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3 Lab-STICC, Université Bretagne Sud, Lorient, France

{alexandru.olteanu, jean-philippe.diguet}@univ-ubs.fr
4 Thales Group, France

{christophe.labreuche,jacques.petit-frere}@thalesgroup.com
5 University of the West of England, Bristol, United Kingdom

pritesh.narayan@uwe.ac.uk

Abstract. Due to the nature of autonomous Unmanned Aerial Vehicles
(UAV) missions, it is important that the decisions of a UAV stay consis-
tent with the priorities of an operator, while at the same time allowing
them to be easily audited and explained. We therefore propose a multi-
layer decision engine that follows the logic of an operator and integrates
its preferences through a Multi-Criteria Decision Aiding model. We also
propose an incremental approach to elicit the operator’s preferences, in
view of minimizing his/her cognitive fatigue during this task.

Keywords: autonomous UAV ·multi-layer decision engine ·multi-criteria
decision aiding · operator’s preferences · traceable decisions.

1 Introduction

Autonomous Unmanned Aerial Vehicles (UAVs) are capable of carrying out var-
ious types of missions (military or civilian). Throughout the mission, they are
facing multiple choices and have to make many decisions without any human
input. This decision making task requires that multiple, potentially conflicting,
criteria are taken into account in order to achieve the mission’s and the opera-
tor’s objectives. In addition, in order to increase his/her confidence in the UAV’s
behavior, its decisions should be consistent with the priorities of the operator.

A lot of research deals with the decisions of autonomous UAVs through the
perspective of trajectory calculation taking into account different constraints
and objectives, by using optimization techniques [4, 13, 2]. Recently, deep learn-
ing techniques have also been used to tackle decision problems of autonomous
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UAVs, as, e.g., the path planning problem [6] or the selection of high level direc-
tives [24, 15]. In [17] the authors suggest to integrate the operator’s perspective
into the calculation of trajectories for autonomous UAVs, and propose to use
techniques from the field of Multi-Criteria Decision Aiding to model the opera-
tor’s preferences. They ground their proposal on the hypothesis that an operator
will trust the behavior of an autonomous UAV if it makes decisions that are con-
sistent with his/her priorities.

We start from the same observation as [17], but propose to integrate the
preferences of the operator even more deeply in the various decision making
tasks of autonomous UAVs. We therefore develop in this contribution :

– a multi-layer decision engine for autonomous UAVs, which mimics the logic
adopted by operators during a non-autonomous mission,

– the integration of a Multi-Criteria Decision Aiding model, called SRMP [19],
into this decision engine, which allows the autonomous UAV to select the
appropriate high-level action to be executed during the mission,

– an incremental preference elicitation approach to tune the SRMP decision
model according to the preferences of the operator, while minimizing his/her
cognitive fatigue during the learning process.

We also demonstrate the interest of our proposal through a simulator, in which
we can test the influence of different operator profiles on the UAV’s behaviour.

The article is structured in the following way. Section 2 provides a state of
the art on UAVs and their decision making processes, as well as existing work on
Multi-Criteria Decision Aiding and incremental preference elicitation. Section 3
presents an overview of the proposed multi-layer decision making engine while
a detailed description of the considered preference model is given in Section 4,
next to our proposal for an incremental preference elicitation procedure. A val-
idation of our proposal, through a UAV simulator that we have developed is
then presented in Section 5, before finishing with some concluding remarks and
perspectives for future work in Section 6.

2 State of the art

2.1 Decisions in autonomous UAVs

From a general point of view, plenty of work focuses on trajectory calculation
while taking into account different constraints and objectives. Blackmore et al.
[4] present an approach to calculate the optimal trajectory in the presence of
obstacles and uncertain information, while Kabama et al. [13] illustrate and ap-
proach to calculate the optimal trajectory for combat UAVs by avoiding radars.
Some approaches also address the calculation of the trajectory in a non-convex
environment with uncertainties [2]. All these methods construct objective func-
tions that integrate the different quality measures of the solution in order to
find the optimal trajectory, however, the weighting of these measures is gener-
ally done more or less arbitrarily.
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Delmerico et al. [6] propose to use deep learning techniques, and more specif-
ically Convolutional Neural Networks (CNNs), for path planning in the context
of collaborative search and rescue missions. Deep learning is also used to present
a solution for UAV localization and cross-view localization of images [25]. Con-
cerning the UAV navigation task, some advances have led to the application of
CNNs in order to map images to high-level behavior directives (e.g., turn left,
turn right, rotate left, and rotate right) [24, 15]. Due to resource limitations, the
learned model is executed off-board, on the GPU of an external laptop. The
work presented by Tipaldi and Glielmo [27] integrates Markovian Decision Pro-
cesses (MDP) for spacecraft reconfiguration in order to deal with the uncertainty
in the outcome of actions and is applied to autonomous mission planning and
execution.

Using a drone with a high level of autonomy to perform a mission requires
that the human operator has a high degree of confidence in the capacity of the
drone to make the “right” decisions. This observation motivated Narayan et
al. [17] to integrate preferences into the calculation of the objective function in
order to generate trajectories that more accurately represent the preferences of
an operator (and therefore may differ from one operator to another). They use
a decision model from the field of Multi-criteria Decision Aiding.

2.2 Multi-criteria Decision Aiding and (incremental) preference
elicitation

In this article, we start from the same observation as [17], but propose to in-
tegrate the operator’s preferences into higher level decisions rather than the
calculation of trajectories, as, e.g., the choice between decision actions that the
drone has to perform, as landing, returning to the base, aborting the mission,
skipping a waypoint, etc.

Multi-Criteria Decision Aiding (MCDA) [22, 20] is the study of decision prob-
lems, methods and tools which may be used in order to assist a decision maker
(DM) in reaching a decision when faced with a set of so-called alternatives
(or decision actions), described via multiple, often conflicting, criteria. Vari-
ous methodologies and preference models have been proposed to support DMs
facing a multi-criteria decision problem. Outranking methods [21] compare any
two alternatives, based on the preferences of the DM on the set of criteria, us-
ing a majority rule. Alternately, methods based on multi-attribute value theory
(MAVT) [14] aim to construct a numerical representation of the DM’s preference
on the set of alternatives. In our autonomous UAV context, the DM is the op-
erator, whose preference model is integrated into the drone and is thus guiding
its decisions.

The preference parameters of MCDA decision models can be given directly
by the DM through a direct preference elicitation approach. However, such an
approach is usually too difficult to implement in practice, as the DM needs to
have a very good understanding of the MCDA model. Therefore, a second ap-
proach is to start from partial knowledge on the output of the method, such
as, for example, pair-wise comparisons of alternatives in the ranking context, or
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assignment examples in the sorting context, and then infer the model parame-
ters. This second approach so-called indirect preference elicitation has received
much attention from researchers, as for example in the seminal works of Jacquet-
Lagreze et.al. [12] in the MAVT context and of Ngo The et.al. [26] in the out-
ranking context. These techniques generally determine in one shot a parameters
configuration compatible with the input provided by the DM, and are therefore
not incremental by nature.

Incremental learning focuses on learning the parameters of a decision model
in a streaming setting. Incremental learning algorithms receive learning data se-
quentially, one by one or chunk by chunk, and use this data with the previously
learned model to produce a new, better one, that encapsulates information held
by the data seen so far. Regarding this progressiveness, in the MAVT context,
Durbach [8] and Lahdelma et.al. [16] use an index that quantifies the volume of
the polyhedron of the constraints specifying the possible value functions. They
try to reduce this volume by adding constraints representing pair-wise compar-
isons of alternatives, until they converge to the best solution. Holloway et.al. [11]
show the importance of the order of the pair-wise comparisons in decreasing the
number of questions for reducing the cognitive effort of the DM. Ciomek et.al.
[5] present a set of heuristics to minimize the number of elicitation questions and
prioritize them in the context of single choice decision problems. They conclude
that the best performing heuristic depends on the problem settings (e.g. number
of criteria and alternatives). In the same context, Benabbou et.al. [3] select a
set of pair-wise questions using a minimax regret strategy. This strategy reduces
the number of pair-wise questions but the performance guarantee is weakened
(with some acceptable bounds to the ideal situation).

An incremental learning of the parameters of MCDA models should reduce
the cognitive effort of the DM, as he/she is facing only to a limited number
of questions. As we will show in this article, the decision model that we are
integrating into autonomous UAVs is learned incrementally before the mission,
and it is important that the operator is not overly stressed during this phase.

3 Onboard multi-layer decision engine

The starting point of our proposal is the hypothesis that an operator will trust
the behavior of an autonomous UAV if it makes decisions, which are consis-
tent with his/her priorities. Furthermore, we need a model which can be easily
explained and whose outcomes (decisions) are easily interpretable, so that the
operator can validate the decision engine implemented in the UAV.

Consequently we focus on the logic adopted by the operator during a mission,
in order to define the model of the autonomous decision engine. We first suppose
that, in a non-autonomous context, the human operator does not make decisions
continuously during the flight, but that the decision making act is triggered by
events (e.g. the appearance of an obstacle, a breakdown, a change in the weather
conditions . . . ). Second, still in a non-autonomous context, we also suppose that
when operators have to deal with a complex decision, triggered by an event, they
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tend to decompose it into a sequence of sub-decisions. Consequently, in case of
such an event, the operator will take into consideration possible trajectories (i.e.
which is a sub-decision) while choosing a high level action (e.g. land, continue
the mission, skip a waypoint, . . . ).

Operator's
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Events

Trigger
decision
making ?

No

Sensors

Context

Layer 2

...A
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Criteria

Layer 1

Trajectory
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Fig. 1. Proposed Multi-layer decision engine

Following this reasoning, we propose to decompose the decision-making pro-
cess of the autonomous UAV during the mission into two layers (Figure 1).

Layer 1 consists in the constant monitoring of the progress of the mission
and all the information that might impact its success. Based on the occurrence of
certain events, the second layer may be triggered. These events could be related
to the UAV’s environment (e.g. a change of the flight zone, the appearance of
an obstacle, the detection of heavy rainfall, a mechanical breakdown, . . . ) or
to risk levels (e.g. exceeding a certain threshold of risk towards the drone, the
mission, or the environment, . . . ). While we do not tackle this topic in our current
proposal, a series of rules or even a preference model, that is previously tuned
to the perspective of an operator, may be integrated into the drone.

Layer 2 consists in determining which high-level action (e.g. takeoff, con-
tinue, skip one or more waypoints, return to base, loiter, land, . . . ) is the best
answer to the risks generated by the event from the first layer. The evaluation
of these actions is supplied by the context [1] but also by the trajectories that
the drone will take. The context, which is taken into account within the second
layer, is a set of elements that describes the UAV’s environment. It can include
information about the mission, its objective (e.g. to monitor a target, protect
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a convoy, . . . ) or its current state. Other information related to the drone are
also included in this context which are given by the UAV’s sensors. The sensors’
outputs can be used directly (e.g. GPS coordinates, altitude) or they can be
processed before, while other information regarding its surroundings can also be
used (flight zone map, invisibility zone, weather conditions). A trajectory calcu-
lation module is also included, and can, for example, be implemented through
the work of [17], where an additive MAVT method is used to compute the best
trajectory by respecting multiple criteria and is based on the operator’s prefer-
ences.

In our case, we have retained four such elements, or criteria, but they could
be more diverse, depending on the mission:

– energy consumption [9], corresponding to the amount of energy left after
executing the selected action,

– risk to the drone [23], i.e. the risk associated with flying over different areas
such as forests, sea, military zones,

– risk to the environment, such as people, buildings, in the case of a crash,
– mission progress, which is a weighted percentage of the achieved sub-objectives.

Each operator may view these elements, i.e. the consequences of the possible
decision actions, differently. As a result, a model of the operator’s preferences
has to be constructed prior to the mission. We propose to rank the different
decision actions with respect to their evaluations on the multiple criteria and
the preferences of the operator by integrating a multi-criteria decision model.

4 The multi-criteria decision aiding model

As already mentioned, the DM is the operator, whose preferences must be mod-
eled before including them in the decision engine of the autonomous drone. In
this section, we focus more specifically on layer 2, and show how an MCDA model
can help the drone to make high level decisions, by considering the operator’s
preferences. To guarantee a certain level of trust in the UAV’s decision making
process, the preference model and its consequences should be presented to the
operator in order to be validated beforehand. It is therefore of high importance
that this model is easy to explain to a non-expert of MCDA and that the de-
cision recommendations (the recommended UAV actions which will ultimately
influence the UAV’s behavior) can be easily justified. We chose to implement a
method from the outranking paradigm of MCDA methods, called SRMP (Sim-
ple Ranking Method using Reference Profiles). This choice is motivated by the
following reasons:

– both qualitative and quantitative criteria can be easily integrated;
– the output always corresponds to a pre-order of the alternatives (thus a

transitive relation);
– the output can be easily explained through a series of rules that can be

audited by the operator.

The last point is of particular interest due to the critical nature of the decisions
that an autonomous drone must make during operation.
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4.1 Simple Ranking Method using Reference Profiles (SRMP)

In outranking methods, an “at least as good as” relation is built between pairs
of alternatives evaluated on multiple criteria. This binary relation, called “out-
ranking relation” [21] is often denoted by %. An alternative a outranks another
one, b, i.e. a % b, if there are strong enough arguments to declare that a is at
least as good as b and if there is no essential reason to refute that statement.
Unfortunately, comparing all possible alternatives according to such a relation
may result in cycles in the outranking relation, thus making it impossible to cre-
ate a ranking. It has therefore been proposed by [19] to use a so-called reference
point in the comparison of two alternatives : a is considered as strictly preferred
to b if and only if the outranking relation between a and the reference point is
“stronger” than the outranking relation between b and the reference point. Let
us now show how this is implemented more formally.

We denote with A a set of n alternatives and with M = {1, . . . ,m} the
indexes of m criteria. The evaluation of an alternative a ∈ A on criterion j ∈M
is denoted with aj .

The SRMP method is defined by several preference parameters which need
to be identified beforehand. These parameters are:

– the reference profiles: P = {ph, h = 1, . . . , k} where ph = {ph1 , . . . , phj , . . . , phm}
corresponds to the evaluations of ph on all criteria and phj %j p

l
j ,∀h, l ∈

{1, . . . , k}, h > l, and %j representing the preferential pre-order on the val-
ues of criterion j;

– the lexicographic order of the profiles: σ, which corresponds to a permutation
on 1, . . . , k;

– the criteria weights: w1, w2, . . . , wm, where wj ≥ 0 and
∑
j∈M

wj = 1

SRMP consists in a three-steps procedure as follows:

1. compute C(a, ph) = {j ∈M : aj %j p
h
j } with a ∈ A, h = 1, . . . , k, the set of

criteria on which alternative a is at least as good as profile ph.
2. compare all pairs of alternatives a, b ∈ A to the reference profiles in order to

define the following relations:
– a �ph b⇔

∑
j∈C(ai,ph)

wj >
∑

j∈C(b,ph)

wj

– a ∼ph b⇔
∑

j∈C(ai,ph)

wj =
∑

j∈C(b,ph)

wj

3. rank two alternatives a, b ∈ A by sequentially considering the relations %pσ(1)

,%pσ(2) , . . . ,%pσ(k) (according to the lexicographic order σ):
– a is preferred to b iff:

(a �pσ(1) b) or

(a ∼pσ(1) b and a �pσ(2) b) or

. . .

(a ∼pσ(1) b and . . . and a ∼pσ(k−1) b and a �pσ(k) b)

– a is indifferent to b iff: a ∼pσ(1) b and . . . and a ∼pσ(k) b

p-narayan
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4.2 Illustrative example

Let us show on a small example how the UAV could use this SRMP model to
make decisions. Imagine that the UAV has to select among 3 high level actions
x, y and z, like for example “land”, “loiter” and “skip a waypoint”, once the
second layer of our decision engine has been triggered.

Table 1. Evaluations of the decision actions and SRMP parameters.

R E M R E M

x low 80% 20% p1 low 70% 80%
y high 55% 90% p2 high 35% 40%
z medium 20% 50%

σ {1, 2}

With each of these actions, a trajectory is associated, which has been cal-
culated beforehand by the trajectory calculation module. The three actions are
evaluated on three criteria, the risk (R), the energy consumption (E) and the
mission progress (M), and the result is presented in Table 1. The preference
parameters of the SRMP model, which model the preferences of an operator,
are also given in this table. They have been learned from a prior preference
elicitation process such as the one we will present in Section 4.3.

The two reference profiles allow to define three intervals on the performances
on each criterion: better than p2; between p1 and p2; worse than p1. This allows
to identify intervals of performances as illustrated in Figure 2, such that:

– “good” performances are above p2,
– “intermediate” performances are between p1 and p2 on each criterion,
– “insufficient” performances are below p1 on each criterion.

Let us now follow the steps presented earlier to rank the three alternatives
x, y and z. First we compute C(a, ph) = {j ∈M : aj > phj }, ∀a ∈ A = {x, y, z},
h ∈ {1, 2}, M = {R,E,M} and then compare each alternative to the others
by using the profiles ph, and finally rank the alternatives by considering the
lexicographic order σ = {1, 2}

p1 : ∑
j∈C(x,p1) wj = 1/3 + 1/3 + 0 = 2/3∑
j∈C(y,p1) wj = 1/3 + 1/3 + 1/3 = 1∑
j∈C(z,p1) wj = 1/3 + 0 + 1/3 = 2/3

⇒ y �p1 x
y �p1 z
x ∼p1 z

p2 : ∑
j∈C(x,p2) wj = 1/3 + 1/3 + 0 = 2/3∑
j∈C(z,p2) wj = 0 + 0 + 0 = 0

}
⇒ x �p2 z
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Fig. 2. SRMP example

The final ranking is thus y � x � z, hence y is globally the best alternative,
followed by x and then z. This result can be explained to the operator in the
following way: y is better than all other alternative because it does not have any
“insufficient” evaluations, while x and z have one “insufficient” evaluation on
criterion M, respectively E; x is better than z because it has “good” evaluations
on criteria R and E while z does not have any “good” evaluations. The drone
will thus implement decision y and its corresponding trajectory.

4.3 Incremental preference elicitation for SRMP models

Olteanu et al. propose in [18] to learn the preference parameters of SRMP mod-
els from a set of pairwise comparisons of alternatives given by a DM in one
iteration. They thus formulate SRMP preference elicitation as a mixed integer
linear program (MIP), and show that to obtain an expressive preference model,
this learning algorithm requires quite a few pairwise comparisons of alternatives
as inputs.

Model
inference

(MIP)

Updated
SRMP
model

Operator

Pair selection
(heuristic)

Database of
real pairs of alternatives

Binary
comparisons

Elicitation

Fig. 3. Incremental learning process
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In order to reduce the cognitive effort of the operator during the preference
elicitation process, we propose an incremental learning process for SRMP models
presented in Figure 3, which should reduce the number of pairwise comparisons
of alternatives that the operator has to evaluate. This process is performed be-
fore the mission, and its output (the preference parameters of the SRMP model)
is then integrated into the second layer of our decision engine to configure the
SRMP algorithm presented in Section 4.1. The input of the learning process is
a database D of pairs of alternatives / decision actions (typically, two actions
among which the autonomous UAV would have to choose during a mission).
At each iteration a heuristic selects a pair of alternatives (a, b) from D and the
operator expresses his / her preferences by answering a pair-wise comparison
question: do you strictly prefer alternative a to alternative b, b to a, or are you
indifferent between a and b? His / her answer is then added as a supplementary
constraint in the MIP which infers the new SRMP model parameters. This pro-
cedure is repeated, as depicted by the continuous arrow until a “good enough”
preference model is obtained.

The selection heuristic that we propose in this article, and which we name
Hmp, works as follows. The first iteration is a random selection of a pair of
alternatives from D. Then, at each iteration i, we use the preference model Mi−1
generated in the previous iteration to select the next pair of alternatives. The
idea is to select a pair which, in the current model Mi−1 uses the highest possible
number of profiles in its comparison (ideally a pair considered as indifferent by
Mi−1). By confronting the operator with such a pair, we hope that his/her
answer will generate a new constraint for the MIP which will reduce the size of
the search space, and thus the possible values that the preference parameters
may take.

We start by selecting a pair (a, b) that is indifferent using Mi−1. This means
that for (a, b) all the k profiles have been tested in the SRMP procedure, and
model Mi−1 was not able to say whether a is preferred to b or b is preferred to
a. If there is no such indifferent pair, a pair that uses k profiles in Mi−1 to be
discriminated will be selected. If no such pair exists, we search for a pair using
k − 1 profiles, and so on, until reaching the case of one profile. More formally,
the Hmp selection heuristic selects a pair (a, b) from D such that:

(a ∼pσ(1) b and . . . and a ∼pσ(k) b) or

(a ∼pσ(1) b and . . . and a ∼pσ(k−1) b and a �pσ(k) b) or

. . .

(a ∼pσ(1) b and a �pσ(2) b) or

(a �pσ(1) b).

In order to validate empirically that the Hmp selection heuristic allows to
find a good preference model with a limited number of pairwise comparisons, we
perform some experiments, and compare it to a random selection of the pairs
from the database (we call this heuristic Hrnd).
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These experiments follow the incremental learning process presented in Fig-
ure 3 with an additional test phase to evaluate the quality of the obtained SRMP
model. A database D of 100 pairs of alternatives is used as input for the pro-
posed heuristic. Hmp selects a pair of alternatives from D at each iteration. The
operator of Figure 3 is replaced for our experiments with a randomly generated
SRMP model Mop. It is used to compare pairs of alternatives, which in turn
generate a new constraints for model Mi.

To test the quality of a model, we generated a test database Dtest composed
of 5000 alternatives. These alternatives are ranked both by the original SRMP
model Mop and the current one Mi. The quality of Mi is then evaluated through
Kendall ’s rank correlation measure τ between these two rankings. τ measures
the correlation of two rankings, and varies between 1 and -1. If both rankings
are identical then τ = 1, while if they are completely inverted then τ = −1.

We execute this process for 100 different artificial databases D, composed
each of 100 pairs of alternatives, for different problem sizes (m = 3, 5, 7). We
also fix the number of profiles to 2. This generates 3 problem configurations
which we call (2P 3C), (2P 5C) and (2P 7C) (for k profiles and m criteria).
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Fig. 4. Average Kendall tau for 2P 3C, 2P 5C and 2P 7C 6

6 At the time of writing the tests for the larger sizes of problems have not finished yet.
Consequently, in the figure, the number of tests for 2P 3C equals 100, for 2P 5C it
equals 87 and for 2P 7C it equals 53.
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Each of the plots of Figure 4 depicts the average value of the Kendall tau
across the 100 different artificial databases as a function of the number of pair-
wise comparisons submitted to Mop. For example, for problems containing 3
criteria, after asking the Mop to compare 40 pairs of alternatives, selected with
the Hmp heuristic, we can obtain on average a preference model which ranks
the test data quite similarly to the way Mop (τ ∼ 85%).

What we can observe here is that the Kendall τ increases when adding new
preferences of the operator (i.e. pairs of alternatives). The plots show that the
Hmp heuristic dominates the Hrnd one, which is confirmed by Kolmogorov-
Smirnov statistical tests allowing to compare two samples [7]. We also notice
that for the first few iterations both curves (Hmp and Hrnd) behave similarly
(for the different problem sizes), which is due to the small number of learning
pairs involved, and which tend to produce not very expressive SRMP models.
Then, both curves separate clearly in favour of Hrnd. For the last few iterations,
the curves become again similar, which is explained by the fact that the set of
learning pairs is almost the same, independently of the selection heuristic (D is
finite and fixed to 100 pairs of alternatives).

The standard deviations associated with the average values depicted in these
figures are small (on average ∼ 0.075 for 2P 3C for both Hmp and Hrnd, ∼
0.095 for 2P 5C for both Hmp and Hrnd, and ∼ 0.109 for 2P 7C for both Hmp
and Hrnd) and they also decrease with the addition of more learning pairs. They
have not been included in these illustrations for these reasons.
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Fig. 5. Average Kendall Tau for 2P 3C
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This result can be used in a practical case and gives an answer to the research
question which is how many learning pairs / iterations are needed to achieve a
“good“ SRMP model with an objective to reduce the cognitive effort of the
operator. An SRMP model is considered as a “good” one by the operator if this
model can reach a given Kendall tau value. Once this valus is given we use the
average Kendall tau curves to find the number of pairs required to reach τ .

For example, Figure 5 depicts the average Kendall tau for 2P 3C where the
operator fixed τ = 0.9 we can see that we need about 48 learning pairs by using
the Hmp heuristic while about 72 for the Hrnd heuristic.

5 Experimental validation of the decision model

In order to validate our proposal and show the importance of integrating the
preferences of the operator into the automated decisions of a UAV, we devel-
oped an UAV simulator. It simulates the flight of an UAV which contains the
previously presented decision engine. The graphical user interface (GUI) of the
simulator is presented in Figure 6.

Informations 

Historic of executed actions 

Actions evaluations

Chosen action

Waypoints

Map

Pause/Continue Buttons

medium
medium
medium
low
low

medium

medium

high
high
high

medium medium

Fig. 6. Graphical User Interface for the autonomous UAV simulator

The modeled autonomous UAV is a Watchkeeper Unmanned Aircraft Sys-
tem from Thales [10], represented by a point which is submitted to physical
constraints. The simulated UAV is able to navigate through a set of waypoints
and execute different high-level actions (e.g. take off, loiter, . . .). The simulator
is also able to evaluate these actions on different criteria presented in Section 3.
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The GUI presented in Figure 6 is composed of four parts. The left window
plots the details of the mission, such as the different waypoints (as red crosses),
the mission map as well as two maps of the risk associated with the UAV and the
environment respectively. They allow the evaluation of the risk of a trajectory
using a weighted average of the risk of the different zones overflown by the drone.
The top right box provides information about the current waypoint and the next
ones, as well as information on the current speed and the amount of energy left.
The middle right box presents a history of the executed actions. Finally, the
bottom right box shows the evaluations of all the possible high-level actions for
the current waypoint. The SRMP model is executed in the background in order
to decide which action will be chosen next (highlighted in green).

To illustrate our work, we provide here an example, where the UAV has to
accomplish a mission consisting of flying through a set of nine waypoints and
taking photos at each of them. We suppose that for waypoints 1, 5 and 6, these
photos are missed, which requires the UAV to loiter for a second shot in order to
complete the mission at 100%. We execute the mission according to two different
operator profiles, represented by two different sets of preference parameters.

operator 1 operator 2

RUAV REnv E M RUAV REnv E M

p1 high v.high 30% 30% high v.high 30% 30%
p2 low medium 60% 99% low medium 60% 70%
w 0.1 0.1 0.1 0.7 0.25 0.25 0.25 0.25
σ {2, 1} {2, 1}

Table 2. Preference parameters for the two operators.

The first operator is mainly focusing on completing the mission, placing as
secondary objectives the risk and the fuel consumption. The incremental prefer-
ences elicitation phase (Section 4.3) leads to the SRMP parameters presented in
the left half of Table 2. The second second operator gives a more uniform impor-
tance to the mission completeness, risks and fuel consumption objectives. The
preference parameters representing this operator are summarized in the right
half of Table 2, and have again been obtained using our incremental elicitation
process.

As expected the UAV configured with first operator’s preferences accom-
plishes the mission with success, as shown in Figure 7 on the left, by flying
through all the waypoints and loitering at waypoints 1, 5 and 6 in order to take
another round of photos, without taking into account the risk linked to the un-
derlying zones. The right side of Figure 7 shows the execution of the mission
with respect to the preferences of the second operator. We can observe that the
UAV, even if only one photo was taken at waypoints 5 and 6, did not loiter
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Operator 1 Operator 2

Fig. 7. Mission simulation with the preferences of operators 1 and 2

(because it considered it too risky to fly again over the same zone), and even
skipped waypoint 6 (for the same reason).

6 Conclusion and perspectives

In this work, we propose a new approach for integrating an operator’s per-
spective within the decision engine of autonomous UAVs, through a multi-layer
decision engine, a traceable MCDA technique and an incremental process which
minimizes the cognitive effort of the operator during the preference elicitation.
Dividing the decision process of the autonomous UAV into several layers allows
us to integrate the perspective of the operator in different elements of the au-
tonomous decision making process, and thus provides an autonomy of the UAV
guided by the preferences of a human operator.

Depending on the characteristics of the decision problem (as for example
the number of considered criteria), the resolution of the MIP which is used
iteratively in the elicitation process can take some time. This could limit its use
in practice in an incremental elicitation process, which motivates us to study
in a next step approximate algorithms (meta-heuristics) for the determination
of the parameters of the SRMP model. Next to that, we wish to confront the
incremental elicitation process with real operators, to validate our approach from
a practical point of view, before integrating our decision engine into a real UAV.
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