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Inappropriate management of Health and safety (H&S) risk in power infrastructure projects can result in 

occupational accidents and equipment damage. Accidents at work have detrimental effects on workers, company, 

and the general public. Despite the availability of H&S incident data, utilising them to mitigate accident 

occurrence effectively is challenging due to inherent limitations of existing data logging methods. In this study, 

we used a text mining approach for retrieving meaningful terms from data and develop six deep learning (DL) 

models for H&S risks management in power infrastructure. The DL models include DNNclassify (risk or no risk), 

DNNreg1 (loss time), DNNreg2 (body injury), DNNreg3 (plant & fleet), DNNreg4 (equipment), and DNNreg5 

(environment). An H&S risk database obtained from a leading UK power infrastructure construction company 

was used in developing the models using the H2O framework of the R language. Performances of DL models 

were assessed and benchmarked with existing models using test data and appropriate performance metrics. The 

overall accuracy of the classification model was 0.93. The average R-squared value for the five regression models 

was 0.92, with Mean Absolute Error (MAE) between 0.91 and 0.94. The presented results, in addition to the 

developed user-interface module, will help practitioners obtain a better understanding of H&S challenges, 

minimise project costs (such as third-party insurance and equipment repairs), and offer effective strategies to 

mitigate H&S risk. 
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1. INTRODUCTION 

Health and Safety (H&S) risks are of particular concern in the power infrastructure sector (Aksorn & 

Hadikusumo, 2008). This is because the power infrastructure sector has high rates of fatality and nonfatal 

occupational injury, as well as damage to plants and equipment, which require significant repair costs (McDermott 

& Hayes, 2016). The UK Health and Safety Executive estimated the cost of nonfatal workplace injuries in the UK 

at £4.8 billion (HSE, 2016). There is also a high risk of illnesses due to exposure to radiation, dust, chemicals and 
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extreme temperatures. These risks are specific to power infrastructure projects because they involve tasks that 

require working in excavations, trenches, cell tower base stations, scaffolds and operating heavy machinery.  

Several Machine Learning (ML) techniques have been adopted to predict H&S risks. Some examples are 

multiple regression (Tsoukalas & Fragiadakis, 2016), fuzzy methods (Rastogi & Gabbar, 2013), decision trees 

(Cheng, Leu, Cheng, Wu, & Lin, 2012) and generalised linear models (Esmaeili, Hallowell, & Rajagopalan, 

2015), along with fuzzy neural networks (Debnath, Biswas, Sivan, Sen, & Sahu, 2016), fuzzy Bayesian networks 

(Zhang, Wu, Qin, Skibniewski, & Liu, 2016), bow-tie representation (Jacinto & Silva, 2010), and Bayesian 

networks (Englehardt, An, Fleming, & Bean, 2003; Papazoglou, Aneziris, Bellamy, Ale, & Oh, 2015). A key 

challenge associated with most conventional ML and statistical techniques is the considerable effort needed to 

manually extract attributes from a large pool in the database for them to achieve high prediction accuracy 

(Esmaeili et al., 2015). As such, an emerging trend within ML has led to the development of Deep Learning (DL) 

approaches to address the problem of manual extraction of relevant attributes from raw data compiled and merged 

from various sources. Also, there exist non-linear relationships with high-order interactions among independent 

and dependent variables making up the raw data.   

DL or Deep Neural Network (DNN) is an ML technique that uses multiple processing layers and abstraction 

levels to learn a data representation. DL with its high learning capacity is efficient at discovering complex 

structures and can dynamically construct new task-specific attributes from high-dimensional data (LeCun, Bengio, 

& Hinton, 2015). According to LeCun et al. (2015), these characteristics have enabled it to surpass the 

performance of existing ML approaches. As such, DL has successfully been used in fields such as vision and 

image processing (Gharbi, Chen, Barron, Hasinoff, & Durand, 2017), speech recognition (Hinton et al., 2012), 

and medicine (Al-Rahhal et al., 2016). Other application areas are drug molecule analyses (Ma, Sheridan, Liaw, 

Dahl, & Svetnik, 2015), building cooling load prediction (Fan, Xiao, & Zhao, 2017), and traffic control (Zhao, 

Chen, Wu, Chen, & Liu, 2017).  

H&S events data in the power infrastructure domain are typically large, heterogeneous and dynamic 

(Fenrick, Getachew, Fenrick, & Getachew, 2012). Evidence suggests that imbalanced and appreciable missing 

values are prevalent (Bohle, Quinlan, McNamara, Pitts, & Willaby, 2015).  Despite the availability of the H&S 

events data, utilising them to mitigate accident occurrence effectively is challenging because of the data logging 

method employed which makes analysis and identification of relevant patterns difficult for humans. Therefore, a 

text mining approach with the good generalisation ability of DNN will provide a robust mechanism for handling 

sparse, noisy and nonlinear high-dimensional data (Mamoshina, Vieira, Putin, & Zhavoronkov, 2016). This study, 
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therefore, implements a robust text mining approach and deep neural network method for the PT&D domain and 

prompts readers to explore its usefulness, especially in predicting H&S risks in power infrastructure construction 

sites for better decision making. This study, in contrast to other studies (Cheng et al., 2012; Debnath et al., 2016; 

Esmaeili et al., 2015; Mistikoglu et al., 2015; Tsoukalas & Fragiadakis, 2016), presents a generalised approach to 

predicting and managing H&S risks to humans, equipment and the environment. The methodology of risk 

assessment adopted in this study, though using the PT&D infrastructure as a case study, is based on a generic 

modelling framework, which can easily be customised and extended to other domains when relevant domain 

knowledge is incorporated. The objectives of the study are to implement a text mining technique and develop 

robust DNN models (a classification model - DNNclassify, and five regression models-DNNreg1, DNNreg2, DNNreg3, 

DNNreg4, DNNreg5) to manage H&S risks and evaluate their accuracies using appropriate metrics. 

This work is structured as follows. In Section 2, the materials and methods employed, such as H&S events 

data, data pre-processing, deep learning and neural networks are discussed. We discuss DNN models’ 

development, benchmarking and results in Section 3, and describe an interface for user interaction with deep 

learning modules in Section 4. We give concluding remarks and discuss areas of future research in Section 5. 

 

2. RESEARCH OVERVIEW AND DATA DESCRIPTION 

In the current study, we use DL as the key technology to predict H&S risks specific to infrastructure projects, 

since project-related attributes that influence accident occurrence were utilized in modelling the models. We 

describe DL as a tool, as well as the data pre-processing approach, in subsequent subsections. In Fig. 1, we present 

the general research outline for the study. Data pre-processing and selection of variables are first carried out to 

clean H&S event data and identify relevant models’ inputs. Subsequently, we construct six DNN models (one 

classification and five regression models) to set relationships between dependent and independent variables to 

manage H&S risks. Relevant optimisation techniques are then used to maximise each model’s prediction 

accuracy. Lastly, we evaluate the prediction accuracies of the models on test data using acceptable metrics such 

as Area Under Curve (AUC), Mean Absolute Error (MAE), Accuracy, Kappa statistic, Sensitivity and R-square 

(R2). 

 

 

 

2.1. H&S Events Data and Pre-processing 
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H&S events data covering 17972 reported cases were obtained from a leading UK Power Infrastructure and 

Distribution company. In Fig. 2, we present percentages of H&S events (incidents and accidents) and damages to 

plant and fleet for infrastructure projects executed during the period of study. The proportion of fatal accidents, 

which are usually rarer are not shown in the figure, as only three projects recorded fatal accidents in three years 

(i.e. 2008, 2009, and 2010). 

 

 

Fig. 1. Research outline 

 

Fig. 2a shows non-fatal accidents (first aid, medical attention beyond first aid, injuries requiring a few days 

away from work, etc.) and incidents (no reported injury). Accident types “first aid” and “medical beyond first aid” 

dominate the accident category. The class distribution is, however, not uniform among classes as there are more 

incidents (majority) compared to non-fatal accidents (minority) as shown in Fig. 2a. Fig. 2b depicts damages to 

plants and fleets, with damage to “bonnet/bumper” dominating this event. Although, proportions of non-fatal 

accidents and equipment damage are dropping, determining the primary causes of these incidents is necessary to 

ensure both human and property safety. 

 

Fig. 2. H&S events proportion 
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Data cleaning and quality control procedures are implemented to remove invalid and duplicate entries, the 

remaining data after data cleaning consisted of 16900 events that occurred between January 2008 and June 2016 

(90 months). We apply a text-mining approach (Weiss, 2010) to retrieve useful underlying concepts from textual 

columns (i.e. “incident_description”, “address”) in the database to create new columns (i.e. “Shift patterns”, 

“climatic condition”, etc.), and used extracted information to complete certain columns with missing entries. To 

retrieve vital information from text fields, we compute the frequency of each useful word after performing term 

creation and filtering operations. In the term creation procedure, we tokenized all terms in the string, while in the 

filtering operation, we carried out the following pre-processing tasks: punctuation and number removal, lower-

case conversion, stemming, and stop-word and common-word removal to create the document term matrix 

(DTM). The DTM allows us to identify meaningful terms along with their corresponding frequencies for further 

analysis and investigate events using word combinations. For example, filtering co-occurring expressions such as 

‘slip’ and ‘ice’ or ‘icy’ from the “event_description” column can help infer automatically the event “Slipping on 

an icy surface.”   

The complete variables (independent and dependent) used after the text-mining approach are described in 

Table I. The important variables are selected using a default deep learning model (trained without tuning its 

parameters), and setting the “variable_importances” feature to true, which enables the viewing of the absolute 

and relative predictive strength of each variable in the prediction task. Dependent variables in Table 1 are 

italicised. The 𝜒2coefficient of contingency was calculated to clarify the correlations between the categorical 

variables. A large degree of freedom was found between variables, and 𝜒2 was normally distributed. Tests of 

independence also revealed that  𝜒2 > 𝜒(𝑟−1)(𝑐−1),𝛼
2 ,  indicating variables are from the same population and are 

correlated with each other. 

Table I. Predictive and dependent variables for DNN models 

Model Variable name Explanation  

DNNclassify Project type  Categorical (overhead line, cabling, or substation) 

 Project complexity  Categorical (new build, maintenance, or refurbishment.  

 Region   UK regions where projects are constructed i.e. North, Midlands, 

South East, Scotland, etc. 

 Location  Categorical (rural or urban) 

 Client This includes energy company, communications, digital, power 

supplier contractors, etc. 

 Duration Project duration. Categorical (short, medium, or long) 

 Season Categorical (Autumn, Spring, Summer, or Winter) 

 Cost Categorical (Small: <£250K, Medium: £250K-£1m, Large: £1m-

1£0m, Extra large: >£10m) 

 Contract status    Categorical: main contractor, or subcontracted, or third party.  

 Contract type Categorical (Target cost, Lump sum, Bill of quantity, Cost 

reimbursable) 
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 Accident occurrence  Categorical (Yes or No) (Dependent variable) 

DNNreg1 Activity   Categorical up to 25 levels (i.e. Pulling, driving, stringing, loading, 

foundation, excavating, tower erection, working at height, etc.) 

 Equipment  Category up to 20 levels. The tool used for a task (plant equipment, 

hand tool, etc.).  

 Equipment state  Equipment state (Good, moderately good, bad).  

 PPE kit type Condition of the PPE kit. Categorical (Good condition, fairly good, 

not in good condition) 

 Working surface 

layout 

Good condition, moderately in good condition, not in good condition 

 Climatic condition Categorical: Sunny, raining, snowy, windy, clear 

 Shift pattern Categorical: Day, night or weekend 

 Distance to site How long it takes an employee to travel to the site? (Short, average, 

long) 

 Experience Length of time on the job (<1year, 1-3years, >3 years) 

 Day of the week    Day name i.e. Monday, Tuesday, Wednesday, etc. 

 Employment contract  Categorical (Temporary or permanent).  

 Time  When a task is performed (6am-12pm) or (12pm-19pm).  

 Lost time  Number of days (x) an employee is absent from work due to injury, 

i.e. 0 ≤ 𝑥 ≤ 15. (Dependent variable) 

DNNreg2 Activity/Task   Categorical up to 25 levels (i.e. Pulling, driving, stringing, 

foundation, excavating, tower erection, etc.) 

 Equipment  Categorical up to 20 levels. The tool used for a task (plant equipment, 

hand tool, etc.).  

 Equipment state  Equipment state (Good, moderately good, bad).  

 PPE kit type Categorical (Good condition, fairly good, not in good condition) 

 Working surface 

layout    

Working surface layout in terms of being spacious and conducive. 

Categorical (Good, Moderately good, or not in good condition). 

 Weather condition Categorical: Sunny, raining, snowy, windy, hot, cloudy, foggy, etc., 

 Shift patterns Categorical: Day, night or weekend 

 Distance travel to site Categorical (Short, average, long) 

 Experience Length of time on the job (<1year, 1-3years, >3 years) 

 Day of the week    Day name i.e. Monday, Tuesday, Wednesday, etc. 

 Employment contract  Categorical (Temporary or permanent).  

 Time  When a task is performed (6am-12pm) or (12pm-19pm).  

 Body part  A numerical value between 1 and 16 representing body parts i.e. head, 

back, leg, ankle, face, chest, etc. Sixteen represents no body parts 

injury. (Dependent variable) 

DNNreg3 Location  Categorical: Rural, city, vandals dominated areas.  

 Shift patterns Categorical: Day, night or weekend 

 Operator experience Categorical: Expert, moderately experienced, inexperienced 

 Service requirement Categorical: Regularly (once in 6 months), infrequent (once in two years) 

 Activity/Task Categorical: Transporting, uploading, towing, excavating, pulling, etc. 

 Plant contract  Categorical: Owned or hired plant. 

 Mobilisation technique  How the plant is transported to site i.e. by helicopter, by truck, or 

driven? 

 Fleet/part damaged  Categorical 20 levels (Bumper, Window, Alloy/Wheel, Bucket, etc.) 

(Dependent variable) 

DNNreg5 Time  Categorical. When a task is performed (early in the day) or (later in 

the day).  

 Employment contract  Categorical (Temporary or permanent).  

 Working surface 

layout 

Good condition, moderately in good condition, not in good condition. 

 Activity/Task  Driving, excavating, Pulling, tower erection, etc. 

 Equipment  The tool used for a task (plant equipment, hand tool, etc.).  

 Location Rural or Urban 

 Information available 

on utility location 

Categorical (Available or unavailable) 
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 Environment/Utility 

damaged  

These include Farm/Field, Fence, or service tracks damaged, animals 

killed, etc. (Dependent variable) 

 

Furthermore, to avoid differences in model performance due to imbalanced and unscaled training data, we 

carry out the following steps. We solve the imbalance problem by re-weighting input data and adding different 

penalty coefficients to the training errors corresponding to the input. Specifically, by assigning larger penalty 

coefficient values to examples from minority classes and smaller penalty coefficient values to points from majority 

classes, to reduce overfitting. In performing scaling, we divide mean-centred variables' values by their standard 

deviations. Then, the remaining missing data are substituted using the mean imputation method.  

2.2. Deep Learning and Neural Networks 

DNNs allow computational models, which are comprised of several processing layers, to learn data 

representations with multiple levels of abstraction (LeCun et al., 2015). DNNs use multiple hidden layers between 

input and output layers to model complex nonlinear relationships. A DNN is formally defined as follows. Denote 

the output of a neuron at layer ℓ by ℎℓ, and its input vector from the previous layer by ℎℓ−1. Then, the activation 

of neurons is defined as ℎℓ = 𝜎(𝑏ℓ+𝑊ℓℎℓ−1), where 𝑏ℓ is a vector of biases, 𝑊ℓ is the matrix of weights, and 

σ(∙) is an element-wise activation function. Activation functions include Tanh, Rectifier, Sigmoidal and 

RectifierWithDropout. The input vector x=ho is the raw data to be analysed by the network, and the output vector 

ℎℓ (in the output layer) is used to make predictions. For a multiclass classification task, the model output is 

determined using Equation (1), where 𝑊ℓ  is the matrix of weights, 𝑊𝑖
ℓ  is the ith row of 𝑊ℓ , ℎ𝑖

ℓ > 0 , and 

∑ ℎ𝑖
ℓ = 1𝑖 . 

ℎ𝑖
ℓ =

𝑒𝑥𝑝(𝑏𝑖
ℓ + 𝑊𝑖

ℓℎℓ−1)

∑ 𝑒𝑥𝑝(𝑏𝑗
ℓ + 𝑊𝑗

ℓℎℓ−1)𝑗

                         (1) 

For a regression task, the output is determined using Equation (2), where α0k represents the bias applied to the 

output layer and αk is the set of weights between the previous layers and the last layer. 

ℎ𝑖
ℓ = 𝛼𝑜𝑘 + 𝛼𝑘𝜎(𝑏𝑖

ℓ + 𝑊𝑖
ℓℎℓ−1)                 (2) 

The outputs and the target function y are used together in a cost function ℰ(ℎℓ, 𝒴), which is convex in 𝑏ℓ +

𝑊ℓℎℓ−1. The cost functions for classification and regression tasks are defined using Equation (3), where ℎ𝑦
ℓ  is the 

network output and y is the desired response. 

ℇ(ℎℓ, 𝑦) = −𝑙𝑜𝑔ℎ𝑦
ℓ , 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛

ℇ(ℎℓ, 𝑦) = ‖𝑦 − ℎ𝑦
ℓ ‖

2
, 𝑟𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛

      (3) 

 

Techniques that have significantly boosted the success rate of DNN are briefly described as follows:  
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 Rectified Linear Unit (ReLU) - The most successful techniques in DNNs (LeCun et al., 2015), and a 

special case of Maxout, which enforces sparse representations and prevents vanishing gradients 

(Hochreiter, Bengio, Frasconi, & Schmidhuber, 2001). RELU has helped to obtain best results on 

several benchmark problems across multiple domains.(Dahl, Sainath, & Hinton, 2013)  

 Dropout technique – A DNN regularisation scheme for preventing overfitting (Hinton et al., 2012; 

Srivastava, Hinton, Krizhevsky, Sutskever, & Salakhutdinov, 2014). This technique avoids co-

adaptation of hidden units by randomly dropping units during training.  

 Cross-entropy objective with Softmax activation - This technique involves applying error functions such 

as cross-entropy and logistic loss as objectives to be minimised (Mayr, Günter, Unterthiner, & Sepp, 

2016). The error functions are often associated with the Softmax activation in the output neurons.  

 

In contrast to Artificial Neural Networks (ANNs), DNNs have complex layers with more training schemes. Table 

II presents a comparison of ANN and DNN.  

 

Table II. Comparison between DNN and ANN 

Feature DNN ANN 

Architecture It is complex and deep, with greater than 

five layers.  

Simple and shallow (usually three layers). 

Feature extraction It learns features automatically.  It learns from handcrafted features.  

Non-linear 

function 

It uses powerful and optimised functions 

such as Rectified Linear Unit (ReLU) and 

Maxout to ensure robustness.  

It uses functions such as Tanh and 

Sigmoidal, amongst others.  

Distributed 

representation 

Has exponential advantage due to its 

distributed representation 

Not applicable. 

Learning 

algorithm 

Stochastic gradient descent (SGD) for 

parallel processing. 

Mostly uses standard SGD. 

Neurons Has thousands of neurons in each layer to 

capture all possible facets of input.  

Employs a small number of neurons to learn 

the main pieces of information. 

 

Several DNN architectures abound, with each recording successes in different domains. Examples are feedforward 

neural networks, recurrent neural networks and the convolutional neural networks. Feedforward neural networks 

allow data to flow from input to output without looping back. Recurrent neural networks (which are used for 

language modelling) allow data to flow in any direction. Convolutional DNNs are standard for computer vision 

applications. We employ the feedforward architecture because of its simplicity and popularity (LeCun et al., 

2015). 
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2.3. Deep Learning for H&S Risk Prediction  

A DL network consists of several layers with numerous neurons. It constructs features in neurons and input 

data are represented as features. Higher layers are used to represent numerous abstract concepts compactly (LeCun 

et al., 2015). Analysis and modelling of incident databases using practical ML techniques can help predict H&S 

risks to assist stakeholders in developing programmes and safety practices for H&S risk prevention (Farid, Al-

Mamun, Manderick, & Nowe, 2016). Different analytics techniques that are suitable for DL implementation are 

shown in Table III. Since the domain of this study is predictive analytics, we use two predictive techniques 

(classification and regression) for H&S risk prediction.  

Table III. Machine Learning Techniques 

Technique Application Algorithm 

Regression Predicts continuous numerical outcomes such as the 

number of instances of vehicle damage within a 

timeframe, the number of back injuries suffered by 

workers and the number of slip/trip incidents in 

winter. 

Linear regression, Naïve Bayes, 

decision trees, neural networks, 

support vector machine (SVM), 

DNN, amongst others 

Classification For delineating classes of output (usually categorical) 

based on some set of input features. The basic form is 

a binary classifier with a single output with two labels 

(Yes and No).  

Bayesian probability, ANN, 

SVM, random forest, DNN, 

gradient boosted machines 

(GBM) 

Clustering Explores data to find natural groupings. An example 

is finding related events that result in a given outcome; 

for instance, walking on wet ground may cause a 

trip/slip incident. 

K-means, clustering, SVM, 

Expectation-maximisation, self-

organising maps, autoencoders, 

DNN 

Attribute 

importance 

It ranks attributes according to the strengths of their 

relationships to the target attribute, for instance, by 

finding the factors that are most associated with 

worker injury while working on the site. 

Minimum description length, 

decision trees, random forest, 

DNN 

Anomaly 

detection 

Identify unusual or suspicious cases based on 

deviation from the norm; for example, identifying 

possible fall accidents based on workers’ motion data 

(e.g., velocity and orientation) 

Expectation-maximisation, 

SVM, DNN, self-organising 

maps, fuzzy-C means 

Association Finds rules associated with frequently co-occurring 

items (root-cause analysis), i.e., lower-back injuries 

among construction workers as a function of lifting 

heavy objects. 

A priori, GBM, particle swarm 

optimisation, DNN, ANN 

Feature 

selection & 

extraction 

Generates new attributes as a linear combination of 

existing attributes. It is suitable for latent semantic 

analysis, data compression and pattern recognition. 

Principal component analysis, 

genetic algorithm, Singular 

Vector Decomposition (SVD), 

DNN 

 

3. DNN MODELS DEVELOPMENT AND RESULTS 

A two two-stage predictive architecture which includes classification and regression is proposed in this 

study. The architecture first predicts if there is a risk or not; then if there is a risk, regression is performed to 

quantify the risk, and appropriate actions are then recommended for its mitigation. Thus, the two-stage predictive 

architecture depicted in Fig. 3, consists of a classification model, which determines the likelihood of an accident 
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and five regression models that predict relevant information such as possible injured body parts, damage to 

equipment, and environment (trees, water pipes, gas pipes, etc.). The Interpretable Machine Learning (IML) is an 

R package (R Development Core Team & R Core Team, 2016) that offers a general toolbox for making ML 

models interpretable. Some examples of interpretability methods can be produced using IML include partial 

dependence plots, individual conditional expectation (Goldstein, Kapelner, Bleich, & Pitkin, 2015), feature 

importance, global surrogate tree (Molnar, Casalicchio, & Bischl, 2018), etc. As shown in Fig. 3, feature selection 

as a specific approach for model interpretation is indicated with the IML selecting a subset of features 

𝑥1, 𝑥2, … 𝑥𝑝, 𝑤ℎ𝑒𝑟𝑒 𝑝 < 𝑛, that are useful in building a good predictor for each response variable.  

 

3.1. Description and Building of Models 

After data pre-processing, we split the dataset (16900) into 60% (training set), 20% (validation set) and 20% 

(test set) to implement the models. Specifically, 10140 observations to build the models, and the remainder (6760) 

are employed for validation (3380) and testing (3380). We built six DNN architectures comprising a classification 

model (DNNclassify) and five regression models (DNNreg1, DNNreg2, DNNreg3, DNNreg4, and DNNreg5) using the 

training data in H2O framework using different control parameters. H2O is an open source CRAN package, high-

speed, and Java machine learning library software, designed with distributed algorithms scale to big data 

(Kochura, Stirenko, Alienin, Novotarskiy, & Gordienko, 2017). H2O has an interface to Python, Scala, R, Spark, 

and Hadoop. 

According to Al-Rahhal et al. (2016), finding an optimal structure of deep neural networks is a means of 

examining its sensitivity. In order to obtain the best validation results for the DNN models, there is need to find 

an optimal structure of the neural network (number of hidden layers, number of activation units in each layer, and 

activation functions) and control hyper-parameters, we used a random search. A random search approach is many 

times more efficient than the grid search method (Tixier, Hallowell, Rajagopalan, & Bowman, 2016). Also, we 

objectively evaluate all DNN models with respect to architecture since the network architecture plays a major role 

in improving the classification or prediction accuracy (Lee, Grosse, Ranganath, & Ng, 2009). Control parameters 

(i.e. Table IV for DNNreg1) were tuned to maximise each model’s prediction accuracy on unseen data. For instance, 

for each DNN model, we apply different hyper-parameter combinations using the random search, and optimal 

control settings are determined by a 5-fold cross-validation with 10% holdout. The validation step helps to prevent 

overfitting by comparing the performances of the prediction algorithms that were created based on the training 

set and selecting the algorithm with the best performance metric. In this case, an algorithm with the least Mean 

Absolute Error (MAE) is chosen as suggested (Tixier et al., 2016). The accuracies of different DNNreq1 network 
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structures for instance, with respect to MAE, is depicted in Fig. 4. We settled for the optimal structure with two 

layers (180 neurons in each layer), Rectifier activation function, ℓ1 = 1𝑒 − 4 , ℓ2 = 1𝑒 − 6, and epoch =30. This 

structure has the least MAE (0.7964) value. Besides, we found out that for this specific regression problem the 

higher number of neurons were not making a significant difference in the accuracy of the model and therefore we 

chose fewer neurons to reduce network’s complexity. We annotate this optimal topology by appending ‘2’ to the 

appropriate plot positions.  The architectures of other DNN models are determined accordingly, and appropriate 

optimal hyper-parameter values were obtained. 

 

 

Fig. 3. Conceptual framework of DNN H&S risk prediction  

 

Table IV. Hyper-parameter Combinations 

Parameter List 

Activation function Rectifier, Maxout, RectifierWithDropout, Tanh, TanhWithDropout, etc. 

layers 1, 2, 3, 4 

neurons 40, 100, 180, 270, 500 

rho 0.9, 0.999 

epoch 10, 30, 50, 100 

epsilon 1e-10, 1e-4 

ℓ1 regularisation 0, 1e-4, 1e-8, 1e-7 

ℓ2 regularisation 0,1e-4, 1e-6, 1e-7 

input_dropout_ratio 0, 0.05 
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Fig. 4. Accuracy of DNNreg1 configurations with MAE as the metric 

Although, several optimisation algorithms such as Least-squares methods (Gauss-Newton, Levenberg–

Marquardt), quasi-Newton methods (i.e. Broyden–Fletcher–Goldfarb–Shanno (BFGS)) amongst others abound. 

These methods are computationally too expensive for large NNs (Schmidhuber, 2015). Conjugate gradient (CG), 

Limited-memory-BFGS (L-BFGS) and other methods are fast alternatives to these algorithms. However, the CG 

algorithm, in general, requires more cycles to reach the minimum while L-BFGS can overfit on a small training 

set (Bengio, 2012). 

SGD algorithm is a fast training procedure for reducing the cost or loss function (computing a gradient over 

all training samples), compared with other optimisation techniques (Bottou, 2010). The algorithm computes 

outputs, errors and the average gradient of observations, and adjusts the weights where necessary. Using a 

parallelisation technique with a suitable DNN architecture, advantages of the SGD algorithm over L-BFGS 

increase as the training set size increases (Bengio, 2012). We applied the parallelised SGD (Recht, Re, Wright, & 

Niu, 2011), which models a lock-free shared-memory system where each processor independently performs 

stochastic gradient updates. The lock-free stochastic gradient keeps a global result vector and allows each 

processor to update the vector without considering other processors. Under certain conditions, this asynchronous 

procedure preserves the convergence of stochastic gradient methods and results in ample speed-ups for many 

available cores. All models tuning, training and prediction were performed using the H2O framework in R. We 

adopted H2O because it is a fast and scalable open-source framework for machine learning applications. 

 

3.2. Effect on Small and Bias Data 

Naturally, DNN is synonymous with big-data applications (LeCun et al., 2015; Mayr et al., 2016) and it 

results in overfitting when used on a small dataset. We incorporated a dropout technique, combined with SGD in 

the training procedure, to reduce overfitting. Data veracity refers to the presence of biases, noise and abnormalities 
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in data (Daniel, 2017). Data imbalance is a form of bias in ML, where the class distribution is not uniform among 

various classes. For instance, missing data also represent an aberration in data, which could significantly affect 

prediction. The DNN structures used in this study (insensitive to imbalanced data) are similar to the classic DNN 

(Larochelle, Bengio, Louradour, & Lamblin, 2009). The H2O framework automatically performs mean 

imputation for missing values during training.  

 

3.3. Performance Metrics for Model Verification 

We measure the predictive accuracies of all models on test cases to assess their generalisation abilities as 

suggested by Lecun et al. (2015). We use the following performance metrics: accuracy, sensitivity, specificity, 

AUC, Kappa coefficient, and R-squared. Sensitivity, specificity, and AUC are commonly used to compare a 

model’s predictions against the ground truth.(Gibson & Patterson, 2017; Vallmuur, 2015) There are standard ways 

of interpreting each metric. For instance, the Kappa coefficient has values less than or equal to one. We categorised 

these values as defined in (Landis & Koch, 1977) as follows: a value that is less than 0 indicates no agreement, a 

value between 0 and 0.21 indicates slight agreement, between 0.21 and 0.41 is fair, from 0.41 to 0.61 is moderate, 

from 0.61 to 0.80 is substantial, and a value between 0.81 and 1 represents perfect agreement. Similarly, for the 

regression models, we objectively evaluated each model’s performance with respect to the different architectures 

using Mean Absolute Error (MAE) and Root Mean Squared Error (RMSE). MAE and RMSE are scale-dependent 

metrics that provide reliable ways to quantify prediction error (Fan et al., 2017). The target is to minimise these 

metrics to obtain the highest prediction accuracy for the model. These metrics are defined as Equations (4)-(5), 

where ti denotes target i, yi denotes prediction i and N is the number of testing observations.  

𝑀𝐴𝐸 =
1

𝑁
∑|𝑡𝑖 − 𝑦𝑖|

𝑁

𝑖=1

     (4) 

 

𝑅𝑀𝑆𝐸 = √
1

𝑁
∑(𝑡𝑖 − 𝑦𝑖)

2

𝑁

𝑖=1

      (5) 

We determine the models’ complexities by computing the time spent training each model. The computational 

tool on which the simulation was carried out was a MacBook Pro (Intel Core i7 processor of 2.5 GHz and random 

access memory of 16 GB) and it was modelled using the R language.  

 

3.4. Model Benchmarking 

To proof the worth of deep neural networks in terms of accuracy, we compared the performance of the deep 

learning classification model (DNNclassify) and one of the developed DNN regression models (DNNreg2), being the 
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least in respect to prediction accuracy with a null model (neural network with one hidden layer) and a gradient 

boosted model (GBM). GBM is a generalisation of tree boosting that attempts to produce an accurate and effective 

procedure for data mining. GBM is a powerful and popular technique with proven ability for problems relating to 

predictions in various fields (Liu, Zhang, & Shen, 2012; Liu, Li, Tan, Zhu, & Wang, 2014). It is also worth 

mentioning that all the three models were trained on the same dataset. We omitted part of the dataset from the 

training set and used it for testing the prediction performance of the null model, DNNreg2 and GBM models. In the 

first part, a regression problem where body part injured is tackled, and in the second part a classification problem 

to predict the possibility of a risk occurring. For the first problem, the tuning parameters for the optimal GBM 

model, in this case, are the number of trees (200), interaction depth (8), and learning rate (0.1). We illustrate a 

regression problem by predicting injury to body parts to compare the performance of the models. Table V 

summarises the Mean Square Error (MSE), Mean Absolute Errors (MAE), Root Mean Square Error (RMSE), and 

R squared for the null model, DNNreg2, and GBM models. The prediction errors are computed by comparing 

values predicted by the model with the response variable (body part injured) in the test set. Fig. 5 shows error 

frequency distribution for the three models (Null, DNN, and GBM) respectively. It can be seen that the error 

distribution for the DNN and GBM models are highly concentrated near zero, while that of the Null model is 

relatively dispersed. However, the DNN’s prediction accuracy for predicting hazards at construction sites is 

superior to GBM and null models. 

Table V. Prediction Errors 

Model MSE MAE RMSE R2 

Null 5.547 1.773 2.355 0.785 

DNN 1.487 0.744 1.219 0.928 

GBM 2.021 0.932 1.422 0.913 

  

Table VI summarises the three ML techniques classification performance using confusion matrix. The null 

model shows that 1026 false values (i.e., no risk) correctly classified as false, while 77 are wrongly categorised 

as true. Similarly, 874 true values are categorised as true, while 123 are wrongly misclassified. The DNNclassify 

correctly classified 1107 false values (i.e., no risk), and 55 wrongly labelled as true. It also correctly labelled 896 

true values but wrongly misclassified 42 as false (no risk). Likewise, GBM classified correctly 1099 false values, 

59 false values as true, correctly labelled 892 true values, and wrongly misclassified 40 true values as false. 

 



 15 

 

Fig. 5. Prediction error histograms (Null, DNN, GBM) 

Table VI. Classification Confusion Matrix 

Model Actual/Predicted No risk Risk Error 

Null False 1026   77 0.075 

 True   123 874 0.141 

 Totals 1149 951 0.095 

     

DNN False 1107   55 0.049 

 True     42 896 0.047 

 Totals 1149 951 0.046 

     

GBM False 1099   59 0.054 

 True     50 892 0.056 

 Totals 1149 951 0.052 

 

3.5. Models Interpretability 

Interpretability is an essential condition for machine learning models applied in areas such as medicine, 

financial markets, and law (Chen, Song, Wainwright, & Jordan, 2018). The IML implements many model-

agnostic methods (i.e. surrogate tree, Shapley value, Feature extraction, partial dependence, etc.) to interpret a 

DNN model. However, due to space constraints interpretation of models with few model-agnostic methods are 

discussed in the study. Two perspectives are used to interpret the developed DNN models. The first perspective 

is global, which includes feature importance and measuring interactions between predictors. The second 

perspective is local, which tries to explain why an individual prediction was made for a given observation.  
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The feature importance measure was computed by calculating the increase in the model’s prediction error 

after permuting a feature. A feature is “important” if the model error increases by permuting its values, because 

the model relied on the feature for its prediction, while a feature is “unimportant” if permuting its values keeps 

the model error unchanged. The outputs of some of these are shown in Fig. 6. For example, the ranking of 

predictors for DNNclassify, DNNreg2 and DNNreg3 in order of their importance are depicted in Figs 6a, 6b, and 6c. 

Feature “experience” is the most important variable for DNNreg2 with an error increase of 5.82 after permutation. 

Similarly, predictor “activity” is the most influential for DNNreg3 with an error increase of 4.87 after permutation. 

The feature selection as determined by IML for all the models has the following as the most significant predictors 

for PT&D project risks management are project type, complexity, equipment, activity, duration, climatic 

condition, location and working surface. Many of these predictors have been used in previous studies to predict 

health and safety risks. For instance,  project type, location, activity (Törner & Pousette, 2009) were used for 

prediction. The work activity, complexity, location, equipment, climatic condition have also been used to estimate 

the spatial distribution of work accident risk (Bailey, Cordeiro, & Lourenço, 2007; Raviv, Shapira, & Fishbain, 

2017). 

Measuring interactions determine how strongly features interact with each other. To measure interactions, 

the H-statistic proposed by(Friedman & Popescu, 2008) is used. This statistic measures how much of the variation 

of the predicted outcome depends on the interaction of predictors. The interaction strength is zero when there is 

no interaction at all and one if all variations of the predicted outcome depend on a given interaction. Interactions 

between predictors of DNNreg1 and DNNreg4 are depicted in Fig. 6(d) and 6(e). The predictor 

“employment_contract” exhibits the strongest interaction signal for DNNreg1  and the remaining other relevant 

features contributing to lost days (loss time) are climatic conditions, equipment, lineman’s experience, distance to 

sites amongst others. For DNNreg4, the predictor “project_type” has the strongest interaction signal while other 

important features contributing to equipment damage are location, project complexity, equipment state, amongst 

others. The partial dependence plot (PDP) and individual conditional expectation (ICE) curves can be used to 

show effects of a relevant predictor (i.e. experience) on the response (body part injured) for its entire range of 

values (i.e. experience levels: 1-fresh, 2-mid-level experts, or 3-experts) of a lineman. Fig. 6(f) depicts PDP in 

thick yellow (averages of all observations for each response class) and ICE curves to compare the marginal impact 

of the feature "experience "on the occurrence of an injury to body parts (body injury) while a lineman is carrying 

out a construction task.  
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Fig. 6. DNN models interpretation (Feature importance, Interaction strength and Partial dependence) 

 

The DNN model (DNNreg2) captures a non-linear and a monotonic decrease in the occurrence of an injury 

to body parts. Experience of a lineman on the task reduces the probability of injury to body parts. In addition, a 

local interpretable model-agnostic explanations (LIME) (Ribeiro, Singh, & Guestrin, 2016) was implemented 

(Figs 7(a) and 7b) to provide local explanations for models. For instance, Fig. 7(a) fits a local model to the DNNreg2 

model for the observation (i.e. a lineman) with the lowest probability for ankle/feet injury by looking at ten 



 18 

features in the DNNreg2 model that are most influential. As shown in Fig. 7a, features activity (i.e. wiring), 

equipment state (i.e. good state), time (i.e. morning), and equipment (i.e. pliers) have little influence on this 

lineman having an ankle/feet injury while working on a given workplace terrain. 

 

 

Fig. 7. Interpretation of DNN models (LIME and Surrogate models) 
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However, features such as "experience", "day", "working surface", and "PPE kit type" have a sizable 

influence on the occurrence of an ankle/feet injury for this observation. Similarly, a surrogate model was used to 

interpret the deep learning models (Figs 7c and 7d). Fig. 7(c) for example, shows a decision tree to mimic the 

DNN_classify model in respects to accident (risk) probability, with “project_type”, “complexity”, “cost”, and 

“season” being the most discriminative features for risk prediction.  

As depicted in Fig. 7(c), an overhead or underground PT&D cabling project (𝑡𝑦𝑝𝑒 ∈ {1,2}) either a new 

build or refurbished i.e. 𝑐𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦 ∈ {1,2}, has probability of risk around 0.97, around 0.75 (if less costly i.e. 

cost=1) or around 0.98 (if costlier i.e. 𝑐𝑜𝑠𝑡 ∈ {2,3,4}). For a new build substation project requiring repairs i.e. 

type=3 and 𝑐𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦 ∈ {1,3} and 𝑠𝑒𝑎𝑠𝑜𝑛 ∈ {1,2,3}, the probability of a risk is around 0.00, and around 0.73 

(if season =4). The probability of a risk is around 0.98 for project type= 3 (substations) and complexity =2 

(refurbished). These decision rules can help safety managers to better identify risks accurately and provide 

mitigation plans based on project characteristics. For instance, if an accident is expected to occur on site with a 

given probability (say 73%) safety managers having this information can adjust project schedules to alter this 

estimation or eliminate the risk. Fig. 7d is interpreted in a similar manner. 

A sensitivity analysis to identify predictors that potentially influence response variables was done using the 

Lek profile method (Gevrey, Dimopoulos, & Lek, 2003). The lekprofile function (Beck, 2018) was used to 

evaluate the effects of predictors by returning a plot of model predictions across the range of values for each 

predictor with the remaining explanatory variables constantly held while evaluating the effects of each predictor. 

A typical illustration is made to show the influence of predictors on the response variable lost days (loss time) at 

a typical PT&D construction site. Key factors potentially relating to "loss time" are extracted by the deep learning 

model (in this case, DNNreg1) from the dataset. They include lineman's experience, activity, distance to the site, 

climatic condition, equipment, and the type of the PPE kit. We scaled and centred the predictors and scaled the 

response variable to 0–1. The result from the lekprofile function (Fig. 8) shows non-linear responses that vary by 

different groupings of the data. Values for each variable in the different unevaluated groups (based on clustering) 

show that there were no apparent patterns between groups, with the exception being group five that had higher 

values for the PPE type. As the interpretable aspect of models developed in the study has revealed, the key features 

H&S managers should consider when implementing a robust safety strategy for the power infrastructure project. 

The features are “activity”, “equipment”, “experience”, “project_type”, “project_complexity”, location, etc. 

Though, these attributes have been identified in previous studies (Cheng et al., 2012; Cheng, Lin, & Leu, 2010; 
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Chi & Han, 2013) as sources of accidents, this study has also identified additional key attributes namely 

“distance_to_site”,” shift pattern”, and “PPE_kit_type”.   

 

 

Fig. 8. Sensitivity analysis of DNNreg1 using the Lek profile method  

 

Long hours of commuting to sites, long shift sequences, and long hours are associated with increased fatigue, 

decreased alertness and concentration, increased errors, heart attack, musculoskeletal disorders, and resentment 

at work (Hoehner, Barlow, Allen, & Schootman, 2012; Kivimäki, Nyberg, Batty, Madsen, & Tabák, 2018). A 

human error which depends on sleep-related factors is an essential factor in work accidents. Contractors may 

supply sub-standard or inappropriate kits that may not last or put the wearer in risk. In tackling these issues, 

additional staff training increased inspections, and flexible working practices should be done to prevent accidents. 

Also, PT&D organisations should endeavour to make available gyms to stimulates and refreshes the brain. 
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Besides, state-of-the-art technological innovations should be embraced. For example, remote-controlled 

equipment and intelligent machines can significantly alleviate operators’ exposure to hazardous sources. 

 

3.6. Prediction Ability of Deep Learning for H&S Risks   

To verify all models (DNNclassify, DNNreg1, DNNreg2, DNNreg3, DNNreg4, DNNreg5) applicability, they were 

tested on the test data (20% of the H&S event data) that were not replicates or used in the training process to 

determine their generalisation and prediction abilities. The prediction results of all the DNN models are noted and 

recorded. The confusion matrix and other metrics depicted in Table VII illustrate the performance of DNNclassify 

to predict whether or not accidents will occur given any PT&D project parameters. The model achieved an 

accuracy of 0.9325 (~ 93%), and an estimated AUC value of 0.9331 for the proportion of correctly ranked 

“positive”-“negative” pairs. Figs. 9 and 10 depict both DNNreg1 and DNNreg2 prediction accuracies tested on 

randomly sampled 16 PT&D infrastructure projects executed between January 2015 to December 2016. Fig. 9 

depicts the number of days (“Loss time”) that an employee is absent from work due to injury, as predicted by 

DNNreg1 (R2=0.946). In Fig. 9, we observe that the majority of values of the dependent variable “Lost time” (shown 

between the two horizontal dashed lines) in the test data are between 1 and 4 days, with the following frequencies: 

22% (1 day), 17% (2 days), 11% (3 days), and 17% (4 days), giving a total of 67% of lost days between 1 and 4. 

There is, therefore, the need to reduce these lost times (days) during the project execution. Thus, the proposed 

H&S risk management tool provides a platform for stakeholders to investigate both current and future PT&D 

projects concerning probable risks and implement appropriate avoidance strategies before accidents occur. 

 

Table VII. Confusion Matrix and other Performance Metrics 

 Actual 

Predicted  No risk Yes risk 

No risk 2507 59 

Yes risk 183 837 

    

 Performance metrics  

Accuracy 0.9325 

Kappa 0.8279 

Sensitivity 0.9320 

Specificity 0.9342 

AUC 0.9331 
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Fig. 9. Predicted vs actual number of lost days (DNNreg1) 

 

Similarly, in Fig. 10, we depict the ability of DNNreg2 (R2 = 0.928) to predict the injured body part of linemen 

from 16 H&S event test data consisting of overhead lines projects where a specific activity “tower erection” was 

carried out. Correctly predicted body parts from the test data are shown in green, while incorrect predictions are 

indicated in red. DNNreg2 predicted correctly injured body parts for approximately 70% of the projects except for 

those labelled 2, 7, 8, 11, and 15, but despite this, the predicted body parts are in proximity to targets with respect 

to their locations in the body. For instance, for project 7, ‘neck’ as target but ‘shoulder’ was predicted. Similarly, 

for project 8, ‘knee’ is the target but ‘foot’ predicted.  In summary DNNreg2 (Body injury) predicted the body parts 

Fingers, Ankle, Back/Buttocks, and Knee, which are frequently prone to injuries. This result is in agreement with 

various studies (Aasa, Barnekow-Bergvist, Angquist, & Brulin, 2005; Fan et al., 2014; Sanchez et al., 2015). 

These results established the good generalisation ability of the model: for a given input, the model could 

reasonably predict the dependent variables that defined incidents in power infrastructure projects. In terms of the 

training time, the complexities of all the deep learning architectures for the six models are less complicated in 

terms of the reduced training times used to build them. We attribute this to the parallelised SGD used as the 

training algorithm, in addition to today’s Graphics Processing Unit (GPU)-based computers, which have a million 

times the computational power of a desktop (Schmidhuber, 2015). Thus, the developed DNN models will execute 

conveniently on most machines. Prediction accuracies of all DNN models on the test data are depicted in Table 

VIII. From the results of predictive modelling, we discover that the key sources of incidents in power 

infrastructure projects are “caught in/between”, “struck by/between”, “cutting”, “driving on uneven ground” and 

“falling objects”. These sources cause injuries to body parts such as fingers/thumbs, back/buttocks, hands and 

ankles, which are essential for carrying out plant- and equipment-related operations such as lifting, loading, 

cutting, and pulling (Chi & Han, 2013). 
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Fig. 10. Predicted vs. actual injured body parts (DNNreg2) 

 

Table VIII. Prediction Accuracy of Models 

Name Four key predictors Type Performance 

metrics 

Values 

DNNclassify Project type, complexity, season, and 

duration 

Classification Accuracy 0.9325 

AUC 0.9331 

DNNreg1 Experience, activity, climatic conditions, 

working surface layout 

Regression MAE 0.7105 

R2 0.9463 

DNNreg2 Experience, activity, distance to site, 

working surface layout 

Regression MAE 0.7440 

R2 0.9282 

DNNreg3 Location, activity, operator experience, 

PPE kit type 

Regression MAE 0.6075 

R2 0.9356 

DNNreg4 Activity, operator’s experience, 

equipment’s age, equipment state 

Regression MAE 0.6121 

R2 0.9382 

DNNreg5 Working surface layout, location, 

activity, equipment 

Regression MAE 0.6302 

R2 0.9472 

 

In Table IX, we show the proportions of injuries to the five most frequently injured body parts.  Accordingly, 

using appropriate protective equipment such as gloves, helmets, and boots should be encouraged to reduce the 

number of incidents. Similarly, there is a need for mechanisation or automated lifting and loading equipment that 

requires minimal human interaction. Excavation operations are the source of damage to utility services in 45% of 

incidents. This is attributed to lack of data on positions of buried utilities, ground terrains, and misjudgements by 

machine operators. Relevant data on soil conditions should be explored before excavating. Additionally, using 

automated detection tools to locate utility service positions should be encouraged. Damages to vehicles (windows, 

windscreens, bumpers, bonnets, front and rear lights, scratches, dents and punctured tires) represent the highest 

proportion of damage incidents to plant and fleet (30%). Sources (ranked by prevalence) are “vandalism by a third 

party”, “weather”, “uneven terrain”, “animals”, “road traffic accident”, and “drivers’ errors”.  Safety knowledge 
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management and training should be intensified to ensure that workers can identify safety signs and hazards. The 

ability to perceive hazards is strongly related to safety performance (Zhou, Goh, & Li, 2015). 

Table IX. Proportions of Injuries to Body Parts 

 

 

 

 

 

 

 

3.7. Implication for Practice 

This study offers some implication for practice in terms of the following: 

1. Efficient H&S risk assessment- The most common problem of risk management practices in the pre-

project stage is ineffective risk identification practices. The tool developed in this study provides an 

effective way to forecast and visualise risk-related events that may emerge during the PT&D project 

execution. The tool adopts a robust text mining approach that is used to process and extract meaningful 

patterns from the dataset. Currently, risk assessment practices involve a high level of subjectivity due to 

over-reliance on intuition, judgment or the individual experience of decision-makers when predicting 

H&S risks and their impacts on project goals. The tool, therefore, offers H&S managers precise 

methodology data to assess the risk level of any PT&D project. The assessment will reduce 

inconsistencies and vagueness in risk ratings. Besides, the tool provides information about the status of 

all projects in respect to probable H&S risks and appropriate mitigation strategies. Thus, the tool will 

allow H&S managers to oversee several PT&D projects at the same time efficiently. In addition, the 

models developed have also revealed the key features that H&S managers should consider when 

implementing a robust safety strategy for a safe environment. In addition to “activity”, “equipment”, 

“experience”, “project_type”, “project_complexity”, location, etc., this study has also identified 

additional key attributes namely “distance_to_site”,” shift pattern”, and “PPE_kit_type.”   

2. A user-interface for H&S risk analysis and new data for future study- The developed deep learning 

models are incorporated into a software module with a rich user output, which enables H&S managers 

to make practical, informed decisions in the field. Similarly, the tool allows for effective methods of 

collection and storage of new data to address the data limitation problem caused by inefficient data 

logging methods currently employed. The new data could be used to support continuous deep 

Body part Proportion 

Fingers/Thumbs 21% 

Back/Buttocks 13% 

Hand 10% 

Ankle 09% 

Knee 08% 
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reinforcement learning to improve the H&S risk prediction and exhaustive sensitivity analysis for 

performance verification. Predictions and follow-ups by H&S managers will improve risk management. 

3. Future tool development for H&S risk analysis- This study could also influence the H&S risk 

management practices in the power infrastructure environment. Although several studies suggest that 

deep learning and Big Data technologies capability are critical for efficient risk management, deep 

learning techniques for H&S risk management are often ignored in the construction safety research 

community. The increasing success of deep learning techniques in other fields and the governments’ 

commitment to H&S reforms have compelled more industry practitioners to integrate robust risks 

management practices into the H&S software. This study, therefore, provides a clear direction on how 

to achieve this by combining deep neural networks and big data technology for H&S risks management 

in a PT&D environment. This study also has vast implications for H&S software developers. The recent 

advances in machine learning techniques and Big data technologies show that innovation within the HSE 

industrial practices requires H&S compliance. Besides, complex, and repetitive power infrastructure 

tasks need to be automated to achieve the expected reliability and efficiency. As such, the framework 

employed in this study and the H&S risk tool development process serves as a blueprint for developing 

H&S risk-enabled software for PT&D H&S risk management and related tasks. 

 

4. MODEL USER INTERFACE 

We develop a front-end system called Incident Reporting for Power Infrastructure Projects (IRePIP) using 

the Python language, which will enable users to make informed decisions regarding H&S events. This system 

allows input parameters to be specified by users. The interface triggers DNN models to predict the occurrence 

likelihoods of H&S events. The system notifies stakeholders of probable risks to humans, equipment and the 

environment associated with certain operations (excavating, wire pulling, loading), along with appropriate 

recommendations to mitigate such risks. For instance, as shown in Fig. 11, the body parts that are most likely to 

be injured are graphically indicated to allow safety managers to prioritise H&S risk factors according to their 

likelihoods of occurrence. Thus, adequate attention is paid to these risk factors when controlling incidents to 

achieve a safer environment.  

The system communicates probable consequences and recommends appropriate plans (improved equipment 

and maintenance, improved training, work procedures, etc.) to mitigate identified incidents, even before 

mobilising staff to the sites. 
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Fig. 11. User interface 

 

 

5. CONCLUSIONS  

Despite the availability of H&S incident data, utilising them to effectively mitigate accident occurrence is 

challenging because of the data logging method that is employed for recording incidents. Free-text format is often 

used to describe incidents in databases. For a database that has grown to a considerable size, analysing and 

identifying relevant information may be difficult for humans. Similarly, in the H&S research community, new AI 

techniques (deep neural networks, convolution neural networks,  recurrent neural network, etc.) have often been 

ignored despite their considerable attention in other research fields (LeCun et al., 2015). This study explored the 

deep neural network method in power infrastructure projects and prompted the readers to explore its usefulness 

especially in predicting H&S risks at power infrastructure construction sites. In contrast to traditional machine 

learning and artificial intelligence approaches, the deep learning has demonstrated due to its success that 

predictive accuracy can be enhanced, and expert feature engineering dispensed with, by fitting highly flexible 

models that are capable of learning novel representations. We implemented DNN models and a user interface to 

predict H&S risks in power infrastructure projects to minimise costs (third-party insurance, repairs to utilities and 

equipment). We utilised a text mining approach for the following: to process free-text columns, investigate events 

using word combinations, and complete columns with missing entries. We fill in the remaining missing entries 

(less than 10%) in the database using the mean imputation method. In the context of this study, we perform risk 
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assessment by giving higher priority to accidents that result in nonfatal injury or damage to the plant, fleet, 

underground utilities or other facilities. The DNN models are developed coherently using the H2O framework in 

R software. We evaluated the DL models on unseen data and obtained high prediction accuracies. The 

classification model achieved an AUC of 0.93, while the regression models had mean absolute errors in the range 

of 0.91 to 0.94. Regarding the computational aspect, the training times required by the models are negligible, 

which is evidence of the method’s computational efficiency. This research is valuable for stakeholders who need 

information regarding probable H&S risks to design strategies and safety measures to mitigate such risks. 

The adopted approach proved that employing DL in engineering and related tasks is timely. This is because 

the industry is becoming conscious of the need to collect massive amounts of unstructured data and to elicit 

meaningful values for decision-making. As such, using DL will offer an edge in extracting useful insights from 

huge data sets. In future work, we hope to develop a mobile version and interface the server with real-time data 

sources (such as British Geological Survey, Google terrain and Metrological office). The biggest issue with the 

deep learning is its black-box problem (how outputs are arrived at), and theories to interpret its results are still 

unavailable. Despite this challenge, most machine learning researchers still consider deep learning as the most 

effective and supervised machine learning approach due to its high predictive accuracy (Bengio, 2012; LeCun et 

al., 2015). In the future, we will explore the use of visualisation techniques to interpret deep learning outputs. This 

study implies that the deep learning models developed have revealed key predictors that H&S managers in power 

infrastructure should consider when implementing a safety strategy to help reduce accidents; the integration of 

DNN with IML will also assist managers and future scientists in deep learning models’ interpretation. Also, the 

rich user-interface developed will provide an opportunity of not only predicting injuries to personnel but providing 

a holistic platform for predicting damages to equipment, environment, and plant and fleet, which will help to 

manage H&S in an effective and efficient manner. 

A major limitation of this study is that we used a single point of data collection. We hope to obtain more 

data from several heterogeneous sources and carry out in-depth analyses on other types of DL architectures. 

Furthermore, techniques such as genetic algorithms and fuzzy logic will be used in conjunction with DL to 

enhance insights into data. 
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