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Abstract 4 

This study explores the current practices of Design for Deconstruction (DfD) as a strategy for 5 

achieving circular economy. Keeping in view the opportunities accruable from DfD, a review 6 

of the literature was carried out and six focus group interviews were conducted to identify key 7 

barriers to DfD practices. The results of phenomenology reveal 26 barriers under five key 8 

barrier categories. The barrier categories to DfD are “lack of stringent legislation and policies”, 9 

“lack of adequate information at the design stage”, “lack of large enough market for recovered 10 

components”, “difficulty in developing a business case for DfD”, and “lack of effective DfD 11 

tools”. After this, the study identifies the strategies for overcoming these barriers. The paper, 12 

therefore, addresses the need for actions within the construction industry to bring DfD to the 13 

fore towards achieving the current global sustainability agenda. 14 

Keywords: [Building deconstruction, sustainability, circular economy model; construction and 15 

demolition waste; barriers and strategies] 16 

1 Introduction 17 

The literature reveals that the UK construction industry consumes vast amount of natural 18 

resources and it contributes the largest proportion of waste to landfills (DEFRA, 2012; Merino 19 

et al., 2015; Yılmaz and Bakış, 2015). According to Sharman (2017), the industry delivers over 20 

400 million tonnes of materials to site out of which 15% of the materials arise as waste. This 21 

figure raises serious concerns among stakeholders about the environmental sustainability of the 22 

construction industry (Coelho and de Brito, 2012; Ortiz et al., 2009), particularly due to 23 

increased likelihood of greenhouse effect and CO2 emission. It is important to address these 24 

concerns because material depletion is inevitable if the current rate of natural resources 25 

extraction and waste generation continues. Thurer et al. (2017) highlights that waste is any 26 

system is an input that does not translate into valuable output to the customer. As such, material 27 

arisings from demolition sites that are not transformed to valuable usage could be regarded as 28 

waste. An opportunity for dealing with waste concerns exists if building materials are 29 



 2 

eventually reused or recycled after the end-of-life of buildings. This opportunity, therefore, 1 

calls for a change in the construction industry towards the consideration of the end-of-life 2 

salvage of building right from the design stage. 3 

Two disposal options that are possible after the end-of-life of a building are demolition and 4 

deconstruction. Demolition, which is the traditional method, is a rapid means of building 5 

removal that is aimed at disposal. On the other hand, deconstruction helps to recover building 6 

materials primarily for reuse, recycling, and remanufacturing. Evidence shows that demolition 7 

activities account for over 50% of the total Construction and Demolition Waste (CDW) (Kibert, 8 

2003). Using a baseline CDW generation of 55 million tonnes in 2014, diverting 10%, 20% or 9 

30% of this figure through effective deconstruction could lead to a cost saving of about £433 10 

million, £866 million and £1.3 billion on landfill tax and haulage respectively. Despite efforts 11 

to mitigate CDW and the evidence that deconstruction could drive waste reduction initiatives 12 

(Ajayi et al., 2016; Akinade et al., 2017a, 2015; Phillips et al., 2011), there has not been a 13 

progressive increase in the level of Design for Deconstruction (DfD) in the industry. Although 14 

the principles of DfD have been in practice for decades, existing studies show that DfD is still 15 

far from reaching its CDW minimisation potentials (Crowther, 2005; Densley Tingley and 16 

Davison, 2012a; Guy, 2001; Kibert, 2003). According to Dorsthorst & Kowalczyk (2002), less 17 

than 1% of existing buildings are fully demountable.  18 

This study, therefore, explores the current DfD practices to identify barriers to DfD and to 19 

determine the strategies for improving the adoption of DfD in the construction industry. 20 

Achieving this will assist the entire industry to overcome factors hampering the full adoption 21 

of DfD and to reposition DfD as a strategy for circular economy. The following specific 22 

objectives are fulfilled to achieve the overall goal of the study: 23 

a) To appraise existing DfD practices within the UK construction industry. 24 

b) To identify barriers to the adoption of DfD within the construction industry as 25 

experienced by practitioners. 26 

c) To identify strategies that could improve the adoption of DfD as a circular economy 27 

practice. 28 

This study employs a phenomenological research methodology using Focus Group Interviews 29 

(FGIs). This approach allows the investigator to have detailed knowledge of a phenomenon as 30 
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experienced by the FGI participants. Using this approach enables an in-depth understanding of 1 

why DfD practice is not common in the industry and it will help to identify key enablers for 2 

DfD. Enablers of DfD are strategies that facilitates DfD practices in the construction industry. 3 

The results of the analyses reveal five key barriers to the adoption of DfD and their 4 

corresponding strategies for improvement. The key strategies for improvement are imperative 5 

to ensure that DfD is established as a means of minimising the end-of-life impacts of buildings 6 

on the environment. Accordingly, the full adoption of DfD will also help the construction 7 

industry to ensure that long-term sustainability of existing buildings is guaranteed.  8 

The remainder of the paper is structured as follows: Following the introductory section is a 9 

literature review that provides a motivation for the concept of building deconstruction and 10 

barriers to DfD. Section 3 contains the research methodology, which outlines the research 11 

procedure and methods and Section 4 details the data analyses procedure and the results. 12 

Section 5 contains the discussion of the identified barriers to the use of DfD in the construction 13 

industry and key enablers of DfD to eliminate the barriers. The study ends with a conclusion 14 

section that contains the key contributions of the study and areas of further research. 15 

2 Literature review: concept of deconstruction 16 

Deconstruction is a building end-of-life scenario that allows the recovery of building 17 

components for building relocation, component reuse, recycling or remanufacture (Kibert, 18 

2008). Although the recovered material may be utilised for reuse, recycling or remanufacturing, 19 

the focus of deconstruction is material reuse. One could argue that the recycling and 20 

remanufacturing of building components is now common practice. However, a more beneficial 21 

and challenging task is the ability to relocate a building or reuse its components without 22 

reprocessing (Akinade et al., 2015). This is because building relocation and components reuse 23 

require minimal energy compared to recycling and remanufacturing. Figure 1 shows how 24 

deconstruction enables a closed material loop and circular economy conditions at the end of 25 

life of buildings. Reuse is a process where salvaged building components are used “as-is” 26 

without any repair or upgrade (Nordby et al., 2009). Reuse is the most preferred end-of-life 27 

scenario because it requires no energy input compared to remanufacturing and reuse. Examples 28 

of building materials that could be reclaimed “as-is” and reused include brick, blocks, tiles and 29 

building components (doors, windows, radiators, etc.). Remanufacturing is the process of 30 

restoring salvaged materials to “like-new” condition.  Remanufacturing sometimes require 31 
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repair and replacement of damaged bit of the salvaged items to make them fit for usage. The 1 

process of remanufacturing usually requires intensive manual labour to isolate damages, repair 2 

and restore the item. Recycling is the process of converting salvaged materials into raw 3 

materials into the manufacturing of other building materials. Even so, recycling also includes 4 

the conversion of salvaged materials into aggregates and additives. Georgakellos (2006) argues 5 

that the process of transforming salvaged materials into raw materials could be criticised 6 

because its environmental impact could exceed the environmental benefits. However, a 7 

recycling process that requires less energy for processing and production will be more plausible  8 

to justify the adoption of recycling (Blengini, 2009). Example of recycling would be the use of 9 

rubbles as construction aggregate that is used as infilling materials and recycling reinforcement 10 

steel bars. 11 

 12 

Figure 1: End-of-life scenario in a closed material loop condition 13 
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The ultimate focus of reuse is to ensure that a circular economy condition is maintained such 1 

that request for new resources and the generation of CDW is minimised. The closed material 2 

loop therefore eliminates the linear pattern of material movement in demolition to a circular 3 

economy model, which is more sustainable. The target of a closed material loop model is to 4 

avoid material disposal to landfills and to encourage reusing, recycling, and remanufacturing 5 

of building components at the end-of-life of the building. The resultant benefit of the “closed 6 

material loop” philosophy has resulted in the wide acceptance of the “Circular Economy”  7 

model in the production, manufacturing, and construction to address the limitations of linear 8 

models (Akanbi et al., 2018; De Angelis et al., 2018; Kumar et al., 2018; Lieder and Rashid, 9 

2016; Prieto-Sandoval et al., 2018). The circular economy model is synonymous to the reverse 10 

logistic network which captured two directions of material lows: Beginning-of-life to End-of-11 

life  and End-of-life to Beginning-of-Life (Daaboul et al., 2016). 12 

The aim of building deconstruction is to ensure efficient material flow from the end-of-life to 13 

the beginning-of-life. As such, building deconstruction eliminates demolition as an end-of-life 14 

building disposal option.  The first activity that is usually carried out during deconstruction is 15 

a preventive site assessment of the building. The preventive site assessment includes checking 16 

for traces of hazardous materials (asbestos, refrigerants, lead-based paints, mercury in 17 

components, etc.) (Frost et al., 2008). Building assessment for salvageable materials with 18 

respect to type, material quality, and quantity, and storage opportunities is also carried out. 19 

Efforts are usually made at this stage to identify the local market for salvaged “as-is” materials. 20 

Thereafter, the needed scaffolding is put in place to provide appropriate level support for the 21 

weight of the site workers. The process of deconstruction then follows the theory of building 22 

layers, which structures building element with respect with their life expectancy (Brand, 1994; 23 

Habraken and Teicher, 2000). The theory of building layers contains six layers: (i) Layer 0: 24 

Site – The geographical settings of the building; (ii) Layer 1: Structure – load bearing elements 25 

(structural elements and foundation); (iii) Layer 2: Skin – external walls, claddings and roofs; 26 

(iv) Layer 3: Plumbing, electrical, mechanical and hydraulic services; (v) Layer 4: Space plan 27 

– internal walls, partitioning, finishes; (vi) Layer 5: Stuffs – movable items. The process of 28 

building deconstruction thus follows a top-down approach from Layer 5 down to Layer 1. 29 

Apart from favouring the recovery of building components and diversion of waste from 30 

landfills, deconstruction is more beneficial than demolition in other ways. First, deconstruction 31 

eliminates environmental pollution that is characteristics of demolition. This helps to divert 32 
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CDW from landfills (Akbarnezhad et al., 2014), reduce harmful emission (Chini and Acquaye, 1 

2001), preserve embodied energy (Thormark, 2001), reduce site disturbance (Lassandro, 2 

2003), etc. The UK construction industry is far shifting from the practice of total demolition 3 

and landfilling. It is worth noting that the Institute of Demolition Engineers (IDE) and National 4 

Federation of Demolition Contractors (NFDC) have made notable advancement on the 5 

recycling of buildings and the reuse of building components at the end-of-life. In addition, the 6 

production of Demolition and Refurbishment Information Datasheets (DRIDS) (NFDC, 2016) 7 

has improved the possibility of material reuse, recycling, reclamation and waste diversion from 8 

landfills. DRIDS provides a publicly accessible database that helps to identify building 9 

elements that could be reclaimed for reuse and recycling, and those that must be sent to 10 

landfills. However, the impact of design practices on the viability of end-of-life recovery of 11 

building element represents a huge gap in knowledge. Existing works on DfD (Akinade et al., 12 

2017b, 2017a; Crowther, 2005; Tingley, 2012; Volk et al., 2014) only identified critical success 13 

factors and developed conceptual frameworks for DfD. The studies also emphasise that 14 

efficient building recovery at the end-of-life can only be made possible when the need for 15 

deconstruction has been considered from the design stage. Although bodies in the UK such as 16 

the Waste and Resource Action Programme (WRAP), Building Research Establishment 17 

(BRE), and Institute of Civil Engineers (ICE) have illustrated the benefits of DfD, the wide 18 

adoption of DfD is still not a common practice. A widely referenced example of DfD is the 19 

temporary accommodation for 17,000 athletes at eth London 2012 Olympics. The design has a 20 

CfSH (Code for Sustainable Homes) Level 4 and the accommodation was converted into new 21 

homes after the games. 22 

Kibert (2008) suggests that effective strategy for closed-loop building material usage and 23 

material recovery requires basic assumptions, which are: (a) building must be fully 24 

deconstructable; (b) building must be disassemblable; (c) construction materials must be 25 

reusable; (d) the production and use of materials must be harmless; (e) material generated as a 26 

result of the recycling process must be harmless. The main assertion from these assumptions is 27 

that construction materials must be recoverable and reusable/recyclable to reduce waste 28 

generation at the end of the useful life of a facility. These assumptions aligns with the reports 29 

by Egan (1998) and Latham (1994), which highlight the need to improve the design and 30 

construction processes increase efficiency and reduce waste. Accordingly, Egan (1998) 31 

identified tight supply chains engagement and standardisation as potential drivers for the 32 

required sustainable construction processes.  33 
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3 Research methodology 1 

A phenomenological research was adopted to achieve the aim of this study. This strategy 2 

involves a qualitative research using FGIs. Differences between Phenomenology, Grounded 3 

theory and Discourse Analysis. Starks (2007) notes that although the boundary between 4 

phenomenology and other qualitative research approach such as grounded theory is porous, 5 

they originate from diverse intellectual traditions. However, there are noticeable similarities at 6 

the analytical phase where they share data analyses methodologies. A phenomenological 7 

research methodology seeks to exhume common meaning from the lived experiences of several 8 

individuals (Creswell, 2014). Adopting phenomenology enables a close observation of 9 

experiences of stakeholders about a phenomenon. Glaser et al. (1968) highlight that grounded 10 

theory focuses on the development of an exploratory theory of the interaction among social 11 

processes that are studied in their natural environment. As such, grounded theory seeks to 12 

understand pattern and relationships among the six Cs of social processes, i.e., causes, contexts, 13 

contingencies, consequences, covariance, and conditions (Strauss and Corbin, 1998).  14 

Wimpenny and Gass (2000) argue that data collection in phenomenology and grounded theory 15 

differs and depends on the focus of the study. Phenomenology emphasises co-creation of 16 

knowledge between the researcher and the researched rather than seeing the participants as data 17 

repositories. As such, phenomenology exceeds the preconceived understanding of the 18 

researcher whose perspective may differ from the participants. However, grounded theory 19 

focuses on theory development about a phenomenon and making observation as a third person. 20 

In addition, sources of knowledge in phenomenology is largely dependent on the interaction 21 

with those that have experienced phenomenon directly through interviews and focus groups 22 

(Wimpenny and Gass, 2000). Sources of knowledge in grounded theory on the other hand 23 

exceeds interviews and focus groups, but it could include field works, observation (direct or 24 

participatory), and artefacts (e.g. archival records and other documents).  25 

Phenomenological research is thus a more useful tool for addressing poorly conceptualised 26 

phenomena through active engagement with the stakeholders (Holloway and Wheeler, 1996) 27 

without interfering with the understanding of the phenomenon.  Van Manen (1990) highlights 28 

that being interested in the story of others is the basic underlying assumption of 29 

phenomenological study. The investigators, therefore, set aside previous experience to have a 30 

fresh perspective about the phenomenon being studied. In this regard, this study seeks to 31 
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explore the experiences of the participants on the impediments to the adoption of DfD as a 1 

circular economy strategy. The methodological process for this study is shown in Figure 2. 2 

 3 
Figure 2: Methodology process of the study 4 

 5 

The methodology process for the study is done in four stages. The study starts with a review 6 

of extant literature on design for buildings' end of life activities, DfD, and existing barriers to 7 

DfD. Thereafter, FGIs were carried out with major stakeholders in the construction industry to 8 

confirm factors identified from the literature and to uncover more factors on the barriers to DfD 9 

and strategies for improvement. Underpinned by a purposive sampling approach, the 10 

participants of the FGIs were selected based on their roles and year of experience. Using the 11 

research team’s network of practitioners within the UK construction industry, twenty-eight (28) 12 

industry professionals were selected for the FGIs. It was ensured that all the participants of the 13 

FGIs have a minimum of 8 years of experience. The description and description of the FGI 14 

participants are presented in Table 1 and sample questions from the FGI schedule are shown in 15 

Table 2. The FGI transcripts were then subjected to thematic analysis to isolate recurring 16 

patterns within the FGI transcripts. The results of the thematic analysis are then discussed vis-17 

à-vis existing literature. 18 

Table 1: Distribution of FGI participants 19 
No. Code Job title No of 

participants 
Average 
Year of 
experience 

1 FGI 1 Architects and design managers 6 15 
3 FGI 2 Design structural and MEP engineers 6 14 
4 FGI 3 Demolition operatives 5 16 
5 FGI 4 BIM managers and specialists 5 10 
6 FGI 5 Project managers 6 18 

 20 
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Table 2: Sample Questions from the focus group interview Schedule 1 
No. Sample questions from focus group interviews 
1 Do you think deconstruction should be considered at the design or construction 

stage? 
2 What do you think are the benefits of design for deconstruction? 
3 Why are designers (architects and engineers) not so interested in design for 

deconstruction? 
4 What are the main measures to encourage design for deconstruction in the industry? 
5 What are some of the challenges faced by designing for deconstruction? 
6 How can the challenges facing design for deconstruction be addressed? 

 2 

According to Gray (2009), FGIs allow participants to discuss their personal opinions based on 3 

their experiences. This data collection method provides deeper insights into a broad range of 4 

perspectives within a short time. The participants were asked to discuss what could hinder the 5 

adoption of building deconstruction and factors that can encourage the acceptance of DfD as 6 

an approach to sustainable development. Discussion and interactions during the FGIs were 7 

recorded on a digital recorder and later transcribed for thematic analysis. 8 

4 Data Analyses and Results 9 

Data analyses in a structured qualitative approach as suggested by Moustakas  (1994). The 10 

methods include (a) describe personal experience with phenomenon, (b) develop a list of 11 

significant statements from interview transcripts, (c) develop coding scheme for thematic 12 

analysis, (d) carry out a textual description of participants’ experiences with verbatim 13 

quotations, (e) carry out a structural description of the setting and context in which 14 

phenomenon was experienced, and (f) carry out a composite description that contains the 15 

textual and structural descriptions. As such, thematic analysis, was carried out after the 16 

development of the appropriate coding scheme by using the description of textual and structural 17 

discussions of participants’ experiences. 18 

The coding scheme helps to identify units of meaning from significant statements and to 19 

classify them into recurring themes. The coding scheme employs keywords and theme category 20 

tags. Keyword tag depicts a summary of the main issue raised within a segment. The keyword 21 

tag helps to identify prevalent issues and concerns across the transcript. The keywords are 22 

underlined within the quotation segments. The theme category tag shows the principal theme 23 



 10 

under which the issue discussed in the transcript segment falls. The results reveal five key 1 

barrier categories to DfD. Table 3 shows a summary of the identified 26 barriers to DfD. 2 

Table 3: Main barriers to DfD and barrier groupings 3 
No. Barriers  Reference 
A. Lack of stringent legislation for DfD  
1 Lack of Government legislation for deconstructed 

facilities. 
(Addis and Schouten, 2004; Guy and 
Ciarimboli, 2008) 

2 Design codes generally favour specifying new materials (Storey and Pedersen, 2014) 
3 *Low Building Research Establishment Environmental 

Assessment Method (BREEAM) point for DfD 
 

B. Lack of adequate information in building design  
4 *Lack of information about recoverable materials  
5 Lack of disassembly information (Akinade et al., 2015; Storey and Pedersen, 

2014; Tingley et al., 2017) 
6 Inadequate information about cost-effective material 

separation methods 
(Storey and Pedersen, 2014) 

C. Lack of large enough market for recovered 
components 

 

7 No standardisation and grading system for salvaged 
materials 

(Kibert et al., 2000; Storey and Pedersen, 
2014) 

8 Perceived perception and risks associated with second-
hand materials 

(Hurley and Hobbs, 2004) 

9 Low performance guarantees for recovered materials (Kibert et al., 2000; Rios et al., 2015; 
Tingley et al., 2017) 

10 Degraded aesthetics of salvaged materials (Dunant et al., 2017; Rios et al., 2015) 
11 Damaged or Contamination of materials during recovery (Densley Tingley and Davison, 2012b; 

Rios et al., 2015) 
12 Storage consideration for recovered materials (Guy and Ciarimboli, 2008; Tingley et al., 

2017) 
13 Transportation considerations for recovered materials (Rios et al., 2015; Storey and Pedersen, 

2014; Tingley et al., 2017) 
14 No information exchange system for salvaged materials (Saghafi and Teshnizi, 2011) 
15 Cost of product re-certification (Couto and Couto, 2010; Tingley et al., 

2017) 
D. Difficulty in developing a business case for DfD  
16 Additional cost of design that make the project more 

expensive 
(Chini, 2005; Couto and Couto, 2010; 
Rios et al., 2015; Srour et al., 2012) 

17 Insurance constraints and legal warranties of reclaimed 
materials 

(Hurley and Hobbs, 2004; Tingley et al., 
2017) 

18 DfD will increase the design time (Guy and Ciarimboli, 2008; Kibert et al., 
2000) 

19 Changing industry standards and construction 
methodology  

(Akinade et al., 2015) 

20 Believe that DfD could compromise building aesthetics 
and safety 

(Rios et al., 2015; Storey and Pedersen, 
2014) 

21 Overall benefit of DfD may not happen after a long time (Akinade et al., 2015; Storey and Pedersen, 
2014) 

E. Lack of effective DfD tools  
22 Lack of DfD analysis methodologies (Akinade et al., 2015; Densley Tingley and 

Davison, 2012b; Storey and Pedersen, 
2014) 

23 Existing DfD tools are not BIM compliant (Akinade et al., 2015; Storey and Pedersen, 
2014) 

24 *No tools for identifying and classifying salvaged 
materials at the end-of-life 
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25 *Performance analysis tools for end-of-life scenarios are 
lacking 

 

26 *Limited visualisation capability for DfD  
*Additional barriers identified from the focus groups 1 

5 Barriers to effective design for deconstruction 2 

The findings of the study reveal that despite the opportunities accruable from building 3 

deconstruction, there are impediments to the full exploitation of its potentials. This section 4 

discusses the five key barriers and their corresponding strategies for improvement as revealed 5 

from the data analyses.  6 

5.1 Lack of stringent legislation for design for deconstruction  7 

A common thread across the FGIs is that the major challenge confronting the adoption of DfD 8 

in the construction industry is the lack of stringent legislation and policies on DfD. It was 9 

highlighted that architects and design engineers have no moral or legislative obligation to 10 

ensure that the design is absolutely deconstructable at the end-of-life. In the same way, the 11 

participants of the FGIs agreed that although C&D waste is highly regulated in the UK and the 12 

benefits of building deconstruction is well known, there are no stringent legislation and policies 13 

that place obligation on clients and contractors to build deconstructable facilities. This assertion 14 

suggest that government legislative and fiscal policies are imperative towards achieving 15 

effectual DfD. This assertion aligns with existing studies (Ajayi et al., 2015; Lu and Yuan, 16 

2010; Oyedele et al., 2013) that suggest that the government has a major role to play in the 17 

current national and global sustainability agenda.  18 

Although DfD legislation does not exist anywhere, the FGI participants stressed that imbibing 19 

building deconstruction in the industry will be difficult unless it is driven by appropriate 20 

legislation. A demolition engineer from FGI-3 noted that: by the participants that: “Except the 21 

government drives the idea [design for deconstruction], I believe it is not going to be widely 22 

adopted in the industry” [FGI 3]. The excerpts point out that it is not enough that the benefits 23 

of sustainable end-of-life strategies such as deconstruction is well known, targets of the 24 

stringency of building deconstruction legislation should include appropriate policies to ensure 25 

wide acceptance and compliance among practitioners. Achieving appropriate government 26 

legislation and DfD targets will also encourage clients and contractors to incorporate DfD 27 

within their core values that will be enforced by appropriate contractual agreements. A project 28 
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manager from FGI-5 argues that: “Why will I waste my time to design for deconstruction if it 1 

is not part of the contract” [FGI 5]. This excerpt shows that the requirements and terms for 2 

building deconstruction and material reuse must be clearly specified in the project contracts.  3 

The stringency of such legislations and policies has been a proven way to ensure full 4 

compliance with government targets among the practitioners of the construction industry. An 5 

example is the UK government effort in diverting waste from landfills by imposing a landfill 6 

tax of £88.95/tonne for standard rated waste and £2.80/tonne for inert/inactive waste from 1 7 

April 2018. In fact, there is a progressive increase in the landfill tax such that by 1 April 2020, 8 

£94.15/tonne will be charged as standard rate. In addition, the UK government made the 9 

provision of Code for Sustainable Homes (CfSH) compulsory for all residential building 10 

construction and the Building Research Establishment Environmental Assessment Method 11 

(BREEAM) is becoming a popular requirement for new and refurbishment projects. Without a 12 

doubt, achieving this level of compulsion will favour the development of standardised “best 13 

practice” and guidelines for DfD. A strategy in this direction would be attributing more points 14 

to DfD in the BREEAM environmental assessment method.  15 

5.2 Lack of adequate information in building design 16 

A major challenge identified in FGI-3 is that building designs of existing buildings (which are 17 

usually 2D drawings on papers due to the old age of the buildings) lack enough information on 18 

how they could be deconstructed. Evidence from the literature also suggests that deconstruction 19 

activities are impeded by lack of adequate information because building designs do not provide 20 

adequate information on how the buildings could be deconstructed (Aidonis et al. 2008; 21 

Akinade et al., 2015). The fact is that most of the existing buildings were not built to be 22 

deconstructed and understanding the process of deconstructing them could be really difficult. 23 

A major concern to architects and design managers in FGI-1 is that understanding end-of-life 24 

performances of materials and accessing information about end-of-life recovery right from the 25 

design stage is challenging. Even so, Blengini and Carlo (2010) point out that building end-of-26 

life information is still scanty at the design stage. 27 

The way building information are used for various purposes across the lifecycle is transforming 28 

the construction industry and making access to more information possible at the early lifecycle 29 

stages. Besides, the need for more information for design, construction, building operation and 30 
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maintenance has become vital due to the increasing sophistication of buildings (Jordani, 2010). 1 

Building information is now important for tracking building construction processes and 2 

performance, isolating inefficiencies in building operations, and responding to specific needs 3 

of clients (Bilal et al., 2016a). In line with the foregoing, a Demolition manager from FGI-3 4 

argues that deconstruction could also benefit proactive information management by providing 5 

adequate information about the building’s end-of-life options at the early design stage. As such, 6 

early involvement of demolition would be beneficial as follows: (1) to provide advice on 7 

specifying appropriate materials with high end-of-life value, (2) to suggest building 8 

methodologies that could improve building deconstruction, and (3) to provide information 9 

about the end-of-life performances of building materials. 10 

It was emphasised during the FGIs that the current end-of-life disposal procedure is 11 

cumbersome because after a report of hazardous materials and historical features are obtained, 12 

the demolition contractor applies for demolition permit and proceeds with other activities such 13 

as waste management planning and meeting BREEAM requirements. A major challenge at this 14 

point is that it is difficult to know which of the components are reusable or recyclable. It was 15 

pointed out that “The demolition of buildings is a complex process, which requires careful 16 

audit, execution, and review. Apart from obtaining the required permissions, a major challenge 17 

is understanding the nature and content of the building…” [FGI 3]. The foregoing reveals that 18 

the inability to know the end-of-life performance and management routes of materials is 19 

impeding the diffusion of DfD as a sustainable process. It was argued that: “… The process 20 

[deconstruction] could be easier if accurate building design could reveal the type of building 21 

component contained in the building. … achieving this would help contractors to know which 22 

of the components could be deconstructed for resuse …” [FGI 3]. The except reveals that the 23 

process of identifying reusable components and hazardous materials could be easier if the 24 

materials are well documented in the building design, BIM models, and manuals. As such, 25 

effective building deconstruction could be achieved if considerable effort is put in DfD with 26 

future benefits in mind (Ajayi et al., 2015). It is also worth noting that the involvement of 27 

demolition and deconstruction contractors at the early design stages of buildings will also help 28 

to stimulate the consciousness for DfD across the industry rapidly. 29 
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5.3 Lack of large enough market for recovered components 1 

 Another impeding factor identified from the study is that the existing market for salvaged 2 

products (recycled and reusable) is not large enough. This finding confirms existing research 3 

works that existing market for salvaged products is marginal (Addis, 2008; Gorgolewski, 2008; 4 

Guy et al., 2006; Tatiya et al., 2017; Tingley and Davison, 2011). Evidence suggests that the 5 

success of building deconstruction and the reuse of components depend on the supply/demand 6 

dynamics of salvaged materials (Godichaud et al., 2012). The supply and demand dynamics 7 

include the source control, availability of distribution point for material sales, quality 8 

assurance, product standardisation and specification, product certification, ease of material 9 

transportation, availability of storage facilities, access to market, etc. This means that the 10 

provisioning of a sustainable route to market for salvaged material is important. In the same 11 

way, the opening of the market will require that salvaged components are also specified during 12 

design. However, enough attention is not given to the specification of salvaged components at 13 

the design because of the current negative perception about recovered materials. The 14 

participants in FGI-2 argued that: “Do you think that people will design buildings that could be 15 

deconstructed when industry practitioners have huge concerns about the specifying recovered 16 

materials? [FGI 2]”. Another barrier to the adoption of DfD is the concerns about the aesthetic 17 

degradation of recovered products. It was highlighted that clients place emphasis on the forms 18 

and aesthetics of building and specifying recovered materials could compromise both. 19 

Another major market challenge is that a lot of effort is required to re-certify salvaged products. 20 

This is because there are certain issues that bother on materials reuse and recyclability. In 21 

particular, there are concerns about the residual performance and legal warranties of recovered 22 

building elements after several years of usage (Kibert, 2003). In addition, it might be difficult 23 

to find a good fit for purpose among the salvaged materials. For example, evidence shows that 24 

recovered elements such as wood cannot be regraded and can only be used for low market 25 

applications and non-structural use (Falk, 2002). This therefore prevents materials such as 26 

wood to be reused in “as-is” condition. In the same way, it is difficult to find fit for purpose 27 

reuse for elements such as concrete. It was highlighted that: “Everyone knows that material 28 

reuse is the best strategy for reducing waste to landfills but it is difficult to find fit for purpose 29 

reusable products… This is a major challenge” [FGI 2].  30 
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As identified from the FGIs, a way of overcoming the market challenge is the development of 1 

an information exchange service for recovered products. The service will serve as a one-stop 2 

market place for deconstruction operators, contractors, clients and house owners to list and buy 3 

recovered products. However, a grading system for recovered materials must be developed to 4 

facilitate the standardisation of products according to their performance and the effective 5 

running of the market place. For example, a grading system such that Grade A represents the 6 

highest quality of material and Grade E represents the lowest quality could be adopted. It was 7 

also a common thread across the FGIs that the need for material storage and transportation is 8 

also contributing to why building deconstruction is not commonly considered. Storage and 9 

transportation considerations are at a cost, which will eventually increase the total project costs. 10 

5.4 Difficulty in developing a Business case for DfD 11 

The participants of FGIs highlight that a major barrier to the adoption of DfD in the industry is 12 

how to provide adequate economic justification for it. This is so because the eventual recovery 13 

or full deconstruction of buildings is preferable but it might not be the most economical 14 

(Hamidi and Bulbul, 2012).The participants of the FGIs maintained that the perception is due 15 

to the lack of quantitative case studies to show the economic benefits of DfD. It was also argued 16 

that selecting materials and components that facilitate deconstruction may increase the total 17 

project design time and cost. Considering the time and cost concerns, Billatos and Basaly 18 

(1997) advised that it must be ensured that the cost of DfD does not exceed the cost savings 19 

from reuse of recoverable materials and diversion of materials from landfills. While the FGI 20 

participants all agreed that design has huge influence on building deconstruction, the 21 

participants of FGI-1 stressed that their primary responsibility is to deliver the best value that 22 

matches the clients’ requirements. One of the participants mentioned that: “I understand what 23 

you are saying; however, we did not consider that [design for deconstruction] on this project. 24 

We are more concerned about providing the best value for our client over the lifespan of the 25 

facility”. It could also be inferred from FGI-1 that architects believe that they have the moral 26 

and professional responsibility to ensure the buildability of their designs and not for DfD. An 27 

architect from FGI-1 opined that: “why will I concentrate on design for deconstruction when 28 

there is the moral and professional responsibility of designing for construction”.  29 

It is also acknowledged across the FGIs that DfD is time consuming and labour intensive. This 30 

concern therefore inhibits the consideration of deconstruction as an alternative building 31 
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removal option at the design stage (Chini and Bruening, 2003). The participant also mentioned 1 

that a barrier to developing a business case for DfD is that the end-of-life of buildings may not 2 

occur for a long period and that the value of the building and its components is not guaranteed 3 

after its end of life. The participants argued that current building methodology and material 4 

choice might become obsolete in decades considering the current trend in building and material 5 

engineering. Despite these challenges, the benefits of deconstruction outweigh the cost if the 6 

value of buildings components is retained after their end-of-life (Akinade et al., 2015; Oyedele 7 

et al., 2013). 8 

5.5 Lack of effective design for deconstruction tools 9 

Evidence shows that design decisions have high impact on the entire building lifecycle and that 10 

design based philosophy offers flexible and cost-effective approach to building lifecycle 11 

management (Faniran and Caban, 1998; Osmani et al., 2008). Based on the foregoing, 12 

designers (architects and design engineers) are familiar with how design could influence 13 

building performance throughout its life time and at the end of life. However, the participants 14 

mentioned that another impediment to the adoption of DfD is that existing tools are not robust 15 

enough to support the architects and design engineers to design for building deconstruction. It 16 

was stressed by the participants that a major limitation of existing end-of-life waste analytics 17 

and DfD tools is that they are not BIM compliant. This submission aligns with evidence from 18 

the literature that lack of BIM compliance is a major barrier to DfD (Akinade et al., 2017b, 19 

2016; Bilal et al., 2015). The participants of the FGIs stressed that: “… sure, designing building 20 

for material reuse will reduce waste to landfills … but existing software that we use for design 21 

cannot support it [design for deconstruction]” [FGI 1]. It was also stressed by a participant 22 

from FGI-4 that: “I am aware that BIM is useful for collaboration, building visualisation and 23 

simulation …, I don’t think that BIM software has a plugin to support design for 24 

deconstruction” 25 

The excerpts suggest that BIM implementation for end-of-life scenario is not common place 26 

despite the steep rise in BIM implementation. According to Akinade et al., (2017b), adopting 27 

BIM for DfD will provide seven key functionalities, which include (i) improved collaboration 28 

among stakeholders, (ii) visualisation of deconstruction process, (iii) identification of 29 

recoverable materials, (iv) deconstruction plan development, (v) performance analysis and 30 

simulation of end-of-life alternatives, (vi) improved building lifecycle management, and (vii) 31 
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interoperability with existing BIM software. As such, BIM adoption will enable DfD to move 1 

towards a fully collaborative digital workflow. It was also stressed that another barrier to the 2 

diffusion of DfD practices is the lack of digital methodologies to identify reusable elements at 3 

the end-of-life.  It was agreed that the adoption of emerging technologies such as sensors (Ali 4 

Ilgin et al., 2014) could positively improve the identification and classification of building 5 

products at the end-of-life of buildings. 6 

6 Implications of the study 7 

The impacts of design on how buildings are constructed and the evidence that deconstructable 8 

buildings could help to divert waste from landfills necessitates an understanding of how design 9 

decisions affect how buildings are assembled and disassembled. The understanding of the 10 

impact of design decision on building deconstruction reveals that a full consideration must be 11 

given to the make-up of the building, stages of deconstruction and how design decisions 12 

enhance building retrofitting and disassembly (Guy et al., 2006; Warszawski (1999). 13 

Accordingly, Akinade et al. (2015) highlighted that tackling this challenge requires the 14 

knowledge of the intertwined relationships among design practice, DfD techniques and DfD 15 

factors. DfD strategies include design-related factors, material-related factors and human-16 

related factors (Akinade et al., 2017a). DfD design principles include building design 17 

methodology, dimensional coordination, and design documentation, (Akinade et al., 2015; 18 

Crowther, 2005). Evidence suggest that key considerations for effective deconstruction during 19 

building and structural design include design for material recovery, design for material reuse, 20 

and design for building flexibility (Akinade et al., 2017). The foregoing, therefore, calls for a 21 

holistic approach to how the interplay among these key areas and individual design elements 22 

could ensure successful building deconstruction.  23 

While research efforts have been made towards achieving building deconstruction, certain 24 

barriers are affecting the diffusion of DfD within the construction industry. A key barrier is 25 

that the end-of-life of buildings may not occur for a long time (Anggadjaja, 2014; Guy et al., 26 

2006). This means that the value of the building and its components after a long time is not 27 

guaranteed. Even so, building material choice would have changed due to changing regulations 28 

and performance requirements. Other barriers identified from this study are (a) lack of stringent 29 

legislations and policies, (b) lack of adequate information at the design stage, (c) lack of large 30 

enough market for recovered components, (d) difficulty in developing a business case for DfD, 31 
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and (e) lack of effective DfD tools. Addressing these barriers is imperative to stakeholders and 1 

policy makers to understand how to reposition DfD within the building sustainability 2 

ecosystem. 3 

Apart from creating an awareness on the roles of DfD in the current sustainability agenda, the 4 

findings of this study have other implications for construction stakeholders and policy makers. 5 

The findings of the study reveal that there is a need for legislation stringency with regards to 6 

DfD to ensure compliance with government targets. Evidence shows that government 7 

legislation is a proven way to ensure full compliance of policies and targets. The government, 8 

therefore, needs to achieve a level of compulsion for DfD just like the case of CfSH and 9 

BREAAM to favour the development of standardised DfD “best practice” and guidelines. 10 

Another implication that this study offers to project is the early involvement of demolition 11 

managers and specialists at the early design stage to influence the end-of-life alternatives. 12 

Ensuring that demolition specialists are involved at an early stage of design would be beneficial 13 

to help in specifying materials with high end-of-life value and to provide information about the 14 

end-of-life performances of materials. The demolition specialists will also help to suggest 15 

building methodologies that could improve building deconstruction at the end of life of 16 

buildings. Another implication that this study offers to key stakeholders (particularly the 17 

government and professional bodies) is the creation of large enough market and information 18 

exchange service for recovered products. In the same way, a robust grading system is required 19 

to facilitate the standardisation of recovered products according to their performance. 20 

7 Conclusions 21 

This study examines impediments to DfD from the perspective of industry experts. The focus 22 

of the study is to examine and articulate why DfD has not been widely adopted within the 23 

construction industry and to understand strategies for improvement. As such, FGIs were 24 

conducted with industry professionals to elicit their views. The qualitative analyses of the 25 

transcripts of the FGIs reveal 26 barriers to DfD under five categories, which are: (a) lack of 26 

stringent legislations and policies, (b) lack of adequate information at the design stage, (c) lack 27 

of large enough market for recovered components, (d) difficulty in developing a business case 28 

for DfD, and (e) lack of effective DfD tools. Overcoming these impediments is important to 29 

stakeholders and policy makers to know the practices that they must imbibe to reposition DfD 30 

within the building sustainability ecosystem. 31 
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The contribution of this study is therefore three-fold: (i) the study creates awareness on the 1 

roles building deconstruction in the current sustainability agenda; (ii) it broadens the 2 

understanding of key impediments to the adoption of DfD in the construction industry, and (iii) 3 

it aids the understanding of key drivers for the adoption of DfD as a circular economy strategy. 4 

At this stage of understanding the linkage DfD and sustainability, an urgent action is the 5 

development of best practices for achieving cradle-to-cradle design and construction through 6 

DfD and it must be driven by appropriate legislations to ensure compliance Just like CfSH and 7 

BREAAM. Stringent legislation and policy will also stimulate the development of standardised 8 

DfD practices and guidelines. The study also reveals that early involvement of demolition 9 

managers and specialists is required to ensure that appropriate end-of-life alternatives are 10 

adopted and that high-performance materials with respect with end-of-life are specified. The 11 

study also suggests the widening of the market for recovered products, development of a 12 

national grading system and the establishment of an information exchange service for 13 

recovered products to ease the diffusion of deconstruction design and end-of-life practices. 14 

A major limitation of this study is that qualitative research methods were used. Considering 15 

that it has been argued that results of FGIs could be influenced by participants’ subjective 16 

opinion (Lee 1991) and that it may be difficult to generalise findings to a wider population 17 

(Creswell 2014) due to the limit on the number of participants in FGIs, there is the need for 18 

empirical studies to determine the relative merits of each factor across a larger population 19 

sample. Thus, through continued iteration between empirical investigation and descriptive 20 

approaches, researchers will gain an understanding of the complex forces that influence the 21 

success of DfD and the eventual building deconstruction. It is therefore important that further 22 

studies are required to explore the linkages among the barriers to DfD. The use of Interpretative 23 

Structural Modelling (ISM) is recommended to take this research forward. The use of ISM in 24 

Production, Manufacturing and Construction studies is rife in the literature and it allows an 25 

order or direction to be imposed on a set of factors.   26 

Acknowledgement 27 

The authors would like to express their sincere gratitude to Innovate UK (grant application No. 28 

54832 – 413479 and File No 102473) and EPSRC (Grant Ref: EP/N509012/1) for providing 29 

the financial support for this study. 30 



 20 

 References 1 

Addis, B., 2008. Briefing: Design for deconstruction. Proc. ICE - Waste Resour. Manag. 161, 2 
9–12. https://doi.org/10.1680/warm.2008.161.1.9 3 

Addis, W., Schouten, J., 2004. Design for reconstruction-principles of design to facilitate reuse 4 
and recycling. CIRIA, London. 5 

Ajayi, S., Oyedele, L., Kadiri, K., Akinade, O., Bilal, M., Owolabi, H., Alaka, H., 2016. 6 
Competency-Based Measures for Designing out Construction Waste: Task and 7 
Contextual Attributes. Eng. Constr. Archit. Manag. 23, 464–490. 8 

Ajayi, S.O., Oyedele, L.O., Bilal, M., Akinade, O.O., Alaka, H.A., Owolabi, H.A., Kadiri, 9 
K.O., 2015. Waste effectiveness of the construction industry: Understanding the 10 
impediments and requisites for improvements. Resour. Conserv. Recycl. 102, 101–112. 11 
https://doi.org/10.1016/j.resconrec.2015.06.001 12 

Akanbi, L.A., Oyedele, L.O., Akinade, O.O., Ajayi, A.O., Davila Delgado, M., Bilal, M., Bello, 13 
S.A., 2018. Salvaging building materials in a circular economy: A BIM-based whole-life 14 
performance estimator. Resour. Conserv. Recycl. 129, 175–186. 15 
https://doi.org/10.1016/j.resconrec.2017.10.026 16 

Akbarnezhad,  a., Ong, K.C.G., Chandra, L.R., 2014. Economic and environmental assessment 17 
of deconstruction strategies using building information modeling. Autom. Constr. 37, 18 
131–144. https://doi.org/10.1016/j.autcon.2013.10.017 19 

Akinade, O.O., Oyedele, L.O., Ajayi, S.O., Bilal, M., Alaka, H.A., Owolabi, H.A., Bello, S.A., 20 
Jaiyeoba, B.E., Kadiri, K.O., 2017a. Design for Deconstruction (DfD): Critical success 21 
factors for diverting end-of-life waste from landfills. Waste Manag. 60, 3–13. 22 
https://doi.org/10.1016/j.wasman.2016.08.017 23 

Akinade, O.O., Oyedele, L.O., Bilal, M., Ajayi, S.O., Owolabi, H.A., Alaka, H.A., Bello, S.A., 24 
2015. Waste minimisation through deconstruction: A BIM based Deconstructability 25 
Assessment Score (BIM-DAS). Resour. Conserv. Recycl. 105, 167–176. 26 
https://doi.org/10.1016/j.resconrec.2015.10.018 27 

Akinade, O.O., Oyedele, L.O., Munir, K., Bilal, M., Ajayi, S.O., Owolabi, H.A., Alaka, H.A., 28 
Bello, S.A., 2016. Evaluation criteria for construction waste management tools: Towards 29 
a holistic BIM framework. Int. J. Sustain. Build. Technol. Urban Dev. 7, 3–21. 30 
https://doi.org/10.1080/2093761X.2016.1152203 31 

Akinade, O.O., Oyedele, L.O., Omoteso, K., Ajayi, S.O., Bilal, M., Owolabi, H.A., Alaka, 32 
H.A., Ayris, L., Henry Looney, J., 2017b. BIM-based deconstruction tool: Towards 33 
essential functionalities. Int. J. Sustain. Built Environ. 6, 260–271. 34 
https://doi.org/10.1016/j.ijsbe.2017.01.002 35 

Ali Ilgin, M., Ondemir, O., Gupta, S.M., 2014. An approach to quantify the financial benefit 36 
of embedding sensors into products for end-of-life management: a case study. Prod. Plan. 37 
Control 25, 26–43. https://doi.org/10.1080/09537287.2012.655801 38 

Anggadjaja, E., 2014. Barriers for Deconstruction and Reuse/Recycling of Construction 39 
Materials in Singapore, in: Barriers for Deconstruction and Reuse/Recycling of 40 
Construction Materials, CIB Publications, CIB General Secretariat Publisher, Rotterdam. 41 
Nakajima, Shiro Russell, Mark, pp. 108–114. 42 

Bilal, M., Oyedele, L.O., Qadir, J., Munir, K., Akinade, O.O., Ajayi, S.O., Alaka, H.A., 43 



 21 

Owolabi, H.A., 2015. Analysis of critical features and evaluation of BIM software: 1 
towards a plug-in for construction waste minimization using big data. Int. J. Sustain. 2 
Build. Technol. Urban Dev. 6, 211–228. 3 
https://doi.org/10.1080/2093761X.2015.1116415 4 

Billatos, S., Basaly, N., 1997. Green Technology and Design for the Environment. Taylor and 5 
Francis, Washington DC. 6 

Blengini, G.A., 2009. Life cycle of buildings, demolition and recycling potential: A case study 7 
in Turin, Italy. Build. Environ. 44, 319–330. 8 
https://doi.org/10.1016/j.buildenv.2008.03.007 9 

Blengini, G.A., Di Carlo, T., 2010. The changing role of life cycle phases, subsystems and 10 
materials in the LCA of low energy buildings. Energy Build. 42, 869–880. 11 
https://doi.org/10.1016/j.enbuild.2009.12.009 12 

Chini, A.R., 2005. Deconstruction and materials reuse: an international overview. International 13 
Council for Research and Innovation in Building and …. 14 

Chini, A.R., Acquaye, L., 2001. Grading and mechanical properties of salvaged lumber, in: 15 
Proceedings of the CIB Task Group 39-Deconstruction Meeting. pp. 138–162. 16 

Chini, A.R., Bruening, S., 2003. Deconstruction and materials reuse in the United States. Futur. 17 
Sustain. Constr. 14, 1–59. 18 

Coelho, A., de Brito, J., 2012. Influence of construction and demolition waste management on 19 
the environmental impact of buildings. Waste Manag. 32, 532–41. 20 
https://doi.org/10.1016/j.wasman.2011.11.011 21 

Couto, J., Couto, A., 2010. Analysis of barriers and the potential for exploration of 22 
deconstruction techniques in Portuguese construction sites. Sustainability. 23 
https://doi.org/10.3390/su2020428 24 

Creswell, J.W., 2014. Research design: Qualitative, quantitative, and mixed methods 25 
approaches. Sage Publications, London. 26 

Crowther, P., 2005. Design for disassembly - themes and principles. RAIA/BDP Environ. Des. 27 
Guid. https://doi.org/10.1115/1.2991134 28 

Daaboul, J., Le Duigou, J., Penciuc, D., Eynard, B., 2016. An integrated closed-loop product 29 
lifecycle management approach for reverse logistics design. Prod. Plan. Control 27, 1062–30 
1077. https://doi.org/10.1080/09537287.2016.1177234 31 

Dainty, A.R.J., Brooke, R.J., 2004. Towards improved construction waste minimisation: a need 32 
for improved supply chain integration? Struct. Surv. 22, 20–29. 33 
https://doi.org/10.1108/02630800410533285 34 

De Angelis, R., Howard, M., Miemczyk, J., 2018. Supply chain management and the circular 35 
economy: towards the circular supply chain. Prod. Plan. Control 29, 425–437. 36 
https://doi.org/10.1080/09537287.2018.1449244 37 

DEFRA, 2012. Construction, Demolition and Excavation waste generation estimate: England, 38 
2008 to 2010. Available from 39 
https//www.gov.uk/government/uploads/system/uploads/attachment data/ 40 
file/142006/CDE-generation-estimates.xls. 41 

Densley Tingley, D., Davison, B., 2012a. Developing an LCA methodology to account for the 42 
environmental benefits of design for deconstruction. Build. Environ. 57, 387–395. 43 
https://doi.org/10.1016/j.buildenv.2012.06.005 44 



 22 

Densley Tingley, D., Davison, B., 2012b. Developing an LCA methodology to account for the 1 
environmental benefits of design for deconstruction. Build. Environ. 57, 387–395. 2 
https://doi.org/10.1016/j.buildenv.2012.06.005 3 

Dorsthorst, B., Kowalczyk, T., 2002. Design for recycling. Design for deconstruction and 4 
materials reuse, in: Proceedings of the International Council for Research and Innovation 5 
in Building Construction (CIB) Task Group 39 – Deconstruction Meeting. Karlsruhe, pp. 6 
70–80. 7 

Dunant, C.F., Drewniok, M.P., Sansom, M., Corbey, S., Allwood, J.M., Cullen, J.M., 2017. 8 
Real and perceived barriers to steel reuse across the UK construction value chain. Resour. 9 
Conserv. Recycl. 126, 118–131. https://doi.org/10.1016/J.RESCONREC.2017.07.036 10 

Egan, J., 1998. Rethinking construction, Department of the Environment, Transport and the 11 
Regions, London. 12 

Faniran, O., Caban, G., 1998. Minimizing waste on construction project sites. Eng. Constr. … 13 
5, 182–188. 14 

Georgakellos, D.A., 2006. The use of the LCA polygon framework in waste management. 15 
Manag. Environ. Qual. An Int. J. 17, 490–507. 16 
https://doi.org/10.1108/14777830610670544 17 

Glaser, B.G., Strauss, A.L., Strutzel, E., 1968. The discovery of grounded theory strategies for 18 
qualitative research. Nurs. Res. 17, 364. 19 

Godichaud, M., Tchangani, A., Pérès, F., Iung, B., 2012. Sustainable management of end-of-20 
life systems. Prod. Plan. Control 23, 216–236. 21 
https://doi.org/10.1080/09537287.2011.591656 22 

Gorgolewski, M., 2008. Designing with reused building components: some challenges. Build. 23 
Res. Inf. 36, 175–188. 24 

Gray, D.E., 2009. Doing Research in the Real World, World. Sage Publications Ltd, London. 25 
Guy, B., 2001. Building deconstruction assessment tool. Deconstruction Mater. Reuse 26 

Technol. Econ. Policy 125–136. 27 
Guy, B., Ciarimboli, N., 2008. DfD: Design for Disassembly in the Built Environment: a Guide 28 

to Closed-loop Design and Building. Hamer Center. 29 
Guy, B., Shell, S., Esherick, H., Guy2, B., Shell, S., Esherick, H., 2006. Design for 30 

Deconstruction and Materials Reuse, in: Proceedings of the CIB Task Group 39. pp. 189–31 
209. 32 

Hamidi, B., Bulbul, T., 2012. A Comparative Analysis of Sustainable Approaches to Building 33 
End-of-Lifecycle: Underlying Deconstruction Principles in Theory and Practice, in: 34 
ICSDEC 2012. American Society of Civil Engineers, Reston, VA, pp. 155–162. 35 
https://doi.org/10.1061/9780784412688.018 36 

Holloway, I., Wheeler, S., 1996. Qualitative research for nurses. Blackwell Science, Oxford. 37 
Hurley, J., Hobbs, G., 2004. TG39-UK Country Report on Deconstruction. Deconstruction 38 

Tech. Econ. Safety-Country Reports. CIB Publ. Rotterdam, Netherlands. 39 
Jaillon, L., Poon, C.S., 2014. Life cycle design and prefabrication in buildings: A review and 40 

case studies in Hong Kong. Autom. Constr. 39, 195–202. 41 
https://doi.org/10.1016/j.autcon.2013.09.006 42 

Jess Sharman, 2017. Construction waste and sustainability [WWW Document]. RIBA Publ. 43 



 23 

Natl. Build. Specif. 1 
Kibert, C.J., 2008. Sustainable Construction: Green Building Design and Delivery: Green 2 

Building Design and Delivery. John Wiley & Sons. 3 
Kibert, C.J., 2003. Deconstruction: the start of a sustainable materials strategy for the built 4 

environment. Ind. Environ. 26, 84–88. 5 
Kibert, C.J., Chini, A., Languell, J., 2000. Deconstruction as an essential component of 6 

sustainable construction, in: Proceedings of the Second Southern African Conference on 7 
Sustainable Development in the Built Environment, Pretoria. pp. 1–5. 8 

Kumar, S., Luthra, S., Mishra, N., Singh, A., Rana, N.P., Dora, M., Dwivedi, Y., 2018. Barriers 9 
to effective circular supply chain management in a developing country context. Prod. Plan. 10 
Control 29, 551–569. https://doi.org/10.1080/09537287.2018.1449265 11 

Lassandro, P., 2003. Deconstruction case study in Southern Italy: economic and environmental 12 
assessment, in: CIB Publication. 13 

Latham, M., 1994. Constructing the team: joint review of procurement and contractual 14 
arrangements in the United Kingdom construction industry: final report. Available from 15 
http//www.cewales.org.uk/cew/wp-content/uploads/Constructing-the-team-The-Latham-16 
Report.pdf. 17 

Lieder, M., Rashid, A., 2016. Towards circular economy implementation: A comprehensive 18 
review in context of manufacturing industry. J. Clean. Prod. 115, 36–51. 19 
https://doi.org/10.1016/j.jclepro.2015.12.042 20 

Lu, W., Yuan, H., 2010. Exploring critical success factors for waste management in 21 
construction projects of China. Resour. Conserv. Recycl. 55, 201–208. 22 
https://doi.org/10.1016/j.resconrec.2010.09.010 23 

Merino, R., Gracia, P.I., Salto, I., Azevedo, W., 2015. Sustainable construction : construction 24 
and demolition waste reconsidered. 25 

Moustakas, C., 1994. Phenomenological research methods. Sage Publications. 26 
NFDC, 2016. Demolition and Refurbishment Information Datasheets (DRIDS) [WWW 27 

Document]. URL http://demolition-nfdc.com/page/drids.html (accessed 8.13.16). 28 
Nordby, A.S., Berge, B., Hakonsen, F., Hestnes, A.G., 2009. Criteria for salvageability: The 29 

reuse of bricks. Build. Res. Inf. https://doi.org/10.1080/09613210802476023 30 
Ortiz, O., Castells, F., Sonnemann, G., 2009. Sustainability in the construction industry: A 31 

review of recent developments based on LCA. Constr. Build. Mater. 23, 28–39. 32 
https://doi.org/10.1016/j.conbuildmat.2007.11.012 33 

Osmani, M., Glass, J., Price, A.D.F., 2008. Architects’ perspectives on construction waste 34 
reduction by design. Waste Manag. 28, 1147–1158. 35 

Oyedele, L.O., Regan, M., von Meding, J., Ahmed, A., Ebohon, O.J., Elnokaly, A., 2013. 36 
Reducing waste to landfill in the UK: identifying impediments and critical solutions. 37 
World J. Sci. Technol. Sustain. Dev. 10, 131–142. 38 
https://doi.org/10.1108/20425941311323136 39 

Phillips, P.S., Tudor, T., Bird, H., Bates, M., 2011. A critical review of a key waste strategy 40 
initiative in England: Zero waste places projects 2008–2009. Resour. Conserv. Recycl. 41 
55, 335–343. 42 

Prieto-Sandoval, V., Jaca, C., Ormazabal, M., 2018. Towards a consensus on the circular 43 



 24 

economy. J. Clean. Prod. 179, 605–615. https://doi.org/10.1016/j.jclepro.2017.12.224 1 
Rios, F.C., Chong, W.K., Grau, D., 2015. Design for Disassembly and Deconstruction - 2 

Challenges and Opportunities. Procedia Eng. 118, 1296–1304. 3 
https://doi.org/10.1016/j.proeng.2015.08.485 4 

Saghafi, M.D., Teshnizi, Z.A.H., 2011. Building Deconstruction and Material Recovery in 5 
Iran: An Analysis of Major Determinants. Procedia Eng. 21, 853–863. 6 
https://doi.org/10.1016/j.proeng.2011.11.2087 7 

Srour, I., Chong, W.K., Zhang, F., 2012. Sustainable recycling approach: an understanding of 8 
designers’ and contractors’ recycling responsibilities throughout the life cycle of buildings 9 
in two US cities. Sustain. Dev. 20, 350–360. 10 

Storey, J.B., Pedersen, M., 2014. Overcoming the barriers to deconstruction and materials reuse 11 
in New Zealand. Barriers Deconstruction Reuse/Recycling Constr. Mater. CIB Publ. CIB 12 
Gen. Secr. Publ. Rotterdam 130–145. 13 

Strauss, A., Corbin, J., 1998. Basics of Qualitative Research: Techniques and Grounded Theory 14 
Procedures for Developing Grounded Theory, The Modern Language Journal. 15 
https://doi.org/10.2307/328955 16 

Tatiya, A., Zhao, D., Syal, M., Berghorn, G.H., LaMore, R., 2017. Cost prediction model for 17 
building deconstruction in urban areas. J. Clean. Prod. 18 
https://doi.org/10.1016/j.jclepro.2017.08.084 19 

Thormark, C., 2001. Assessing the recycling potential in buildings, in: CIB Task Group 39: 20 
Deconstruction and Materials Reuse: Technology, Economic, and Policy. University of 21 
Florida, pp. 78–86. 22 

Thürer, M., Tomašević, I., Stevenson, M., 2017. On the meaning of ‘Waste’: review and 23 
definition. Prod. Plan. Control 28, 244–255. 24 
https://doi.org/10.1080/09537287.2016.1264640 25 

Tingley, D., Cooper, S., Cullen, J., 2017. Understanding and overcoming the barriers to 26 
structural steel reuse, a UK perspective. J. Clean. Prod. 148, 642–652. 27 
https://doi.org/10.1016/j.jclepro.2017.02.006 28 

Tingley, D.D., 2012. Design for Deconstruction: An Appraisal. PhD thesis, The University of 29 
Sheffield. 30 

Tingley, D.D., Davison, B., 2011. Design for deconstruction and material reuse. Proc. Inst. 31 
Civ. Eng. - Energy 164, 195–204. https://doi.org/10.1680/ener.2011.164.4.195 32 

Trikha, D.N., 1999. Industrialised building systems: Prospects in Malaysia, in: Proceedings 33 
World Engineering Congress. Malaysia. 34 

Van Manen, M., 1990. Researching lived experience: Human science for an action sensitive 35 
pedagogy. Suny Press. 36 

Volk, R., Stengel, J., Schultmann, F., 2014. Building Information Modeling (BIM) for existing 37 
buildings — Literature review and future needs. Autom. Constr. 38, 109–127. 38 
https://doi.org/10.1016/j.autcon.2013.10.023 39 

Webster, M.D., Costello, D., 2005. Designing structural systems for deconstruction: How to 40 
extend a new building’s useful life and prevent it from going to waste when the end finally 41 
comes, in: Greenbuild Conference, Atlanta, GA. 42 

Wimpenny, P., Gass, J., 2000. Interviewing in phenomenology and grounded theory: Is there 43 



 25 

a difference? J. Adv. Nurs. 31, 1485–1492. https://doi.org/10.1046/j.1365-1 
2648.2000.01431.x 2 

Yılmaz, M., Bakış, A., 2015. Sustainability in Construction Sector. Procedia - Soc. Behav. Sci. 3 
195, 2253–2262. https://doi.org/10.1016/j.sbspro.2015.06.312 4 

 5 


	Abstract
	1 Introduction
	2 Literature review: concept of deconstruction
	3 Research methodology
	4 Data Analyses and Results
	5 Barriers to effective design for deconstruction
	5.1 Lack of stringent legislation for design for deconstruction
	5.2 Lack of adequate information in building design
	5.3 Lack of large enough market for recovered components
	5.4 Difficulty in developing a Business case for DfD
	5.5 Lack of effective design for deconstruction tools

	6 Implications of the study
	7 Conclusions
	Acknowledgement
	References

