
3282  |  	�  Glob Change Biol. 2019;25:3282–3293.wileyonlinelibrary.com/journal/gcb

 

Received: 27 February 2019  |  Revised: 6 June 2019  |  Accepted: 13 June 2019

DOI: 10.1111/gcb.14742  

P R I M A R Y  R E S E A R C H  A R T I C L E

Cumulative weather effects can impact across the whole life 
cycle

Bethan J. Hindle1,2  |   Jill G. Pilkington3 |   Josephine M. Pemberton3 |    
Dylan Z. Childs1

1Department of Animal and Plant 
Sciences, University of Sheffield, Sheffield, 
UK
2Department of Applied Sciences, University 
of the West of England, Bristol, UK
3School of Biological Sciences, Institute 
of Evolutionary Biology, University of 
Edinburgh, Edinburgh, UK

Correspondence
Bethan J. Hindle, Department of Applied 
Sciences, University of the West of England, 
Frenchay Campus, Stoke Gifford, Bristol, 
UK.
Email: bethan.hindle@uwe.ac.uk

Funding information
University of Sheffield; Natural Environment 
Research Council, Grant/Award Numbers: 
NE/I022027/1 and NE/L501682/1; 
Wellcome Trust

Abstract
Predicting how species will be affected by future climatic change requires the un-
derlying environmental drivers to be identified. As vital rates vary over the lifecycle, 
structured population models derived from statistical environment–demography rela-
tionships are often used to inform such predictions. Environmental drivers are typically 
identified independently for different vital rates and demographic classes. However, 
these rates often exhibit positive temporal covariance, suggesting that vital rates re-
spond to common environmental drivers. Additionally, models often only incorporate 
average weather conditions during a single, a priori chosen time window (e.g. monthly 
means). Mismatches between these windows and the period when the vital rates 
are sensitive to variation in climate decrease the predictive performance of such ap-
proaches. We used a demographic structural equation model (SEM) to demonstrate 
that a single axis of environmental variation drives the majority of the (co)variation in 
survival, reproduction, and twinning across six age–sex classes in a Soay sheep popu-
lation. This axis provides a simple target for the complex task of identifying the driv-
ers of vital rate variation. We used functional linear models (FLMs) to determine the 
critical windows of three local climatic drivers, allowing the magnitude and direction 
of the climate effects to differ over time. Previously unidentified lagged climatic ef-
fects were detected in this well‐studied population. The FLMs had a better predictive 
performance than selecting a critical window a priori, but not than a large‐scale climate 
index. Positive covariance amongst vital rates and temporal variation in the effects of 
environmental drivers are common, suggesting our SEM–FLM approach is a widely 
applicable tool for exploring the joint responses of vital rates to environmental change.
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1  | INTRODUC TION

Rapid climate change has led to increased interest in the responses of 
species and ecosystems to environmental variation (Ehrlen & Morris, 

2015; Jenouvrier, 2013; Paniw, Maag, Cozzi, Clutton‐Brock, & Ozgul, 
2019; Wolkovich, Cook, McLauchlan, & Davies, 2014). Identifying the 
underlying environmental drivers of vital rates is crucial for predicting 
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how species abundances and distributions will be affected by fu-
ture climate change (Ehrlen & Morris, 2015; Grosbois et al., 2008). 
Identifying the relevant drivers is challenging, because there may be 
a large number of possible candidate variables (Grosbois et al., 2008). 
Moreover, time lags between environmental events and demographic 
responses can occur (Forchhammer, Stenseth, Post, & Langvatn, 1998; 
Maldonado‐Chaparro, Blumstein, Armitage, & Childs, 2018), with the 
effect of a single driver potentially varying in magnitude and direc-
tion over time (Albon et al., 2017; Kruuk, Osmond, & Cockburn, 2015; 
Paniw et al., 2019; Tenhumberg, Crone, Ramula, & Tyre, 2018). Such 
lags between a climatic event and the demographic response may be 
caused by indirect effects, mediated through interactions with other 
species (Brown, 2011), or carry‐over effects (Norris, 2005), where the 
environment affects individual condition, resulting in delayed conse-
quences for demographic rates such as survival (Ogle et al., 2015). 
Given the short temporal and spatial extent of most demographic data 
sets (Salguero‐Gomez et al., 2016) the number of possible effects can 
easily exceed the degree of temporal or spatial replication (Ehrlen, 
Morris, Euler, & Dahlgren, 2016). Methods that make efficient use of 
available data are, therefore, necessary to identify putative drivers and 
the temporal windows over which they act, and to accurately estimate 
the magnitude of their effects (Dahlgren, 2010; Ferguson, Reichert, 
Fletcher, & Jager, 2017; Teller, Adler, Edwards, Hooker, & Ellner, 2016).

Within a population the influence of environmental drivers 
typically varies according to individual state variables, such as 
age and sex (Gaillard, Festa‐Bianchet, Yoccoz, Loison, & Toigo, 
2000). This necessitates structured approaches to predict pop-
ulation responses to future change (e.g. Jenouvrier et al., 2012). 
Stochastic structured models consider the means and variances 
of vital rates. These rates often exhibit positive temporal correla-
tions, with higher reproductive rates in years with high survival 
and/or growth (Jongejans, Kroon, Tuljapurkar, & Shea, 2010; Nur 
& Sydeman, 1999). Positive correlations among the vital rates of 
different age–sex classes are also common. For example, years 
of high juvenile survival occur simultaneously with high adult 
survival and years that favour female survival also favour males 
(Rotella, Link, Chambert, Stauffer, & Garrott, 2012; Saether & 
Bakke, 2000). These positive covariances suggest the influence 
of common environmental drivers, yet these processes are typi-
cally considered independent (e.g. Coulson et al., 2001; Pokallus 
& Pauli, 2015). Multilevel demographic structural equation mod-
els (SEMs) allow the joint response of disparate vital rates and/
or different age–sex classes to environmental variation to be 
captured using a biologically meaningful model (Hindle et al., 
2018). SEMs have been widely adopted in ecology, for example 
to model the joint responses of multiple species to environmental 
change (e.g. Ovaskainen, Abrego, Halme, & Dunson, 2016; Warton  
et al., 2015). Their use is rare in single species demographic studies 
(though see Evans, Holsinger, & Menges, 2010; Hindle et al., 2018). 
Demographic SEMs introduce latent variable(s) to capture the co-
variation amongst the vital rates. These can be conceived as axes 
of common environmental variation, each of which may be driven 
by a combination of biotic and abiotic variables. The variation in 

each axis may thus be decomposed into the effects of different 
drivers, providing a simpler target for the challenging task of de-
termining the underlying drivers of temporal variation than treat-
ing each demographic process independently (Hindle et al., 2018).

When attempting to determine environmental drivers many stud-
ies consider a small number of putative drivers, each acting at a sin-
gle time period (e.g. monthly means), chosen a priori based on expert 
knowledge of the focal species or closely related taxa (Figure 1a; Ogle 
et al., 2015; van de Pol et al., 2016). A mismatch between these time 
periods and the critical windows during which the vital rates are sen-
sitive to variation in the environment will lead to poor predictions. 

F I G U R E  1   Schematic of (a) window‐based approaches and 
(b) functional linear model (FLM) approach to identifying climate 
effects. Points show means of raw temperature data calculated 
every fortnight over a single year. Grey lines show an example 
of the climate coefficients that could be generated under either 
type of approach. The red dashed line is at zero that is, where 
temperature has no effect; the effect of temperature is positive 
above this line and negative below it. Within each subplot the 
size of the points demonstrates their weight. Open points in (a) 
indicate where temperature is assumed to have no effect. In (a) 
the magnitude or direction of the temperature coefficients cannot 
differ within the chosen window (although multiple windows could 
be included), whereas in (b) both the magnitude and direction of 
the temperature coefficients can vary over the year. If the climate 
window is chosen a priori the position of the vertical grey lines in 
(a) is fixed, whereas under a sliding window approach the start and 
end of the window are estimated. The FLM can be estimated using 
spline basis expansion (see Equation 6)
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Sliding window approaches, where an appropriate window is chosen 
by comparing the fit of models with different intervals, provide a partial 
solution to this problem (Figure 1a; van de Pol et al., 2016). However, a 
single window is usually selected (Husby et al., 2010; Stopher, Bento, 
Clutton‐Brock, Pemberton, & Kruuk, 2014; though see Kruuk et al., 
2015), which does not allow the effect of a single variable to differ 
over time, despite evidence of this occurring in natural populations 
(Albon et al., 2017; Kruuk et al., 2015). Ecological responses to envi-
ronmental factors are likely to be more similar at adjacent time points 
(Sims, Elston, Larkham, Nussey, & Albon, 2007; Teller et al., 2016). 
For example, the effect of high precipitation in February is likely to 
be more similar to that of high precipitation in March than August. 
Functional linear models (FLMs) allow the effect of environmental 
variables to be estimated as smooth, additive functions over time 
(Figure 1b; Roberts, 2008; Teller et al., 2016). This provides a biologi-
cally realistic framework for estimating climatic effects, allowing them 
to differ in magnitude and direction over the year, whilst making fewer 
a priori choices on the temporal extent of the effects.

We investigated the dimensionality of the environment and de-
composed the environmental variation into the effects of underlying 
drivers in a population of Soay sheep, Ovis aries (Clutton‐Brock & 
Pemberton, 2004). This population exhibits pronounced density‐de-
pendent fluctuations, with high survival and fecundity at low densities 
and population crashes often occurring at high densities (Clutton‐
Brock, Price, Albon, & Jewell, 1991, 1992). However, high densities 
do not always result in crashes, suggesting the population responds 
to an interaction between density and the abiotic environment 
(Clutton‐Brock & Pemberton, 2004; Coulson et al., 2001). Previous 
studies have found that harsh winter weather conditions, such as wet 
and windy weather, decrease survival and fecundity (Berryman & 

Lima, 2006; Catchpole, Morgan, Coulson, Freeman, & Albon, 2000; 
Coulson et al., 2001, 2008; Grenfell et al., 1998; Milner, Elston, & 
Albon, 1999; Stenseth et al., 2004). These studies have typically ei-
ther used a large‐scale index (winter North Atlantic Oscillation [NAO]; 
e.g. Berryman & Lima, 2006; Stenseth et al., 2004) or have chosen the 
temporal windows of putative local drivers a priori (Catchpole et al., 
2000; Coulson et al., 2001), focusing on the winter period, when the 
vast majority of mortality occurs (Hallett et al., 2004). Longer term 
climatic effects have not been considered. Moreover, there are strong 
temporal correlations among the different vital rates, across sex and 
age classes, with years of high lamb, yearling, and adult survival oc-
curring simultaneously with years of high reproduction (Figure 2; 
Coulson, Albon, Pilkington, & Clutton‐Brock, 1999). We used a demo-
graphic SEM to show that the temporal component of the variation 
in demographic rates is relatively low dimensional—just two axes of 
environmental variation are required to explain the temporal varia-
tion in survival, reproduction and twinning across six age–sex classes. 
We then decomposed the first axis of environmental variation into 
the effects of density, a temporal trend, and climatic covariates, using 
FLMs to determine the critical window over which three local weather 
variables and NAO acted. We compared the predictive performance 
of the FLMs both to using a large‐scale climate index and to selecting 
the critical window for a local weather variable a priori.

2  | STUDY SYSTEM

We used 30 years of demographic data (1985–2014) on a population 
of Soay sheep in the Village Bay area of Hirta, in the St Kilda archi-
pelago off the North‐West of Scotland (Clutton‐Brock & Pemberton, 

F I G U R E  2   Observed proportion of 
individuals (a) reproducing (ewes only) 
and (b) surviving over the study period, 
separated by age–sex class
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2004). Nearly 100% of newborn lambs are tagged within days of 
birth. Population censuses are carried out three times a year and 
mortality searches ensure the fate of most individuals is known. The 
lack of large herbivorous competitors and predators of the adults 
mean the population dynamics are largely driven by intraspecific 
competition for food (Clutton‐Brock & Pemberton, 2004).

For the FLMs, we considered NAO and three local weather vari-
ables; minimum temperature, precipitation, and maximum wind speed. 
Cold, wet, and windy conditions may increase heat loss (McArthur & 
Ousey, 1996; Webb & King, 1984; Webster & Park, 1967) and reduce 
grazing due to increased time spent sheltering (Stevenson, 1994). 
Cold, wet weather may also have indirect effects through spring–
summer vegetation growth and subsequent food availability. The 
predictive performance of the FLMs was compared to two reference 
models; using a large‐scale climate index (December–March NAO, re-
ferred to herein as winter NAO; Coulson et al., 2001; Stenseth et al., 
2004) and a local weather variable with the critical window selected 
a priori (March precipitation; Catchpole et al., 2000; Coulson et al., 
2001). High winter NAO values are associated with warm, wet, and 
windy weather in northern Europe (Hurrell & VanLoon, 1997) and de-
creased survival and fecundity in this population (Coulson et al., 2001; 
Stenseth et al., 2004). Between January and March the body weight of 
the sheep can decline by as much as 30% (Clutton‐Brock et al., 1997); 
high precipitation at the end of this period, before the onset of rapid 
new vegetation growth, thus appears likely to decrease survival. The 
winter NAO model differs from the NAO FLM, where monthly NAO 
values were included over a 19 month period.

NAO data were obtained from the National Center for 
Atmospheric Research (https​://clima​tedat​aguide.ucar.edu/clima​te-
data; Hurrell, 1995). Daily local weather data were acquired from 
Stornoway meteorological office, the closest weather station open 
for the entire study period (approximately 140 km from St Kilda; data 
available from badc.nerc.ac.uk). These data were closely correlated 
with those from St Kilda from 1999 onwards (when weather stations 
were set up on site; temperature, r = .97, precipitation, r = .85, wind 
speed, r = .93; Figure S1). Missing data (<1% of temperature and pre-
cipitation and 6% of wind data) were interpolated using the forecast 
package (Hyndman & Khandakar, 2008) in R (R Core Team, 2016).

3  | STRUC TURE OF THE SEM

Demographic SEMs (see Hindle et al., 2018 for more detail) ex-
cluding climatic drivers were constructed to explore the number 
of axes required to account for the temporal covariation among 
the vital rates and to provide a baseline to evaluate the predictive 
performance of the climatic models. The population was split into 
three age classes: lambs (0–1 year), yearlings (1–2 years), and adults 
(>2 years). Female reproduction is not limited by male availability. 
A small proportion of yearling and adult ewes produce twins each 
year (Clutton‐Brock & Pemberton, 2004). The demographic SEMs, 
therefore, included 11 submodels: August (t) to August (t + 1) sur-
vival of each age–sex class (six submodels, s superscript), spring 

reproduction of ewes in each age class (three sub‐models, r super-
script), and twinning of yearling and adult ewes (two sub‐models, 
t superscript).

We initially fitted a highly constrained model that assumes tempo-
ral (co)variation in the vital rates is driven by a single time‐varying envi-
ronmental axis (e) common to all 11 submodels (the single‐axis model). 
When resource availability is high (low sheep densities) differences in 
the environment have little effect on survival (Figure 3a; Grenfell et al., 
1998). The probability of survival (S) in year t for each age–sex class 
(except ram lambs—see below) was, therefore, estimated using thresh-
old models (Figure 3a), assuming a binomial distribution:

where β0 are intercepts, βt and βe are slope terms for a temporal trend 
and the first environmental axis (e) respectively, and θ are thresh-
olds. The • subscript indicates parameters estimated separately for 
each age–sex class. There was no evidence of a threshold in the fe-
cundity (reproduction or twinning) or ram lamb survival submodels 
(Figure S2). The probability of reproduction (R) was estimated using 
a simple logistic regression:

with the parameters defined as above (Equation 1). The twinning and ram 
lamb survival submodels were structurally analogous to Equation (2).

As the vital rates are highly density dependent and population 
sizes have generally increased over the study period (Figure S3; 
Coulson et al., 2008) the environmental axis (e) was modelled as a 
function of density (Dt; the log 10 number of sheep in the population 
in August of year t) and the study year (t):

where αt is a slope term for the temporal trend. The random year ef-
fects (�e

t
) account for residual covariation among the vital rates and 

were sampled from a normal distribution with mean zero and SD σe. 
Including a temporal trend (αtt) here allows for an interaction between 
density and time across the vital rates, whilst the vital rate‐specific 
temporal trends (given by βtt in Equations 1 and 2) allow for temporal 
trends in the mean vital rates (Figure S4).

We used a Bayesian framework for inference. Parameter es-
timates were obtained using Markov Chain Monte Carlo (MCMC) 
simulation in JAGS (Plummer, 2003), using the R package runjags 
(Denwood, 2016). Weakly informative priors were used to aid con-
vergence (Table S1). The models were run using two chains, each 
with a discarded burn‐in period of 1  ×  105 iterations. The chains 
were run for a further 6 × 106 iterations, and thinned, keeping every 
2,000th sample to produce a total posterior sample of 6,000 across 
both chains. Posterior predictive checks were used to determine 
whether the temporal variation in the vital rates was well explained 
by the initial model (Gelman, Carlin, Stern, & Rubin, 2004).

(1)logit(S∙,t)=

{
𝛽0,s
∙

+𝛽t,s
∙
t if e(t)<𝜃∙,

𝛽0,s
∙

+𝛽t,s
∙
t−𝛽e,s

∙
(e(t)−𝜃∙) if e(t)⩾𝜃∙,

(2)logit
(
R∙,t

)
=�0,r

∙
+�t,r

∙
t−�e,r

∙
e(t),

(3)e(t)=Dt−�tt−�e
t
,

https://climatedataguide.ucar.edu/climate-data
https://climatedataguide.ucar.edu/climate-data
https://badc.nerc.ac.uk
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4  | DE VELOPMENT OF THE SEM

Survival across the six age–sex classes was well predicted by the 
single‐axis model (Figure 4a). However, posterior predictive checks 
revealed evidence of unexplained variation in the fecundity sub-
models (Figure 4a; Appendix S1). Independent, submodel specific 
random year effects were introduced into the fecundity submodels 
to explore this unexplained variation (Appendix S1). The posterior 
distributions of the corresponding variance terms were concen-
trated at zero for the yearling reproduction and twinning submod-
els. However, the variances of the remaining fecundity components 

were nonzero, and the associated year effects were positively cor-
related (Appendix S1). Consequently, we constructed a two‐axis 
model (Figure 3b) by introducing a second latent variable affecting 
lamb reproduction, adult reproduction, and adult twinning only. The 
probability of lamb or adult reproduction was then given by:

where βf is the slope for the second environmental axis, �f
t
. The adult 

twinning submodel is structurally analogous to Equation (4). The 
random year effects for the first and second environmental axes  

(4)logit
(
R∙,t

)
=�0,r

∙
+�t,r

∙
t−�e,r

∙
e(t)+� f,r

∙
�f
t
,

F I G U R E  3   (a) Proportion of individuals (i) reproducing, (ii) surviving, and (iii) twinning against population density, separated by age–sex 
class. Points show observed data. Point size is on a continuous scale, with larger points indicating later years in the study. Lines show fitted 
baseline submodels (Equation 3) for the two‐axis model for the midyear of the study, with the random year effect at zero, using the posterior 
medians. (b) Path diagram for the two‐axis model. Colours denote the age class and match those used in (a). The vital rates are given by 
Equations (1–4). Note that the structure of the single‐axis model is the same, excluding the second environmental axis
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(�e
t
 [Equation 3] and �f

t
 respectively) were allowed to covary. Thus, 

these were sampled from a multivariate normal distribution with 
means of zero and covariance matrix Σ.

The vital rates were well predicted using the two‐axis model 
(Figure 4b). Adding the second environmental axis improved the fit 
of the lamb reproduction, adult reproduction, and adult twinning 
submodels (Figure 4). However, it was the first axis that captured 
most of the variation in the vital rates across the lifecycle. The 
95% credible intervals of the βe slope terms overlap zero in only 
two of 11 submodels (adult reproduction and yearling twinning; 
Appendix S1), indicating that the first axis drove variation in sur-
vival and fecundity in nearly all age–sex classes. Variation in sur-
vival across the age–sex classes and the majority of variation in 
the most variable fecundity rate (lamb reproduction) was captured 
by the first axis (Figure 4). Variation in yearling twinning was not 
captured by either axis, however, this remains low throughout the 
study period and is likely to be explained by demographic stochas-
ticity (the maximum number of yearlings twinning in 1  year was 
three and none of the yearlings twinned in 19 out of the 30 years). 
There was no evidence of correlations between the yearly esti-
mates of the second environmental axis (�f

t
) and density (Dt) or 

year (t; Appendix S1), indicating these effects were captured by 
the first axis. There was also no evidence of a correlation with 
the sex ratio (Appendix S1), suggesting female fecundity was not 
limited by male availability.

5  | IDENTIF YING CLIMATIC DRIVERS

We used the two‐axis model for further analysis of environmental 
effects. Here, we consider the first environmental axis (e), which 
drives the majority of the covariation in the vital rates (Figure 4). 
We found no evidence of weather conditions driving the variation 
in the second axis (Appendix S2.2). In the reference models, the first 
environmental axis was given by:

where Mt is the climatic variable (winter NAO or mean March precip-
itation) in year t and βm is a slope term. For the local weather FLMs 
the means of the daily variables every fortnight (w) from the begin-
ning of January in t − 1 (w = 1) until the end of July in t (w = 42), were 

(5)e(t)=Dt−�mMt−�tt−�e
t
,

F I G U R E  4   Observed and predicted vital rates using (a) the single‐axis and (b) two‐axis model. Black borders around the points indicate 
those processes partially driven by the second axis (Figure 3b). The addition of the second axis increases the correlation between observed 
and predicted vital rates from .47 to .74 for adult reproduction, .58 to .81 for adult twinning, and .84 to .94 for lamb reproduction. The 
vital rates driven by the primary environmental axis only (e.g. survival for all demographic classes) were not affected by the addition of 
the second axis. Vital rates were predicted using the posterior medians as the parameter estimates, the observed density from t − 1 and 
including the estimated random effect for each year. Dashed lines show a 1:1 correlation
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used as covariates (Figure S5). Monthly NAO data over the same 
time period were used for the NAO FLM (w = 1,2 …, 19). Seasonality 
was removed from the weather data by centering (Figure S5). As 
the seasonal component of the climatic signal does not vary among 
years it cannot explain the interannual variation in the demographic 
rates, however, removing the seasonality from the data can aid con-
vergence of the models. Each covariate was included in a separate 
model, with the first environmental axis (e) given by:

where Ctw is climate variable C in year t and time interval w (fort-
night for the local variables and month for NAO) and fc(w) is a 
smooth function that allows the effect of the climate covariates 
to vary smoothly over the 19 month period (e.g. Figure 1b). The 
FLM was estimated using eight knots and a cubic regression 
(“cr”) spline basis (see Appendix S2.1). Teller et al. (2016) and 
Tenhumberg et al. (2018) provide detail on using FLMs to esti-
mate demographic rates using lagged climatic data (see Wood, 
2017 for more general detail). Example code for using the SEM‐
FLM approach is available on github (https​://doi.org/10.5281/
zenodo.3236766).

The out of sample predictive performance and the proportion 
of variance (R2) in e explained for each of the FLMs (Equation 6) was 
compared to the base model (Equation 3), and the reference mod-
els (Equation 5). Leave one out cluster cross validation was used to 
assess predictive performance. The models were refitted 30 times, 
leaving out each year of data in turn. The predictive performance 
of each model was estimated using the expected logwise predictive 
density (êlpd; Vehtari, Gelman, & Gabry, 2017). Since ignoring the 
random year effects (εe and εf) may lead to overly optimistic esti-
mates of a model's predictive performance (Pavlou, Ambler, Seaman, 
& Omar, 2015; Skrondal & Rabe‐Hesketh, 2009), a Monte Carlo ap-
proach was used to calculate the marginal predictive density. The 
êlpd was then

where S is the number of draws from the posterior, M is the number of 
samples from the random year effect distributions and n is the number 
of years of data (Vehtari et al., 2017). The likelihood p(yi|θ

s,m) is calcu-
lated as the product of the likelihoods for each of the 11 submodels; 
yi is the observed data in year i and θs,m is draw s from the posterior of 
the model that excluded the data from year i, with sample m from the 
random effects. Posterior samples were obtained using MCMC sam-
pling in JAGS as above and the êlpd was estimated using the whole 
posterior sample of 6,000 for each year. εe and εf were sampled from a 
multivariate normal distribution 1,000 times for each posterior sample. 
The difference in the predictive ability of two models (A and B) on the 
deviance scale was given by −2 (̂elpdA−̂

elpdB) (Vehtari et al., 2017).

6  | CLIMATIC MODEL RESULTS

The strongest weather effects were over winter, when the vast ma-
jority of mortality occurs (Hallett et al., 2004), but there was also 
evidence of longer term effects, especially during autumn (Figure 5). 
The vital rates were driven by the cumulative effect of precipita-
tion from summer t  − 1 until winter in year t. Over this time period, 
increased precipitation decreased survival and fecundity, with the 
strongest effects in autumn and winter (Figure 5a). High wind speeds 
had a positive effect in winter and spring t − 1 and a negative effect 
over autumn and winter in t (Figure 5b). Higher NAO values from 
spring in t  − 1 were associated with decreased survival and fecun-
dity, with particularly strong effects over winter in year t (Figure 5d).

Cross validation was not carried out on the temperature FLM, 
as there was no evidence of an effect on the vital rates (Figure 5c). 
All of the remaining climatic models had a better predictive perfor-
mance than the baseline model (Table 1), however, the gain was mar-
ginal in the case of March precipitation. Wind speed was the best 
performing of the FLMs; wind speed and precipitation both outper-
formed the monthly NAO FLM (Table 1). However, the winter NAO 
model had a better predictive performance than any of the FLMs, 
with higher winter NAO values associated with decreased survival 
and fecundity (Table 1). Using an additive framework to include both 
precipitation and wind speed in a single model did not improve the 
predictive performance beyond the wind speed FLM (Appendix 
S2.3). Models including the precipitation or wind speed FLM as well 
as winter NAO exhibited marginally better predictive performance 
than the winter NAO model (Appendix S2.4).

7  | DISCUSSION

Our analysis shows that vital rates can vary along considerably fewer 
temporal dimensions than the number of vital rate–age–sex combi-
nations to be estimated. Using a demographic SEM to simultaneously 
estimate the vital rates provides a simple target for the challenging 
task of decomposing temporal variation in the vital rates into the 
effects of different intrinsic (e.g. density) and extrinsic (e.g. climatic) 
covariates. In the Soay population a simple demographic SEM with a 
single axis described most of the variation in survival, reproduction, 
and twinning across six age–sex classes, with all vital rates well‐pre-
dicted by two environmental axes. Age and sex differences in the 
mean and variance of vital rates (Gaillard, Festa‐Bianchet, & Yoccoz, 
1998; Gaillard et al., 2000) have led to vital rates for different age–
sex classes being treated independently (e.g. Coulson et al., 2001). 
Positive covariances amongst the vital rates across age–sex classes 
suggest that, despite differences in the magnitude of environmen-
tal effects, common factors drive the variation in vital rates across 
age–sex classes. Such positive covariances are widespread in natural 
populations, including in plants (Jongejans et al., 2010), birds (Nur & 
Sydeman, 1999), and mammals (Rotella et al., 2012), suggesting the 
SEM approach is widely applicable.

(6)e(t)=Dt−

W∑
w=1

fc (w)Ctw−�tt−�e
t
,

(7)
êlpd=

n∑
i=1

log

(
1

SM

S∑
s=1

M∑
m=1

p
(
yi|�s,m

))
,
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Despite many previous attempts to determine underlying 
drivers in the Soay sheep population, (e.g. Catchpole et al., 2000; 
Clutton‐Brock et al., 1991, 1992; Coulson et al., 2001; Grenfell  
et al., 1998; Milner et al., 1999; Stenseth et al., 2004), we identified 
previously unseen weather effects using the FLMs, with the vital 
rates affected by cumulative effects from up to 12 months prior to 

the mortality period. The choice of possible drivers, and the periods 
over which they are assumed to act, are important modelling deci-
sions, yet many studies provide little justification for their chosen 
variables (Ehrlen et al., 2016; van de Pol et al., 2016). Our analysis 
reinforces previous results, whereby increased wind speeds and 
precipitation over winter increase mortality (Coulson et al., 2001; 
Milner et al., 1999). However, we also found that high precipitation 
and wind speeds during the autumn rut appeared nearly as costly 
as during winter, demonstrating that the FLM method can uncover 
novel climatic effects even in well‐studied populations. Rutting is 
energetically costly, with decreased foraging time and increased en-
ergy expenditure (Stevenson & Bancroft, 1995). Environmental con-
ditions during this period may, therefore, have substantial effects on 
body condition and subsequent survival (Barboza, Hartbauer, Hauer, 
& Blake, 2004).

The weight of individuals in summer is not associated with pop-
ulation density in the previous winter (Clutton‐Brock et al., 1991), 
indicating that by summer individuals are able to regain their con-
dition following harsh winters. Thus it appears unlikely that win-
ter conditions will create interannual carry‐over effects. However, 
we found that higher maximum wind speeds in winter and spring 
t − 1 appeared to increase survival in year t. Sequential density de-
pendence, where harsh environmental conditions decrease density 
resulting in higher survival (Rakhimberdiev, Hout, Brugge, Spaans, 
& Piersma, 2015), could lead to delayed climatic effects. However, 

F I G U R E  5   Functional linear models 
for (a) precipitation, (b) wind speed, (c) 
temperature, and (d) North Atlantic 
Oscillation (NAO). Thick black lines show 
the posterior medians, thinner grey lines 
show 100 simulations from the posterior. 
The horizontal dashed red line is at 0. 
Dashed vertical lines and letters at the 
top of the plot indicate the seasons. 
Coefficients above the line indicate that 
higher values of the weather variable 
during that time period were associated 
with an increase in survival and fecundity. 
The rut occurs during autumn and 
mortality occurs during winter and early 
spring
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TA B L E  1   Performance of the climatic models

Model
Relative predictive 
performance R2

March precipitation −0.67 .68 (.58–.74)

Monthly NAO FLM −1.96 .77 (.63–.84)

Fortnightly precipitation FLM −3.82 .77 (.65–.84)

Fortnightly wind speed FLM −5.73 .81 (.69–.87)

Winter NAO −13.57 .86 (.79–.90)

Note: Relative predictive performance is the difference in out of sample 
predictive performance (Equation 7) between the baseline model (with 
no climate effects; Equation 3) and each climate model, on the deviance 
scale. More negative values indicate models with a better predictive 
performance. R2 is the proportion of variation in the first environmental 
axis (e) explained by the fixed effects (i.e. density, the temporal trend, 
and the relevant climatic variables). Values are the median and 95% 
quantiles, calculated by sampling from the posterior distribution. R2 for 
the base model is .68 (.57–.74).
Abbreviation: FLM, functional linear model; NAO, North Atlantic 
Oscillation.
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the inclusion of density during the summer (i.e. after the higher wind 
speeds effect) in this case suggests the lagged effect is independent 
of any density effects. The mechanisms by which this lagged effect 
of wind speed may be operating thus need further research. It is pos-
sible that wind speed is merely correlated with another environmen-
tal driver (Ehrlen et al., 2016; Grosbois et al., 2008) that underpins 
an indirect, delayed effect of the vegetation (Terraube et al., 2015). 
However, the lack of evidence of lagged effects of temperature, 
which would be likely to drive changes in vegetation productivity 
(Hunter & Grant, 1971), is suggestive of a lack of indirect effects via 
resource availability in this population.

The relative importance of precipitation and windspeed, com-
pared to temperature, explains why NAO is a good predictor of the 
vital rates in this population as higher winter NAO values are associ-
ated with wetter and windier, yet warmer, winters in the study area 
(Hurrell & VanLoon, 1997). Predictions of future NAO are widely 
variable, depending on the model and emissions scenario used, how-
ever, overall the pattern suggests that the mean NAO will increase 
by the end of the century (Simmonds & Coulson, 2015). Given the 
negative relationship between winter NAO and the demographic 
rates, found in this study and many previous studies (e.g. Coulson  
et al., 2001; Stenseth et al., 2004), population sizes may be likely 
to decrease in the future (Simmonds & Coulson, 2015). This is sup-
ported by predictions in the local climatic variables, where increases 
in winter precipitation and wind speeds, along with decreases in 
summer wind speeds across the United Kingdom (Murphy et al., 
2019) would also be predicted to lead to a decrease in population 
size.

We have demonstrated that the use of flexible statistical tools 
to determine the temporal windows over which local variables act 
can improve their predictive performance relative to a priori deci-
sions about the relevant windows. However, all three local variables 
were still outperformed by a large‐scale climatic index (winter NAO). 
Such large‐scale indices have often been used as a proxy for, and 
have frequently outperformed, local weather variables (Hallett  
et al., 2004; Post & Stenseth, 1999). Despite this, the relationship 
between large‐scale indices and local weather may be temporally 
and/or spatially variable (Anders & Post, 2006; Stenseth et al., 2003). 
Thus large‐scale indices may provide inaccurate future predictions 
of population dynamics, whilst using such indices to compare the 
sensitivity of populations to climatic conditions across large spatial 
scales may simply recover patterns in the strength of the relationship 
between the index and local weather variables (Anders & Post, 2006; 
van de Pol et al., 2013). A likely reason for the relatively high predic-
tive performance of large‐scale indices is that they incorporate the 
effects of multiple local variables. Although interactions between 
local variables are likely to be important (Ehrlen et al., 2016; Stenseth 
& Mysterud, 2005), including multiple climatic drivers is not simple, 
as they are often correlated (Grosbois et al., 2008). The choice of 
local weather variables versus large‐scale indices for such studies 
depends, therefore, on the study system and spatial and temporal 
extent of the study as well as its purpose. Large‐scale indices do not 
directly influence vital rates, which means their use cannot improve 

the mechanistic understanding of how populations respond to envi-
ronmental variation (Stenseth et al., 2003) without also considering 
the associations between such indices and local weather conditions 
(Almaraz & Amat, 2004; Anders & Post, 2006). If the aim of the 
study is to predict dynamics under future change the variable with 
the highest predictive performance, which frequently is a broadscale 
index, is probably most appropriate. Alternatively, if the aim is to un-
derstand how a population responds to environmental variation local 
climatic drivers may be more relevant (Nielsen et al., 2012).

The 30  year data set used in this analysis has higher levels of 
temporal replication than the majority of demographic data sets 
(Salguero‐Gomez et al., 2016, 2015). The SEM component of the 
model can work well with more limited temporal replication, for 
example, Hindle et al. (2018) used a 8 year data set. The FLM part 
of the approach has higher data requirements, however, with Teller  
et al. (2016) suggesting that 20–25 years of data may be needed to 
accurately identify environmental drivers and precisely estimate 
their effects. However, alternative approaches also perform rela-
tively poorly with low temporal replication (van de Pol et al., 2016), 
suggesting this issue is due to the complexity of the problem rather 
than being specific to FLMs. As with any statistical approach check-
ing the fit of the model is important and can help to improve pre-
dictive performance. Cross validation is rarely used in studies of the 
environmental drivers of demographic rates (Grosbois et al., 2008). 
When identifying environmental drivers the aim is often to predict 
population responses to a future change in those drivers (Gotelli & 
Ellison, 2006); thus, out‐of‐sample predictive performance is a key 
measure of model utility (Wenger & Olden, 2012). Many studies in-
stead rely on within‐sample measures, such as Akaike information 
criteria (AIC), which may be subjected to overfitting (Dahlgren, 2010; 
Murtaugh, 2009; Raffalovich, Deane, Armstrong, & Tsao, 2008; van 
de Pol et al., 2016). Moreover, the use of measures such as AIC is 
not straightforward for hierarchical models, which are typically nec-
essary for dependent demographic data clustered in time or space 
(Vaida & Blanchard, 2005).

Rapid climate change has increased interest in predicting ecolog-
ical responses to environmental variation. For accurate predictions 
relevant drivers and their temporal windows of influence must be 
identified and their effects must be accurately quantified. We have 
demonstrated that the dimensionality of the environment can be 
remarkably low, suggesting the influence of common environmen-
tal drivers across the vital rates and life cycle, and thus providing 
a simpler target for identifying such drivers. By incorporating cli-
matic drivers over extended temporal periods FLMs can increase 
the predictive performance of local variables. Including interactions 
among climatic variables may further increase the predictive perfor-
mance of local models, beyond that of large‐scale indices (Stenseth 
& Mysterud, 2005).
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