV) for the project
to achieve planned margins

84.06 81.05 89.44 87.17

5 Materials cost
Predcting the %age of materials cost with respect to
net sales value (NSV) for the project to achieve
planned margins

91.34 90.11 90.67 89.1

6 Subcontract cost
Predcting the %age of subcontract cost with respect
to net sales value (NSV) for the project to achieve
planned margins

83.54 82.34 74.31 71.45

7 General cost
Predcting the %age of general expenses with respect to
net sales value (NSV) for the project to achieve planned
margins

81.45 78.34 74.23 60.55

8 Risk pot Predicting additional profit that can made through effective
mitigation of identified risks 85.87 76.56 84.56 82.56

9 Innovation pot
Predicting additional profit that can be made by bringing
innovation in terms of materials or design strategy to the
project

84.61 82.08 85.44 84.01

10 Contingency pot Predicting additional profit that can be made through effective
handling of contingencies in the project 73.34 70.09 63.45 60.33

11 Profit margin Predicting the profit margin that can be made keeping in view
project complexity, resourcing, supply chain and other attributes 89.34 84.34 96.77 94.91

12 Margin start day Predictng the first day when firm will start making profit from
the project 94.33 91.07 87.56 86.19

13 Bid/No Bid Predicting whether the company shall bid for or not the
given project 98.45 97.56 85.78 80.83

It is clear from the results that the difference between the training and validation scores for both classes1

of algorithms is low. The average difference between the training and validation scores for the deep neural2

networks is 3.28%, whereas that for the random forest is 3.35%. This minor difference reveals the robustness3

of our ML models, which is hugely desirable for models intended to be used in real-life applications.4

5. Conclusions5

In this paper, we presented guidelines for Applied Machine Learning (AML) for the construction industry.6

A common experience in most industries is that seemingly impressive ML models fail when deployed to real-7

life applications. The fallout includes losing the support for ML-based automation as people start suspecting8

ML capabilities and reluctant to pursue it further. Surprisingly, ML engineers, as well as construction folks,9

seldom know tools and techniques for developing robust ML models. ML engineers often make modelling10

choices about their data and algorithms based on intuition, which are often bias and misleading. As a result,11

ML models are not up to the expectations as ML steps were either omitted or not executed in proper way.12

26



While ML is an engineering task, there are several ways to create robust ML systems. Currently, there1

is no literature source that provides construction IT folks about guidelines for developing great predictive2

models. This paper fills this void and presents the AML process in detail, which we learned over several3

years while developing the Construction Simulation Tool (CST). The process is elaborated in the context of4

profit margin estimation. Our AML process is evaluated for several ML tasks to ensure it works.5

Interpretable Machine Learning is desirable for using these models in enterprise solutions. This explana-6

tion is key for end-users to trust ML systems. Besides, users require to understand the limitations of models7

so that they can manually override in case ML is making wrong predictions. Our proposed process included8

interpretable machine learning for ML engineers as key step to expose the internals of models. The ML9

engineers are not expected of prior domain knowledge; they learn it through ML models as they progress10

through the process. The process stimulates critical modelling tasks like feature engineering as ML engineers11

learn more about the domain from industry folks. This study is a part of developing a machine learning-12

based construction simulation tool which aims to harness historical data to automate or facilitate activities13

across construction activities involving opportunity selection, design optimisation, construction estimating14

and project execution. CST has employed a large number of ML models to support users’ tasks at various15

stages of the lifecycle. This paper explains our proposed AML process, which was key to developing robust16

ML models in CST.17

References18

Akintoye, A., & Skitmore, M. (1991). Profitability of uk construction contractors. Construction Management and Economics,19

9, 311–325.20

Bagies, A., & Fortune, C. (2006). Bid/no-bid decision modelling for construction projects. In Procs 22nd Annual ARCOM21

Conference (pp. 511–521). Birmingham.22

Banaitiene, N., & Banaitis, A. (2012). Risk management in construction projects. In Risk Management-Current Issues and23

Challenges. IntechOpen.24

Bau, D., Zhu, J.-Y., Strobelt, H., Zhou, B., Tenenbaum, J. B., Freeman, W. T., & Torralba, A. (2019). Visualizing and25

understanding generative adversarial networks. arXiv preprint arXiv:1901.09887 , .26

Bilal, M., Oyedele, L. O., Qadir, J., Munir, K., Ajayi, S. O., Akinade, O. O., Owolabi, H. A., Alaka, H. A., & Pasha, M. (2016).27

Big data in the construction industry: A review of present status, opportunities, and future trends. Advanced engineering28

informatics, 30, 500–521.29

Bose, I., & Mahapatra, R. K. (2001). Business data mining—a machine learning perspective. Information & management, 39,30

211–225.31

Chang, P.-T., Hung, L.-T., Pai, P.-F., & Lin, K.-P. (2013). Improving project-profit prediction using a two-stage forecasting32

system. Computers & Industrial Engineering, 66, 800–807.33

Christodoulou, S. (2010). Bid mark-up selection using artificial neural networks and an entropy metric. Engineering, Con-34

struction and Architectural Management, 17 , 424–439.35

Cox, V. (2017). Exploratory data analysis. In Translating Statistics to Make Decisions (pp. 47–74). Springer.36

Dikmen, I., & Birgonul, M. T. (2004). Neural network model to support international market entry decisions. Journal of37

Construction Engineering and Management, 130, 59–66.38

Doshi-Velez, F., & Kim, B. (2017). Towards a rigorous science of interpretable machine learning. arXiv preprint39

arXiv:1702.08608, .40

Dulaimi, M. F., & Shan, H. G. (2002). The factors influencing bid mark-up decisions of large-and medium-size contractors in41

singapore. Construction Management & Economics, 20, 601–610.42

Enshassi, A., Mohamed, S., & El Karriri, A. (2010). Factors affecting the bid/no bid decision in the palestinian construction43

industry. Journal of Financial Management of Property and Construction, 15, 118–142.44

Friedman, J., Hastie, T., & Tibshirani, R. (2001). The elements of statistical learning volume 1. Springer series in statistics45

New York.46

Gomber, P., Kauffman, R. J., Parker, C., & Weber, B. W. (2018). On the fintech revolution: interpreting the forces of47

innovation, disruption, and transformation in financial services. Journal of Management Information Systems, 35, 220–265.48

Hulten, G. (2018). Machine learning intelligence. In Building Intelligent Systems (pp. 245–261). Springer.49

Jordan, M. I., & Mitchell, T. M. (2015). Machine learning: Trends, perspectives, and prospects. Science, 349, 255–260.50

Kim, S.-Y., Huynh, T.-A. et al. (2008). Improving project management performance of large contractors using benchmarking51

approach. International Journal of Project Management, 26, 758–769.52

Leon, H., Osman, H., Georgy, M., & Elsaid, M. (2017). System dynamics approach for forecasting performance of construction53

projects. Journal of Management in Engineering, 34, 04017049.54

Li, H., & Love, P. E. (1999). Combining rule-based expert systems and artificial neural networks for mark-up estimation.55

Construction Management & Economics, 17 , 169–176.56

27



Li, H., Shen, L., & Love, P. (1999). Ann-based mark-up estimation system with self-explanatory capacities. Journal of1

construction engineering and management, 125, 185–189.2

Lin, C.-T., & Chen, Y.-T. (2004). Bid/no-bid decision-making–a fuzzy linguistic approach. International Journal of Project3

Management, 22, 585–593.4

Luong, M.-T., Le, Q. V., Sutskever, I., Vinyals, O., & Kaiser, L. (2015). Multi-task sequence to sequence learning. arXiv5

preprint arXiv:1511.06114, .6

Manyika, J. (2017). A future that works: Ai, automation, employment, and productivity. McKinsey Global Institute Research,7

Tech. Rep, .8

Mendelson, E. B. (2019). Artificial intelligence in breast imaging: Potentials and limitations. American Journal of Roentgenol-9

ogy, 212, 293–299.10

Mitchell, T. M. (1997). Does machine learning really work? AI magazine, 18, 11.11

Moselhi, O., Hegazy, T., & Fazio, P. (1993a). Dbid: analogy-based dss for bidding in construction. Journal of Construction12

Engineering and Management, 119, 466–479.13

Moselhi, O., Hegazy, T., & Fazio, P. (1993b). Expert: an expert system for strategic bidding. Proceedings of Annual Conference14

of Canadian Society for Civil Engineering, Fredericton, NB, Canada, .15

Mullainathan, S., & Spiess, J. (2017). Machine learning: an applied econometric approach. Journal of Economic Perspectives,16

31, 87–106.17

Ng, A. (2018). AI Transformation Playbook: How to lead your company into the AI era. Mcgraw-hill New York.18

Petruseva, S., Sherrod, P., Pancovska, V. Z., & Petrovski, A. (2016). Predicting bidding price in construction using support19

vector machine. TEM J, .20

Rudin, C., & Vahn, G.-Y. (2014). The big data newsvendor: Practical insights from machine learning, .21

Rui, Z., Peng, F., Ling, K., Chang, H., Chen, G., & Zhou, X. (2017). Investigation into the performance of oil and gas projects.22

Journal of Natural Gas Science and Engineering, 38, 12–20.23

Shapiro, A. (2017). Reform predictive policing. Nature News, 541, 458.24

Shash, A. A. (1993). Factors considered in tendering decisions by top uk contractors. Construction management and economics,25

11, 111–118.26

Toshev, A., & Szegedy, C. (2014). Deeppose: Human pose estimation via deep neural networks. In Proceedings of the IEEE27

conference on computer vision and pattern recognition (pp. 1653–1660).28

Wanous, M., Boussabaine, A., & Lewis, J. (2000). To bid or not to bid: a parametric solution. Construction Management &29

Economics, 18, 457–466.30

Wanous, M., Boussabaine, H. A., & Lewis, J. (2003). A neural network bid/no bid model: the case for contractors in syria.31

Construction Management and Economics, 21, 737–744.32

Witten, I. H., Frank, E., Hall, M. A., & Pal, C. J. (2016). Data Mining: Practical machine learning tools and techniques.33

Morgan Kaufmann.34

28


	Introduction
	Literature Review
	Applied Machine Learning Process 
	ML Task Definition & Data Selection
	Defining Task & Evaluation Metrics
	Data Selection, Integration, Naming & Loading

	Data Preparation and Pre-Processing
	Data Consistency Verification
	Target Attribute Transformation
	Feature Extraction
	Data Types Conversion
	Fix Missing Data
	Scale Transformation of Continuous Data
	Encoding the Categorical Attributes

	Training Baseline Estimator
	Choose First ML Algorithm
	Crafting Great Validation Sets
	Devising Performance Tuning Strategy
	Choosing Baseline Estimator

	Interpretable Machine Learning
	Checking Predictions Confidence of Baseline Estimator
	Checking Attributes Driving Predictions
	Identifying Multicollinearity & Removing Attributes
	Extrapolating Estimator
	Model Interpreter

	The Final Model
	Production Deployment

	Evaluation of Applied Machine Learning Process
	Conclusions

