
 
 

 
 

 

 

New approaches to the detection of 

echinocandin resistance in Candida glabrata 

in clinical diagnostic laboratories 
 

 

 

Mark Fraser 

BSc MSc 
 

A thesis submitted in partial fulfilment of the requirements of the University of the West of 

England, Bristol for the degree of Doctor of Philosophy 

 

 
Centre for Research in Bioscience, University of the West of England, Coldharbour Lane, 

Bristol, UK 

 

and 

 

National Mycology Reference Laboratory, Public Health England, National Infection 

Services, Science Quarter, Southmead Hospital, Bristol, UK. 

 

September 2019 

 

 



i 
 

ACKNOWLEDGEMENTS 

 
 

Thank you to Dr Lynne Lawrance for an uncompromising belief that I had the ability to 
produce this work, and for being a constant supporter of everything I’ve attempted. 
Thanks also to Dr Robin Thorn for his additional support, suggestions and kind words 
when things were tough. 
 
Thank you to everyone at the Mycology Reference Laboratory for the collective patience, 
advice and support throughout the years that have gone into producing this thesis. In 
particular, Dr Andrew Borman who, despite the daily carnage, enabled me to produce 
something all my own and provided solidarity in times of need, Dr Elizabeth Johnson for 
providing me with the platform and support needed to undertake research in a clinical 
laboratory, PHE for financial support towards tuition fees and Zoë Patterson and Philippa 
Brown, whose unwavering confidence in my abilities and continual supply of affection 
and encouragement helped me get through the hardest times. 
 
Thank you to Dr Kate Heesom at the Proteomics facility, University of Bristol for 

undertaking the LC-MS/MS work. 
 
I dedicate this to my family. Mum, Dad, Nan, Granny, Kylie and Poppy; I have only 
achieved this through my wish to make you proud. Your unquestioning faith in what I 
could be and what I could achieve made it all possible. Finally, Cian it’s me and you, stuck 
like glue, soul to soul, home from home, perfect two, that’s me and you. Without your love 
and support I would never have started or indeed finished this work.  
 

  



ii 
 

ACRONYMS and ABBREVIATIONS 

 
 

2D PAGE – 2-dimensional polyacrylamide gel electrophoresis 

AIDS – acquired immunodeficiency syndrome 

ANF – anidulafungin 

ATCC – American Type Culture Collection 

ATP – adenosine triphosphate 

BLASTn – basic local alignment search tool for nucleotides 

BSI – blood stream infection 

bp – base pair 

CBS – Centraalbureau voor Schimmelcultures, Westerdijk Institute culture collection, The 

Netherlands 

CCI – composite correlation index 

CDCP - Centers for Disease Control and Prevention 

CFU – colony forming unit 

CLSI – Clinical Laboratory Standards Institute 

CSP – caspofungin 

DMSO – dimethyl sulphoxide 

DNA – deoxyribonucleic acid 

dNTP – dinucleotide triphosphate 

EUCAST – European Committee on Antimicrobial Susceptibility Testing 

FASTA – fast all consensus format for DNA/RNA sequence analysis 

FDR – false discovery rate 

HAI – hospital-acquired infection 

HCCA – α-cyano-4-hydroxycinnamic acid 



iii 
 

HIV – human immunodeficiency virus  

IVDU – intravenous drug use/user 

IQC – Internal quality control 

LC-MS/MS – liquid chromatography mass spectroscopy /mass spectroscopy 

LN2 – liquid nitrogen 

MALDI-TOF MS – matrix assisted laser desorption ionisation time of flight mass 

spectroscopy 

MCF - micafungin 

MFC – minimum fungicidal concentration 

MIC – minimum inhibitory concentration 

MRL – Mycology Reference Laboratory 

MRLDB – Mycology Reference Laboratory internally curated MALDI-TOF MS database 

MSP – main spectrum profile 

MW – molecular weight, usually in Daltons (Da) 

NCCLS – National Committee for Clinical Laboratory Standards  

NCPF – National Collection of Pathogenic Fungi 

NGS – next generation sequencing 

NHS – National Health Service 

OS – organic solvent 

PCA – principal component analysis 

PCR – polymerase chain reaction 

PHE – Public Health England 

RNA – ribonucleic acid 

rRNA – ribosomal ribonucleic acid 

rpm – revolutions per minute 



iv 
 

RPMI – RPMI tissue culture medium supplemented with 10% glucose 

SA – sinapinic acid 

SABC – Sabouraud’s agar with chloramphenicol 

SNP – single nucleotide polymorphism 

TFA – trifluoroacetic acid 

WGS – whole genome sequencing 

 

 

Units of Measurement 

 
Da – Dalton, unified atomic mass unit 

mg – milligram 

μg – microgram 

mL – microlitre 

μM – micro Molar 

m/z – mass/ charge ratio 

 

Relative Centrifugal Force (g) = 1.12 x Radius x (rpm/1000)2 

 

  



v 
 

ABSTRACT 
 

Candidaemia is widely reported as the fourth most common form of bloodstream infection 

worldwide. Reports of cases of candidaemia whilst patients are in receipt of antifungal therapy 

are increasing, and this is especially relevant as prescribing practices change and develop. 

Given the elevation of echinocandin antifungal agents as first line treatment options over the 

triazole antifungal agents, and the increased use of echinocandin antifungal agents as a 

prophylactic choice, it is important to apply suitable surveillance in order to counteract 

potential difficulties which may arise from the emergence of resistance to the echinocandin 

class of antifungal agents.  

This study has designed and created a suitable assay for the specific detection of FKS gene 

mutations in Candida glabrata to indicate resistance to echinocandin antifungal agents using a 

pyrosequencing-based platform in the clinical diagnostic laboratory. There exists the potential 

for this rapid molecular detection system to be used as a screening tool which would help 

provide clinicians with essential information required to make appropriate and accurate 

therapeutic decisions for the management of bloodstream infections. This assay allows the 

reporting of these results within 4 hours of isolation, greatly improving reporting times in the 

clinical laboratory. This study also provided data to support evidence of a continued low level 

of echinocandin resistance prevalent in C. glabrata in the United Kingdom. 

This study has assessed the potential of proteomic approaches, using LC- MS/MS and MALDI-

TOF MS to indicate antifungal resistance, as demonstrated by C. glabrata with the 

echinocandin antifungal agents, by the identification of and the changing patterns in protein 

presence, absence or relative abundance. This study has solely focused on using techniques 

that are realistically accessible to a diagnostic microbiology laboratory to maintain an 

indication of true clinical impact.  

No readily identifiable or reproducible patterns in proteomic variation between echinocandin 

resistant and echinocandin susceptible isolates were found. However, the importance of 

continuing to adapt and modify the capabilities of the modern clinical diagnostic laboratory in 

an era of increasing antimicrobial resistance is highlighted.  
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1. INTRODUCTION 
 

Fungi are eukaryotic microorganisms that inhabit almost every known ecological niche 

on earth. Fungi are distinct from both plants and animals sharing characteristics with 

both yet existing within a taxonomic kingdom of their own. Fungal cells incorporate a 

rigid cell wall mostly comprised of chitin and glucan, directly contrasting with animal 

cells that do not have cell walls, and plants that have cellulose as a major cell wall 

component. A further distinction can be made at the cellular level by the presence of a 

cell membrane comprised of ergosterol, a variation when compared to animal cell 

membranes which tend to contain cholesterol (Gow, Latge and Munro, 2017; Lv, Yan 

and Jiang, 2016). Fungi are heterotrophic and as such, unlike plants, are unable to 

manufacture their own carbon sources. This means they play a crucial role in the cycling 

of organic matter and nutrients within the environment (Treseder and Lennon, 2015). 

Finally, fungi exhibit much simpler structure than both plants and animals, forming 

either singular, filamentous strands known as hyphae or a single independent cell, or 

blastospore. Many fungi that exist in single cell form, often termed yeasts, reproduce 

by budding progenitor cells from an individual parent cell. The bud may detach, or it 

may remain in situ and begin the formation of a chain of cells. Continued elongation of 

cells in this way results in the production of pseudohyphae, an intermediate form of 

morphology between yeasts and true fungal hyphae (Noble, Gianetti and Witchley, 

2017). 

Hawksworth and Lücking (2017) suggest that potential global fungal diversity indicates 

there are somewhere between 2.2 to 3.8 million species of fungi, with 120,000 currently 

accepted species. Similarly, recent advances in high-throughput genetic analyses has 

also helped to demonstrate great diversity within the fungal kingdom (Nilsson et al., 

2019; Peay, Kennedy and Talbot, 2016), further highlighting the importance of fungi 
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in many ecologically important roles such as nutritional recycling and decomposition 

of materials in the environment (Johnston, Park and Smissen, 2017; Peay, Kennedy and 

Talbot, 2016). A relatively small proportion of the known fungal kingdom has been 

associated with human disease and the majority of those are only capable of causing 

infection in immunocompromised individuals (Enoch et al., 2017; Diekema et al., 

2012). However, many fungi are often considered opportunistic pathogens and 

demonstrate an ability to exploit any available nutrient sources (Borman et al., 2018b; 

Enoch et al., 2017). Infections caused by fungal organisms are often classified with 

consideration for the initial focus of infection as superficial, subcutaneous and systemic 

(Richardson and Warnock, 2003). It is probable that changes in patient demographics 

and likely risk factors for infections with fungal organisms has helped to increase the 

potential agents of fungal infection. Such factors include: increases in lifestyle-related 

diseases such as diabetes (Smyth et al., 2018); ageing populations (Barchiesi et al., 

2017); underlying conditions such as HIV/AIDS (Limper et al., 2017) or 

haematological malignancies (Miceli et al., 2017); and invasive surgical procedures 

(Brown et al., 2018; Horn et al., 2017). Thus, the potential for fungi to cause infection 

in humans remains a critical and increasingly relevant consideration for clinicians and 

diagnosticians alike (Enoch et al., 2017).   

 

1.1 Candida glabrata 

 

Nakaseomyces glabrata is a unicellular fungus which until recently was known as 

Candida glabrata (Borman and Johnson, 2018a; Angoulvant, Guitard and Hennequin, 

2016; Gabaldón and Carreté, 2016). Whilst recognising the importance of taxonomic 

revision and development, this thesis retains the name C. glabrata throughout given the 
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familiarity of this nomenclature in clinical diagnostics and for consistency with 

publications and research produced during the timeline of this study.  

As reviewed by Rodrigues, Silva and Henriques (2014), C. glabrata is a species of 

haploid, unicellular fungi, often termed yeast, which is relatively non-pleomorphic and 

in which no mating activity has been observed.  The single cells, or blastospores of C. 

glabrata have the ability to colonise the mouth, oesophagus, intestine and vaginal 

mucosal surfaces as part of the commensal biota and the species lacks many of the 

virulence factors which have been identified in other Candida species, such as hyphal 

growth formation (Noble, Gianetti and Witchley, 2017; Cavalcanti et al., 2015), or the 

ability to secrete tissue-degrading enzymes such as proteases (Rapala-Kozik et al., 

2018). Also, in contrast to other Candida species, many of the recognised risk factors 

for fungal infection such as diabetes, age and malignancies have been found to be 

unreliable predictors for infection with C. glabrata (Smyth et al., 2018). 

Yet, patterns in hospital acquired infections (HAI) have shown C. glabrata to be a 

highly opportunistic pathogen of the urogenital tract and the bloodstream (Cleveland et 

al., 2012). There are reports of C. glabrata being implicated in up to 15% of cases of 

bloodstream infections, especially in the elderly (Barchiesi et al., 2017), those infected 

with HIV (Limper et al., 2017), or with a background of intravenous drug use (IVDU) 

(Barter et al., 2019).  

Moreover, specifically with respect to HAIs, patients receiving broad-spectrum 

antimicrobials, those admitted to intensive care units or who experience prolonged 

hospitalisation, in-dwelling catheters or recent abdominal surgery (CDCP, 2017; 

Vallabhaneni et al., 2015; Sardi et al., 2013; Pfaller et al., 2007). Clearly, evidence such 

as this demonstrates that C. glabrata is responsible for a considerable level of 

observable pathogenicity in humans.  
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Potential virulence factors that may support C. glabrata as a human pathogen include 

its ability to growth at 37°C (Salvadó et al., 2011). C. glabrata also appears to exhibit 

a high level of tolerance to biochemical stress, in particular those characteristics which 

are related to immune system activation within the host (Kasper, Seider and Hube, 

2015). Such properties may be further enhanced by the demonstration of a resistance to 

starvation which allows the survival of C. glabrata blastospores within macrophages 

following engulfment (Seider et al., 2011). Furthermore, the identification of a series 

of adhesins, cell surface molecules that play a role in cell attachment, and in particular 

those encoded for by epithelial adhesion genes (EPA), provides C. glabrata with the 

ability to form aggregates on surfaces as demonstrated by atomic force microscopy 

(Valotteau et al., 2019). The ability to form clusters of cells in this way offers C. 

glabrata the ability to produce biofilms thereby providing an additional pathogenic 

characteristic for this organism. This is of particular importance, and often an additional 

complication in the clinical setting, where medical devices such as in-dwelling urinary 

or intravenous catheters are used (Rodrigues et al., 2017; Gabaldón and Carreté, 2016).  

Additionally, C. glabrata has demonstrated an ability to re-organise certain cell wall 

components, in particular chitin, in response to stresses from its environment, and this 

has been indicated as having a role in promoting the persistence of C. glabrata in the 

intestinal tract despite the application of antifungal treatment (Vallabhaneni et al., 

2015).  

 

1.2. Bloodstream infections (BSI) 
 

Infections of the bloodstream (BSI) are a frequent cause of hospitalisation and mortality 

in both healthy and immunocompromised patients. A recent meta-analysis indicated 

that BSIs were associated with levels of mortality as high as 50% at one-year post 



 
 

5 
 

infection (McNamara et al., 2018). The antimicrobial management of patients with 

BSIs is considered time critical, and in an era of increasing antimicrobial resistance, the 

accurate and rapid identification of the agent of infection is essential to successful 

clinical resolution (Poole, Kidd and Saeed, 2018). 

Candidaemia is the term used to describe a bloodstream infection (BSI) where the 

causative organism is a single-celled fungus from the taxonomic group of Candida spp., 

and is widely reported as the fourth most common form of BSI worldwide and presents 

a considerable, continuing challenge to modern medicine (Pappas et al., 2018; 

Vallabhaneni et al., 2015; Magill et al., 2014; Cleveland et al., 2012: Pfaller et al., 

2011c; Vincent et al., 2009; Wisplinghoff et al., 2004). An increase in resistance to 

established antifungal agents and changing patient demographics are helping to widen 

the spectrum of species able to cause infection (Deorukhkar, Saini and Mathew, 2014; 

Guinea, 2014; Pfaller et al., 2014b; Diekema et al., 2012; Lockhart et al., 2012). The 

appropriate use of antifungal agents is essential for successful clinical outcomes, 

helping to reduce the burden of emergent resistance and financial strain upon healthcare 

providers (Mencarini et al., 2018; Neoh et al., 2018; Jensen, 2016; Ashbee et al., 2014; 

Perez et al., 2013). 

The epidemiology of candidaemia varies geographically, but C. glabrata is consistently 

reported as the second or third most frequently indicated fungal cause (Astvad et al., 

2018; Klingspor et al., 2018; Mencarini et al., 2018; da Matta et al., 2017; Hou et al., 

2017; Klotz et al., 2016; Marcos-Zambrano et al., 2014). The retrospective analysis 

undertaken by Klingspor et al. (2018) highlighted that C. glabrata remained unchanged 

as the second most common cause of candidaemia in Sweden over a ten-year period, 

with 19.7% of all Candida species isolated from blood cultures being identified as C. 
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glabrata. Likewise, studies from Latin America have also indicated an increase in BSIs 

where C. glabrata is the main aetiologic agent (da Matta et al., 2017). 

 

1.3 The echinocandin class of antifungal agents and their use in the 

treatment of C. glabrata 

 

The use of triazole antifungal agents, in particular fluconazole, as first line treatment 

options has been considered acceptable for all forms of candidiasis, including BSIs. 

(Bassetti et al., 2018; Ostrosky-Zeichner et al., 2003). However, as reviewed by 

Berkow and Lockhart (2017), clinical resistance to fluconazole has been reported in 

many settings and with many Candida spp. Consequently, C. glabrata has also been 

shown to demonstrate well-established mechanisms of triazole resistance, and many of 

these mechanisms confer resistance to other triazole agents such as itraconazole, 

posaconazole and voriconazole (Pfaller et al., 2005; Pfaller et al., 2004). In response, 

investigations into the properties of novel antifungal compounds and targets led to the 

introduction of the echinocandin class of agents (Walsh et al., 2000). 

The echinocandin class of antifungal agents currently consists of caspofungin (CSP), 

anidulafungin (ANF) and micafungin (MCF), although new echinocandin agents are 

undergoing development and clinical trials such as rezafungin (Bader et al., 2018). 

These agents are semi-synthetic acylated cyclic hexapeptides, which demonstrate 

fungicidal activity by non-competitively inhibiting β-1, 3-glucan synthase, an enzyme 

that has an essential role in the construction of fungal cell wall components. Inhibition 

of this enzyme results in the absence of β-glucan in the cell wall in turn leading to a 

loss of structural integrity and ultimately cell death (Richardson and Warnock, 2003). 

As reviewed by Chang, Slavin and Chen (2017) the increased use of echinocandin 
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agents for the treatment of candidaemia has been driven by the fact that the class as a 

whole are generally well tolerated by patients, demonstrating few adverse reactions and 

low numbers of drug-drug interactions. This is a direct contrast with some azole agents 

such as voriconazole (Ruiz et al., 2019), or polyene agents like amphotericin B (Hamill, 

2013). Some reports have suggested that 60% of patients with candidaemia will receive 

an echinocandin during the period of their acute treatment (Cleveland et al., 2012). 

However, the echinocandin agents are often difficult to administer due to a lack of oral 

formulations and a somewhat limited spectrum of action, although this is not of general 

concern regarding the treatment of candidaemia (Neoh, et al., 2018; Pappas et al., 2016; 

Eschenauer et al., 2014; Scott, 2012). Despite the evidence suggesting that an 

echinocandin agent may offer a superior treatment option to other antifungal agents 

(Lin et al., 2018; Eschenauer et al., 2013; Andes et al., 2012), it is compelling that 

Lausch et al. (2018) was able to demonstrate that even the introduction of a nationwide 

recommendation to use echinocandin agents as a first line option for candidaemia in 

Denmark, resulted in a low level of compliance from clinicians when compared to azole 

antifungal usage. Where an echinocandin had been used, Lausch et al. (2018) found a 

direct correlation in respect to mortality rates, and this was directly attributed to the 

patients receiving a more effective treatment in a timely manner.  

First documented by Park (2005), resistance to the echinocandin class of antifungal 

agents still remains relatively low, with some estimates from the United States 

suggesting <3% resistance demonstrated in Candida albicans and most other Candida 

species (Castanheira et al., 2010), with the notable exception of C. glabrata, in which 

resistance appears to be increasing. The SENTRY antimicrobial surveillance 

programme for C. glabrata isolates, from 2006 to 2010, reported echinocandin 

resistance rates for C. glabrata between 8.0-9.3% (Pfaller et al., 2012b; Pfaller et al., 
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2011b). This raised grave concerns for empiric therapeutic choices due to the already 

existent presence of triazole resistance, often cross-agent, demonstrated by C. glabrata 

(Pham et al., 2014b; Pfaller et al., 2012a; Pfaller et al., 2012b; Pfaller et al., 2008).  

Indeed, in the study by Pham et al. (2014b) nearly 36% of echinocandin resistant 

isolates of C. glabrata also exhibited resistance to fluconazole. In an epidemiological 

study within the United States of America, Grossman, Chiller and Lockhart (2014) 

demonstrated that the proportion of echinocandin resistant isolates in a single institution 

could be as high as 13.5%.  

One particular mechanism for echinocandin resistance has been attributed to so-called 

hot spot mutations within the FKS gene region. First described in Candida albicans, 

this gene region has been shown to have a role in encoding a large integral membrane 

protein suspected to be 1,3- β-D-glucan synthase (Douglas et al., 1997). The FKS gene 

region includes three genes, FKS1, FKS2 and FKS3 and amino acid substitutions in 

these genes has been documented as the reason for resistance to treatment with 

echinocandin antifungal agents (Suwunnakorn et al., 2018; Alexander et al., 2013; 

Cleary et al., 2008; Douglas et al., 1994).  

Distinct mutations within FKS1 have proven to be responsible for resistance to all 

currently available echinocandin antifungal agents in isolates of C. albicans (Pham et 

al., 2014b; Katiyar et al., 2012; Pfaller et al., 2012b; Arendrup et al., 2010; Zimbeck et 

al., 2010), and mutations in both FKS1 and FKS2 have been associated with resistance 

in C. glabrata (Katiyar et al., 2012; Singh-Babak et al., 2012). Grossman, Chiller and 

Lockhart (2014) directly correlated the existence of mutations due to specific amino 

acid substitutions in the Fksp subunit of the 1,3- β-D-glucan synthase protein, with 

isolates of C. glabrata isolated from BSIs of patients who had failed echinocandin 

therapy. 
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Despite the obvious advantages of genetic alteration in response to antifungal pressure, 

such changes may often incur additional disadvantages in terms of continual survival 

or propagation (Borghi et al., 2014; Vincent et al., 2013; Clancy and Nguyen, 2011; 

Cowen, Kohn and Anderson, 2001). FKS mutation in particular has been shown to 

result in the generation of strains of C. albicans with thickened, chitin-rich cell walls 

and impaired ability for filament formation (Ben-Ami and Kontoyiannis, 2012). 

 

1.4 Diagnostic testing in the clinical mycology laboratory 

 

A large meta-analysis by Buehler et al. (2016) demonstrated that an approach, which 

included rapid molecular testing coupled with direct communication between 

laboratory and attending clinician, to confirm the identity of the microorganism causing 

the BSI, showed a significant reduction in mortality from BSIs. Whilst Buehler et al. 

(2016) made no formal recommendation as to how this identification should be 

achieved, it was noted that the potential to improve the time required to initiate targeted 

therapy was facilitated by the introduction of rapid identification techniques. 

Microbial diagnostics in the clinical laboratory play a crucial role in assisting the 

selection of appropriate treatment regimes. This is not only from the perspective of the 

agent most likely to be effective against the infective organism, but also in reducing the 

use of ineffectual and unnecessary treatments. Such information helps both to reduce 

financial burden on healthcare providers and to maintain an effective arsenal of agents 

for treatment selection (Perez et al., 2013).  Clinical laboratory diagnostics at their most 

basic level can be a simple classification of organism such as bacterium, virus or fungus 

to the complexity of genotyping specific isolates or subspecies. However, the most 

critical tool available is the in vitro testing of susceptibility to antimicrobial agents for 

each infective organism isolated from any given patient. There are many tools at the 
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disposal of the clinical diagnostic laboratory to achieve this, from systems that are 

labour-intensive such as micro or macro-broth dilution, to automated, commercial 

platforms such as BioMérieux’s Vitek 2 (Alfouzan et al., 2017). It is essential that 

clinical diagnostic laboratories continue to develop the methodologies used to provide 

the data that actively inform clinical decisions. The introduction of new technology to 

microbial diagnostics such as matrix assisted laser desorption ionisation time of flight 

mass spectrometry (MALDI-TOF MS) and more recently whole genome sequencing 

(WGS) are helping to lessen the manual manipulation required for the isolation, 

identification and characterisation of microbial isolates. In addition, these technologies 

often help to reduce the length of time required from isolation of causative organism of 

infection, to the selection of correct treatment, and infective resolution (Luethy et al., 

2019; Nilsson et al., 2019; Vatanshenassan et al., 2018; Biswas et al., 2017a; Biswas 

et al., 2017b; O’Grady, 2016; McCann et al., 2015; Tran et al., 2015; Vogne et al., 

2014). 

The rapid detection of existing or emergent resistance before or during treatment with 

antifungal agents is a vital developmental tool allowing targeted effective therapy. This 

will form the underlying basis of many antifungal stewardship programmes in the era 

of broad-spectrum antimicrobial resistance (Perez et al., 2013). Cases of candidaemia 

occurring during therapy, sometimes known as breakthrough cases, are increasingly 

being reported (Astvad et al., 2018; Goemaere et al., 2018; Xiao et al., 2018; Berkow 

and Lockhart, 2017; Bizerra et al., 2014) and this is of importance as the landscape 

surrounding empirical antifungal selection changes. For example, the increase in 

recommendations for the use of echinocandin antifungal agents as first line treatment 

options instead of the triazole, fluconazole (Lausch et al., 2018; Deorukhkar and Saini, 

2016; Pappas et al., 2016; Eschenauer, Nguyen and Clancy, 2015), and the use of 
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echinocandin agents as prophylactic coverage (Enoch et al., 2018; Chang, Slavin and 

Chen, 2017; Bizerra et al., 2014; Alexander et al., 2013). 

Conventional susceptibility testing in the laboratory is used to determine either the 

relationship of an agent compared to a breakpoint or the minimum inhibitory 

concentration (MIC) of any antimicrobial agent. In this context, the MIC is defined as 

the concentration of antifungal agent at which active growth is inhibited. It is possible 

for the point of no growth to be used as a determination of the concentration at which 

agents with fungicidal properties kill the fungus. This is often referred to as the 

minimum fungicidal concentration (MFC). Although, proof of cell death requires 

further viability studies and is rarely indicated or performed in the routine clinical 

laboratory (Fraser et al., 2007). The MIC value as read gives an indication of the most 

effective agent or agents for treatment of infection (CLSI, 2008).  As previously 

discussed, methods of testing are often both time and labour consuming which can 

result in poor or ineffective empirical treatment selection (Pfaller et al., 2014a) and 

previous research has demonstrated patterns of antifungal activity that can vary 

between, and even within, species. For example, fluconazole and voriconazole appear 

to have a fungicidal effect on some isolates of Candida parapsilosis, but only produce 

a fungistatic response in others, thereby inhibiting fungal growth (Fraser, 2007). 

Voriconazole demonstrates good fungistatic activity against isolates of Pichia 

kudriavzevii (Candida krusei), which is considered intrinsically resistant to 

fluconazole; however, the fungicidal activity observed is not uniform and once again 

isolate specific variation is noted (Fraser, 2007).  

Isolate and species-specific differences highlight the clinical need for fast and accurate 

susceptibility testing that has the ability to detect individual patterns of response to 

antifungal treatment regimes. This is essential for the effectiveness of therapy and is 
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therefore critical to treatment outcomes and on-going management of infection (CLSI, 

2017b).  

 

1.5 Genomic detection of resistance markers in C. glabrata 

 

In the last decade novel genomic and proteomic technologies such as Pyrosequencing® 

and MALDI-TOF MS have revolutionised the speed and accuracy of identification of 

clinical isolates of fungi in the diagnostic laboratory (Fraser et al., 2016; Gorton et al., 

2014; Borman et al., 2012). Pyrosequencing technology (originally designed by 

Pyrosequencing AB, now Biotage, Uppsala, Sweden) is a rapid DNA sequencing 

method that uses a novel enzymatic chemistry to sequence short (<70-bp) target regions 

of the nuclear rRNA gene cassette and is often considered as low-medium throughput 

sequencing most useful for small scale screening in the era of next generation 

sequencing (NGS) and whole genome sequencing (WGS) (King and Marsh, 2013). 

Even so, pyrosequencing has shown utility across most bioscience disciplines from the 

analysis of oral microbiome profiles (Ahn et al., 2011) and the species level 

identification of Enterococcus sp. (Zaheer et al., 2012) in bacteriology to the detection 

of single nucleotide polymorphisms (SNPs) in human genome analysis and tumour 

mutation detection (King and Marsh, 2013; Sahnane et al., 2013; Barbazuk and 

Schnable, 2011; Lavebratt et al., 2004). In Candida species, the D1-D2 portion of the 

28S large rRNA gene (D1D2) and the internal transcribed region 2 (ITS2) have 

demonstrated particular utility in the identification of clinically relevant isolates 

(Borman et al., 2010; Borman et al., 2008; Linton et al., 2007). The application of the 

sequencing of these regions to the pyrosequencing platform enabled the accurate 

identification of 98% of 40 different species of clinically important yeast in less than 4 
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hours in the diagnostic laboratory (Borman et al., 2010). Previously unambiguous 

identification of the most frequently encountered agents of infection required a 

minimum of 24-48 hours and relied upon the colonial morphology and microscopy, and 

the biochemical assimilation of sugars in commercially available platforms such as 

AUXACOLOR 2 (BioRad, Marnes-la-Coquette, France) or API 20C (BioMérieux, 

Marcy-l’Etoile, France), often coupled with the knowledge of specialist microbiologists 

(Borman et al., 2012; Campbell et al., 1999). 

The pyrosequencing process involves the primary polymerase chain reaction (PCR) 

amplification of target region DNA using biotinylated forward primers. Purification of 

the PCR product occurs using streptavidin-coated sepharose beads and a semi-

automated washing system to denature double stranded DNA and remove non-

biotinylated DNA strands. The streptavidin-bound biotinylated single stranded DNA is 

eluted into a reaction plate containing a mixture of annealing buffers and specific 

primers and the combined mixture is subjected to automated sequencing which includes 

the ordered addition of enzymes, substrate and deoxynucleotide triphosphates (dNTPs). 

The incorporation of specific dNTPs into an extending complementary non-

biotinylated DNA strand is detected via the production of inorganic pyrophosphate, 

which is released and converted to adenosine triphosophate (ATP). Generated ATP 

drives a luminescent reaction due to the presence of the enzymes sulfurylase and 

luciferase. Unincorporated nucleotides/ATP are removed by the enzyme, apyrase 

before the introduction of the next nucleotide into the sequence. Each visible light 

signal generated is proportional to the number of nucleotides incorporated into the 

analysed DNA strand (Gharizadeh et al., 2006; Ronaghi and Elahi, 2002; Ronaghi, 

2001; Ronaghi, Uhlén and Nyrén, 1998).  
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Rapid PCR based methodologies such as pyrosequencing, asymmetric PCR and 

multiplex systems have been employed to determine the presence of FKS1 and/or FKS2 

mutants (Zhao et al., 2016; Dudiuk et al., 2014; Pham et al., 2014a). It has been noted 

that the position and number of mutations in FKS selectively influences in vitro and in 

vivo susceptibilities to the echinocandin class of antifungal agents (Pham et al., 2014b). 

Mutations within these genes result in a conformational change in the target for the 

echinocandin antifungal agents, 1, 3-D-glucan synthase (Lackner et al., 2014) and 

therefore may also be detectable using a proteomic approach like MALDI-TOF MS as 

a rapid identifier of antifungal resistance (Delavy et al., 2019; Paul et al., 2018; 

Vatanshenassan et al., 2018; Vella et al., 2017; De Carolis et al., 2012; Kelly and 

Kavanagh, 2010).  

 

1.6 Detection of proteins for the identification and classification of 

microorganisms 

 

Since the early work of O’Farrell (1975) and Klose (1975), the analysis of proteins 

within biological systems has been refined and adapted from a simplistic comparison 

between individual cultures of Escherichia coli, to the analysis of whole mammalian 

cell processes and even host-pathogen interactions (Beltran et al., 2017; Lum and 

Cristea, 2016; Schmidt et al., 2010). The study of the whole set of proteins within a 

biological system or organism in this way is termed proteomics and is considered a core 

component to the basic analysis of cell function, having been developed into an 

essential tool in the understanding of many biological processes.  

The detection and quantification of proteins from biological samples has been 

undertaken using various iterations of gel electrophoresis for example, 2-dimensional 
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polyacrylamide gel electrophoresis (2D-PAGE), to separate, identify and characterise 

proteins within a given biological system (Fey et al., 1997). Microbial proteomics has 

advanced from the characterisation of single organisms undergoing a specific 

physiological process, i.e. stress/starvation (Bar et al., 2007), or at a specific point in 

time (Schmidt et al., 2010) to the presentation of highly complex systems such as host-

pathogen interactions (Beltran et al., 2017) and mixed microbial communities (Marlow 

et al., 2016; Siggins et al., 2012). The additional application of other developing 

biochemical techniques to elements of proteomics has further enhanced the specificity 

of 2D-PAGE and increased its utility in the understanding of the roles of proteins in 

biological systems, particularly in the clinical setting of infection. Techniques have 

included the use of pH gradients and variable forms of protein labelling such as 

fluorescence or isotopic labelling, as reviewed by Pérez-Llarena and Bou (2016). 

The continual development of electrophoresis-based proteomic techniques has recently 

seen a shift towards a “bottom-up” or “shot gun” approach to protein detection (Zhang 

et al., 2013; Washburn et al., 2001). This has been aided by the inclusion of 

sophisticated mass spectrometry techniques, which has shifted the focus of proteomic 

investigation from whole proteins, to singular or small clusters of proteolytic peptides 

(Boulund et al., 2017; Otto, Becher and Schmidt, 2014; Duncan, Aebersold and 

Caprioli, 2010; Aebersold and Mann, 2003).  “Bottom-up” proteomics involves the 

digestion of intact proteins, into small fragments and their subsequent analysis to 

provide a picture of the whole proteome at the same time, a direct contrast to a more 

conventional “top-down” approach whereby intact, whole proteins are analysed for 

function. The main advantage of the “bottom up” approach is its ability to enable the 

handling of large molecular weight proteins because they are broken into manageable 

fragments (Zhang et al., 2013). However, there is an element of intrinsic uncertainty in 
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this approach to proteomics due to the potential limitations of predicting whole proteins 

from only a collection of identified peptides, and ambiguities which surround the origin 

of redundant or nonsense protein sequences (Yates, Ruse and Nakorchevsky, 2009). It 

is now common to use a mixture of both old and new approaches, a so-called “middle-

down” approach which allows the analysis of large proteins as fragments, but also helps 

to reduce the redundancy present in the data generated (Zhang et al., 2013). The 

improved sensitivity of mass spectrometers, in combination with advances in sample 

preparation and protein fractionation technologies, has broadened the study of the 

whole set of proteins within a biological system (Pérez-Llarena and Bou, 2016). The 

use of liquid chromatography with the addition of a mass spectrometer detector and 

analyser (LC-MS/MS) in clinical biochemistry for the detection of substances of abuse, 

therapeutic agents and the rudimentary detection of metabolic compounds has become 

routine (Dias et al., 2016; Decosterd et al., 2010; Miller et al., 2008). Given that the 

majority of clinical diagnostic laboratories no longer have the capabilities to undertake 

intensive, time consuming, and highly skilled gel-based proteomic work, there is value 

in adopting and developing cross discipline technologies. At the same time, there is 

evermore pressure to automate and standardise techniques in the clinical diagnostic 

laboratory (Kothari et al., 2014; Bourbeau and Ledeboer, 2013). However, the value of 

proteomics to clinical practice remains abundantly apparent and the evolution of 

laboratory techniques is paramount to the effectiveness of any diagnostic service 

(Pérez-Llarena and Bou, 2016; Otto, Becher and Schmidt, 2014). Proteomic analysis of 

fluconazole resistant isolates of C. albicans has demonstrated metabolic shifts related 

to cellular and membrane protein changes (Yan et al., 2007) and this has been replicated 

in C. glabrata (Yoo et al., 2012). Several studies have also presented data indicating 

that cell wall alterations, at least in C. albicans, have a key role in the interaction of the 
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echinocandin agents and this yeast (Rueda, Cuenca-Estrella and Zaragoza, 2014; 

Vavala et al., 2013).  

 

1.7 MALDI-TOF MS and the identification of fungi  

 

MALDI-TOF MS utilises the ablation power of a laser to ionise metabolic proteins 

within biological samples and provide a fragmented proteomic fingerprint of an 

organism. This methodology was first described as a potential tool in diagnostic 

microbiology by Claydon et al. (1996). Subsequently, the rapid development in the 

understanding of relationships in peptide and protein analysis (Lewis, Wei and Siuzdak, 

2000) and the accessibility of commercial platforms over the past decade, has driven a 

revolution that has seen MALDI-TOF MS for the identification of bacteria and fungi 

as agents of infection replacing many biochemical and morphological laboratory 

techniques. Many clinical diagnostic microbiology laboratories incorporate some form 

of mycology identification as part of their remit, and the introduction of MALDI-TOF 

MS has extended the capabilities of some diagnostic microbiology laboratories 

especially in terms of yeast identification. There is a large amount of evidence to 

suggest that the use of MALDI-TOF MS in the identification and classification of fungi 

is highly successful and provides some aid to an ever-diminishing pool of expertise in 

clinical mycology within the diagnostic clinical laboratory (Borman et al., 2019; 

Luethy et al., 2019; Borman et al., 2018b; Hou et al., 2018; Angeletti, 2017; Fagerquist, 

2017; Fraser et al., 2017; Borman et al., 2017; Fraser et al., 2016; Fatania et al., 2015; 

Gorton et al., 2014; Vyzantiadis, Johnson and Kibbler, 2012; Aebersold and Mann, 

2003). For those laboratories with rudimentary or limited knowledge in mycological 

identification, national reference centres such as the PHE MRL, where specialised 
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testing is performed, are able to aid in the confirmation, identification and classification 

of organisms (Borman et al., 2012). It is the experience of the author that despite the 

widespread introduction and ease of use of rapid identification technologies such as 

MALDI-TOF MS, mycology reference centres continue to provide a significant and 

expanding service for many clinical diagnostic microbiology laboratories. 

However, to date, there has been very limited success with the expansion of MALDI-

TOF MS into the detection of antifungal resistance. Undoubtedly this is a critical area 

for research given not only the expanding number of fungal infections and potential 

agents of disease, but also the limitations surrounding the development of novel 

antimicrobial targets and compounds (Vatanshenassan et al., 2018; De Carolis et al., 

2012; Marinach et al., 2009). Research studies have demonstrated that under specific 

conditions it is possible to provide a qualitative estimate of an organism’s susceptibility 

profile using MALDI-TOF MS, but none have demonstrated a single tool that could be 

used in the routine throughput setting of clinical diagnostics where time and money are 

both short, without the need for an individual set up or system to be in place (Delavy et 

al., 2019; Dortet et al., 2018; Vogne et al., 2014; De Carolis et al., 2012).   

It has been demonstrated that changes in relative protein abundance seem to correlate 

with resistance gene expression for many proteins, and this may be used to demonstrate 

an effect in response to the presence of antifungal agents from all classes of agents 

(Saracli et al., 2015; Marinach et al., 2009). 

At the most basic level, if the current diagnostic laboratory MALDI-TOF MS 

procedures could provide some guidance as to susceptibility of a clinical isolate at the 

same time as performing the identification of an organism, this would provide a simple 

and desirable outcome for management of therapeutic decisions.  
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The MALDI-TOF MS identification system uses an in-built, often commercially 

supported, database to compare known protein derived spectral profiles to unknown 

sample spectral profiles, to enable the identification of an organism coupled with a 

confidence value. Databases have proven to be complex and often difficult things to 

consolidate, replicate and disseminate, with many centres providing their own 

methodology and consequently developing specific databases from their own 

collections (Borman et al., 2019; Borman et al., 2017; Fraser et al., 2017, Normand et 

al., 2017a; Lau et al., 2013). There is currently no consensus regarding methodology 

and there are a number of commercially available databases as well as independent 

institution-led databases. Different groups have demonstrated that the spectral profiles 

created differ greatly dependent upon the method of protein extraction and the spread 

and variety of organisms included (Normand et al., 2017a; Fraser et al., 2016; Gorton 

et al., 2014; Lau et al., 2013). This has led to many research groups limiting their 

advances to only one methodological approach or to others restricting developments to 

one species complex or group in order to expand a specific area of interest (Borman et 

al., 2019; Borman et al., 2017; Fraser et al., 2017, Normand et al., 2017a). There is 

currently no one database that has a broad coverage of all clinically relevant 

microorganisms. It would seem that given the amount of work already undertaken on 

individual databases it is unlikely a single platform to suit all will be found.  Recently, 

the use of an online database for the retrospective analysis of spectral profiles has 

proven a useful tool (Normand et al., 2017a; Normand et al., 2017b), but once again 

the largest caveat of a database still holds, it is limited to methodology, content and 

curation.  

The PHE MRL currently uses a commercially available database (Bruker Daltonics 

GmBH, Bremen, Germany), alongside a web application (Normand et al., 2017a) and 
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an internally created database of unusual, or geographically distinctive, profiles to 

provide a broad coverage of identification of fungal pathogens (Fraser et al., 2016). As 

such, the first step to ascertaining if spectral differences exist between susceptible and 

resistant isolates of C. glabrata would be to generate profiles for them. Commercially 

available databases already cover a wide variety of spectral fingerprints seen in C. 

glabrata, so the MRL internally curated database (MRLDB) constructed as part of on-

going diagnostic development, is ideally placed to create specific profiles (main 

spectrum profile; MSP) for resistant isolates. 

 

1.8 Study aim 
 

The focus of the work undertaken has been driven by a need to improve clinical services 

in diagnostics, with the aim of better informing clinical management decisions quickly 

and accurately thereby effecting direct patient impact (Borman et al., 2018b; Lin et al, 

2018; Xiao et al., 2018; Lockhart et al., 2017; Eschenauer et al., 2014; Alexander et 

al., 2013). All efforts to use techniques that are readily available to most high 

performing clinical diagnostic laboratories has been made. Most well-equipped clinical 

microbiology laboratories should be able to access a biologically appropriate mass 

spectrometry system capable of adaptation to the detection and analysis of microbial 

proteins. This may often be achieved by the establishment of a close working 

relationship with a clinical biochemistry laboratory, and in so doing provides a good 

example of cross-discipline integration in biomedical science, a topic which is 

becoming more relevant to the development of clinical diagnostics (European 

Commission, 2013).  

By using a methodical approach, C. glabrata and the echinocandin class of antifungal 

agents were used as a laboratory model of antifungal resistance to determine the 
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viability of a laboratory bench-top genomic platform; pyrosequencing, and the 

proteomic platforms; LC-MS/MS and MALDI-TOF MS for the detection of resistance. 

Based on this, the viability of MALDI-TOF MS which is in common usage in clinical 

microbiology laboratories throughout the UK for the identification of fungi  

(Borman et al., 2019; Borman et al., 2018b; Fraser et al., 2017; Borman et al., 2017; 

Fraser et al., 2016; Fatania et al., 2015; Gorton et al., 2014) was assessed for the 

detection of resistance profiles in C. glabrata. 

The overarching aim was to enable the rapid detection of specific antifungal resistance 

markers within a clinically effective time frame in the diagnostic laboratory, which 

would in practice, have the potential to positively influence therapeutic decisions and 

ultimately treatment outcomes.  

 

1.8.1 Study objectives  

 

To enable achievement of the study aim, a series of objectives were identified during 

the project development phase: 

 

Objective 1: To enhance the existing pyrosequencing-based method to incorporate the 

detection of point mutations in the FKS gene that may indicate resistance to 

echinocandin antifungal agents in C. glabrata. 

 

Objective 1.1: Compile paired panel of C. glabrata exhibiting susceptible and 

resistant characteristics.  
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Objective 2: Attempt to visualise and characterise proteins using LC-MS/MS and 

MALDI-TOF MS that may be increased or decreased in relative abundance in isolates 

identified as containing genetic mutations indicative of resistance. 

 

Objective 3: Using MALDI-TOF MS, generate peptide mass profiles for echinocandin 

resistant and susceptible isolates and determine if any identified proteins can be 

distinguished within them. 

 

Objective 3.1: To develop or create whole cell protein extraction techniques 

which will maximise recovery of cell wall and cell membrane components. 

 

Objective 3.2: To explore the operational parameters of MALDI-TOF MS in 

the clinical laboratory to enhance protocols and enable specific identified 

protein detection. 

 

Objective 4: To create a robust database for the detection of pre-existing or inducible 

resistance markers by MALDI-TOF MS in wild type clinical isolates of C. glabrata. 
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2. MATERIALS AND METHODS 
 

 

2.1 Collection/Selection of C. glabrata isolates  
 

 

Isolates of C. glabrata from the National Collection of Pathogenic Fungi (NCPF) were 

revived from storage in liquid nitrogen (LN2). Isolates were selected based upon 

previous antifungal resistance testing, where resistance to the echinocandin class of 

antifungal agents had been demonstrated. This had been determined by microbroth 

dilution testing against CSP, the first echinocandin class of antifungal to be clinically 

available (Kartsonis, Nielsen and Douglas, 2003). Storage vials were removed from 

LN2 storage and placed at -80°C in a container of 100% propanol to reduce the 

cryothermic destruction of cells. After a period of 24 hours, the vials were removed to 

room temperature to fully thaw. An aliquot was spread onto Sabouraud dextrose agar 

containing 100 mg/L chloramphenicol (SABC; PO0161A; Oxoid Ltd, Basingstoke, 

Hampshire, UK) and incubated at 30°C for 48 hours. Once revived, isolates were 

passaged at least twice, to ensure adequate log phase growth was achieved (Borman et 

al., 2006). When fully revived, all isolates were subjected to confirmatory echinocandin 

resistance testing by E-test as described by Arendrup et al. (2010) as detailed in Section 

2.2.1.  

Simultaneously between June 2015 and July 2018, all clinical isolates submitted to the 

Public Health England (PHE) Mycology Reference Laboratory (MRL) that 

demonstrated phenotypic resistance or raised MIC values to a single, or multiple 

echinocandin agents were catalogued and stored as described by Borman et al. (2006). 

Table 1 provides details about the isolates used throughout this work, including the 

original source and referral location of each isolate. 
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Table 1. Details for all isolates demonstrating echinocandin resistance included in 

this study. Table presents all isolates tested as part of this study alongside information 

about clinical origin and location of referral, if available (Fraser et al., 2019a). 

 

Key: N/A = not available, a-g = individual London healthcare centres. 

 

   

Isolate Source Location 

NCPF Number   

8714 

8715 

8745 

8814 

N/A 

N/A 

N/A 

N/A 

N/A 

N/A 

N/A 

N/A 

8919 Blood N/A 

Clinical Number   

61 Pus Gloucester 

67 Blood Dublin, Ireland 

68 Blood Londona 

70 Blood Londonb 

71 Wound Londonc 

72 Abdominal Drain Liverpool 

73 Blood Londonc 

74 Perianal Swab Sheffield 

75 Blood Londond 

76 Wound Londond 

77 Bile Leak Londone 

78 Blood Londonf 

79 Blood Liverpool 

80 Peritoneal Fluid Londong 

81 Nephrostomy Urine Londond 
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2.2 Susceptibility testing of C. glabrata isolates 

 

2.2.1. Epsilometer (E-test) susceptibility testing 

 

A suspension of C. glabrata was prepared in 4 mL normal saline (0.9% sodium 

chloride) to a cell density of approximately 2.5 x 106 CFU/mL, as determined by 

monitoring percentage transmission at an absorbance of 530 nm using a 

spectrophotometer (Jenway 6305, Jenway, USA). An RPMI agar plate (BioMérieux, 

Marcy-L’Etoile, France; AEB122180) was inoculated with the prepared cell 

suspension and allowed to dry. Plastic strips (E-tests) coated on one side with a 

concentration gradient of antifungal agent (BioMérieux, Marcy-L’Etoile, France; 

caspofungin, product code 532418; anidulafungin, product code 532000; micafungin, 

product code 535708) were placed onto the inoculated RPMI agar plate to perform 

rapid susceptibility testing as previously described (Arendrup et al., 2010). The plate 

was incubated at 35°C (±2°C) for 48 hours, with MIC values being read at both 24 and 

48 hours. All testing of MCF in this study was performed by this method only. 

 

2.2.2. Microbroth dilution susceptibility testing 

 

Microbroth dilution susceptibility testing was performed according to the Clinical 

Laboratory Standards Institute document M27-A3 (CLSI, 2008). Suspensions of CSP 

and ANF were prepared to an initial working solution of 10,000 μg/mL. Thus 10 mg 

anidulafungin powder (Pfizer Inc., USA, product code PF3910960) was dissolved in 1 

mL dimethyl sulphoxide (DMSO; Sigma Aldrich, USA, product code 472301), and 

10.3 mg caspofungin diacetate (Sigma Aldrich, USA, product code SML0425; activity 
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of powder = 97%) was dissolved in sterile distilled water. Concentration gradients were 

achieved by serial doubling dilutions in RPMI liquid media (RPMI-1640 with L-

glutamine and sodium bicarbonate; Sigma Aldrich, USA, product code R8758) 

supplemented with 2% glucose (Sigma Aldrich, USA, product code G8270) and 

buffered to pH 7.0 ± 0.1 at 25°C ± 0.1 with a 0.165 M solution of 4-

morpholinepropanesulphonic acid (MOPS; Sigma Aldrich, USA, product code 

M1254), to a test concentration range of 0.015 μg/mL to 16 μg/mL. Each concentration 

was added to a column of wells in a sterile 96- round well microtitre plate (Corning 

Inc., USA; BC013) in volumes of 100 μL. 

Test organisms were freshly sub-cultured onto SABC agar for 24 hours prior to testing. 

A suspension with an approximate cell count of between 1-5 x 106 CFU/mL was 

prepared in normal saline (0.9%; w/v NaCl) by monitoring percentage transmission on 

a spectrophotometer as previously described (Section 2.2.1). A volume of 0.1 mL 

yeast/saline suspension was added to 4.9 mL RPMI, then 0.5 mL of this diluted 

suspension was added to 9.5 mL RPMI resulting in a working volume of twice the 

1000-fold final testing dilution of approximately 2.5 x 103 CFU/mL. An aliquot of 100 

μL RPMI diluted yeast suspension was added to each well of the prepared microtitre 

plates and each plate was incubated at 35°C ± 2°C for 48 hours.  

After this time, minimum inhibitory concentration (MIC) values were read visually 

with the aid of a reading mirror. Growth in each well of the concentration gradient was 

compared to a growth control well, which did not contain antifungal agent and a 

prominent reduction in turbidity within a well (generally >50%) is the value at which 

an echinocandin agent is considered to exert a significant effect upon the organism 

being tested (Pfaller et al., 2014a). A negative control well containing no agent or 

organism was also included to ensure sterility of microtitre plate and media.  
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2.2.3 Macro-broth dilution susceptibility testing 

 

Large volume (macro-broth) susceptibility testing was undertaken in an attempt to 

increase the biomass available for protein extraction at an earlier time interval than 48 

hours. As previously described in Section 2.2.1, a yeast cell suspension with an 

approximate cell count of between 1-5 x106 CFU/mL was prepared and 100 μL of this 

was added to 9900 μL RPMI liquid medium to provide an approximate cell density of 

between 1-5 x104 CFU/mL. A test suspension of 2 mL was prepared by adding 1 mL 

of the inoculated growth media to 1 mL of the pre-prepared concentration of antifungal 

in a 10 mL glass tube (International Scientific Supplies Ltd (ISS), Silchester, UK, 

product code GBT021). This working solution was placed on a fixed speed rotating 

mixer revolving at 20 rpm (Stuart fixed speed rotator SB2, carl Roth GmBH & Co. KG) 

at 35°C for 24-48 hours. Sample volumes of 100 μL were removed at periodic time 

intervals and subjected to protein extraction as described in Section 2.5. 

 

2.2.4 Interpretation of susceptibility testing results 

 

In clinical testing, there is an allowance of two doubling dilutions difference between 

testing and different operators to allow for variations in media, temperature, inoculation 

and interpretation (Eschenauer et al., 2014; Pfaller et al., 2014a; Pfaller et al., 2011b). 

This protocol was applied to all susceptibility testing within this study and if a result 

caused a discrepancy outside of this range, or the dilution reported changed the overall 

classification of an isolate, testing was repeated. The MIC breakpoints for susceptibility 

of C. glabrata to the echinocandin class of antifungal agents are fully described by 
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CLSI (2017a; 2017b). As a reference, the values used throughout this study are 

displayed in Table 2. 

 

Table 2. Echinocandin breakpoint values for the interpretation of susceptibility in 

C. glabrata by microbroth dilution as recommended by CLSI. This table shows the 

interpretative breakpoints in μg/mL for the classification of echinocandin susceptibility 

in C. glabrata used throughout the research undertaken as part of this study (CLSI, 

2017a; CLSI, 2017b). 

 

Caspofungin (CSP) / Anidulafungin (ANF) 

 

 ≤0.125 μg/mL  Susceptible 

 0.25 μg/mL Intermediate 

 ≥0.5 μg/mL Resistant 

Micafungin (MCF) 

 

 ≤0.06 μg/mL Susceptible 

 0.125 μg/mL Intermediate 

 ≥0.25 μg/mL Resistant 

 

Internal quality control (IQC) isolates were included for each test to assess the validity 

of each prepared drug batch and test conditions. C. parapsilosis NCPF 8334 (ATCC 

22019) and P. kudriavzevii (C. krusei) NCPF 3953 (ATCC 6258) were the isolates used 

as per standard practice (Pfaller et al., 2011a; CLSI, 2008). IQC MIC values were 

expected to fall within the following ranges: 

 

CSP/ANF/MCF NCPF 8334 ≤ 2 μg/mL  

   NCPF 3953 ≤ 0.25 μg/mL  

 

In all tests, the MICs of the IQC isolates were within accepted limits (data not shown). 
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2.2.5 In vitro induction of resistance  

 

As Bordallo-Cardona et al. (2017) reported that it was possible to promote 

echinocandin resistance by inducing FKS2 mutations in vitro by exposure to increasing 

concentrations of MCF, an attempt was made to induce resistance using the E-test 

method of susceptibility testing and NCPF isolates 8714, 8715 and 8745, all of which 

had shown echinocandin susceptibility upon revival from long-term storage.  

As previously described (Section 2.2.1) cell suspensions were prepared in normal saline 

and used to inoculate RPMI plates for E-test. After 72 hours exposure, a sub-culture of 

the test isolate from nearest the MIC value, or of any macro-colonies from within the 

zone of inhibition, was taken onto a fresh SABC agar plate and testing was repeated. 

An inoculum was also sub-cultured onto a SABC agar slope for long-term storage. This 

process was repeated with each NCPF isolate that had previously demonstrated 

susceptibility to the echinocandin antifungal agents for up to a total of six passages. 

The presence of macro-colonies within areas of inhibition was taken as indicative of 

resistant sub-populations and these macro-colonies were stored, re-tested and further 

sub-cultured. All macro-colonies were subjected to pyrosequencing analysis to 

determine FKS sequences as described in Section 2.3.2. 

The first series of experiments used CSP, but all subsequent experimental passages 

were tested against ANF, which has been shown to be a better indicator of resistance in 

vitro across the whole group of echinocandin class antifungal agents (Pfaller et al., 

2014c; Espinel-Ingroff et al., 2013; Shields et al., 2013). 
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2.3 Genomic detection of echinocandin resistance 

 

2.3.1 Primer design for amplification of FKS mutations  

 

A region of the C. glabrata open reading frame was selected for sequence analysis 

based on the position of FKS mutations which have been shown to confer echinocandin 

resistance in vitro for Saccharomyces cerevisiae (Douglas et al., 1994), C. albicans 

(Park et al., 2005) and C. glabrata (Dudiuk et al., 2014). 

The forward and reverse primers used for PCR were based on C. glabrata FKS1 

(CgFKS1), GenBank accession no. KF211456.1 (Bizerra et al., 2014) and for C. 

glabrata FKS2 (CgFKS2) primers were based upon GenBank accession no. 

HM366442.1 (Niimi et al., 2012). Primers were created at Invitrogen (Thermo Fisher 

Scientific, UK) and constituted as detailed in Table 3. Sanger sequencing was 

performed by GeneWiz (formerly Beckman Coulter Genomics, Takeley, UK) to assess 

the efficiency of the primer set prior to use.   

 

 

 

Table 3. Pyrosequencing primers used for detection of FKS1 and FKS2 

mutations. The full sequence of the FKS1 and FKS2 pyrosequencing primers that 

were constructed for this study (Fraser et al., 2019a). 

 

 

 Forward Reverse 
FKS1

  

FKS2 

TTGTCTTACCTGGTTTGGGTTACT   

 

TTATCTTATTTAGTTTGGGTTACA 

GTACATCTCATGGTAGTGGTAGAC  

 

GTACATCTCATGGTAGTAGTTGAT 
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2.3.2 Pyrosequencing and rapid detection of FKS mutations 

 

Pyrosequencing was performed as previously described for yeast by Borman et al. 

(2010) using PyroMark ID and PyroMark Q96 reagents (Qiagen, Gaithersburg, MD, 

USA; Product code: 972804). Biotinylated forward primers were generated for 

pyrosequencing using the primers designed as described in Section 2.3.1. The reverse 

primer (CgFKS1/2 reverse) was used as the pyrosequencing analysis primer at a 

working concentration of 20 μM as analysis of the predicted location of hot spot 

mutations, and the limitations of pyrosequencing technology had previously suggested 

that this would maximise the chances of successful amplification (Gharizadeh et al., 

2006). It was important to consider therefore that all the sequences generated by this 

system would be in reverse. When using automated online nucleotide alignment 

software such as BLASTn to determine the accuracy of the short sequence read, built 

in algorithms reverse and compliment the data (Altschul et al., 2001) so the use of the 

reverse primer was accounted for at this stage. However, to enable the real-time 

analysis of sequences generated by the pyrosequencing analysis software, IdentiFire®, 

the creation of a FASTA format file was necessary for each possible mutation 

combination within FKS1 and FKS2. The full FASTA file containing all predicted FKS 

sequences can be found in Appendix II. Tables 4 and 5 detail the regions of interest 

considered in the pyrosequencing sequences as outlined by Dudiuk et al. (2014) and 

Pfaller et al. (2011a). 
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Table 4. Sequence and codon positions of C. glabrata FKS1 region. Sequence and 

codon position of C. glabrata FKS1 region with highlighted hot spot mutation 

regions, the expected location of the reverse primer (RP) used for pyrosequencing and 

the expected sequence generated when read from right to left (Dudiuk et al., 2014; 

Pfaller et al., 2011a).  

 

 

TAC TAC TTC TTG ATT CTA TCT CTA AGA GAT 

623 624 625 626 627 628 629 630 631 632 

ATG ATG AAG AAC TAA GAT AGA GAT TCT CTA 

          

CCA ATC AGA ATT TTG TCT ACC ACT ACC  

633 634 635 636 637 638 639 640 641  

GGT TAG TCT TAA AA      

          

 RP   Pyro      

 Hotspot         

 

 

 

 

Table 5. Sequence and codon positions of C. glabrata FKS2 region. FKS2 

sequence and codon position of C. glabrata with highlighted hot spot mutation 

regions, the location of the reverse primer (RP) used for pyrosequencing and the 

expected sequence generated, when read from right to left (Dudiuk et al., 2014; 

Pfaller et al., 2011a). 

 

 

 

TAC TTC TTC TTG ATT TTG TCT CTA AGA GAC 

657 658 659 660 661 662 663 664 665 666 

ATG AAG AAG AAC TAA AAC AGA GAT TCT CTG 

          

CCT ATC AGA ATT TTA TCA ACT ACT AAC  

667 668 669 670 671 672 673 674 675  

GGA TAG TCT TAA AA      

          

 RP   Pyro      

 Hotspot         
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2.4 Detection of proteins to indicate resistance by LC-MS/MS 

 

LC-MS/MS was performed on prepared extracts of C. glabrata isolates NCPF 8814 

(echinocandin resistant, FKS mutation present) and NCPF 8745 (echinocandin 

susceptible) to compare and characterise proteins extracted from both isolates. This was 

performed at the proteomics facility of the University of Bristol. Two different protein 

extracts were compared: one of which was optimised for LC-MS/MS techniques 

(Extract A) and the other designed for MALDI-TOF MS identification (Extract B). 

 

2.4.1 Preparation of samples for LC-MS/MS 

 

Isolates NCPF 8814 and NCPF 8745 were sub-cultured as detailed in Section 2.1, 

following a period of incubation at 30°C for 48 hours, a suspension of yeast equivalent 

to 2 McFarland standard was prepared in a sterile plastic 1.5 mL micro-centrifuge tube 

with 300 μL de-ionised water (Honeywell, Muskegon, Michigan, USA; product code: 

38796) followed by 800 μL of 100% ethanol (Sigma Aldrich, St. Louis, Missouri, USA; 

product code: 32205). The prepared samples were mixed using a vortex mixer for 30 

seconds then centrifuged at 13,226 g for 3 minutes. All liquid supernatant was removed, 

the centrifugation step was repeated, and any residual liquid was removed (Fraser et 

al., 2016). At this stage the biomass pellets requiring LC- MS/MS analysis extraction 

(Extract A) were forwarded to the proteomics facility, University of Bristol. The protein 

purification methodology created for this project by the proteomics facility, University 

of Bristol, was developed from Yoo et al. (2012) and can be found in full in Appendix 

III. The parameters used for LC-MS/MS were as described by Goggs et al. (2013). 
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2.4.2 Extraction protocol for LC-MS/MS – MALDI-TOF MS analysis 

 

Following the removal of supernatant after centrifugation as described in Section 2.4.1, 

biomass pellets were left to air dry, typically for between 3-5 minutes. Once dried, 

pellets were re-suspended in 70% (vol/vol) formic acid (Acros Organics, New Jersey, 

USA: product code: 147930250) and left at ambient temperature for 5 minutes. Protein 

precipitation was achieved by the addition of 100% acetonitrile (Honeywell, 

Muskegon, Michigan, USA; product code: 34967) to the re-suspended pellet and the 

solution was mixed using a vortex mixer for 30 seconds. Each sample was centrifuged 

at 13,226g for 3 minutes and the resulting supernatant was used for both LC-MS/MS 

analysis and MALDI-TOF MS analysis (Fraser et al., 2016).  LC-MS/MS was 

performed once for each isolate. MALDI-TOF MS was performed in triplicate on at 

least 3 independent test runs. 

 

2.4.3 LC-MS/MS data analysis 

 

LC-MS/MS analysis resulted in mass spectrum profiles as spectral data files and the 

method for data acquisition can be found in Appendix III. Each mass spectrum 

generated by the analyser was compared against a species-specific protein database in 

forward and reverse, or false, formats (Boulund et al., 2017; Duncan, Aebersold and 

Caprioli, 2010). Each match of a spectrum to a peptide in these databases was given a 

score indicating how closely the spectrum matches the predicted peptide sequence. The 

false search was expected to generate low match scores, due to the expectation that the 

protein sequences generated should be nonsensical. The software analyses the 

distribution of the scores matched to both the genuine and false databases and calculates 
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a score cut off, where there is only a 5% chance that a resolved peptide matched the 

false database and is therefore not an accurate predicted peptide sequence, this 

generates a false discovery rate (FDR; Zhang et al., 2011). All peptides with a score 

below this calculated cut-off are termed low confidence peptides. A high confidence 

level was set at 1%, equivalent to only 1 in every 100 peptides matching the false 

database. Therefore, at the 1% high confidence level it can be reasoned that there is 

99% confidence that every peptide present in the extraction was a genuine peptide from 

a protein matched in the species-specific database. Spectral data was analysed using 

Protein Discoverer™ (Thermo Fisher Scientific Version 1.4, USA) and the UniProt C. 

glabrata isolate NCPF 3309 (ATCC 2001; [284593]) using the SEQUEST algorithm 

(Thermo Fisher Scientific, USA). Each mass spectra (raw data) generated by the 

analyser was searched against a species-specific protein database in forward and 

reverse (false) formats. Each match of a spectrum to a peptide in these databases is 

given a score indicating how closely the spectrum matches the predicted peptide 

sequence. 

If a protein was found to be uncharacterised in the LC-MS/MS initial database search, 

then a subsequent search using the database for the most abundantly studied fungal 

organism, Saccharomyces cerevisiae and homologous proteins was used to predict 

likely protein candidates. Alternative searches were also conducted in a non-organism 

specific manner using UniProt, an online aggregator of several protein databases 

(UniProt Consortium, 2017). 
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2.5 Preparation and analysis of samples by MALDI-TOF MS 

 

2.5.1 Basic protein extraction 

 

Extraction of proteins was achieved using a methodology recommended by the 

MALDI-TOF MS manufacturer (Bruker Daltonic GmBH, Bremen, Germany) and 

optimised by users working in diagnostics in clinical mycology (Fraser et al., 2016; 

Gorton et al., 2014; Fatania et al., 2014).  

C. glabrata isolates were grown for 24 hours at 30°C on a SABC agar plate. Each 

isolate was tested in triplicate on at least 3 independent test runs. An amount of biomass, 

roughly equivalent to 1 μL was removed using a 1 μL plastic loop from the plate into a 

sterile plastic conical tube containing 300 μL of de-ionised water, 800 μL 100% ethanol 

was added, and the tube was then vortex mixed for 30 seconds. The mixture was 

centrifuged at 13,226 g for 3 minutes before the supernatant was removed and 

discarded. A repeat centrifugation step was performed to fully remove the ethanol/water 

mixture from the biomass pellet. The pellet was allowed to air dry for no more than 15 

minutes, further allowing for ethanol evaporation. The pellet was re-suspended in a 

volume of 70% (vol/vol) formic acid equivalent to the size of the pellet, and in practice 

this ranged from 30-50 μL. The suspension was incubated at ambient temperature for 

5 minutes before an equal volume of 100% acetonitrile was added and the tube was 

gently mixed. Following a further ambient incubation of no less than 5 minutes, the 

tube was mixed and centrifuged at 13,226 g for 3 minutes. The supernatant was then 

placed onto a 96-spot polished steel target plate (Bruker Daltonics GmBH, Bremen, 

Germany; product code: 8280800) in volumes of 1 μL. Once the supernatant had 

evaporated, 1 μL of α-Cyano-4-hydroxycinnamic acid (HCCA) matrix (Bruker 
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Daltonics GmBH, Bremen, Germany; product code: 8255344) reconstituted in 250 μL 

organic solvent (OS) comprised of 25 μL trifluoroacetic acid (TFA; Honeywell, 

Muskegon, Michigan, USA; product code: 302031); 475 μL deionised water and 500 

μL 100% acetonitrile, was added to each spot and allowed to air dry as shown in Figure 

1. 

 

 

Figure 1. A prepared MALDI-TOF MS target plate. A stainless-steel target plate 

for MALDI-TOF MS analysis with matrix coated air-dried samples (author’s own 

image) 

 

 

2.5.2 Extraction of proteins after antifungal exposure 

 

 

For those experiments involving the exposure of isolates to antifungal agents, a series 

of cell wash steps were introduced prior to protein extraction protocol as laid out in 

Section 2.5.1. The wash steps were designed to help the removal of residual growth 

media and antifungal carry-over (Nguyen et al., 2009), which may cause discrepancies 

in the final spectral acquisition. This process involved the removal of 100 μL growth 

media from the tubes or wells of interest and then centrifugation at 13,266g for 3 

minutes. The supernatant was removed, and the pellet was re-suspended in 50 μL sterile 

distilled water, mixed using a vortex mixer and re-centrifuged at 13,266g for 3 minutes. 
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This step was repeated once more to ensure complete removal of growth media from 

the cells, and to reduce antifungal carry-over to the subsequent extraction and analysis 

steps (Saracli et al., 2015).  

 

2.5.3 MALDI-TOF MS analysis 

 

Prepared, matrix covered protein extracts on target plates (Figure 1) were placed into a 

Bruker MicroFlex LT bench top MALDI-TOF MS platform (Bruker Daltonic GmbH, 

Bremen, Germany) according to the manufacturer’s instructions. Standard analysis was 

performed using the default laser frequency at 60Hz for every run, in linear positive ion 

acquisition mode. The default instrument settings for recommended clinical laboratory 

use included: lens, 8.5kV; ion source 1, 20kV; ion source 2, 18.1kV; with a detectable 

mass range of 2,000 – 20,000-Da. For each sample tested a minimum of 240 laser shots 

was used to create spectral data, with 40 laser shots at six randomised positions on a 

single target plate spot and the combined sum spectra was analysed in various software 

packages as detailed in Section 2.6.2. 

 

2.5.4 Creation of main spectrum profiles (MSP) for inclusion in the MALDI-TOF 

MS database 

 

In order to create a representative main spectrum profile (MSP) as previously described 

(Fraser et al., 2016). Briefly, eight replicates of the extracted proteins from cultures that 

were 24 hours old were measured in triplicate using Bruker’s FlexControl software. 

This generates a profile consisting of 24 spectral records for the organism of interest 

(Figure 10). Using Bruker’s FlexAnalysis software, the consistency and reproducibility 
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of all 24 replicates is inspected and evaluated (Figure 11). Once the spectra have been 

validated a third piece of software, Biotyper 3.1, is used to compare each spectrum to 

existing MSP spectra in the available MALDI-TOF MS databases. Once again, the data 

is interrogated for possible matches and overlap which may negate the creation of a 

new MSP record within the database (Figure 12). In the event that no overlap is 

manually observed, Biotyper 3.1 allows the creation of an MSP from the spectral 

dataset. This can then be catalogued and entered into the taxonomic tree of the MRLDB 

or other internally curated database. 

 

2.6 Data Analysis 

 

Multiple commercially available software packages were used to visualise and integrate 

the data generated throughout this study. In keeping with the full remit of this study, all 

the software programs are part of the standard installation package for the machine or 

platform provided by the manufacturer at purchase. An exception was the 4Peaks 

software which is a tool designed to read specific file formats generated by sequencing 

analysis machines. For ease of acknowledgment, all are listed here: 

 

2.6.1 Genomic analysis 

 

DNA sequence analysis: 4Peaks designed by A. Griekspoor and Tom Groothuis, 

www.nucleobytes.com  

DNA sequence matching: BLASTn online tool, www.blast.ncbi.nlm.nih.gov  

Pyrosequencing operation: PyroMark™ID created by Biotage AB, Uppsala, Sweden 

http://www.nucleobytes.com/
http://www.blast.ncbi.nlm.nih.gov/
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Pyrosequencing sequence analysis: IdentiFire® created by Biotage AB, Uppsala, 

Sweden  

 

2.6.2 Proteomic analysis 

 

LC-MS/MS 

Operation:  Xcalibur 2.1 (Thermo Scientific, USA) 

Protein identification: ProteinPlot and www.uniprot.org 

   SEQUEST (Thermo Scientific, USA) 

 

MALDI-TOF MS 

Compass for Flex Series 1.3 including; 

Operation: FlexControl 3.3 (Bruker Daltonic GmBH, Bremen, Germany) 

Analysis: Biotyper 3.1 and FlexAnalysis (Bruker Daltonic GmBH, Bremen, 

Germany) 

 

Statistical analysis of spectral data was conducted within the Biotyper 3.1 software. 

The functions for the creation of principal component analysis (PCA) and composite 

correlation indices (CCI) are built into the Biotyper 3.1 software package as a tool for 

enhanced analysis. However, the software does not provide detail as to the elements 

of data which are utilised in their calculation, and their use in this study was primarily 

to demonstrate a different visual representation of the spectral data. 

  

 

  

http://www.uniprot.org/
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2.7 Ethical approval and risk assessment 

 

This research was conducted at the Public Health England National Mycology 

Reference Laboratory (PHE MRL) in Bristol. Whilst there were already appropriate 

risk assessments in place for all the activities undertaken as part of this study, a new 

risk assessment for the complete undertakings within the study was completed and 

approved by onsite health and safety management.  

Full ethical and research governance was approved for this project by the PHE Research 

and Development office (R&D243) and by the UWE ethics committee (UWE REC 

REF No:  HAS.15.08.004). There were no human participants within this study and 

only archived clinical isolates of microorganisms were used, with no linkage to patient 

medical records. There was therefore no requirement for patient information, and as 

such no personal data was stored or collected. Letters of confirmation of approval to 

proceed can be found in Appendix I. 
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3. RESULTS 

 
3.1 Detection of genetic markers of resistance  
 

 

3.1.1 Collection/selection of isolates and susceptibility testing 

 

 

Initial isolates of C. glabrata were selected for this study based upon their accession 

into the NCPF as CSP resistant isolates from clinical samples. The initial selected 

isolates were NCPF 8714, 8715, 8745, 8814 and 8919. Once fully revived, all isolates 

were subjected to confirmatory echinocandin resistance testing by E-test as described 

in Section 2.1 and the results are shown in Table 6. It is clearly highlighted in italics in 

Table 6 that only 2/5 isolates revived from the NCPF were deemed resistant according 

to the breakpoints used throughout the timeframe of this study (Fraser et al., 2019a; 

CLSI, 2017a; CLSI 2017b). Discussion and interpretation of this finding can be found 

in Section 4.2. NCPF 8714 and 8715 were discontinued from further study and NCPF 

8745 was used throughout the study as an echinocandin susceptible isolate. 

 

Table 6. Minimum inhibitory concentration (MIC, µg/mL) of caspofungin as 

demonstrated by E-test for revived NCPF isolates Table presenting the MIC values 

as performed by E-test for caspofungin of isolates of C. glabrata revived from the 

NCPF. All isolates entered the collection as echinocandin resistant. Section 4.2 

provides discussion of discrepancies in the expected resistance highlighted here 

(Italics).  

 

Key: MIC = minimum inhibitory concentration, NCPF = National Collection of 

Pathogenic Fungi. 

 

 

NCPF Isolate  8714 8715 8745 8814 8919 

MIC Result μg/mL (24 hours)  0.064 0.064 0.016 6 >32 

MIC Result μg/mL (48 hours)  0.064 0.064 0.016 >32 >32 
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During the period of this study, between July 2015 and July 2018, a total of 2713 

clinical isolates of C. glabrata were submitted to the PHE MRL for antifungal 

susceptibility testing. Isolates that demonstrated some form of elevated echinocandin 

MIC or were classified as exhibiting intermediate susceptiblity or resistance to one or 

more echinocandin agent as determined by CLSI microbroth dilution (Table 2; CLSI, 

2017a; 2017b) were admitted into this study. This totalled fifteen (0.55%) clinical 

isolates and these were assigned a study (clinical) number accordingly, the results of 

the susceptibility testing are found in Table 7. 
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Table 7 Minimum inhibitory concentration (MIC, µg/mL) of echinocandin for all 

isolates used during this study between July 2015 – July 2018. Table provides the 

data for the archived echinocandin resistant isolates from the National Collection of 

Pathogenic Fungi (NCPF) and clinical isolates which exhibited echinocandin MICs 

classified as resistant or intermediate acquired during the period of study, July 2015 – 

July 2018 (Fraser et al., 2019 

 

Key: MIC = minimum inhibitory concentration (μg/mL), NCPF = National Collection 

of Pathogenic Fungi, ANF = anidulafungin, CSP = caspofungin, MCF = micafungin, 

‘-‘ = not tested. 

 

  MIC (μg/mL)  

Isolate ANF CSP MCF 

NCPF Number    

8714 

8715 

8745 

8814 

- 

- 

- 

4 

0.06 

0.06 

<0.015 

6 

- 

- 

- 

1 

8919 6 >32 6 

Clinical Number    

61 - 8 1 

67 0.25 0.5 0.016 

68 - 0.25 - 

70 - 0.25 - 

71 0.5 1 - 

72 2 32 4 

73 2 4 - 

74 2 2 - 

75 0.5 2 0.25 

76 0.5 4 0.5 

77 0.25 0.5 0.03 

78 2 2 0.75 

79 2 2 0.5 

80 2 >16 2 

81 0.5 2 0.125 
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3.1.2 Primer design and suitability for analysis of FKS regions 

 

 

Traditional Sanger sequencing of the FKS region was applied to NCPF 8714 to 

determine the amplification of the correct region required for detection in this study 

with the primer set described in Table 3. The primary objective was to ensure that 

primers for each region (FKS1 and FKS2) did not overlap and cross amplify. The 

resulting sequences were subjected to a publicly synchronised online nucleotide 

database search using BLASTn. The resulting matches correctly identified the sequence 

homology between the PCR product and the FKS1 region in C. glabrata. This process 

was repeated for the FKS2 region, with similar results. Example sequence traces, the 

respective BLASTn matches and interpretation can be found in Figures 2 - 5. This 

process was only performed on a single isolate of NCPF 8714 due to the financial 

constraints of outsourcing Sanger sequencing, which is no longer performed in the 

diagnostic laboratory.



 
 

  

4
6

 
 

 
 

 

Figure 2. Sanger sequencing trace for C. glabrata NCPF 8714 FKS1. C. glabrata NCPF 8714 FKS1 (92 bases) visualised using 4Peaks 

sequencing software. Different colour peaks represent the addition of a new nucleotide into the sequencing strand. These are listed in the 

matching colour along the top. Key: Green = adenine (A), blue = cytosine (C), black = guanine (G), red = thymine (T). 
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Figure 3. BLASTn matches for FKS1 primer. BLASTn web-based search engine matches for FKS1 primer with C. glabrata. Key:  A = 

adenine, C = cytosine, G = guanine, T = thymine. 
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Figure 4. Sanger sequencing trace for C. glabrata NCPF 8714 FKS2. C. glabrata NCPF 8714 FKS2 (109 bases) visualised using 4Peaks 

sequencing software. Different colour peaks represent the addition of a new nucleotide into the sequencing strand. These are listed in the 

matching colour along the top. Green = adenine (A), blue = cytosine (C), black = guanine (G), red = thymine (T). 
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Figure 5. BLASTn matches for FKS2 primer. BLASTn web-based search engine matches for FKS2 primer with C. glabrata. Key: A = 

adenine, C = cytosine, G = guanine, T = thymine.
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3.1.3 Pyrosequencing of FKS regions 

 

 

Pyrosequencing of the NCPF reference isolates of C. glabrata resulted in the detection 

of two isolates (NCPF 8814 and NCPF 8919) with hot spot mutations and this 

correlated with phenotypic resistance to echinocandin agents as shown in Table 6 and 

Table 8. Figure 6 shows an example sequence profile generated by the IdentiFire® 

software and Table 8 details the results of the initial pyrosequencing of all the revived 

NCPF isolates. As shown in Table 8, wild type (no hot spot mutation) FKS sequences 

were detected for all NCPF isolates in FKS1, and for NCPF 8714, NCPF 8715 and 

NCPF 8745 in FKS2. The detection of a hot spot mutation for phenotypic resistant 

isolates NCPF 8814 and NCPF 8919 appears in FKS2 and represents the substitution 

of a serine for a proline at position 663 (S663P). The full FASTA format sequences 

possible for both FKS regions used to create the database are available to view in 

Appendix II. 

 



 
 

 
 5

1
 

 

 
 

Figure 6. Pyrosequencing analysis report for FKS mutant. Example of sequence analysis report and FKS mutation identification using the 

IdentiFire® software and the FKS Fasta file (Appendix II). The red line identifies a successful nucleotide insertion into the query sequence, the 

relative size of the peak indicates multiple nucleotide insertions.  Key: A= adenine, C = cytosine, G = guanine, T = thymine.



 
 

52 
 

Table 8. Pyrosequencing results for NCPF isolates of C. glabrata Table 

demonstrates the pyrosequencing results of FKS1 and FKS2 for the NCPF isolates 

revived at the start of this study (Fraser et al., 2019a).  

 

Key: Isolate = NCPF number; MIC = Echinocandin minimum inhibitory concentration 

at 24 hours (µg/mL); Class (Classification) = Susceptible (S) or Resistant (R); 

FKS1/FKS2 = sequence match generated by IdentiFire® software; Mutation = No (N), 

or Yes (Y) and including the FKS gene (1/2), amino acid (Aa) substitution and gene 

position (XXX) in the format: 1/2 – AaXXXAa. 

 

 

Isolate MIC 

(µg/mL) 

Class FKS1 FKS2 Mutation 

8714 0.064 S CGFKS1_WT.3 CGFKS2_WT3 N 

8715 0.064 S CGFKS1_WT.3 CGFKS2_WT3 N 

8745 0.016 S CGFKS1_WT.3 CGFKS2_WT3 N 

8814 6 R CGFKS1_WT.3 CFKS2_S663P.CCT Y, 2-S663P 

8919 >32 R CGFKS1_WT.2 CFKS2_S663P.CCT Y, 2-S663P 

 

 

 

3.1.4 In situ induction of resistance to echinocandin antifungal agents 

 

 

Unexpectedly, three of the five revived NCPF isolates (NCPF 8714, NCPF 8715 and 

NCPF 8745) did not demonstrate any evidence of echinocandin resistance (Table 6 and 

Table 8), and this presented an opportunity to attempt the induction of resistance in 

these isolates using a process of serial passage and antifungal exposure. As described 

in section 2.2.5, the method used has been suggested as an accurate reflection of in vivo 

exposure to antifungal agents in a clinical setting (Zimbeck et al., 2010). Each serial 

sub-culture resulted in a unique isolate which was accessioned to a short-term storage 

system (SABC agar slope) so that if resistance was successfully induced, sequential 

alterations in the genetic or proteomic profiles could be detected and tracked through 

each individual passage. This would also enable the capture of those isolates that 
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demonstrate MIC values considered borderline, or indicating emergent resistance, 

therefore providing a more complete picture of the induction of resistance in the 

presence of antifungal agent. 

Freshly grown isolates of NCPF 8714, NCPF 8715 and NCPF 8745 were subjected to 

serial sub-culture in the presence of ANF in an attempt to induce resistance as 

previously demonstrated with MCF (Bordallo-Cardona et al., 2017). The presence of 

macro-colonies within areas of inhibition was taken as indicative of resistant sub-

populations and these macro-colonies were stored, re-tested and further sub-cultured. 

All macro-colonies were subjected to pyrosequencing analysis to determine FKS 

sequences. Table 9 presents a subset of the induction assay results demonstrating how 

each isolate was repeatedly sub-cultured and visible macro-colonies were removed and 

re-tested. The full data set is available in Appendix IV (Table 1). Isolate NCPF 8715 

was the only isolate to demonstrate the appearance of potentially inducible resistance, 

whereby continual serial sub-cultures of this isolate resulted in the production of 

multiple macro-colonies with varying MIC values. However, no detectable FKS 

mutations were found by pyrosequencing in any of the sub-cultured isolates collected 

at any stage of passage. This may suggest that the subcultures which exhibited the 

appearance of microcolonies within zones of inhibition did not actually represent 

induced resistance in this instance. In fact, on further examination this culture had 

become contaminated at some point with an isolate of C. parapsilosis for which the 

MIC cut off value for susceptibility is higher (≤2.0 μg/mL; CLSI, 2017b). The full data 

set was therefore omitted from further study. 
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Table 9. Sub-culture and resulting macro-colonies of NCPF isolates exhibiting 

decreased susceptibility to anidulafungin. Table displays the pyrosequencing results 

for the NCPF isolates that demonstrated the presence of macro-colonies potentially 

indicative of induced resistance on serial sub-culture. The full data set is available in 

Appendix IV (Table 1). 

 

Key: Isolate = NCPF isolates, or macro colony identifier; Sub = number of sub-culture; 

Macro = number of macro-colony on sub-culture; MIC = minimum inhibitory 

concentration of anidulafungin at 24 hours, or in case of multiple isolates a range is 

provided (µg/mL); FKS1/2 = Identifire® sequence identification; Mutation = No (N), 

or Yes (Y) and including the FKS gene (1/2). Full table can be found in Appendix IV 

 

 

Isolate Sub Macro MIC 

(µg/mL) 

FKS1 FKS2 Mutation 

8714 6 0 0.012 CGFKS1_WT.3 CGFKS2_WT3 N 

8715 2 1 0.5 CGFKS1_WT.3 CGFKS2_WT3 N 

8715 

sub2-

macro1 

2 7 0.25 - 4 CGFKS2_WT3 CGFKS2_WT3 N 

8715 

sub2-

macro4 

1 2 1-2 CGFKS2_WT3 CGFKS2_WT3 N 

8715 

sub2-

macro6 

1 4 1-2 CGFKS2_WT3 CGFKS2_WT3 N 

8745 6 0 0.016 CGFKS1_WT.3 CGFKS2_WT3 N 
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3.1.5 Application to clinical isolates demonstrating phenotypic resistance 

 

 

Table 10 shows the pyrosequencing results obtained for clinical isolates submitted for 

routine susceptibility testing to PHE MRL during the timescale of this study that had 

demonstrated phenotypic resistance to one or more echinocandin agents by in vitro 

microbroth dilution testing. A hot spot mutation representative of a substitution of 

serine to proline at position 629 was detected in FKS1 for clinical isolates 61, 71, 72, 

75, 76 and 81. For FKS2, conclusive hot spot mutations representing a substitution of 

serine for proline at position 663 were detected in clinical isolates 73, 74, 78 and 79. 

Isolates 71 and 72 may have mutations in both FKS1 and FKS2 but despite repeat 

testing, the sequence homology score for FKS2 was never greater than 90%. Isolates 

61 and 80 failed to show any evidence of amplification for the FKS2 region even after 

repeated attempts and are listed as inconclusive for mutations in this region. In the case 

of isolate 80, FKS1 demonstrated a wild type sequence, suggesting the potential that 

the resistance mechanism for this isolate may not reside in FKS at all.  Without the 

ability to verify the FKS2 region, this cannot be proven at this stage. 
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Table 10. FKS results for clinical isolates showing in vitro resistance. Table shows 

clinical submissions to PHE MRL that demonstrated phenotypic resistance to one or 

more echinocandin agent during the study period and the pyrosequencing result 

returned. This is provided as the mutation or wild type (WT) sequence, and if the 

sequence homology was >100%, the percentage match is provided (Fraser et al., 

2019a).  

 

Key: MIC = Minimum inhibitory concentration (µg/mL), ANF = anidulafungin, CSP 

= caspofungin, MCF = micafungin, na = not available, WT# = Wild Type sequence 

number, X###X = amino acid, position, amino acid substitute, “-“ = Inconclusive, 

*sequence homology score <100. 

 

 

Clinical Isolate 

Number 

MIC (µg/mL) 

ANF/CSP/MCF 

FKS1 FKS2 

   

61 na/8/1 S629P - 

67 0.25/0.5/0.016 WT3 WT2 

68 na/0.25/na WT3 WT2 

70 na/0.25/na WT3 WT2 

71 0.5/1/na S629P ?S663F 83.1%* 

72 2/32/4 S629P ?S663F 77.4%* 

73 2/4/na WT3 S663P 

74 2/2/na WT3 S663P 

75 0.5/2/0.25 S629P WT3 

76 0.5/4/0.5 S629P WT3 

77 0.25/0.5/0.03 WT3 WT3 

78 2/2/0.75 WT3 S663P 

79 2/2/0.5 WT3 S663P 

80 2/>16/2 WT3 - 

81 0.5/2/0.125 S629P WT3 
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3.2 Detection of proteins by LC-MS/MS that may indicate resistance  

 

3.2.1 LC-MS/MS analysis of protein extracts 

 

LC-MS/MS was performed on prepared extracts of C. glabrata isolates NCPF 8814 

(echinocandin resistant, FKS mutation present) and NCPF 8745 (echinocandin 

susceptible), at the proteomics facility of the University of Bristol, to compare and 

characterise proteins present within both isolates. Two different protein extracts were 

compared: one extracted using a protocol optimised for LC-MS/MS techniques (Extract 

A) and the other using an extraction protocol specifically created for MALDI-TOF MS 

identification (Extract B) as described in Section 2.4. Once extracted, the prepared 

suspensions requiring LC- MS/MS analysis were forwarded to the proteomics facility, 

University of Bristol. This series of experiments was only performed once, and on a 

single example of each isolate. This was due to the high complexity of analysis and cost 

of outsourcing. 

Tables 12 and 13 represent some examples of the data analysis provided by the LC-

MS/MS analysis. The primary aim of using LC-MS/MS was to provide an indication 

of the potential protein targets related to echinocandin resistance within an extracted 

preparation of C. glabrata. This may have taken the form of a loss of or reduction in 

abundance of an existing protein, or the creation of a new protein. It was therefore 

essential to compare an echinocandin resistant isolate alongside an echinocandin 

susceptible isolate. Extraction protocols were developed for LC-MS/MS and MALDI-

TOF MS so that they could be compared as to the relative quantity of information 

provided by each extraction method. Table 11 provides an overview of the total number 

of predicted proteins present in both extractions for each isolate. These data are sorted 
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to identify proteins which may be unique to either the echinocandin resistant isolate 

(NCPF 8814) or the echinocandin susceptible isolate (NCPF 8745). 

For NCPF 8745, a total of 1379 proteins were predicted by peptide fragment analysis 

in extract A, and 296 in extract B. Of these proteins, 1160 (84.1%) were only found in 

extract A and 2 (0.17%) of those were unique to NCPF 8745. In extract B, 77 (26.0%) 

proteins were unique to the extraction method with 16 (7.8%) of these being identified 

as appearing only in NCPF 8745.  

For NCPF 8814, a total of 1486 proteins were suggested in extract A and 248 in extract 

B. Of these predicted proteins, 1278 (86%) were identified as being unique to extract 

A with a total of 7 (0.55%) being specific to NCPF 8814 and 40 (16.1%) were found to 

present in extract B alone, with 5 (12.5%) representing unique proteins to NCPF 8814. 

Table 13 shows all the unique proteins predicted in the MALDI-TOF MS extraction 

(extract B) with NCPF 8814, the echinocandin resistant isolate, which were not detected 

in the same extraction for NCPF 8745, the echinocandin susceptible isolate. Four of the 

predicted proteins represent ribosomal proteins which could be detectable by MALDI-

TOF MS (Clark et al., 2013). This serves to highlight their potential utility as markers 

of resistance when using MALDI-TOF MS in the clinical diagnostic laboratory. Table 

13 provides a complete list of all the predicted proteins present in the MALDI-TOF MS 

extract for NCPF 8814. Whilst these predicted proteins are not necessarily specific to 

the echinocandin resistant isolate alone, they provide a much larger selection of 

probable markers or indicators of resistance for analysis by MALDI-TOF MS. 

However, a direct consequence of the shot gun approach to proteomics adopted over 

the past decade results in 30 (75%) of the potential predicted targets being returned as 

uncharacterised proteins with differing roles in many aspects of cell biology as inferred 

from the homology of predicted proteins in Tables 12 and 13. The complete LC-MS/MS 
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data sets for each extraction technique, with each isolate are accessible via the UWE 

data repository (Fraser, 2019b, available from: http://researchdata.uwe.ac.uk/444). 
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Table 11. The number of whole proteins predicted from peptide sequence spectra 

generated by LC-MS/MS. Isolates NCPF 8745 (echinocandin susceptible) and NCPF 

8814 (echinocandin resistant) are presented with an overview of the number of proteins 

predicted from peptide sequence spectra generated by LC-MS/MS allowing the 

comparison of relative protein recovery for each extraction. Extraction A is specifically 

modified for LC-MS/MS analysis, and Extraction B is the standard extraction used for 

routine yeast identification by MALDI-TOF MS. 

 

 

 

 

 

 

 

 

 

Total 

number of 

predicted 

proteins 

Mass Range  

of Proteins 

(Da) 

Total number  

of proteins 

unique to 

 extraction type 

Total number  

of predicted 

proteins 

identified as 

unique to isolate 

Extract A 

8745 

8814 

 

1379 

1486 

 

8000 – 432,200 

6400 – 352,600 

 

1160 

1278 

 

2 

7 

Extract B 

8745 

8814 

 

296 

248 

 

6400 – 118,400 

6300 – 68,800 

 

 

77 

40 

 

 

 

16 

5 
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Table 12. Predicted unique proteins from echinocandin resistant isolate, NCPF 

8814. Table showing predicted unique proteins not recovered in extracts of 

echinocandin susceptible isolate, NCPF 8745 but detected by both extraction methods 

at 1% false discovery rate.  

 

Key: MW = molecular weight, H = inferred from homology in similar organisms, P = 

predicted by previous proteomic studies. 

 

Protein 
MW 

(Da) 

Protein 

Discoverer™ 
UniProt 

Molecular function (if 

known) 

F2Z629 9900 
Ribosomal 

Protein L37 

Ribosomal 

Protein L37 

Metal ion binding, rRNA 

binding, structural 

component of ribosome -2 

(H) 

Q6FQH1 10900 Uncharacterised 
Cytochrome 

b-C1 

Ubiquinol-cytochrome-c 

reductase 

activity -1 (P) 

Q6FXR7 13600 Uncharacterised 

37S 

ribosomal 

protein 

YMR-31, 

mitochondrial 

Ribonucleoprotein, 

ribosomal protein – 1 (P) 

Q6FW92 15500 
54S ribosomal 

protein L31 

54S 

ribosomal 

protein L31, 

mitochondrial 

Structural component of 

ribosome -1 (P) 

Q6FRV9 22100 Uncharacterised 

40S 

ribosomal 

protein S9-A 

rRNA binding, structural 

component of ribosome – 1 

(P) 
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Table 13. Proteins predicted by LC-MS/MS from NCPF 8814 which are only 

present in MALDI-TOF MS extraction. Proteins as predicted by LC-MS/MS present 

only in extract B (MALDI-TOF MS specific) of echinocandin resistant isolate NCPF 

8814, at 1% false discovery rate. This identifies their potential use as resistance markers 

in MALDI-TOF MS. 

 

Key: MW= Molecular weight, H = inferred from homology in similar organisms, P = 

predicted by previous proteomic studies. 

 

Protein 
MW 

(Da) 

Protein 

Discoverer™ 
UniProt 

Molecular Function 

(if known) 

B4UN51 6300 Uncharacterised Uncharacterised 
Structural constituent 

of ribosome (H) 

B4UN07 7100 Uncharacterised Uncharacterised 
Cytochrome-c oxidase 

activity (P) 

Q6FVK6 7600 Uncharacterised Uncharacterised (P) 

Q6FT27 7800 Uncharacterised Uncharacterised 

DNA binding, RNA 

polymerase activity, 

zinc ion binding (P) 

B4UMX6 7900 Uncharacterised Uncharacterised (P) 

B4UN08 8000 Uncharacterised Uncharacterised 
Structural component 

of ribosome (P) 

B4UMY3 8300 Uncharacterised Uncharacterised 
Cytochrome-c oxidase 

activity (P) 

B4UMX5 8500 Uncharacterised Uncharacterised Transmembrane (P) 

B4UMX9 9400 Uncharacterised Uncharacterised (P) 

Q6FVQ3 9700 

Cytochrome c 

oxidase 

assembly protein 

COX19 

Cytochrome c 

oxidase assembly 

protein COX19 

Copper ion binding 

(H) 

B4UN34 10700 
Stationary phase 

protein 4 

Stationary phase 

protein 4 SPG4 

Stationary phase 

essential protein (H) 

Q6FP60 10800 Uncharacterised Uncharacterised 
ATPase inhibitor 

activity (P) 

Q6FMK4 10800 Uncharacterised Uncharacterised 
Cytochrome-c oxidase 

activity (P) 

B4UN26 11000 Uncharacterised Uncharacterised Unknown 

B4UN65 11300 Uncharacterised Uncharacterised 
Structural component 

of ribosome (P) 

Q6FQ40 11700 Uncharacterised Uncharacterised 
Structural component 

of ribosome (P) 

Q6FLM0 13000 Uncharacterised Uncharacterised 

Tubulin binding, 

unfolded protein 

binding (P) 

Q6FQX5 13400 

Cytochrome c 

oxidase-

assembly factor 

COX23, 

mitochondrial 

Cytochrome c 

oxidase-assembly 

factor COX23, 

mitochondrial 

Mitochondrial 

respiratory chain 

complex assembly 

(H) 
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Q6FIV0 13500 

Long 

chronological 

lifespan protein 

2 

Long 

chronological 

lifespan protein 2 

LCL2 

Probable component 

of the endoplasmic 

reticulum-associated 

degradation pathway 

(H) 

Q6FKT9 13500 Uncharacterised Uncharacterised 
Structural component 

of ribosome (P) 

Q6FQ39 15200 Uncharacterised Uncharacterised 

Mitochondrial 

respiratory chain 

complex II assembly 

(P) 

Q6FT17 15400 Uncharacterised 
mRNA stability 

protein 

Protein 

serine/threonine 

phosphatase inhibitor 

activity (H), prevents 

degradation of 

specific nutrient-

regulated mRNAs 

Q6FL06 15800 Uncharacterised Uncharacterised 

7S RNA binding, 

endoplasmic 

reticulum signal 

peptide binding (P) 

Q6FQS0 16100 Uncharacterised Uncharacterised (P) 

Q6FST7 16500 Uncharacterised Uncharacterised 
Structural component 

of ribosome (P) 

Q6FUH0 16700 Uncharacterised 
Uncharacterised, 

DAP1 

Enzyme activator 

activity, heme binding 

(H) 

Q6FMP3 16900 Uncharacterised Uncharacterised 
Structural component 

of ribosome (P) 

Q6FMW3 17000 Uncharacterised Uncharacterised (P) 

Q6FNZ3 17200 Uncharacterised Uncharacterised 

mRNA binding, 

single stranded DNA 

binding, translation 

regulator activity, zinc 

ion binding (P) 

Q6FJP2 17400 Uncharacterised Uncharacterised 

Thiosulphate 

sulphurtransferase 

activity (P) 

Q6FVB3 17600 Uncharacterised Uncharacterised (P) 

Q6FT71 20300 

Actin-related 

protein 2/3 

complex subunit 

3 

Actin-related 

protein 2/3 

complex subunit 

3 

Actin binding, 

mediates the 

formation of branched 

actin networks (H) 

Q6FIK8 20700 Uncharacterised Uncharacterised (P) 

Q6FUK7 23700 Uncharacterised Uncharacterised 
Structural component 

of ribosome (P) 

Q6FTI3 24100 Uncharacterised Uncharacterised (P) 

Table 13 continued. 
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Q6FQ63 24100 Uncharacterised 
Clathrin light 

chain 

Structural molecule 

activity, clathrin is the 

major protein of the 

polyhedral coat of 

coated pits and 

vesicles (H) 

Q6FS90 28000 Uncharacterised Uncharacterised (P) 

Q6FIT0 30300 Uncharacterised 
Cytochrome-c 

heme lyase 

Holocytochrome –c 

synthase activity, 

covalently links the 

heme group to the 

apoprotein of 

cytochrome-c (H) 

Q6FP52 30300 

Signal 

recognition 

particle SEC65 

subunit 

Signal 

recognition 

particle SEC65 

subunit 

7S RNA binding, 

signal recognition 

particle, crucial role 

in targeting secretory 

proteins to the rough 

endoplasmic 

reticulum membrane 

Q6FR69 68800 
Uncharacterised 

Protein 
Uncharacterised 

Glutathione hydrolase 

activity (P) 

 

Table 13 continued. 
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3.2.2 Detection of predicted proteins by LC- MS/MS using MALDI-TOF MS  

 

The data compiled from LC-MS/MS analysis as presented in Tables 11 - 13 

demonstrated the presence of several possible protein indicators for resistance between 

the susceptible and resistant isolates.  None of those predicted and characterised by the 

available software appears to have an existing recognised role in echinocandin 

resistance, whereby the majority of predicted proteins appear to be related to ribosomal 

structure and metabolic pathways. However, identification of organisms by MALDI-

TOF MS is generally dependent upon ribosomal proteins present within the cytoplasm 

(Clark et al., 2013). The next step was to determine if any of these predicted potential 

protein targets could be visualised by MALDI-TOF MS under conditions used in the 

clinical laboratory to identify yeast isolates. In MALDI-TOF MS analysis, it is 

generally accepted that charge is equal to +1 therefore the atomic mass unit denotes 

molecular weight with accuracy generally accepted as 0.01% (Liu and Schey, 2005). 

Figure 7 shows an example of MALDI-TOF MS spectra generated for both resistant 

(NCPF 8814) and susceptible (NCPF 8745) C. glabrata isolates with extract B, the 

standard MALDI-TOF MS extraction protocol for yeast identification in the clinical 

laboratory at the PHE MRL (Fraser et al., 2016). It can be seen that a large amount of 

spectral data appears within a relatively narrow mass detection window, between 2000 

and 6000 Da. There appears to be a relative increase in the number of identifiable peaks 

presented by NCPF 8814 within this window when compared to NCPF 8745 as 

demonstrated by the presence of more peaks.  
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Figure 7. MALDI-TOF MS protein spectra for NCPF 8745 and NCPF 8814 C. glabrata isolates. This image shows MALDI-TOF MS 

spectra for C. glabrata; NCPF 8745 (blue spectrum) echinocandin susceptible, NCPF 8814 (red spectrum) echinocandin resistant over a 

mass range of 0-20,000 Da, as m/z after 24 hours growth on SABC agar. In mass spectrometry, M stands for mass and Z stands for charge 

(number of ions), this provides a scale of mass along the bottom of the spectrum. Z is almost always considered to be 1, the m/z value is 

therefore accepted as the mass value of the protein. Key: [a.u.] = arbitrary, m/z = mass/charge ratio. (Author’s own image) 
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3.2.3 The effect of widening mass detection window in MALDI-TOF MS 

 

As 7/40 (17.5%) of the proteins predicted by LC-MS/MS analysis present in extract B 

were outside of the 200-20,000 Da. mass range used for the identification of microbes 

by MALDI-TOF MS (Table 11), it suggested that the parameters for ionisation may 

require optimisation prior to accepting that no unique mass peaks were detectable on 

the MALDI-TOF MS platform. Therefore, the mass detection range was altered to 

encompass mass from between 0-70,000 Da. This window was limited by the available 

detection window of the Bruker MicroFlex LT, the MALDI-TOF MS machine 

currently in use at the PHE MRL. This value is within the operational maximum for the 

Bruker MicroFlex LT benchtop MALDI-TOF MS (0-100,000 Da). With reference to 

Tables 12 and 13 when looking for unique identification peaks using the MALDI-TOF 

MS extraction and the echinocandin resistant isolate NCPF 8814, the selected expanded 

mass range should be sufficient to indicate whether such an alteration in parameters 

could provide detection of the potential protein targets identified by LC-MS/MS.  

Figure 8 shows the mass spectra acquired during an expanded mass detection window. 

It is clearly noticeable that the majority of identification peaks are compressed into a 

smaller section of the mass detection window, which makes it more difficult to 

distinguish individual mass targets. Figure 8 also demonstrates that no visible mass data 

is collected at values above 20,000 Da. Referring to Table 13, this indicates that the 

potential markers of resistance detectable in extract B is reduced from 40 to 33, as 7 of 

the predicted proteins have masses greater than 20,000 Da. Conversely, Table 12 

indicates that of those predicted proteins that appear unique to NCPF 8814, the 

echinocandin resistant isolate, only 1 (Q6FRV9, 22100 Da, uncharacterised, possible 

rRNA binding protein) might not be captured by widening the mass detection window. 
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Figure 8. Example of spectra generated by an increased mass detection window using FlexAnalysis software. This image demonstrates 
the effect of an increased mass detection window (0 -70,000 Da, as m/z) for C. glabrata; NCPF 8745 (blue spectrum) echinocandin 

susceptible, NCPF 8814 (red spectrum) echinocandin resistant, as m/z after 24 hours growth on SABC agar. In mass spectrometry, M stands for 

mass and Z stands for charge (number of ions), this provides a scale of mass along the bottom of the spectrum. Z is almost always considered to 

be 1, the m/z value is therefore accepted as the mass value of the protein. Key: [a.u.] arbitrary unit, m/z = mass/charge ratio. (Author’s own 
image) 
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3.2.4 The use of a different matrix for the ionisation of high molecular weight 

proteins 

 

Extract A (LC-MS/MS specific), when analysed under the same conditions for both 

isolates, resulted in flat line (zero sum) spectra (Figure 9) despite repeated attempts. 

This suggested that the peptide fragments generated by the LC-MS/MS extraction were 

not detectable under the standard parameters used in the clinical laboratory for MALDI-

TOF MS microbial identification. 

As presented in Table 11, for NCPF 8814, a total of 248 predicted proteins were 

detected in extraction B by LC-MS/MS, and of those 40 did not appear in extraction A, 

indicating a unique presence in the MALDI-TOF MS extraction. However, none of 

these predicted proteins appeared to directly match any of the mass peaks present within 

the MALDI-TOF MS spectra, even allowing a 0.01% error for mass accuracy as 

suggested by Liu and Schey (2005).
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Figure 9. Example spectra generated when using sinapinic acid as the matrix. This image demonstrates the variation in spectral data provided 

in both extract A and extract B for C. glabrata NCPF 8814 (red spectrum) echinocandin resistant, as m/z after 24 hours growth on SABC agar, 

when using sinapinic acid (SA) as a matrix in contrast with α-cyano-4-hydroxycinnamic acid (HCCA). In mass spectrometry, M stands for mass 

and Z stands for charge (number of ions), this provides a scale of mass along the bottom of the spectrum. Z is almost always considered to be 1, 

the m/z value is therefore accepted as the mass value of the protein. Key: [a.u.] = absorbance units, m/z = mass/charge ratio. (Author’s own image)
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3.3. Protein analysis by MALDI-TOF MS  

 

3.3.1 Creating a profile for resistant isolates 

 

Spectral records were created as detailed in Section 2.5.4 for selected isolates that 

exhibited FKS1 and FKS2 mutation-based resistance. This allowed the visual and 

statistical comparison of spectra to ascertain if differences between echinocandin 

resistant and echinocandin susceptible isolates was detectable solely by performing the 

standard methodology for organism identification. Main spectrum profiles (MSPs) 

were analysed in parallel within the same MALDI-TOF MS run to avoid inter-run 

variability, in terms of matrix composition and crystallisation (McComb et al., 2007), 

and also included in the routine analysis of yeast identification at the MRL. This 

provided a real-time comparison of known echinocandin resistant strains with isolates 

of C. glabrata of unknown susceptibility and allowed the demonstration of specificity 

of the created MSPs.  No discrimination between resistant and susceptible isolates, with 

or without FKS mutations, was detected (Figure 12 and Table 14).  

All the database matches present in Table 14, with the exception of the MSP for NCPF 

8814 created as part of this study, were from isolates assumed to be echinocandin 

susceptible due to the lack of supporting information provided by the manufacturer. 

This suggests that any differences which may be present in spectral profiles between 

resistant and susceptible isolates of C. glabrata are undetectable using this type of data 

analysis protocol. This indicates that some form of manipulation to either the extraction 

protocol, the spectral acquisition methodology or the way in which the isolate is 

handled and prepared, prior to and during, extraction is required in order to further 

reveal the susceptibility profile of a given isolate. 
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In a direct comparison of MALDI-TOF MS spectra generated for FKS1 or FKS2 

mutants, and those isolates not exhibiting echinocandin resistance, it can be 

demonstrated that there is little similarity in spectra collected from independent isolates 

when analysed concurrently (Figures 11-12). To investigate this further, the MALDI-

TOF MS spectra data of isolates NCPF 8814 and NCPF 8745 were analysed using 

principle component analysis (PCA) as constructed by the Biotyper 3.0 software 

(Figure 13). By analysing correlated variables, in this case mass peaks present within 

the spectra, the dimensionality of the data is reduced allowing for a simpler visual 

interpretation of the dataset. Whilst it appears that there is a clear separation between 

the two analyses in components PC1 and PC2, in PC3 there is a level of spectral overlap 

indicating that some protein consistency between isolates is present, in particular 

between PC2 and PC3. There is a clear separation between the two isolates, but there 

is also evidence of variation amongst spectra from the same isolate between PC2 and 

PC3, suggesting potential issues with reproducibility if used for future spectral analysis. 

This reduces the discriminating power of MSPs created for these two isolates and 

indicates further that it is unlikely that resistant and susceptible isolates may be 

separated in this way.  

Figure 14 presents a composite correlation index (CCI) or “heat-map” of spectral 

similarities between NCPF 8814 and NCPF 8745. This is another way of comparing all 

the spectra that form a given MSP. This appears to indicate that there is sufficient 

difference between the two MSP’s for them to be separated (warm colours indicate 

similarity). However, the initial database interrogation shown in Figure 12 and Table 

14 highlights that the spectral dissimilarity is insufficient or too incomplete to prevent 

cross matching with other database MSPs for C. glabrata.  
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Figure 15 demonstrates the differentiation between isolates exhibiting differing 

resistance mutations; FKS1: 61 and 75, FKS2; NCPF 8814 and 79. Although an element 

of similarity is indicated on PC3 of the isolates with an FKS2 mutation (Figure 15; 

green and yellow), the four isolates continue to demonstrate little comparability and 

once again, it is clearly demonstrated that there is little to no similarity in the spectra 

produced from isolates between or within the same FKS mutation. In fact, using the 

CCI analysis as shown in Figure 16, there appears to be more relative similarity 

between clinical isolate 61 and isolate NCPF 8814, which have different FKS 

mutations.
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Figure 10. An example MALDI-TOF MS spectrum for C. glabrata showing detection parameters of spectra acquisition. This image displays the 

parameters for collection of spectral data used for routine yeast identification in the clinical laboratory as demonstrated for C. glabrata after 24 hours growth 

on SABC agar. The blue spectrum is a single acquisition and the red spectrum represents a sum of all spectra collected for this isolate (in total 24 replicate 

spectra). (Author’s own image) 
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Figure 11. Comparative spectra generated for two isolates of C. glabrata by MALDI-TOF MS. This image portrays an example of two independent C. 

glabrata isolates which both exhibit FKS2 mutations after growth on SABC agar for 24 hours.  Twenty-four replicate spectra for each isolate are overlaid to 

enable visual inspection of variation between the two isolates. Blue spectra represent NCPF 8814, red spectra represent clinical isolate 78. In mass spectrometry, 

M stands for mass and Z stands for charge (number of ions), this provides a scale of mass along the bottom of the spectrum. Z is almost always considered to 

be 1, the m/z value is therefore accepted as the mass value of the protein. Key: [a.u.] = arbitrary units, m/z = mass/charge ratio. (Author’s own image) 
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Figure 12. Example database match for an uncharacterised clinical isolate of C. glabrata. This image demonstrates the matching database record using 

Bruker’s Biotyper 3.1 software for an uncharacterised clinical isolate of C. glabrata after growth on SABC agar for 24 hours. The top database matches for 

this isolate can be found in Table 14. In mass spectrometry, M stands for mass and Z stands for charge (number of ions), this provides a scale of mass along 

the bottom of the spectrum. Z is almost always considered to be 1, the m/z value is therefore accepted as the mass value of the protein. Key: [a.u.] = arbitrary 

unit, m/z = mass to charge ratio. (Author’s own image) 
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Table 14. MALDI-TOF MS database matches for an uncharacterised clinical 

isolate of C. glabrata. This table shows the top ten MALDI-TOF database matches for 

a single clinical isolate of C. glabrata presented in Figure 12. The isolate was grown 

for 24 hours on SABC agar at 30°C. All the identifications and log scores returned 

represent acceptable results with the correct identification and log scores >2.000. The 

given Log Score is a logarithmic scale whereby 100% match is represented by 3.000. 

These data demonstrate the inability of MALDI-TOF MS to distinguish between 

echinocandin resistant and susceptible isolates of C. glabrata. The top two matches are 

for NCPF 8814, echinocandin resistant, and NCPF 8745, echinocandin susceptible. The 

clinical isolate was reported as echinocandin susceptible with an anidulafungin 

minimum inhibitory concentration (MIC) of 0.03 µg/mL. 

 

Key:  MIC = minimum inhibitory concentration (µg/mL), ANF= anidulafungin, CSP 

= caspofungin, MCF = micafungin, na = not available, Source = Culture collection 

reference, MRL = Mycology Reference Laboratory UK, CBS = Centraalbureau voor 

Schimmerlcultures The Netherlands.

Identification 
Log 

Score 

MIC (µg/mL) 

ANF/CSP/MCF 
Source 

Candida glabrata 8814 (S633P) MRL 2.364 4/6/1 MRL 

Candida glabrata 8745 MRL 2.315 na/<0.015/na MRL 

Candida glabrata CBS 2663 CBS 2.300 na CBS 

Candida glabrata CBS 8947 CBS 2.289 na CBS 

Candida glabrata 10035463 101 USH 2.276 na Unknown 

Candida glabrata CBS 858 CBS 2.155 na CBS 

Candida glabrata CBS 863 CBS 2.123 na CBS 

Candida glabrata CBS 862 CBS 2.117 na CBS 

Candida glabrata 31 PSB 2.115 na Unknown 

Candida glabrata CBS 858 CBS 2.094 na CBS 
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Figure 13. A principal component analysis (PCA) of spectral data for NCPF 8745 and NCPF 8814. A PCA for two sets of twenty-

four representative spectra used for the creation of an MSP from NCPF 8814 (Red; echinocandin resistant) and NCPF 8745 (Green; 

echinocandin susceptible). Principal components (PC) 1,2 and 3 from the dataset are selected by Bruker’s Biotyper 3.1 software. There is 

a clear separation between the two isolates, but there is also evidence of variation amongst spectra from the same isolate, suggesting 

potential issues with reproducibility if used for future spectral analysis. The blue and yellow dots (encircled in blue) represent a single 

bacterial control (Bacterial Test Standard, product code: 8255343; Bruker Daltonics GmBH, Bremen, Germany) which was included in 

this analysis to provide an indication of accuracy of the separation of principal components. (Author’s own image)  
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Figure 14. A composite correlation index (CCI) to compare spectral data for NCPF 8745 and NCPF 8814. A (CCI) heat map 

indicating relative comparability of spectra used to create MSPs for NCPF 8814 and NCPF 8745. Warm colours indicate similarity. 

Therefore, demonstrating that there should be a good level of differentiation between spectra from the two phenotypes. (Author’s own 

image) 
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Figure 15. A principal component analysis (PCA) for four unrelated isolates of echinocandin resistant C. glabrata. A PCA constructed to show four 

unrelated isolates of C. glabrata. Two isolates with FKS1 mutations (blue and red; clinical isolates 61 and 75 respectively), and two isolates which exhibit 

FKS2 mutations (yellow and green; NCPF 8814 and clinical isolate 79, respectively). Principal components (PC) 1,2 and 3 from the dataset are selected by 

Bruker’s Biotyper 3.1 software. (Author’s own image) 
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Figure 16. A composite correlation index (CCI)to show the spectral relationship between four unrelated isolates of echinocandin resistant C. glabrata. 

A CCI to indicate relatedness of spectra from isolates of C. glabrata with mutations in FKS1 (clinical isolates 72 and 75) and FKS2 (NCPF 8814 and clinical 

isolate 78). Warm colours represent similarity therefore, the dark red squares diagonally through the centre of the index represent a like for like comparison. 

(Author’s own image)
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3.3.2 The effect of growth in the presence of echinocandin on MALDI-TOF MS spectra 

 

Figure 17 shows the MALDI-TOF MS spectra generated with NCPF 8814 following 

incubation using a standardised microbroth dilution susceptibility testing format (fully 

described in Section 2.2.2) for a period of 24 hours in the presence of a caspofungin serial 

concentration gradient (0.03-16 μg/mL). At and above MIC values considered resistant (>0.5 

μg/mL), the pattern of peaks present in the spectral profile generated appears markedly 

different, particularly at values around 4 μg/mL or greater. The recorded MIC for NCPF 8814 

is 6 μg/mL (Table 7). The nature of the spectra generated at 1 μg/mL and 2 μg/mL would be 

consistent with evidence of over activity, perhaps indicating some stress-activated response 

due to the presence of the echinocandin agent. 

In order to explore the requirement for rapid testing in the clinical diagnostic laboratory, the 

next series of experiments focused on determining the minimum amount of time required from 

inoculation to the appearance of detectable levels of protein for spectra generation in the 

MALDI-TOF MS extract. Figure 18 shows the passage of time from 0-48 hours at a 

concentration of antifungal (CSP) equivalent to 1 μg/mL. Samples were taken at selected time 

points conducive with routine clinical laboratory working hours, between 1 to 48 hours 

incubation There was a reduction in the number of peaks detectable at 48 hours of growth. It 

was therefore determined that 24 hours were required for sufficient growth in the microtitre 

susceptibility format for a full spectral profile to be generated with NCPF 8814 during the 

presence of an antifungal. This can be seen in Figure 18. Whilst some mass peaks are present 

within 2 to 4 hours of growth, the amount of data available for analysis is greatly increased at 

24 hours, whilst reduced at 48 hours.
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Figure 17. MALDI-TOF MS spectra generated for NCPF 8814 over a concentration gradient of caspofungin. A visual representation of spectra generated 

with NCPF 8814 incubated for 24 hours in RPMI liquid media in the presence serial concentration gradient of caspofungin (0.03-16 μg/mL). At MIC values 

considered resistant (>0.5 μg/mL), the pattern of spectral profile generated appears markedly different, especially at values greater than the MIC for this isolate 

(6 μg/mL). In mass spectrometry, M stands for mass and Z stands for charge (number of ions), this provides a scale of mass along the bottom of the spectrum. 

Z is almost always considered to be 1, the m/z value is therefore accepted as the mass value of the protein. Key: [a.u.] = arbitrary units, m/z = mass/charge 

ratio. (Author’s own image) 



 
 

 
 

8
4

 
 

 
 

Figure 18. MALDI-TOF MS spectra generated at different time points during the incubation of NCPF 8814 in 1μg/mL caspofungin. This image shows 

the spectra generated at 1, 2, 4, 24 and 48-hour intervals with NCPF 8814 at a caspofungin concentration of 1 μg/mL in RPMI liquid media at 30°C.  

Demonstrating that in microbroth preparation, a 24-hour incubation results in the largest production of identifiable protein peak data, suggesting that this might 

be the most useful duration to detect peaks indicative of resistance. In mass spectrometry, M stands for mass and Z stands for charge (number of ions), this 

provides a scale of mass along the bottom of the spectrum. Z is almost always considered to be 1, the m/z value is therefore accepted as the mass value of the 

protein. Key: [a.u.] = arbitrary units, m/z = mass/charge ratio. (Author’s own image) 
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3.3.3 The effect of increasing the fungal load and sample volume 

 

The early work of this study looking at possible MALDI-TOF MS detection demonstrated that 

under the conditions used for routine susceptibility testing the volumes and quantity of biomass 

present was probably a prohibitive factor to the detection of visible spectra within an acceptable 

diagnostic timeframe (i.e. quicker than currently available methodologies) (Figure 18). Thus, 

an adaptation of the prescribed method was undertaken to include a larger initial culture volume 

for the MALDI-TOF MS extraction process to provide a greater quantity of final extracted 

protein. A desirable working volume of 10 mL was selected in order to provide adequate 

volumes for repetitious sampling and also to allow for an increase in initial fungal load. The 

methodology used to undertake these tests is fully described in Section 2.2.3. Initial growth 

experiments were performed to determine the optimum duration and method of incubation for 

visible cell growth. This included a comparison between growth in a stationary or a rotary 

position, with and without the presence of an antifungal. Where an echinocandin was included, 

CSP was used and two different concentrations were selected, a high concentration to indicate 

resistance (16 μg/mL) and a concentration that could mimic achievable in vivo levels (1 

μg/mL). Growth was monitored over 24-48 hours. The results are shown in Table 15. The 

echinocandin resistant isolate (NCPF 8814) grew rapidly in the presence of CSP when the 

culture was rotated in an incubator at 30°C ± 2ºC, and within 24 hours confluent growth was 

evident. The echinocandin susceptible (NCPF 8745) isolate grew very poorly in the presence 

of 1 µg/mL after 48 hours. 

Based on these results, further experimental cultures were grown in 10 mL glass tubes, placed 

on a rotary wheel and incubated at 30ºC ± 2ºC. Once inoculated, the cultures were incubated 

for 24 hours with the periodic removal of 100 μL volumes at selected time points. Each sample 

aliquot underwent a wash step using sterile distilled water to remove growth media from the 
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cells, followed by protein extraction as previously described (Section 2.5.2). As demonstrated 

in Table 15, growth of the echinocandin resistant isolate (NCPF 8814) was limited at 16 µg/mL 

almost to the point of prohibition until a time period of 48 hours, therefore all further tests were 

undertaken at a single concentration of 1 μg/mL of CSP. This concentration maximised the 

growth of organism whilst retaining the experimental procedure within a useful diagnostic 

timeframe. 

 

Table 15. Results of growth experiments for macro-broth cultures. Growth of NCPF 8814 

(resistant) and NCPF 8745 (susceptible) in 2 mL RPMI with and without caspofungin at 30°C 

in either a stationary (tube rack) format or on a fixed speed rotary wheel (20 rpm). These 

experiments were performed in triplicate with reproducible results. 

 

Key: Blank = (no fungus, no antifungal - media sterility control), + = visible growth, - = no 

evidence of growth, +- = faint growth. 

 

 

 

The resultant MALDI-TOF MS spectra from growth after 24 hours stationary or rotary 

incubation at 30°C are shown in Figure 19. When analysed, the appearance of a triplet of peaks 

NCPF 

isolate 

Caspofungin 

μg/mL 

Stationary incubation Rotary incubation 

  24 hours 48 hours 24 hours 48 hours 

8814 0 ++ ++++ ++++ ++++ 

 1 + ++++ ++++ ++++ 

 16 - +- +- +++ 

8745 0 - ++ +- + 

 1 - +- - - 

 16 - - - - 

Blank 0 - - - - 
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at mass positions of 6227, 6627 and 6975 m/z in FKS mutant resistant isolates of C. glabrata 

during growth at concentrations of CSP above the MIC was demonstrated (Figure 19). These 

peaks were considered to be potential rapid visual identifiers for the protein-based detection of 

resistance and so were explored further. 

Three further experimental replicates from the same isolates demonstrated the consistent 

presence of the triplet peaks within the spectra generated with NCPF 8814 (data not shown). 

Therefore, the experiment was repeated with a selection of clinical isolates from earlier in this 

study that could provide a representation of the anticipated variability in both FKS mutations 

and MIC distributions demonstrated in a clinical setting. Table 16 shows the isolates selected 

and the presence or absence of the triplet signature peak starting at the given MIC for an 

individual isolate and serial gradient concentrations above the MIC up to a final concentration 

of 16 μg/mL. Isolates were selected based upon FKS mutation and MIC value to demonstrate 

a full complement of variations in resistant or intermediate echinocandin susceptibility 

classification. This round of experiments was conducted on the chosen isolates four times to 

demonstrate reproducibility of peak pattern. Clinical isolate 67 demonstrated an MIC of 0.5 

μg/mL, the cut off value for determination of resistance, however it does not present an FKS 

mutation and did not show the presence of the triplet signature. In addition, the triplet peak 

motif was undetectable in the spectra produced for isolate 71, which does exhibit an FKS1 

mutation. These inconsistencies indicate that the triplet peak signature may not be an 

appropriate protein-based target to rapidly indicate echinocandin resistance in C. glabrata in 

the clinical diagnostic laboratory and further work on this was not attempted. Whilst these 

triplet peaks may represent some evidence of increase in abundance of proteins which may 

contribute to echinocandin resistance mechanisms in C. glabrata, that work falls outside the 

remit of the focus of this study. 
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Figure 19. MALDI-TOF MS spectra for NCPF 8814 over a concentration gradient of caspofungin identifying a potential marker of 

resistance. The presence of a triplet of peaks in NCPF 8814 at 16 μg/μL (green circle) can be seen. This pattern is not present in the growth control 

(no antifungal) or sufficiently resolved at concentrations below the MIC (6 μg/mL) for this isolate following incubation at 30°C at 24 hours in 

RPMI liquid media in rotary phase (20 rpm). The spectrum generated at 8 μg/mL (red box) represents a poor recovery of proteins from the 

extraction of this sample. In mass spectrometry, M stands for mass and Z stands for charge (number of ions), this provides a scale of mass along 

the bottom of the spectrum. Z is almost always considered to be 1, the m/z value is therefore accepted as the mass value of the protein. Key: [a.u.] 

= arbitrary units, m/z = mass/charge ratio. (Author’s own image)
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Table 16. The presence or absence of a potential marker of resistance as detected by 

MALDI-TOF MS in a selection of echinocandin resistant C. glabrata isolates. Table 

depicting the presence of triplet proteins when selected study isolates were grown in the 

presence of caspofungin starting at concentrations equal to the MIC for each given isolate and 

each serial doubling dilution afterwards up to 16 µg/mL, as performed by macro-broth dilution 

and sampled after a period of 24 hours using a rotary incubation at 30ºC ± 2ºC. These 

experiments were conducted on the same isolates on four separate occasions.  

 

Key: wt = wild type, m/z = mass peak value 

 

 

Isolate 

(FKS mutation) 

Concentrations 

tested 

(μg/mL) 

6227 m/z 6627 m/z 6975 m/z 

8814 (2) 4-16 ✓ ✓ ✓ 

8919 (2) 16 ✓ ✓ ✓ 

73 (2) 16 ✓ ✓ ✓ 

67 (wt) 0.5-16 ✗ ✗ ✗ 

72 (1) 16 ✓ ✓ ✓ 

71 (1) 4-16 ✗ ✗ ✗ 
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4. DISCUSSION 

 

With reference to the main study aim as laid out in Section 1.8, this study by adopted a 

methodological approach which employed the use of Candida glabrata and the echinocandin 

class of antifungal agents as a laboratory model of antifungal resistance. This study was 

designed in order to determine the viability of a bench-top genomic technology, 

pyrosequencing, and recently introduced proteomic platforms such as LC-MS/MS and 

MALDI-TOF MS for the detection of resistance in the clinical diagnostic laboratory. 

The underpinning intention of this research was to enable the improvement of the detection of 

specific antifungal resistance markers within a clinically effective time frame in the diagnostic 

laboratory. When adopted as standard practice, such techniques would have the potential to 

positively influence therapeutic decisions and ultimately treatment outcomes.  

Current methodologies for the detection of antifungal resistance in the clinical mycology 

laboratory involve susceptibility testing either by microbroth dilution or by E-test, as there is 

little capability for molecular methods in most routine mycology laboratories (Astvad et al., 

2018; Klingspor et al., 2018; Lockhart et al., 2017; Pfaller et al, 2014a). Consequently, 

interpretative results are only available, and therefore actionable, no earlier than 24 hours post 

isolation from blood in cases of candidaemia. This means that realistically the minimum 

amount of time from sampling at the patient’s bedside to reporting of results is a minimum of 

48 hours in total (Mauri et al., 2017). Some guidance as to targeted therapy may be ascertained 

from rapid organism identification, and the introduction of rapid protein analysis by MALDI-

TOF MS, has greatly improved the time required to return an organism identification (Curtoni 

et al., 2017; Idelevich, Grünastel and Becker, 2016; Fraser et al., 2016; Tran et al., 2015). 

However, the generation of fully interpretative susceptibility data still requires a minimum of 

24 hours, even if susceptibility testing is performed directly from positive blood culture 
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isolation as suggested by Bordallo-Cardona et al. (2018). It should be noted that testing in such 

a way does not account for infection with more than one organism. This may have a negative 

effect on the testing in terms of interpretation of results which could lead to inaccurate and 

misleading clinical reporting, further adding critical time delays to the application of clinical 

management (Sante et al., 2019).  

As suggested by Cendejas-Bueno, Romero-Gómez and Mingorance (2019), it is the integration 

of molecular assays into the routine workflow in clinical laboratories which would allow the 

genomic detection and profiling of BSI organisms, such as C. glabrata and FKS mutations that 

has the greatest potential to transform patient care.  

This is particularly the case where the test in question can be performed directly on blood 

samples without the requirement for incubation and organism isolation. This could provide a 

further reduction in the time needed to report important therapeutic information to the clinician. 

Indeed, Idelevich, Grünastel and Becker (2016) suggested a methodology for the agents of 

candidaemia which resulted in the identification of the causative organism within 3.5 hours 

incubation on solid SABC medium, by using a centrifugation technique to concentrate cell 

mass. However, the biomass requirement for MALDI-TOF MS identification is considerably 

less than that required for current susceptibility testing methodologies (Klingspor et al., 2018; 

Lockhart et al., 2017; CLSI, 2017a; CLSI, 2017b; Fraser et al., 2016).  

As outlined in Objective 1 of the study aim, the approach to genetic detection of resistance 

markers using pyrosequencing demonstrated in this thesis will provide the ability for the 

clinical mycology laboratory to report specific resistance mutations to a single class of 

antifungal agents for C. glabrata within 4 hours of first isolation. If combined with a rapid 

recovery methodology, such as that suggested by Idelevich, Grünastel and Becker (2016), there 

exists the potential for actionable, targeted therapeutic decisions within 7-8 hours, despite being 

highly specific to a single organism and resistance mutation.  
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4.1 Analysis of FKS mutation detection as a predictor of resistance 

 

The 0.55% prevalence of echinocandin resistance in C. glabrata demonstrated in the UK 

during the period of this study correlates well with the reported levels of echinocandin 

resistance seen in similar retrospective studies conducted in other European countries and 

China (Astvad et al., 2018; Mencarini et al., 2018; Hou et al., 2017; Shields, Nguyen and 

Clancy, 2015; Marcos-Zambrano et al., 2014). It also appears consistent with the re-evaluated 

in vitro data generated at PHE MRL prior to the specific timeframe of this study (Fraser et al., 

2019a). 

Eleven isolates (clinical isolates 61, 71-76, 78-81) demonstrated MICs which would be 

classified as resistant for two of the tested echinocandin agents. Two further isolates (clinical 

isolates 67 and 77) demonstrated evidence of a distributed pattern of resistance, with resistant 

MICs demonstrated for CSP, intermediate MICs for ANF whilst maintaining susceptibility to 

MCF. The remaining two isolates were only tested against CSP (isolates 68 and 70). Of 

particular note, 6/15 (40%) of the isolates originated from bloodstream infections, and 10/15 

(66%) isolates were referred from different centres within the geographical region of London. 

None of the isolates in this study represented repeat isolations from the same patient, although 

3/15 (20%) did originate at the same London centre. However, they were isolated 2 and 6 

months apart, therefore reducing the likelihood of a specific outbreak scenario at the referral 

institution (Fraser et al., 2019a). 

The present study showed that 6/15 (40%) of the resistant clinical isolates demonstrated a 

mutation in FKS1, with 6/6 (100%) of the detected mutations representing an amino acid 

substitution of serine for proline at position 629 (S629P; Table 10). For FKS2, 4/15 (26.7%) of 
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resistant isolates showed a definitive mutation, with once more 4/4 (100%) representing a 

serine to proline substitution but at position 663 (S663P; Table 10).  

The presence of a single mutation in either FKS1 or FKS2 was sufficient to confer resistance 

to all echinocandin agents in accordance with previous reports (Lackner et al., 2014; Katiyar 

et al., 2012; Niimi et al., 2012; Zimbeck et al., 2010). 

Of those isolates demonstrating evidence of phenotypic resistance, 4/15 (26.7%) did not 

apparently possess a mutation in either FKS1 or FKS2 (clinical isolates 67, 68, 70 and 77). 

However, all 4 isolates demonstrated MIC values that bordered the cut-off (0.25 – 0.5 μg/mL) 

and would be phenotypically classified as intermediate. Generally, when the MIC value was at 

least two doubling dilutions greater than the susceptibility cut-off value, there was an 

associated FKS mutation present. A single exception to this rule was demonstrated with clinical 

isolate 71 where MICs to ANF and CSP were within 2 doubling dilutions from the break point 

value for susceptibility but an FKS1 mutation was detected (Table 7 and Table 9).  

The pyrosequencing assay to detect FKS mutations developed during this study provides a 

platform that has the potential to reduce the minimum detection time for a known resistance 

mutation to 4 hours post-isolation, and many clinical laboratories may already have access to 

the platform without further expenditure (Moore et al., 2016; Borman et al., 2010). Whilst this 

study used freshly sub-cultured organisms from referred clinical isolates, it would be possible 

to perform the pyrosequencing assay directly on isolates at the point of receipt or isolation, 

with studies suggesting the use of pyrosequencing directly from blood cultures (Fraser et al., 

2016; Moore et al., 2016; McCann et al., 2015; Borman et al., 2010). In fact, one study found 

>90% success rates in the identification of bacterial species in patients being investigated for 

bloodstream infections in this way (Moore et al., 2016). There is therefore the suggestion that 

the possibility of performing an assay to detect mutations in FKS without the need for 

secondary sub-culture or incubation of further tests to determine susceptibility exists (Moore 
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et al., 2016; McCann et al., 2015), but this would require further optimisation and validation.  

This serves to highlight the potential for the use of pyrosequencing as a rapid molecular 

screening procedure or empiric antifungal triage service for all isolates of C. glabrata referred 

to the reference laboratory, or in centres were emergent resistance has been demonstrated. This 

would significantly reduce the time and potential financial impact to clinical centres from the 

inappropriate use of antifungal regimes, within 24 hours (Buehler et al, 2016; Perez et al., 

2013), and provide a suitable alternative approach to detection of susceptibility demonstrated 

by many susceptibility test protocols (Pfaller et al., 2014a; Arendrup et al., 2010).  

It was repeatedly difficult to ascertain a high confidence sequence (>99% coverage/identity) 

for FKS2 with two of the clinical isolates (71 and 72). This could be due to multiple factors, 

including short primer length, or quality of the initial PCR amplification products. Further 

investigation of clinical isolates 71 and 72 demonstrated that they were unrelated in terms of 

site of isolation and geographical region of referral location (Table 1). It is reported that the 

suggested mutation in FKS2, S663F representing a substitution of serine for proline at hot spot 

position 663, has previously been associated with resistance (Pham et al., 2014b). If it is present 

in these isolates, the simultaneous presence of a mutation in FKS1 (S629P) means that a second 

mutation in FKS2 cannot be inferred purely from phenotypic observation alone. These isolates 

would be suitable candidates for further work, which could utilise NGS or WGS approaches, 

to ascertain their full genomic background and provide a more complete understanding of the 

exact nature of the genetic resistance mechanisms they may possess. However, this is beyond 

the remit and objectives of the current study. 

The variability and inconsistency in the detection of mutations in FKS1 and FKS2, even in this 

relatively small subset of isolates, suggests that the detection of such mutations may not be the 

most reliable marker alone for the detection of resistance to echinocandin agents, and that the 
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role of susceptibility testing is still paramount to determining the appropriate selection of 

antifungal agents for treatment of infection.  

The suitability of the selected primers for amplification of the region of interest and the 

effectiveness of the 3’ redundancies introduced to avoid cross amplification between the two 

near-identical regions was clearly demonstrated. Whilst it was difficult to ascertain a high 

confident sequence read (>99% coverage/identity), most likely due to the short primer lengths, 

the amplified products and their database matches were sufficiently variable to deduce that 

neither primer caused cross amplification (Section 4.2).  

The pyrosequencing of the FKS2 mutation region generated many indeterminate results 

suggesting the assay may not be appropriate for this region, or that the primers designed for 

this study may not be fit for purpose. This could be due to a redundancy within the PCR 

reaction, or due to the initial quantity of gene copies present. It has been previously 

demonstrated that the efficiency of the pyrosequencing method is optimised over a region of 

about 30-35 bases (Borman et al., 2010; Borman et al., 2008). In order to capture all of the 

FKS hot spots, this has to be extended to 45 bases and it is possible that the internal chemistry 

of the assay becomes too unreliable at this point resulting in low score matches (Gharizadeh et 

al., 2006). Homology scores less than 100% must be treated with caution when a single base 

alteration can result in the mutation of the gene, especially if it occurs within a hot spot region. 

Detection of FKS hot spot mutations can provide an explanation for the presence of resistance 

in an isolate but based upon the data presented here, it is not a sufficient indicator alone to 

determine antifungal treatment regimes.  

It has previously been demonstrated that the efficiency of pyrosequencing is optimised over a 

region of 30-35 bases (Borman et al., 2010), but in order to capture all possible FKS hot spot 

mutation combinations, the assay used for this study was extended to read 45 bases. It is highly 

probable that the internal chemistry of the assay, in particular the effectiveness of the enzymes 
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present in the reagent mix becomes too unreliable at extended strand lengths and it was this 

which resulted in the low score matches observed with some FKS2 sequences. Sequence 

homology scores less than 100% must be treated with caution when a single base pair alteration 

can result in the mutation of the gene, especially if it occurs within a hot spot region.  

In agreement with published literature, this work has confirmed the use of FKS mutation 

detection as a useful tool in the diagnostic laboratory identification of echinocandin resistance. 

All isolates that demonstrated resistant MICs with two or more echinocandin agents had 

identifiable FKS hot spot mutations as detected by pyrosequencing. However, the demonstrated 

variability in successful detection of mutations in FKS1 and FKS2 detected by pyrosequencing, 

even at hot spot locations, suggests that it may not be the most reliable marker or methodology 

on its own for the detection of resistance to echinocandin agents, contrary to the suggestions 

by Shields et al. (2012).  

A recent US study also found that phenotypic non-susceptibility, in particular with MCF, could 

be demonstrated in the absence of detectable FKS mutations (McCarty et al., 2018). Four 

isolates from the current work that did not have FKS mutations (isolates 67, 68, 69 and 77), 

phenotypically demonstrated MICs that would be considered intermediate or non-susceptible 

to CSP. As such the echinocandin antifungal agents would not be recommended as therapeutic 

options without further testing. This provides additional support for the continued role of 

traditional susceptibility testing in the determination of appropriate antifungal agent selection, 

as well as the continued use of ANF or MCF as indicators of true echinocandin resistance 

(Fraser et al., 2019a; CLSI, 2017b; Shields et al., 2013). The review of candidaemia in Latin 

America undertaken by da Matta et al. (2017) reported that echinocandin resistance had been 

detected only in C. glabrata, with the exception of a single study conducted in Argentina, 

which cited CSP resistance in C. parapsilosis. No single survey had confirmed the resistant 

phenotype using molecular methods, perhaps suggesting there is not the physical capability, or 
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no determined clinical need, to detect genomic markers of resistance to echinocandins at 

centres in Latin America. These data could also provide some further evidence that smaller 

clades of Candida spp., which only exhibit a phenotypic or non-FKS based genomic resistance, 

do exist (McCarty et al., 2018; Shields, Nguyen and Clancy, 2015; Vallabhaneni et al., 2015; 

Shields et al., 2013). 

It is important to highlight that part of the function of a specialist reference laboratory is to 

undertake the investigation of unusual organisms and provide support for regional laboratories 

without specialist expertise. Therefore, data generated at the PHE MRL are often skewed 

towards those isolates that do not fit the trend, are difficult to interpret, or require confirmatory 

testing (Borman et al., 2012).  Even so, the MIC data collected from testing using E-test for 

CSP and MCF, and CLSI for ANF prior to the FKS mutation detection trial, demonstrated a 

low echinocandin resistance rate of around 0.9-1.5% (Fraser et al., 2019a). With the increase 

in commercially available microbroth dilution systems which include all three currently 

available echinocandin agents (e.g. Sensititre Yeast One™, Thermo Fisher), more laboratories 

are moving towards in-house testing and it is important that laboratories using these systems 

are aware of potential difficulties in the interpretation of CSP MIC values and the potential 

clinical consequences (Aigner et al., 2017; Alfouzan et al., 2017; Pfaller et al., 2012c). When 

testing CSP, results may be reported as intermediate or resistant. However, CLSI (2017b) 

recommend that confirmatory testing is performed using either ANF or MCF, DNA analysis 

to confirm FKS hot spot mutation or by confirmatory testing at a reference laboratory. 

Regardless of an isolate’s given CSP MIC result, the recommendation states that if either of 

the first two criteria is fulfilled, echinocandin resistance across the full range of available agents 

is confirmed and should be reported. 
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4.2 Re-evaluation of MIC data in the context of changing laboratory 

protocols 

 

In total from 2003 to 2018, 7,225 clinical isolates of C. glabrata were tested for echinocandin 

susceptibility at the PHE MRL. Between 2003 and 2016 there was a considerable shift in MIC 

values reported for C. glabrata when tested against CSP (Fraser et al., 2019a). This was a direct 

acknowledgement that species-specific breakpoints were required (CLSI, 2017a; CLSI, 2017b) 

and as reported by Espinel-Ingroff et al. (2013), and that CLSI testing of CSP is now considered 

too variable between laboratories to reliably indicate resistance.  As reviewed by Fraser et al. 

(2019a), MIC values generated by CLSI methodology for echinocandin testing at the PHE 

MRL from 2003 to 2013 indicated a prevalence of resistance ranging from 0.3- 7.9%, with a 

mean of 3.4%. The introduction of the use of ANF as a sentinel echinocandin to indicate 

susceptibility to the whole class of agents, and E-test for specific CSP testing, resulted in a shift 

in prevalence range to 0.9-2.7% with a mean of 1.5%.  As testing was optimised and 

harmonised during the period of this study, the evidence presented between 2015 and 2018, 

indicates that the prevalence of echinocandin resistance in clinical isolates of C. glabrata in 

the UK continues to remain very low at 0.55%. This time period included the use of FKS 

mutation detection alongside microbroth dilution and E-test susceptibility testing (Table 7). As 

previously stated, these data correlate well with reported prevalence from studies conducted in 

other European countries (Astvad et al., 2018; Mencarini et al., 2018; Marcos-Zambrano et al., 

2014) and China (Hou et al., 2017), and appears consistent with the re-evaluated in vitro data 

generated at PHE MRL prior to the specific timeframe of this study (Fraser et al., 2019a). 

It is also important to note that a few discrepancies were detected with the use of culture 

collection isolates and this raises some important issues. Of those NCPF isolates selected for 

use in this study, 3/5 (60%) examples of echinocandin resistant C. glabrata were found to be 
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echinocandin susceptible upon revival (Table 6 and Table 8).  None of these isolates exhibit 

any detectable FKS mutations using the methods adopted as part of this work. This could be 

an indication that resistance mechanisms acquired in the presence of antifungal treatment are 

lost during storage and revival, as previously described in methicillin-resistant strains of 

Staphylococcus aureus (van Griethuysen et al., 2005) and Helicobacter pylori (Henriksen et 

al., 2004).  

Early studies had suggested that an S633P mutation in Fks2p did not result in altered fitness or 

responsiveness in an in vivo model of infection using the larval model Galleria mellonella 

(Borghi et al., 2014). It is possible that the loss of the FKS mutation may be related to a 

consequential fitness cost to C. glabrata as documented with FKS2 (Bordallo-Cardona et al., 

2017). Indeed, Imbert et al. (2016) demonstrated that the removal of an echinocandin during 

the treatment of candidemia with C. glabrata in a single patient resulted in the loss of the FKS 

mutation from subsequently identified clonal isolates. They concluded that this was evidence 

of the potential fitness cost that a mutation in FKS conferred upon an organism.   

Alternatively, as previously discussed in this thesis, the discrepant results between storage and 

revival could be artefacts of alterations in the interpretation and breakpoint ranges between the 

commencement of testing in 2003, and those adopted as part of this study (Fraser et al., 2019a). 

Indeed, NCPF 8714 and 8715 were added to the collection in 2003 however, no susceptibility 

data from the original accession of these isolates could be located. This would suggest that 

these isolates represent earlier misinterpretation, and this serves to highlight the importance of 

validating culture collection isolates prior to their use in research, as well as emphasising the 

responsibility a culture collection has in maintaining and supplying accurate data for the 

organisms it holds (Smith, 2012). This includes the requirement for periodic revival and re-

assessment of collection isolates with consideration for new research, such as the re-assessment 

and correlation of identification using MALDI-TOF MS (Lima-Neto et al., 2014), and updating 
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records to include developing taxonomy (Forti et al., 2016) or advancements in knowledge and 

technology (Fraser et al., 2019a; Borman et al., 2006; Brenner et al., 1995). 

There is a well-documented paradoxical growth effect seen with some Candida species when 

performing susceptibility testing by microbroth dilution against the echinocandin agents, as 

reviewed by Wagener and Loiko (2017). This is demonstrated by the appearance of an increase 

in biomass growth at concentrations greater than the MIC, and therefore may be responsible 

for the reporting of falsely elevated MIC values. None of the susceptibility testing undertaken 

as part of this thesis presented such paradoxical growth effects, and this is in concordance with 

reports suggesting that this phenomenon has not been reported with C. glabrata and CLSI 

methodology (Shields et al., 2011; Chamilos et al., 2007). There is, however, a report of a 

small population of isolates demonstrating a paradoxical growth effect at high echinocandin 

levels using the European Committee on Antimicrobial Susceptibility Testing (EUCAST) 

methodology for susceptibility testing and this should be considered when interpreting results 

using this adapted methodology (Marcos-Zambrano et al., 2016b). 

 

4.3 The use of proteomic approaches for the detection of resistance 

 

As Otto, Becher and Schmidt (2014) suggest, advances in quantitative proteomics have led to 

a paradoxical situation whereby more techniques and software are available for the detection 

and analysis of proteomes but choosing the right technique to answer a specific scientific 

question is increasingly more difficult. There exists a need to fulfil basic scientific requirements 

whilst remaining within economic constraints for expenditure per dataset, and this is also true 

when applied to systems being considered for introduction into laboratory diagnostics.  Issues 

of economics, time and data output are essential qualifiers for the successful implementation 

and uptake of new techniques or methodologies (Tran et al., 2015; Okeke, et al., 2011). 
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Developing technological approaches which use MALDI-TOF MS platforms have 

demonstrated the potential for the detection of resistance mechanisms in bacteria. Particularly, 

bacteria that present significant clinical challenges such as Acinetobacter baumannii (Dortet et 

al., 2018) and the Enterobacteriaceae (Figueroa-Espinosa et al., 2019), and developments have 

extended to Candida spp. (Delavy et al., 2019). There also exists the potential for the detection 

of specific antimicrobial resistance mechanisms such as demonstrated with carbapenemases 

(Vogne et al., 2014). The detection of proteins that have a role in the resistance of bacteria to 

colistin, one of the remaining agents active against multidrug resistant bacteria, has been 

demonstrated (Sun et al., 2017). 

However, the financial constraints of acquiring the platform, coupled with time limitations, 

whereby a minimum incubation time of 6 hours post isolation is required prior to a result being 

reported (Vatanshenassan et al., 2018; Vella et al., 2017), suggests there is scope for the 

application of alternative approaches to better inform and improve the power of data generated 

by MALDI-TOF MS. 

 

4.3.1 LC-MS/MS in the clinical diagnostic mycology laboratory 

 

As detailed in Objective 2, this study has used LC-MS/MS as a sensitive and specific technique 

which has been used to identify potential protein targets for the detection of echinocandin 

resistance in C. glabrata. In doing so, this study has also offered a comparison of two different 

proteomic methods which should generate similar or translatable data for the detection of 

proteins which may relate to a specific resistance pattern in a single organism.  

LC-MS/MS generates a large dataset of predicted proteins based upon peptide fragments 

detected in each sample. However, a significant financial burden per sample means that it is 

essential to be certain that the output provides the data necessary to move a project or clinical 
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decision forward (Zhao et al., 2019). The time required for manual analysis of these datasets 

is also a crucial factor to consider and is a large contraindication for its use in rapid clinical 

diagnostics in microbiology. However, LC-MS/MS is used extensively across the bioscience 

disciplines for activities as varied as the monitoring of therapeutic agents (Ndolo et al., 2016; 

Decosterd et al., 2010; Oellerich et al., 2004), biochemical metabolites and hormones (Morote 

et al., 2018; Welsh et al., 2017) and illicit drugs (Lendoiro et al., 2017; Miller et al., 2008), as 

well as the identification of microorganisms direct from blood culture bottles (Berendsen et 

al., 2017). Computer software packages can only organise and highlight data of potential 

interest to a point within the design and remit of each package, therefore the role of the 

researcher remains essential in the critical analysis of each data set. So, whilst it remains a 

powerful tool for the research and development of specific diagnostic tests, its role in clinical 

diagnostic microbiology is limited, unlike MALDI-TOF MS which has successfully developed 

into an essential diagnostic tool in clinical microbiology. 

The greatest value to the clinical microbiology laboratory of LC-MS/MS is in its ability to 

provide the identification of specific proteins which could be used as targets to detect resistance 

using MALDI-TOF MS or alternative detection methods. There is an inherent expectation that 

proteins extracted for either methodology from the same sample would be consistent to allow 

the cross-detection necessary between methodologies. Also, the common appearance, or 

matching, of proteins by both methodologies would more likely indicate potentially significant 

markers of resistance/susceptibility, more so than if preferentially isolated in only one of the 

extraction protocols used. 

This study has demonstrated considerable differences in the complexity of the two extraction 

protocols required for each method. For instance, whilst the MALDI-TOF MS extraction 

protocol (described in Section 2.5) can be performed within 10 minutes, and uses relatively 

simple chemical components such as water, ethanol, trifluoracetic acid and acetonitrile, the 
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methodology employed for LC-MS/MS protein extraction (Appendix III) requires the use of a 

large array of detergents, protease inhibitors and alkylating agents (iodoacetamide) and 

includes an over-night incubation period. This complex methodology serves to further separate 

the two techniques in terms of utility in the clinical diagnostic laboratory and re-affirms the use 

of LC-MS/MS as a tool of discovery for the facilitation and development of application 

technologies, as attempted with this study under Objective 2.  

This effectively rules out LC-MS/MS as a diagnostic detector of proteome alterations on its 

own in the clinical mycology laboratory despite studies demonstrating the success of LC-

MS/MS as a tool for bacterial identification (Berendsen et al., 2017). In addition, the 

outsourcing of work beyond the clinical laboratory can be very expensive and would ultimately 

result in further time delay to the reporting of clinical results. It should be noted that the 

limitations observed by the author for the use of LC-MS/MS in the clinical diagnostic 

laboratory is based on the single analysis of two isolates of C. glabrata. The analysis of a larger 

panel of representative examples of echinocandin resistant and susceptible isolates of C. 

glabrata might elucidate patterns of proteomic variation that may prove useful in the further 

development of the laboratory detection of resistance. 

This study demonstrated little to no observable correlation between the two methodologies in 

terms of the generation and comparability of data. There was no evidence that proteins 

predicted from the LC-MS/MS prepared extraction were detectable by MALDI-TOF MS 

(Figure 9; Section 3.2.2 – Section 3.2.4). Therefore, it would seem that, at least from a clinical 

perspective, there is little value in directly comparing data generated by LC-MS/MS to that of 

MALDI-TOF MS generated data. 

The recovery of proteins from the extraction processes used in this study appeared to be most 

productive when using the LC-MS/MS protocol for the LC-MS/MS analysis, and this is not 

unexpected. The techniques and protocols are more refined and designed specifically to target 
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the whole proteome by fragmenting it, followed by deconvolution using computer software to 

determine the constituent predicted proteins (Zhang et al., 2018; Berendsen et al., 2017). 

Certainly, the combination of LC-MS/MS and MALDI-TOF MS has demonstrated exciting 

possibilities in other bioscience disciplines, for example the characterisation of molecular 

heterogeneity of tissues in suspected cancer patients (Hoffmann et al., 2019). However, the 

intricacies and complexity involved in sample manipulation prior to analysis negates the use 

of LC-MS/MS in a routine clinical diagnostic laboratory (Intelicato-Young and Fox, 2013). 

Improvements such as the screening of targeted metabolites by LC-MS/MS from intact 

bacterial cells prior to TiO2-assisted laser desorption/ionisation MS (Zhang et al, 2018) are 

being made in respect of antimicrobial resistance detection in bacteria. Some success has been 

reported with attempts at serotyping subspecies level identification of Escherichia coli and 

Salmonella spp. using LC-MS/MS (Sloan, Wang and Cheng, 2017).  

Within the LC-MS/MS dataset, none of the predicted proteins characterised by the data analysis 

software appears to have a recognised existing role in echinocandin resistance. The majority 

of predicted proteins appear to be related to ribosomal structure and metabolic pathways, and 

a large proportion remain uncharacterised following database searches. For example, 31/40 

(77.5%) LC-MS/MS predicted proteins present in the NCPF 8814 (echinocandin resistant) 

extraction B (MALDI-TOF MS specific) were uncharacterised. This is most likely a direct 

result of the ‘bottom up’ approach to proteome analysis whereby a large amount of data is 

generated and published without fully cataloguing and understanding the depths of its content 

or utility (Boulund et al, 2017; Carvalho, Penque and Matthiesen, 2015; Alpi et al., 2015; 

Zhang et al., 2013). Much of the data generated by research using approaches to proteomics 

remain by-products of a singular key factor that any given research project is attempting to find 

and populates online databases such as UniProt (The UniProt Consortium, 2017; Alpi et al., 

2015). However, the LC-MS/MS data generated during this study provide potential evidence 
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for the role of other compensatory mechanisms alongside the genetic mutation of genes in the 

FKS region, which may affect the susceptibility of an organism to the echinocandin class of 

antifungal agents (Perlin, 2007). For example, the protein Q6FT71 (Table 13) is predicted to 

have a role in the formation of branched actin networks and actin binding of yeast cells has the 

potential to directly affect cell integrity, deformability and migration (Mishra, Huang and 

Balasubramanian, 2014). This may then in turn play a crucial part in the survival of an 

echinocandin resistant organism, if cytoskeletal structural changes are undertaken as a 

mechanism of resistance. In fact, actin remodelling has been reported in C. glabrata as a direct 

result of exposure to fluconazole (Bhakt et al., 2018) and such an effect may not be limited to 

a single class of antifungal. 

 

4.3.2 MALDI-TOF MS in the clinical diagnostic mycology laboratory 

 

MALDI-TOF MS produces a spectral profile of ionised biomolecules predominantly 

consisting of ribosomal and metabolic proteins (Clark et al., 2013), and over the past decade 

manufacturers have packaged the system into platforms that withstand the pressures and 

restraints of a clinical diagnostic setting (Hou et al., 2018; Vella et al., 2017; Kothari et al., 

2014; Vogne et al., 2014). Initial costs are high for the acquisition of the platform, but the 

relative low cost per sample and the ability for offline interpretation outside of machine 

operation further indicates the utility of MALDI-TOF MS in the clinical laboratory (Tran et 

al., 2015; van Belkum et al., 2014). 

As stated in Objective 2 of the study aim, the main function of LC-MS/MS analysis to this 

research was to provide data which could be translated into identified, specific targets for 

detection by MALDI-TOF MS. However, this study failed to find any correlation between 

measurable proteins detected by the two methods, even when allowances were made for 
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detection parameters. This suggests that although the two methods may not be suitable to 

inform each other (Section 3.2.2 – Section 3.2.4), there may be much to be gained from the 

concurrent use of both methodologies as a way of developing proteomic knowledge and 

expanding diagnostic capabilities (Zhu et al., 2011). Indeed, some evidence suggests that in 

other bioscience disciplines the coupling of the two methodologies increases detection 

sensitivity and mass precision, for example in the rapid detection of urinary biomarkers 

(Benkali et al., 2008).  

A key factor to consider when using MS-based proteomic tools in quantitative studies is that 

neither of the methods presented here is inherently quantitative (Li et al., 2017; Geiger et al., 

2012). Variations in physicochemical properties for peptide species can lead to differences in 

ionisation efficiencies and variation in signal intensity, potentially creating large windows of 

mass spectrometric outputs which may differ between methodology, sample and extraction 

(Fragerquist, 2017; Otto, Becher and Schmidt, 2014). This may provide some explanation for 

the lack of correlation observed between the two data set outputs, but is also suggests that 

together, the methods may provide a complete picture of protein profiles present in the 

extractions (Geiger et al., 2012).  

It has been documented that the matrix used during MALDI-TOF MS can have a significant 

impact on the intensity and recovery of mass spectra generated, both in terms of quality and 

visibility (Yates, Ruse and Nakorchevsky, 2009; Aebersold and Mann, 2003). The use of 

sinapinic acid (SA), rather than α-cyano-4-hydroxycinnamic acid (HCCA), the standard matrix 

used for commercial organism identification, can increase the flight of higher molecular weight 

proteins (Liu and Schey, 2005). Consequently, extracts NCPF 8814 and NCPF 8745 were 

prepared for MALDI-TOF MS using SA to detect any significant change in spectral data. The 

use of SA resulted in the production of flat line (zero sum) spectra despite a minimum of three 

replicated experiments with the same isolates. This is most likely due to a failure in the 
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optimisation of the system set up for analysis using a different matrix but could also indicate 

that the change to a different matrix is not suitable for the analysis of fungal proteins. There is 

evidence to suggest SA has successfully been used to detect single distinctive mass peaks 

indicating the production of KPC-2 β-lactamase in Enterobacteriaceae (Figueroa-Espinosa et 

al., 2019). 

Recent studies have demonstrated the success and consequential clinical utility of MALDI-

TOF MS to the early use of appropriate antimicrobial therapy in BSIs predominantly with 

bacteria (reviewed by Faron, Buchan and Ledeboer, 2017). The growth of resistant and 

susceptible isolates in the presence of antifungal agents in vitro, and then the subsequent 

analysis by MALDI-TOF MS may increase the success of visualising any proteins where 

relative abundance is altered during drug exposure, consequently affecting drug susceptibility. 

Objective 3 of the study aim for this research highlighted the intention to produce protein 

spectra for echinocandin susceptible and resistant isolates of C. glabrata and determine if they 

could be distinguished using the tools available in the diagnostic mycology laboratory. This 

was undertaken from several perspectives, including examples of resistant and susceptible 

isolates alone (Section 3.3.1) and following exposure to antifungal agents (Sections 3.3.2 – 

3.3.3). Indeed, several studies have looked at MALDI-TOF MS spectral profiles of organisms 

exposed to a concentration gradient of antifungal agent. They have suggested that there are 

observable and statistically significant differences that can be used to determine the antifungal 

susceptibility or resistance of a given isolate. For example, Saracli et al. (2015) demonstrated 

the power of MALDI-TOF MS to indicate triazole resistance in species of Candida, and in 

particular C. glabrata. They passed specific comment on the need to improve the 

reproducibility of their technique as this differed between species, although they did note a 

higher level of reproducibility in C. glabrata when compared to C. albicans and Candida 

tropicalis. To date there is no standardised or commonly accepted methodology available for 
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the detection of triazole resistance in Candida spp.. This possibly indicates that the required 

manipulation of isolates and data interpretation is counter intuitive to the current methods of 

detection and susceptibility testing in use in clinical diagnostic mycology laboratories. Whilst 

there may exist a clinical need to improve rapid reporting of results, the confirmatory work 

required to standardise and implement such protocols seems to be imbalanced towards 

maintaining current methodologies (Gitman et al., 2017).  

However, the initial database interrogation shown in Figure 12 and Table 14 highlights that the 

spectral dissimilarity demonstrate between isolates in this study is insufficient or too 

incomplete to prevent cross matching with other database MSPs for C. glabrata. This may 

suggest that differences in spectral patterns could indicate a natural strain variability within the 

species, rather than an indication of resistance. The given Log (Score) provides a logarithmic 

scale of compatibility of test spectra and database record whereby 100% match is represented 

by a score of 3.000. For bacterial organisms, an identification correct to species level requires 

a score of ≥ 2.300 and to genus level ≥ 2.000 (Clark et al., 2013). However, for fungi lower 

thresholds are accepted, with a score ≥ 2.000 generally being accepted as confirming identity 

to species level (Fraser et al., 2016). Sub-speciation using MALDI-TOF MS has been 

documented in bacteria (Altman et al., 2016; Fagerquist et al., 2006), and whilst such methods 

could be adapted and applied to C. glabrata, an investigative research approach of this sort 

would fall outside of the remit for a clinical laboratory diagnostic test requirement that this 

study has aimed to find and approaches to sub-speciation were not pursued as part of this 

project. 

More recently, the rapid detection of fluconazole resistance using MALDI-TOF MS has been 

demonstrated with C. tropicalis (Paul et al., 2018), an organism for which microbroth dilution 

susceptibility testing can be difficult (Marcos-Zambrano et al., 2016). In addition, Delavy et 

al. (2019) have illustrated the current and possible future benefits in using and adapting 
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MALDI-TOF MS-based assays to define complete susceptibility patterns in Candida auris. 

Nevertheless, few recent studies have attempted to undertake similar approaches with C. 

glabrata and the echinocandin agents. Early studies by De Carolis et al. (2013) and Marinach 

et al. (2009) compared a large dataset of spectral analysis using a composite correlation index 

(CCI), as first demonstrated by Arnold and Reilly (1998). The data demonstrated the potential 

to reduce conventional susceptibility testing time from a minimum of 24 hours to 15 hours (De 

Carolis et al., 2013); however, this has not been universally adopted by clinical mycology 

laboratories. The comparison between resistant and susceptible isolates presented in this study 

provides further evidence that it is difficult to provide any indication of susceptibility patterns 

using a proteomic fingerprint in some time scale less than 24 hours (Figure 18), under the 

experimental conditions employed which are those in routine use in diagnostic mycology 

laboratories in the UK (Fraser et al., 2016; Fatania et al., 2015; Gorton et al., 2014). One of 

the reasons that this approach has not yet been implemented as a routine tool in terms of clinical 

diagnostics may stem from the requirement for each individual isolate to be tested against a 

single antifungal gradient and, consequently the intense data analysis required by CCI to 

generate results which severely reduces its utility in real time. This potentially creates a 

scenario where there is more hands-on analysis for the laboratory technician than the currently 

accepted microbroth dilution methods of susceptibility testing (CLSI, 2017a; Lockhart et al., 

2017). Ideally, in order to have true diagnostic value, the detection of echinocandin resistance 

by MALDI-TOF MS should provide a more efficient, effective and time-reducing 

methodology than those currently in use. This is predominantly the remit of various methods 

of susceptibility testing. MALDI-TOF MS detection of resistance would therefore require the 

ability to detect spectral changes or differences between echinocandin resistant and susceptible 

isolates at the initial handling and processing stage of the diagnostic investigation. This means 

without the need for further incubation or additional testing such as growth in the presence of 
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antifungal agents. This study has served to demonstrate that without such additional handling, 

MALDI-TOF MS does not provide a viable alternative to currently available methodology for 

the detection of echinocandin resistance in the clinical diagnostic laboratory. 

 

4.4 The role of research in the clinical mycology laboratory 

 

This study has demonstrated the potential utility of research to routine clinical diagnostics, and 

the value of research to clinical diagnostics is undeniable. However, there does exist a disparity 

between the quantity of published data generated by research institutions which suggest 

potential diagnostic advancement and the application of such data to clinical diagnostics in the 

laboratory (Ferrante di Ruffano et al., 2012a). As reported by Luepke et al. (2017) many 

industrial bioscience companies have shifted away from the development of novel 

antimicrobial compounds due to scientific, regulatory, and economic obstacles. Often the 

advancements are made in the areas that are the most financially lucrative or currently on trend, 

for example the explosion of interest in C. auris (Delavy et al., 2019; Prakash et al., 2016), 

rather than the areas where small differences, such as the development of technology beyond 

the purpose for which it was sold, could affect patient impact (Luepke et al., 2017; Dittrich et 

al., 2016; Ferrante di Ruffano et al., 2012b). There exists a vast amount of resources and 

funding in the academic study of biological interactions, in particular those of host vs. pathogen 

(Lum and Cristea, 2017) and pathogen vs. treatment, but it seems very rare that this research 

directly translates into novel, progressive, or the improvement of clinical diagnostics. It seems 

logical that research undertaken in the clinical diagnostic laboratory should be focused on 

improving the patient care experience, and a general shift towards a personalised approach to 

medicine has been suggested, especially with advances in the understanding of human 

genomics. However, as reviewed by Maughan (2017), the reality of genomic successes in the 
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context of cancer treatment and the clinical drive for personalisation are frequently misaligned. 

It could be argued that all clinical microbiology is personalised, in that the very essence of 

sampling the microbiota of individual patients automatically demonstrates a personalised 

approach to treatment and diagnosis.  

The use of NGS to further understand and evaluate the total components of the microbial 

population, or microbiome, of an individual would be considered a move towards a focussed, 

precision-centred approach to infective management. However, understanding the benefits and 

advantages to such approaches is only beginning to be considered (Kashyap et al., 2017). There 

exists an intrinsic disconnect with such studies due to the contrasting experiences of routine 

diagnostic testing and academic laboratory experimentation, where what works within a 

developmental laboratory setting, does not automatically translate to a clinical diagnostic 

setting. Researchers are attempting to facilitate a marriage between the two, but there is little 

funding, or time provision in general, especially within PHE/NHS laboratories, for laborious 

and extensive research projects which may or may not benefit the laboratory and improve 

patient care. Equipment and facilities are at best basic and at worst out-dated, and there exists 

a constant pressure to present rapid, accurate and informative results which inform clinical 

decisions with immediate effect thereby reducing the likelihood of successful investigational 

science in clinical diagnostic laboratories. This highlights the potential benefits and importance 

of collaborative projects with universities and other academic institutions. 

 

4.5 Critical evaluation of research undertaken as part of this thesis  

 

The main aim of this study was to provide a practical application within the setting of a clinical 

diagnostic laboratory to address a specific concern. However, there were practical restrictions 

to the scope of this research. These were based on the equipment available to undertake 
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investigation, the numbers of clinical isolates available for sampling, and the limitations placed 

on time for research to be undertaken, as is often the case in routine clinical diagnostic 

laboratories (McAdam, 2018). A major consequence of this was to provide little scope for 

investigation of the true nature of proteomic versus genetic markers of resistance alongside 

phenotypic demonstration of resistance.  However, this fell outside the original remit and aim 

of the work, which had to remain grounded in those tools readily accessible to the clinical 

diagnostic mycology laboratory.  The inability to detect easily identifiable spectral changes in 

MALDI-TOF MS at incubation times earlier than 24 hours (Figure 18) could be explained by 

the simple fact that general operational hours of the PHE MRL do not allow for realistic 

sampling at time points between 4 and 24 hours. The value of providing 24/7 microbiological 

support to clinical services is well recognised (Özenci and Rossolini, 2019; Dauwalder and 

Vandenesch, 2014), but as clinical mycology is generally considered a specialist service, this 

is not currently offered by PHE. The indication that echinocandin resistance in C. glabrata 

remains low in the UK (Fraser et al., 2019a), suggests that the empirical use of an echinocandin 

would still be considered an effective option (Astvad et al., 2018; Klingspor et al., 2018), and 

a switch to an oral agent, such as high dose fluconazole, once appropriate testing was 

completed, would not be time critical in this scenario (Eschenauer et al., 2015). 

As summarised by Objectives 2 and 3 set out at the beginning of this thesis there was a 

presumed correlation between genetic mutations and protein alteration either by morphological 

change, introduction, or relative abundance (Yoo et al., 2012; Hoehamer et al., 2010; 

Hooshdaran, Hilliard and Rogers, 2005). The data presented here seem to suggest that such a 

simplistic approach to the detection of proteomic modification is insufficient to provide the 

answers required of the objectives. However, the work undertaken in this project has led to the 

development and re-evaluation of the value that laboratory detection of genetic markers of 

resistance can provide, alongside standardised methods of resistance classification, and the 
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potential implications from a clinical perspective in terms of therapeutic guidance (Fraser et 

al., 2019a; McCarty et al., 2017). 

The detection of the potential protein markers of antifungal resistance, as indicated from LC-

MS/MS analysis, by MALDI-TOF MS would require the complete alteration of standardised 

operational parameters used in the clinical diagnostic microbiology laboratory for MALDI-

TOF MS analysis. This is not only in terms of matrix composition and selection, but also mass 

window detection and sample preparation (Sections 3.2 - 3.3). However, such fundamental 

changes to the operation of the MALDI-TOF MS in the diagnostic laboratory would 

dramatically reduce the clinical utility of the suggested targets as rapid identifiers of resistance.  

The requirement for re-calibration and re-adjustment of equipment has the potential to 

deconstruct existing workflows and negatively affect the turn-around times in the clinical 

laboratory, whilst also falling outside the remit of most routine microbiology laboratory 

MALDI-TOF MS users (Tran et al., 2015; Dingle and Butler-Wu, 2013).  

A recently published study from Figueroa-Espinosa et al. (2019) has shown success using a 

double-layered technique with sinapinic acid in the detection of a KPC-2 β-lactamase in 

carbapenemase producing Enterobacteriaceae with 100% sensitivity. This indicates that if a 

protein target exists then only minimal modifications may be required for detection. However, 

the switch between one matrix and another may have ramifications for the total operation of 

the MALDI-TOF MS in the clinical microbiology laboratory, and so would require a full 

programme of validation with all microorganisms that are currently identified using this 

technique.  

The initial detection and identification of protein targets of echinocandin resistance in C. 

glabrata was intended to be found using LC-MS/MS, but further exploration of those predicted 

proteins generated as part of this study to ascertain any role they may have in resistance 
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mechanisms was not within the remit of this work. Additionally, this would also be beyond the 

scope of the clinical diagnostic laboratory. 

The work presented in this thesis does not attempt to identify any mutations that may be present 

in FKS3, which has recently been shown to act as a negative regulator of echinocandin 

susceptibility in C. albicans (Suwunnakorn et al., 2018). Therefore, it is fair to conclude that 

FKS3 may also have a role in echinocandin susceptibility in other yeast species. The presence 

of an overlap in amplification regions may contribute to the poor sequence reads generated for 

FKS2, and the role of FKS3 in echinocandin susceptibility in C. glabrata merits further 

investigation. Also, no consideration was given for the impact of other cell wall components 

which may have an effect on the susceptibility profile of an organism, for example chitin, which 

has been shown to affect susceptibility to CSP (Walker, Gow and Munro, 2013). A 

multifactorial or cumulative approach to the acquisition of resistance in microorganisms should 

not be ruled out. 

There is a large volume of evidence to support the role of proteomic detection in the 

identification of antibacterial resistance mechanisms in bacteria (Figueroa-Espinosa et al., 

2019; Dortet et al., 2018; Zhang et al., 2018; Vogne et al., 2014), and there is no biological 

reason why this shouldn’t also be the case with fungi. Indeed, proteomic changes directly 

correlated to antifungal exposure have been demonstrated in C. albicans (Hoehamer et al., 

2010). The challenge for the clinical mycology laboratory is to find a way to approach the 

investigation of the detection of protein markers of resistance within the confines of the 

diagnostic setting. Independent studies have demonstrated the ability of MALDI-TOF MS to 

provide an indication of resistance when considering the azole class of antifungals (Paul et al., 

2018; Saracli et al., 2015; Marinach et al., 2009), and this is an area which could be explored 

further at the PHE MRL. However, it is important to note that there is currently no 

commercially available or recognised template for the clinical laboratory to detect resistance 
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using MALDI-TOF MS, and only the continued publication of proof of concept research 

demonstrates that it should be achievable (Vatanshenassan et al., 2018; Paul et al., 2018; Vella 

et al., 2017; Saracli et al., 2015).  

Another limitation of the work undertaken as part of this study is that all growth experiments 

in the presence of antifungal agent were performed using only CSP to detect evidence of 

changes in protein profiles. Studies conducted by Bordallo-Cardona et al. (2017) and Bizerra 

et al. (2014) have suggested that MCF might be a more effective inducer of in vitro resistance. 

MCF was not used in these experiments due to the difficulty in obtaining a powder or liquid 

form of the drug to prepare laboratory solutions during the timescale of the research. As a 

consequence, all MCF testing in this study was performed by E-test only. However, since the 

project has ended, so too has the licence for MCF, and it is now available from laboratory 

suppliers. 

Previously studied isolates of C. glabrata from the NCPF were used in an attempt to identify 

proteomic signatures suggestive of resistance or susceptibility but, once revived, only two of 

the five archived strains demonstrated resistance (Table 6), and the reasons for this could be 

multifactorial as previously discussed (Section 4.2). However, the reliance on the provision of 

archived examples of echinocandin resistant isolates was critical in the successful completion 

of Objective 1 and as a consequence all objectives thereafter. This served to highlight the 

importance of appropriate and accurate curation of culture collections (Forti et al., 2016; 

Becker et al., 2015; Lima-Neto et al., 2014; Smith, 2012).  

A further consequence of a reliance upon archived culture collection isolates, potentially 

having an impact on the results of this study, was the use of NCPF 8745 as the phenotypical 

echinocandin susceptible control isolate. This organism was originally added to the NCPF as 

an example of an echinocandin resistant isolate. Although, as previously discussed, the 

paperwork to support this accession could not be located so it remains unclear if the revived 
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isolate’s lack of ability to replicate a resistance phenotype reflected changing classification 

breakpoints (Fraser et al., 2019a; CLSI, 2017a; CLSI, 2017b), or whether the FKS mutation, 

which may have been present but not detected at the point of archiving, was lost due to the lack 

continued echinocandin presence (Imbert et al., 2016; Clancy and Nguyen, 2011). 

Phenotypically susceptible, or wild type isolates from clinical samples are not routinely stored 

by the NCPF as on-going study is usually dedicated towards those isolates that represented 

challenges or advancement of knowledge. It may have been possible to select a randomised 

wild type isolate from a clinical submission during the period of this study however, the use of 

a curated, tested and already archived isolate such as NCPF 8745 provided a certain element 

of ease for the immediate continuation of the study. 

 

4.6 Potential future research opportunities arising from the research in this 

thesis 

 

Further extension of the work presented as part of this thesis should include the expansion of 

similar projects to other fungal species, especially those currently of national, or indeed 

international interest such as C. auris (Delavy et al., 2019; Jeffery-Smith et al., 2017). It is 

crucial for the clinical diagnostic mycology laboratory to continue to provide the platform for 

development of existing, and introduction of, novel tools to further enhance the clinical and 

diagnostic interaction so as to maximise patient benefit. The use of MALDI-TOF MS in the 

determination of antifungal susceptibility patterns has been demonstrated in many pathogenic 

yeast species including C. albicans and C. glabrata (Vatanshenassan et al., 2018), and the 

restrictions placed on this study to maintain a direct and immediate clinical utility prevented 

the full investigation of potential protein markers of resistance in C. glabrata.  
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Specifically, the further exploration into the identity of the proteins represented within the 

triplet peak signature detected during exposure to echinocandins described in Section 3.3, may 

provide further information into the interaction of C. glabrata and echinocandin antifungal 

agents in vitro. The purification of proteins of known mass, as indicated by MALDI-TOF MS, 

and their characterisation could be undertaken using 2D-PAGE techniques and protein 

labelling (Fey et al., 1997). This might in turn lead to the discovery of a reproducibly consistent 

antifungal induced protein change which could be adapted into a diagnostic marker for use in 

clinical testing (Yoo et al., 2012; Yan et al., 2007).  

Also, the evidence that supports the use of ANF as a sentinel echinocandin to indicate cross-

agent resistance would indicate that further studies, if undertaken, should attempt to utilise 

ANF and MCF instead of CSP (Pfaller et al., 2014c; Espinel-Ingroff et al., 2013; Shields et al., 

2013). As previously mentioned, the role of FKS3 in echinocandin susceptibility has only 

recently been described (Suwunnakorn et al., 2018), so a more focussed approach on the total 

role of FKS in echinocandin susceptibility could be undertaken, and techniques such as NGS 

may be beneficial in further elucidating this information. 

There is sufficient evidence to suggest that MALDI-TOF MS detection of agents of BSI, 

including candidaemia, is highly beneficial in terms of laboratory turnaround time and clinical 

reporting (Angeletti, 2017; Buehler et al., 2016). There exists the potential to expand 

approaches to serological investigations of yeast in blood, predominantly the detection of cell 

surface antigens such as mannan or (1-3)-β-D-glucan (Mokaddas et al., 2011) could be 

replaced with a MALDI-TOF MS system whereby detection and identification of causative 

agents is performed directly on blood samples from patients (Curtoni et al., 2017; Moore et al., 

2016; Randazzo et al., 2016). This would not only dramatically reduce the notification time of 

infection, but also the time by which appropriately guided therapy could be administered.  This 

is something that should be considered at the PHE MRL for future diagnostic developments. 
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It is also worth considering recent shifts towards approaches in microbiology which focus on 

the total components of the human microbiome, the commensal population of microorganisms 

that humans host. This perspective of personalised medicine has advanced due to the increased 

development of high-throughput DNA sequencing technologies such as NGS or WGS, which 

have enabled the identification of previously non-culturable organisms. They have provided a 

profile of the total microbiota of a patient (Martin et al., 2018), as well as the potential 

interactions and implications for antimicrobial resistance which can affect and influence human 

health and disease (Do et al., 2018). It has been demonstrated that interactions within the 

existing microbiological communities of an individual patient can impact the treatment choices 

available to clinicians (Ferrer et al., 2017), the prognoses of some non-infective conditions 

such as Parkinson’s disease (Lubomski et al., 2019) or cardiovascular disease (Peng et al., 

2018) and the outcome of therapeutic decisions (Wong et al., 2019; Kashyap et al., 2017). 

Indeed, the interaction between the microbiome and the mycobiome, the fungal component of 

the commensal microbiota, may have a key role to play in consequences of antimicrobial 

treatment (Sam, Chang and Chai, 2017). Fungi are generally considered opportunistic 

pathogens, but when considered as part of a full microbiological profile of an individual it is 

possible that their presence and consequential impact on treatment selection and resistance 

profiling may change. 

 

4.7 The future of resistance detection in the clinical mycology laboratory 

 

The rapid detection of existing and emergent resistance before or during treatment with 

antifungal agents is going to be a vital tool in achieving consistently successful and targeted 

antifungal therapy. In an era of broad-spectrum antimicrobial resistance, this approach to 

clinical diagnostics will form the underlying basis of many antifungal stewardship programmes 
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(Poole, Kidd and Saeed, 2018; Wattal et al., 2017). The detection of FKS mutations can provide 

an appropriate indication of the correct antifungal regime selection, and the potential of this 

study is that it demonstrates how an existing diagnostic laboratory technology can be adapted 

and primed in the event of rapidly emergent resistance. There are extreme pressures being 

placed on the use and management of antifungal agents, and this in turn confers an 

environmental pressure for inducible resistance. By far the largest and most frequently used 

empirical therapy for the treatment of candidaemia is the azole class of antifungals, and it has 

been demonstrated that MALDI-TOF MS could have a role in the detection of azole resistance 

in C. albicans (Marinach et al., 2009) and some other non-albicans Candida sp. (Paul et al., 

2018; Saracli et al., 2015). However, the work presented within this thesis and supported by 

others, suggests that the physical application of such undertakings does not provide a viable, 

or significant difference, from the methods that are currently used to detect phenotypic 

resistance. For example, it has been reported that MALDI-TOF MS analysis provides little to 

no benefit over standard techniques when used to investigate antifungal susceptibility patterns 

in Aspergillus fumigatus, the most common filamentous fungus to cause infections in humans 

(Gitman et al., 2017). As is the case with some C. glabrata isolates and the echinocandin 

agents, it is possible to see resistance without the presence of known or documented resistance 

markers (McCarty et al., 2018).  

It would seem that the adoption of a single system dependent upon the detection of only a 

genetic or proteomic indicator of resistance in C. glabrata would not provide a level of 

specificity or sensitivity sufficient for complete confidence in the selection of appropriate 

treatment.  Such a methodology is likely to be further confounded by the fastidious growth 

requirements, and unpredictable nature of handling fungi in the clinical laboratory (Subedi, 

Jennings and Chen, 2017; Fraczek et al., 2014). This suggests that a continued multifactorial 

approach to resistance detection may be beneficial in the clinical diagnostic mycology 
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laboratory, particularly in the case of the echinocandin agents and C. glabrata as demonstrated 

by work conducted for this thesis (Fraser et al., 2019a). The use of LC-MS/MS and MALDI-

TOF MS to identify protein markers of resistance may not be the most appropriate tool in a 

clinical setting, but if used alongside currently accepted methods of susceptibility testing, they 

could provide useful additional information to aid clinical decision making.  

There is some indication from this thesis that indicates that protein changes alone might not be 

linked to mutations in the FKS gene itself. In fact, a complete proteomic picture may reveal 

new indicative patterns which in fact represent multiple metabolic processes which could 

include, but are not limited to, genetic alterations (De Carolis et al., 2012; Perlin, 2007). Indeed, 

the study of proteomics has helped to clarify that it is possible for a large variety of protein 

species to be derived from a single gene (Jungblut et al., 2008; Perlin, 2007).   

However, advancements in whole-genome sequencing mean that the focus on approaches to 

the interrogation of infectious organisms are shifting towards a total genomic approach, where 

a comprehensive review of all the genetic data of a given clinical isolate is obtained. Advances 

such as this enable the continual movement of modern medicine closer to individual 

personalised care (Spettel et al., 2019). Although as Balloux et al. (2018) have reviewed, 

significant challenges resulting from the implementation and transference of technologies from 

academic research to clinical practice need to be overcome to make this a reality for the clinical 

diagnostic laboratory. This may take the form of complicated methodologies for sample 

preparation which require condensing to be practicable in the clinical setting, the reduction in 

financial expenditure required per sample, or the reduction in times required for analysis and 

return of large datasets generated by WGS platforms, which can often take days to months 

(Balloux et al., 2018; Olaru, et al., 2018; Rossen et al., 2018). 

 

4.8 Conclusions 
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Encouragingly, over the three years that isolates were collected for this study, there was only 

a 0.5% prevalence rate of resistance to echinocandin antifungal agents in C. glabrata (Fraser 

et al., 2019a). This provides evidence for a reduction in urgency of the development of rapid 

detection methods as originally intended and set out as the aim for the work undertaken for this 

thesis. This also provides some scope for the further development and expansion of 

understanding how techniques like MALDI-TOF MS can be fully expanded beyond that which 

they are first adopted. In the case of diagnostic microbiology, rapid organism identification can 

be utilised to maximum benefit in the clinical diagnostic laboratory by providing more 

information to guide treatment and therapeutic decisions.  

The echinocandin class of antifungals remains an important example of agents which have a 

unique mode of action within a narrow field of therapeutic options for the treatment of 

candidaemia. It is imperative that advances and technologies such as demonstrated in this 

research, are readily deployable should a situation arise where echinocandin resistance 

increases. This highlights the need for the continued development of new approaches to the 

detection of resistance, as well as the importance of accurate identification and susceptibility 

testing, and clinical interpretation, across regional, national and international levels. 

Whilst the work undertaken to compile this thesis has been unable to fully complete the four 

objectives identified to fulfil the aim of the work, it has been successful in changing and further 

informing clinical reporting in the diagnostic mycology laboratory.  

Completion of Objective 1, to create a rapid genomic detection method using pyrosequencing 

technology (Sections 3.1.2 – 3.1.5) for recognised mutations in FKS1 and FKS2 in C. glabrata, 

has been achieved and has been used to demonstrate a full picture of the ongoing prevalence 

of echinocandin resistance in the UK since testing of echinocandin agents first began in 2003 

(Fraser et al., 2019a). 
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Both LC-MS/MS and MALDI-TOF MS have demonstrated the ability to indicate proteins 

which may play a role in resistance mechanisms in C. glabrata, as outlined in Objectives 2 and 

3. The limited methodologies in use within the clinical diagnostic laboratory did not allow for 

the full identification of such proteins and, consequently, their confident adoption as rapid 

indicators of resistance, without the additional security of susceptibility testing, could not be 

implemented. Further investigations into the classification and functions of proteins identified 

in this way may in the future enable the expansion of MALDI-TOF MS as a rapid identifier of 

resistance. 

Data generated by the work undertaken as part of this thesis to complete Objective 4 has 

demonstrated that a robust database for the detection and differentiation of echinocandin 

resistant and susceptible isolates of C. glabrata by MALDI-TOF MS cannot be created from 

the small number of FKS1 and FKS2 mutants collected during the timescale of this study 

(Section 3.3.1). However, the usage of MALDI-TOF MS to rapidly identify agents of 

bloodstream infections, and in particular fungi, has been revolutionary in the diagnostic 

microbiology laboratory (Faron et al., 2017; Clark et al., 2013) and continued attempts to 

increase the scope and utility of this power should be made to further enhance the impact on 

clinical diagnostic testing. 
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Please note that any information sheets and consent forms should have the UWE logo.  Further guidance 
is available on the web: 
http://www1.uwe.ac.uk/aboutus/departmentsandservices/professionalservices/marketingandcommuni
cations/resources.aspx 
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Appendix II 

 

Pyrosequencing FKS FASTA format file for C. glabrata 
 
This is an essential component for the rapid identification of sequencing results. The 
Identifire® software requires a database to search the sequences against. This 
document was used to create that database. Hot spot mutations/alterations highlighted 
in RED.  Mutations that confer phenotypic resistance are indicated by the amino acid 
(Aa) substitution and gene position (XXX) in the format: AaXXXAa. WT = wild type 
variant. 

 
 

>CGFKS1_WT.1 

AAAATTCTGATTGGATCTCTTAGAGATAGAATCAAGAAGTAGTA 

 

>CGFKS1_WT.2 

AAAATTCTGATTGGATCTCTTAGAGATAGAATCAAAAAGTAGTA 

 

>CGFKS1_WT.3 

AAAATTCTGATTGGATCTCTTAGAGATAGAATCAAGAAGTAGTA 

 

>CGFKS1_WT.4 

AAAATTCTGATTGGATCTCTTAGGGATAGAATCAAGAAGTAGTA 

 

>CGFKS1_WT.5 

AAAATTCTGATTGGATCTCTTAGTGATAGAATCAAGAAGTAGTA 

 

>CGFKS1_WT.6 

AAAATTCTGATTGGATCTCTTAGCGATAGAATCAAGAAGTAGTA 

 

>CGFKS1_WT.7 

AAAATTCTGATTGGATCTCTTAGACTTAGAATCAAGAAGTAGTA 

 

>CGFKS1_WT.8 

AAAATTCTGATTGGATCTCTTAGGCTTAGAATCAAGAAGTAGTA 

 

>CGFKS1_WT.9 

AAAATTCTGATTGGATCTCTTAGAGATAGAATCAAGAAGTAGTA 

 

>CGFKS1_WT.10 

AAAATTCTGATTGGGTCTCTTAGAGATAGAATCAAGAAGTAGTA 

 

>CGFKS1_F625S.TCT 

AAAATTCTGATTGGATCTCTTAGAGATAGAATCAAAGAGTAGTA 

 

>CGFKS1_F625S.TCC 

AAAATTCTGATTGGATCTCTTAGAGATAGAATCAAGGAGTAGTA 

 

>CGFKS1_F625S.TCA 
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AAAATTCTGATTGGATCTCTTAGAGATAGAATCAATGAGTAGTA 

 

>CGFKS1_F625S.TCG 

AAAATTCTGATTGGATCTCTTAGAGATAGAATCAACGAGTAGTA 

 

>CGFKS1_F625S.AGT 

AAAATTCTGATTGGATCTCTTAGAGATAGAATCAAACTGTAGTA 

 

>CGFKS1_F625S.AGC 

AAAATTCTGATTGGATCTCTTAGAGATAGAATCAAGCTGTAGTA 

 

>CGFKS1_S629P.CCT 

AAAATTCTGATTGGATCTCTTAGAGGTAGAATCAAGAAGTAGTA 

 

>CGFKS1_S629.CCC 

AAAATTCTGATTGGATCTCTTAGCCCTAGAATCAAGAAGTAGTA 

 

>CGFKS1_S629P.CCA 

AAAATTCTGATTGGATCTCTTAGTGGTAGAATCAAGAAGTAGTA 

 

>CGFKS1_S629P.CCG 

AAAATTCTGATTGGATCTCTTAGCGGTAGAATCAAGAAGTAGTA 

 

>CGFKS1_D632E.GAA 

AAAATTCTGATTGGTTCTCTTAGAGATAGAATCAAGAAGTAGTA 

 

>CGFKS1_D632E.GAG 

AAAATTCTGATTGGCTCTCTTAGAGATAGAATCAAGAAGTAGTA 

 

>CGKFS1_D632G.GGT 

AAAATTCTGATTGGACCTCTTAGAGATAGAATCAAGAAGTAGTA 

 

>CGFKS1_D632G.GGC 

AAAATTCTGATTGGGCCTCTTAGAGATAGAATCAAGAAGTAGTA 

 

>CGFKS1_D632G.GGA 

AAAATTCTGATTGGTCCTCTTAGAGATAGAATCAAGAAGTAGTA 

 

>CGFKS1_D632G.GGG 

AAAATTCTGATTGGCCCTCTTAGAGATAGAATCAAGAAGTAGTA 

 

>CGFKS1_D632Y.TAT 

AAAATTCTGATTGGCTCTCTTAGAGATAGAATCAAGAAGTAGTA 

 

>CGFKS1_D632Y.TAC 

AAAATTCTGATTGGATCTCTTAGAGATAGAATCAAGAAGTAGTA 

 

>CGFKS2_WT.1 

AAAATTCTGATAGGGTCTCTTAGAGACAAAATCAAGAAGAAGTA 
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>CGFKS2_WT.2 

AAAATTCTGATAGGGTCTCTTAGAGACAAAATCAAAAAGAAGTA 

 

>CGFKS2_WT.3 

AAAATTCTGATAGGGTCTCTTAGAGACAAAATCAAGAAGAAGTA 

 

>CGFKS2_WT.4 

AAAATTCTGATAGGGTCTCTTAGAGATAAAATCAAGAAGAAGTA 

 

>CGFKS2_WT.5 

AAAATTCTGATAGGGTCTCTTAGAGACAGAATCAAGAAGAAGTA 

 

>CGFKS2_WT.6 

AAAATTCTGATAGGGTCTCTTAGAGATAGAATCAAGAAGAAGTA 

 

>CGFKS2_WT.7 

AAAATTCTGATAGGGTCTCTTAGAGAGAGAATCAAGAAGAAGTA 

 

>CGFKS2_WT.8 

AAAATTCTGATAGGGTCTCTTAGAGAAAGAATCAAGAAGAAGTA 

 

>CGFKS2_WT.9 

AAAATTCTGATAGGGTCTCTTAGGGACAAAATCAAGAAGAAGTA 

 

>CGFKS2_WT.10 

AAAATTCTGATAGGGTCTCTTAGTGACAAAATCAAGAAGAAGTA 

 

>CGFKS2_WT.11 

AAAATTCTGATAGGGTCTCTTAGCGACAAAATCAAGAAGAAGTA 

 

>CGFKS2_WT.12 

AAAATTCTGATAGGGTCTCTTAGACTCAAAATCAAGAAGAAGTA 

 

>CGFKS2_WT.13 

AAAATTCTGATAGGGTCTCTTAGGCTCAAAATCAAGAAGAAGTA 

 

>CGFKS2_WT.14 

AAAATTCTGATAGGGTCTCTAAGGTACAAAATCAAGAAGAAGTA 

 

>CGFKS2_WT.15 

AAAATTCTGATAGGGTCTCTGAGGTACAAAATCAAGAAGAAGTA 

 

>CGFKS2_WT.16 

AAAATTCTGATAGGGTCTCTCAGGTACAAAATCAAGAAGAAGTA 

 

>CGFKS2_WT.17 

AAAATTCTGATAGGGTCTCTTAAGTACAAAATCAAGAAGAAGTA 

 

>CGFKS2_WT.18 

AAAATTCTGATAGGGTCTCTCAAGTACAAAATCAAGAAGAAGTA 
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>CGFKS2_WT.19 

AAAATTCTGATGGGGTCTCTTAGGTACAAAATCAAGAAGAAGTA 

 

>CGFKS2_WT.20 

AAAATTCTGATTGGGTCTCTTAGGTACAAAATCAAGAAGAAGTA 

 

>CGFKS2_WT.21 

AAAATTCTGATCGGGTCTCTTAGGTACAAAATCAAGAAGAAGTA 

 

>CGFKS2_deletionF658 

AAAATTCTGATAGGGTCTCTTAGAGACAAAATCAAGAAGTA 

 

>CGFKS2_deletionF659 

AAAATTCTGATAGGGTCTCTTAGAGACAAAATCAAGAAGTA 

 

>CGFKS2_F659S.TCT 

AAAATTCTGATAGGGTCTCTTAGAGACAAAATCAAAGAGAAGTA 

 

>CGFKS2_F659S.TCC 

AAAATTCTGATAGGGTCTCTTAGAGACAAAATCAAGGAGAAGTA 

 

>CGFKS2_F659S.TCA 

AAAATTCTGATAGGGTCTCTTAGAGACAAAATCAATGAGAAGTA 

 

>CGFKS2_F659S.TCG 

AAAATTCTGATAGGGTCTCTTAGAGACAAAATCAACGAGAAGTA 

 

>CGFKS2_F659S.AGT 

AAAATTCTGATAGGGTCTCTTAGAGACAAAATCAAACTGAAGTA 

 

>CGFKS2_F659S.AGC 

AAAATTCTGATAGGGTCTCTTAGAGACAAAATCAAGCTGAAGTA 

 

>CGFKS2_F659V.GTT 

AAAATTCTGATAGGGTCTCTTAGAGACAAAATCAAAACGAAGTA 

 

>CGFKS2_F659V.GTC 

AAAATTCTGATAGGGTCTCTTAGAGACAAAATCAAGACGAAGTA 

 

>CGFKS2_F659V.GTA 

AAAATTCTGATAGGGTCTCTTAGAGACAAAATCAATACGAAGTA 

 

>CGFKS2_F659V.GTG 

AAAATTCTGATAGGGTCTCTTAGAGACAAAATCAACACGAAGTA 

 

>CGFKS2_F659Y.TAT 

AAAATTCTGATAGGGTCTCTTAGAGACAAAATCAAATAGAAGTA 

 

>CGFKS2_F659Y.TAC 
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AAAATTCTGATAGGGTCTCTTAGAGACAAAATCAAGTAGAAGTA 

 

>CGFKS2_L662W.TGG 

AAAATTCTGATAGGGTCTCTTAGAGACCAAATCAAGAAGAAGTA 

 

>CGFKS2_S663P.CCT 

AAAATTCTGATAGGGTCTCTTAGAGGCAAAATCAAGAAGAAGTA 

 

>CGFKS2_S663P.CCC 

AAAATTCTGATAGGGTCTCTTAGGGGCAAAATCAAGAAGAAGTA 

 

>CGFKS_S663P.CCA 

AAAATTCTGATAGGGTCTCTTAGTGGCAAAATCAAGAAGAAGTA 

 

>CGFKS2_S663P.CCG 

AAAATTCTGATAGGGTCTCTTAGCGGCAAAATCAAGAAGAAGTA 

 

>CGFKS2_S663F.TTT 

AAAATTCTGATAGGGTCTCTTAGAAACAAAATCAAGAAGAAGTA 

 

>CGFKS2_S663F.TTC 

AAAATTCTGATAGGGTCTCTTAGGAACAAAATCAAGAAGAAGTA 

 

>CGFKS2_S663Y.TAT 

AAAATTCTGATAGGGTCTCTTAGATACAAAATCAAGAAGAAGTA 

 

>CGFKS2_S663Y.TAC 

AAAATTCTGATAGGGTCTCTTAGGTACAAAATCAAGAAGAAGTA 

 

>CGFKS2_L664R.CGT 

AAAATTCTGATAGGGTCTCTACGGTACAAAATCAAGAAGAAGTA 

 

>CGFKS2_L664R.CGC 

AAAATTCTGATAGGGTCTCTGCGGTACAAAATCAAGAAGAAGTA 

 

>CGFKS2_L664R.CGA 

AAAATTCTGATAGGGTCTCTTCGGTACAAAATCAAGAAGAAGTA 

 

>CGFKS2_L664R.CGG 

AAAATTCTGATAGGGTCTCTCCGGTACAAAATCAAGAAGAAGTA 

 

>CGFKS2_L664R.AGA 

AAAATTCTGATAGGGTCTCTTCTGTACAAAATCAAGAAGAAGTA 

 

>CGFKS2_L664R.AGG 

AAAATTCTGATAGGGTCTCTCCTGTACAAAATCAAGAAGAAGTA 

 

>CGFKS2_P667T.ACT 

AAAATTCTGATAGTGTCTCTTAGGTACAAAATCAAGAAGAAGTA 
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>CGFKS2_P667T.ACC 

AAAATTCTGATGGTGTCTCTTAGGTACAAAATCAAGAAGAAGTA 

 

>CGFKS2_P667T.ACA 

AAAATTCTGATTGTGTCTCTTAGGTACAAAATCAAGAAGAAGTA 

 

>CGFKS2_P667T.ACG 

AAAATTCTGATCGTGTCTCTTAGGTACAAAATCAAGAAGAAGTA 
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Appendix III 
 

 

Preparation of samples for LC-MS/MS at the Proteomics facility, University of Bristol 

 

 

Extract A samples were re-suspended in 100μL of 8M urea plus protease inhibitors, 1% 

nonylphenyl-polyethylene glycol (NP-40), 1% sodium deoxycholate and 0.1% sodium dodecyl 

sulphate (SDS) and then made up to 185 μL with 100 mM triethylammonium bicarbonate 

(TEAB). Next, 10 μL of 200 mM tris-(2-carboxyethyl)-phosphine (TCEP) was added and the 

samples were incubated at 55°C for 1 hour. Following this, 10 μL of 375 mM iodoacetamide 

was added and the samples incubated in the dark at room temperature for 30 minutes. After 

this time, 6 volumes of ice-cold acetone were then added to each tube and the samples were 

allowed to precipitate at -20°C overnight. The samples were next centrifuged at 8,000g for 10 

minutes at 4°C, the supernatant was removed, and the pellets were allowed to air dry for 3 

minutes before being re-suspended in 50 μL 50 mM TEAB. Finally, 2.5 μg sequencing-grade 

trypsin was added to each tube and the samples were incubated at 37°C overnight. The resulting 

peptides were desalted using SepPak cartridges (Waters, Milford, Massachusetts, USA) 

according to the manufacturer’s instructions and the eluate was evaporated to dryness and re-

suspended in 1% formic acid prior to LC-MS/MS analysis using an Ultimate 3000 nanoHPLC 

system in line with an LTQ-Orbitrap Velos mass spectrometer (Thermo Scientific).   

 

LC-MS/MS Analysis 

 

 

Peptides in 1% (vol/vol) formic acid were injected onto a 250 mm x 75 μm Acclaim PepMap 

C18 nano-trap reverse phase analytical column (Thermo Scientific), after washing with 0.5% 

(vol/vol) acetonitrile, over a 150-minute organic gradient. The organic gradient consisted of 7 

gradient segments: 1-6% solvent B over 1 minute, 6-15% solvent B over 58 minutes, 15-32% 

solvent B over 58 minutes, 32-40% solvent B over 5 minutes, 40-90% solvent B over 1 minute, 
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held at 90% solvent B for 6 minutes and then reduced to 1% solvent B over 1 minute with a 

flow rate of 300 nL/min. Solvent A was 0.1% formic acid and solvent B was aqueous 80% 

acetonitrile in 0.1% formic acid. Peptides were ionised by nano-electrospray ionisation at 2.1 

kV using a stainless-steel emitter with an internal diameter of 30 μm (Thermo Scientific) and 

a capillary temperature of 250°C.  

 

Tandem mass spectra were acquired using an LTQ-Orbitrap Velos mass spectrometer 

controlled by Xcalibur 2.1 software (Thermo Scientific) and operated in data-dependent 

acquisition mode. The Orbitrap was set to analyse the survey scans at 60,000 resolution (at m/z 

400) in the mass range m/z 300-2000 and the top ten multiply charged ions in each duty cycle 

were selected for MS/MS in the LTQ linear ion trap. Charge state filtering, where unassigned 

precursor ions were not selected for fragmentation, and dynamic exclusion (repeat count,1; 

repeat duration, 30 s; exclusion list size, 500) were used. Fragmentation conditions in the LTQ 

were: normalised collision energy, 40%; activation q, 0.25; activation time 10 ms; and 

minimum ion selection intensity, 500 counts. 
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Appendix IV 

Table 1. Subculture and resulting macro-colonies of NCPF isolates exhibiting changing 

patterns of susceptibility in vitro to anidulafungin. Table 9 (page 57) shows selected 

examples from this complete data set. This table shows the results from the subculture and 

macro-colony analysis generated from the passage of echinocandin susceptible NCPF isolates 

of C. glabrata in the continued presence of anidulafungin. The MIC of each collected isolate 

is provided. 

 
Key: Number = testing identifier Strain = NCPF isolates, or macro colony identifier e.g. NCPF subculture-

macro, Sub = number of subculture, macro = number of macro colony, MIC = minimum inhibitory 

concentration of anidulafungin at 24 hours (µg/mL) or caspofungin in denoted by C, FKS1/2 = Identifire® 

sequence identification, Mutation = Mutation = No (N) or Yes (Y) and if representing a hot spot then with the 

result: FKS gene (1/2), amino acid (Aa) substitution and gene position (XXX) in the format: 1/2 – AaXXXAa, 

or Undetermined (?), Score = Percentage of match between sequence read and FKS sequence database. 
 
 

# Strain Sub  Macro MIC 
(µg/mL) 

FKS1 FKS2 Mutation Score 

2 8714 0 0 0.064

C 

    

10 8714 1 0 0.012 CGFKS1_WT.3 CGFKS2_WT.1  100/92.9 

7 8714 2 0 0.008 CGFKS1_WT.3 CGFKS2_L662W.TG

G 
? 100/91.9 

14 8714 3 0 0.006 CGFKS1_WT.3 CGFKS2_L662W.TG

G 
? 100/95.6 

20 8714 4 0 0.006 CGFKS1_WT.3 CGFKS2_WT.1  100/92.9 

29 8714 5 0 0.006 CGFKS1_WT.3 CGFKS2_WT.1  100 

45 8714 6 0 0.006 CGFKS1_WT.3 CGFKS2_WT.1  100 

 8714 7 0 0.008 CGFKS1_WT.3 CGFKS2_WT.1  100 

3 8715 0 0 0.064

C 

CGFKS1_WT.3 CGFKS2_WT.8  100/86.9 

9 8715 1 0 0.016 CGFKS1_WT.3 UNDETERMINED  100 

11 8715 2 0 0.012 CGFKS1_WT.3 UNDETERMINED  100 

13 8715 3 0 0.008 CGFKS1_WT.3 CGFKS2_WT.8  100/87 

19 8715 4 0 0.003 CGFKS1_WT.3 UNDETERMINED  100 

28 8715 5 0 0.008 CGFKS1_WT.3 CGFKS2_WT.8  100/78 

44 8715 6 0 0.012 CGFKS1_WT.3 CGFKS2_WT.8  100/98 

 8715 7 0 0.012 CGFKS1_WT.3 CGFKS2_WT.8  100/85 

17 8715 2 1 0.5 CGFKS1_WT.3 ΔF659 ? 100/86.4 

 8715 2-

1 

1 0 1 CGFKS1_WT.3 CGFKS2_WT.8  100/87 

30 8715 2-

1 

2 1 0.25 CGFKS1_WT.3 CGFKS2_WT.8  100/97.2 

21 8715 2-

1 

2 2 2 CGFKS1_WT.3 CGFKS2_WT.8  100/97 

24 8715 2-

1 

2 3 3 CGFKS1_WT.3 UNDETERMINED  100 

25 8715 2-

1 

2 4 2 CGFKS1_WT.3 CGFKS2_WT.8  100/95 

22 8715 2-

1 

2 5 2 CGFKS1_WT.3 UNDETERMINED  100 

16 8715 2-

1 

2 6 2 CGFKS1_WT.3 CGFKS2_WT.8  100/70 

23 8715 2-

1 

2 7 4 CGFKS1_WT.2 UNDETERMINED  88.7 

32 8715 2-

2-1 

1 0 2 (1.5) CGFKS1_WT.3 CGFKS2_WT.8  100/98 
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35 8715 2-

2-2 

1 0 0.5 
(0.38) 

CGFKS1_WT.3 CGFKS2_WT.8  100/87 

31 8715 2-

2-3 

1 0 2 CGFKS1_WT.3 CGFKS2_WT.8  100/87 

26 8715 2-

2-4 

1 0 0.5 
(0.38) 

CGFKS1_WT.3 CGFKS2_WT.8  100/87 

36 8715 2-

2-5 

1 0 1 
(0.75) 

CGFKS1_WT.3 CGFKS2_WT.8  100/67 

34 8715 2-

2-6 

1 0 1 CGFKS1_WT.9 CGFKS2_WT.8  89/91.2 

33 8715 2-

2-7 

1 0 2 (1.5) CGFKS1_WT.3 CGFKS2_WT.8  1000/92 

42 8715 2-

4 

1 1 2 CGFKS1_WT.3 CGFKS2_WT.8  100/79 

40 8715 2-

4 

1 2 1 CGFKS1_WT.3 CGFKS2_WT.8  100/86 

51 8715 2-

4-1 

2 1 2 (1.5) CGFKS1_WT.3 CGFKS2_WT.8  100/88 

60 8715 2-

4-1 

2 2 2 CGFKS1_WT.3 CGFKS2_WT.8  100/91.4 

57 8715 2-

4-2 

1 1 0.75C

, 

0.38

A 

CGFKS1_WT.3 CGFKS2_WT.8  100/67 

56 8715 2-

4-2 

1 2 1.5C, 

1A 

CGFKS1_WT.3 CGFKS2_WT.8  100/75 

41 8715 2-

6 

1 1 2 CGFKS1_WT.3 CGFKS2_WT.8  100/82 

37 8715 2-

6 

1 2 2 (1.5) CGFKS1_WT.9 CGFKS2_WT.8  100/83 

39 8715 2-

6 

1 3 1 CGFKS1_WT.3 CGFKS2_WT.8  85/87 

38 8715 2-

6 

1 4 1 CGFKS1_WT.3 CGFKS2_WT.1  100 

59 8715 2-

6-1 

2 1 2 (1.5) CGFKS1_WT.3  CGFKS2_WT.1  100 

58 8715 2-

6-1 

2 2 2 CGFKS1_WT.3 CGFKS2_WT.1  100/98 

46 8715 2-

2-1 

2 0 0.5 CGFKS1_WT.3 CGFKS2_WT.1  100 

49 8715 2-

2-2 

2 0 2 (1.5) CGFKS1_WT.3 CGFKS2_WT.1  100/97 

53 8715 2-

2-3 

2 0 0.5 
(0.38) 

CGFKS1_WT.3 CGFKS2_WT.1  100 

50 8715 2-

2-4 

2 0 2 CGFKS1_WT.3 CGFKS2_WT.1  100/89 

52 8715 2-

2-5 

2 0 2 (1.5) CGFKS1_WT.3 CGFKS2_WT.1  100/67 

48 8715 2-

2-6 

2 0 2 (1.5) CGFKS1_WT.3 CGFKS2_WT.1  100/87 

47 8715 2-

2-7 

2 0 1 CGFKS1_WT.3 CGFKS2_WT.1  100 

1 8745 0 0 0.016

C 

CGFKS1_WT.3 CGFKS2_WT.1  100/87 

8 8745 1 0 0.016 CGFKS1_WT.3 CGFKS2_WT.1  100/96.6 

15 8745 2 0 0.008 UNDETERMINE
D 

CGFKS2_WT.3  /92.9 

12 8745 3 0 0.008 CGFKS1_F625S CGFKS2_WT.3 ? 81.6/93.4 
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18 8745 4 0 0.25C

, 

0.047

A 

CGFKS1_WT.3 CGFKS2_WT.1  100/89.2 

27 8745 5 0 0.064 CGFKS1_WT.3 CGFKS2_WT.1  100 

43 8745 6 0 0.032 CGFKS1_WT.3 CGFKS2_WT.1  100 

 
 

 

 

 

 

 

 

  

 


